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We consider a general class of regression models with normally dis-
tributed covariates, and the associated nonconvex problem of fitting these
models from data. We develop a general recipe for analyzing the convergence
of iterative algorithms for this task from a random initialization. In particular,
provided each iteration can be written as the solution to a convex optimization
problem satisfying some natural conditions, we leverage Gaussian compari-
son theorems to derive a deterministic sequence that provides sharp upper and
lower bounds on the error of the algorithm with sample splitting. Crucially,
this deterministic sequence accurately captures both the convergence rate of
the algorithm and the eventual error floor in the finite-sample regime, and
is distinct from the commonly used “population” sequence that results from
taking the infinite-sample limit. We apply our general framework to derive
several concrete consequences for parameter estimation in popular statistical
models including phase retrieval and mixtures of regressions. Provided the
sample size scales near linearly in the dimension, we show sharp global con-
vergence rates for both higher-order algorithms based on alternating updates
and first-order algorithms based on subgradient descent. These corollaries, in
turn, reveal multiple nonstandard phenomena that are then corroborated by
extensive numerical experiments.

1. Introduction. In many modern statistical estimation problems involving nonlinear
observations, latent variables, or missing data, the log-likelihood—when viewed as a func-
tion of the parameters of interest—is nonconcave. Accordingly, even though the maximum
likelihood estimator enjoys favorable statistical properties, the more practically relevant ques-
tion is one at the intersection of statistics and optimization: Can we optimize the likelihood
in a computationally efficient manner to produce statistically useful estimates? This question
is particularly interesting in the statistically relevant setting—in which data are drawn i.i.d.
from a suitably “nice” distribution—where the resulting random ensembles of optimization
problems are often amenable to iterative algorithms. At the same time, iterative algorithms
run on nonconvex model-fitting problems with random data often exhibit several behaviors
that are distinct from those observed in standard convex programming (see the monographs
[16, 18, 43, 100] for examples). Obtaining sharp upper and lower bounds on the error of
such iterative algorithms is of fundamental interest, since this enables a rigorous comparison
between families of procedures and guides algorithm and hyperparameter choices in practice.

Existing, general-purpose methods for assessing rates of convergence in nonconvex opti-
mization involve either comparing upper bounds with upper bounds (e.g., [17, 63]) or using
“population-based” analyses that consider the algorithm’s behavior (or possibly the landscape
of the random loss function) in the infinite-sample limit (e.g., [5, 58]). For example, analyses

Received December 2021; revised September 2022.
MSC2020 subject classifications. Primary 62J02, 90C06; secondary 90C26.

Key words and phrases. Nonconvex optimization, convergence rate, precise iterate-by-iterate prediction.

179


https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/22-AOS2246
http://www.imstat.org
mailto:kabirc@stanford.edu
mailto:ashwinpm@gatech.edu
mailto:cthrampo@ece.ubc.ca
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

180 K. A. CHANDRASEKHER, A. PANANJADY AND C. THRAMPOULIDIS

that proceed via the population update are based on the following intuition. The algorithm
can be viewed as successively applying a (random) data-dependent operator 7, over itera-
tions, where the point 7,,(@) is obtained upon running one iteration of the algorithm from
the “current” parameter @. The limiting, deterministic object lim,_,», 7, is the population
update, and its evolution over time ought to serve as a proxy for the random iterates. Indeed,
the overall style of population-based analysis is appealing for several reasons: (a) It applies
(in principle) to any iterative algorithm run on any model-fitting problem, and (b) In contrast
to the direct sample-based approach of handling the algorithmic iterates directly (see, e.g.,
some of the early papers [44, 53]), it does not require the analysis of a complex recursion in-
volving highly nonlinear functions of the random data. In addition, decomposing the analysis
into a deterministic, optimization-theoretic component applied to the population version of
the algorithm and a stochastic component that captures the eventual statistical neighborhood
of convergence provides a natural two-step approach. But does the population-based analysis
provide a reliable prediction of convergence behavior in modern high-dimensional settings in
which the number of unknown parameters is typically comparable to the sample size?

1.1. Motivation: Accurate predictions of convergence behavior. Toward answering the
question posed above, we run a simulation on what is arguably the simplest nonlinear statis-
tical model resulting in a nonconvex fitting problem: phase retrieval with a real signal. This
is a regression model in which a scalar response y is related to a d-dimensional covariate x
via E[y|x] = |(x, )|, and the task is to estimate 8* € R4 from i.i.d. observations (x;, Vi).
Two popular algorithms to optimize the corresponding noncave log-likelihood are alternating
minimization (AM) [30, 32] and subgradient descent (GD) [98] (see Section 3 for details).

Before running our simulation, we emphasize two key aspects of it that form recurrent
themes throughout. First, as is common in the literature [17, 38, 40, 51, 66], we assume that
the covariates are normally distributed, and additionally employ a sample-splitting device:
each iteration of the algorithm is executed using n fresh observations of the model, drawn
independently of past iterations. The sample-splitting device has been used extensively in the
analysis of iterative algorithms as a simplifying assumption (e.g., [19, 40, 44, 51, 63, 66]),
and forms a natural starting point for our investigations. Second, over and above tracking
the ¢> error of parameter estimation, we track a more expressive statistic over iterations. In
particular, we associate each parameter § € R? with a two-dimensional state

(1) a(8) = Pgfl2 and B(0)=|Pgz0]|

where Pg+ denotes the projection matrix onto the one-dimensional subspace spanned by 6*
and P(ﬁ denotes the projection matrix onto the orthogonal complement of this subspace. In
words, these two scalars measure the component of @ parallel to #* and perpendicular to 8%,
respectively. Iterates @; of the algorithm then give rise to a two-dimensional state evolution'
(o, Bt), where oy = a(f,) and B; = B(0;). As several papers in this space have pointed
out [17, 81, 92], tracking the state evolution instead of the evolving d-dimensional parameter
provides a useful summary statistic of the algorithm’s behavior, and natural losses such as the
£> or angular loss of parameter estimation can be expressed in terms of the state evolution.
To run our first simulation in Figure 1, we choose the stepsize 1 in subgradient descent to
ensure that its population update, that is, the population-based prediction of the next iteration
from any current point coincides with that of alternating minimization. We plot the empirical
error trajectories of both algorithms alongside that of the population.> Two conclusions are

29

IThe state evolution terminology originated in the AMP literature [6, 25] and has been subsequently used more
broadly in the analysis of nonconvex iterative algorithms (see, e.g., [17]). We adopt here the terminology in its
broader context.

2See Sections 2 and 3 for the setting and Section 3 for the explicit population update.
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FIG. 1. Estimation error ||0; — 0* |5 over iterations along with population prediction for phase retrieval with
n = 12,000, d = 600 and Gaussian noise with standard deviation 10~8. Shaded envelopes around empirical
curves denote 95% confidence bands over 100 independent trials.

immediate from Figure 1. First, the population update is overly optimistic when predicting
the convergence behavior of both algorithms. Second, algorithms with the same population
update can exhibit very different convergence behaviors. As our simple experiment demon-
strates, the population update is not, at least in general, a reliable predictor of convergence
behavior. In Figure 6(a) in Section 4, we exhibit more drastic situations in which the pop-
ulation update can predict convergence when the empirical trajectory fails to converge. The
underlying reason is simply that the problem is high-dimensional: it is too simplistic to hope
for the algorithm’s finite-sample behavior to resemble the case when the sample size goes to
infinity. This observation leads to the principal question that we answer in this paper:

Is there a more faithful deterministic prediction for the empirical behavior of iterative algorithms in
high dimensions?

To be more specific, we would like such a deterministic update to satisfy two important
desiderata. First and foremost, we should be able to accurately predict the error of parameter
estimation after running one step of the algorithm from any point, allowing us to distinguish
convergence from the lack thereof. Second, we desire sharp predictions of convergence be-
havior that differentiate, for instance, between linear and superlinear convergence. Such a
sharp prediction for the iteration complexity can be used in conjunction with the per-step
computational cost of the algorithm to rigorously guide the choice of the fastest procedure to
implement for an optimization problem with random data.

1.2. A glimpse of our contribution. The principal contribution of this paper is to intro-
duce a deterministic Gordon state evolution update that produces a sharp, deterministic pre-
diction of the next state («(7,(0)), 8(7,(0))) as a function of the current state («(6), 8(0)).
This update satisfies the desiderata laid out above, and we develop a recipe that uses it to
sharply analyze iterative algorithms. The Gordon update is derived using the machinery
of Gaussian comparison inequalities—in particular, the convex Gaussian minmax theorem
(CGMT) [86]. Despite the nonconvexity of the original problem,’ this update applies pro-
vided each iteration of the algorithm can be written as the solution to a convex program

3In addition to nonconvex problems, our recipe can also provide sharp convergence guarantees for iterative
convex optimization with random data (see, e.g., [2]).
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satisfying some mild assumptions. As a consequence of this generality, our recipe using the
Gordon state evolution update yields several consequences for iterative algorithms when run
on statistical models.

1.

2

One-step prediction for general nonlinear regression models with latent variables: We
consider a general class of regression models with Gaussian covariates (to be introduced
precisely in Section 3), and derive a one-step prediction using the Gordon update for
two general families of iterative algorithms. Let us highlight one consequence of this
general characterization. The Gordon update is distinct from the population update in that
it involves an additive correction term, which is nonzero in the high-dimensional setting.
In particular, letting A =n/d > 1 denote the oversampling ratio used to implement each
step of the algorithm, the perpendicular component of the Gordon update takes the form

B =B +O(A717) - A,
where ,B[pj:'i is the analogous prediction of the population update, and A, is some nonneg-

ative, algorithm-dependent scalar depending on the iterate at time 7. Note that taking A
to infinity, the predictions from the Gordon and population updates coincide. However,
as we make clear shortly, the behavior of the Gordon update is dominated by the term
O(A~1/2) . A; in high-dimensional settings, and in these scenarios the population update
is a poor predictor of convergence behavior.

Our recipe provides not only a deterministic update but also a finite-sample concentra-
tion bound, showing that the empirical error concentrates sharply around the prediction
of the Gordon update. This is illustrated for the phase retrieval simulations in Figure 2.
As is clear from these figures, the Gordon update does indeed satisfy the desiderata laid
out above, providing both a sharp prediction of convergence behavior and near-exact pre-
dictions of the eventual error floor. In addition, our nonasymptotic characterization allows
us to analyze algorithms from a random initialization. These results—when combined
with a refined convergence analysis technique—allow us to uncover several nonstandard
phenomena in popular statistical models, discussed next.

. Results for concrete models: We use our one-step characterization to derive global conver-

gence guarantees (i.e., from a random initialization) for both higher-order and first-order
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FI1G. 2.  Plots of behavior over iterations for both alternating minimization and subgradient descent with stepsize
1/2, in a simulation identical to that of Figure 1. Overlaid is the prediction from their respective Gordon state
evolution updates. As is evident from the occlusion of the triangle markers, the Gordon prediction exactly tracks
behavior in both cases.
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TABLE 1
Summary of results for specific models and algorithms. In all cases, we provide global convergence guarantees
showing that with high probability, convergence to the local neighborhood of the ground-truth parameter occurs
after a number of iterations that is logarithmic in the dimension. Convergence rates within this neighborhood, as
predicted by the Gordon update, are listed above. These exactly match empirical behavior in all cases

Algorithm Model Metric Local convergence rate
Alternating minimization Phase retrieval {H Superlinear, exponent 3/2
Subgradient descent Phase retrieval 15 Linear
Alternating minimization Mixture of regressions Angular Linear
Subgradient AM Mixture of regressions Angular Linear

algorithms in two statistical models: phase retrieval and mixtures of regressions. Some
salient takeaways are collected in Table 1.

To summarize, for the phase retrieval model, our primary contribution is to make quan-
titative the behavior observed in Figures 1 and 2. While the population update predicts
quadratic convergence (i.e., superlinear convergence with exponent 2), we show that both
alternating minimization and subgradient descent behave differently from this prediction.
The former algorithm does converge superlinearly but with a nonstandard exponent 3/2,
while the latter converges linearly at best. For the mixture of regressions model, we pro-
pose a first-order method termed subgradient AM, which is inspired by the closely related
gradient EM update [22, 62]. We study it alongside alternating minimization, and show
that while both algorithms exhibit linear convergence in the angular metric, they are in-
consistent in the £, metric for any nonzero noise level. We exhibit regimes in which the
first-order method is competitive (in terms of its iteration complexity) with its higher-order
counterpart, suggesting that the first-order method should be preferred in these regimes
given its lower per-iteration cost.

3. Techniques of independent interest: Over the course of proving our results, we develop
some techniques that may be of broader interest, three of which we highlight below.

e In proving finite-sample concentration bounds around the deterministic Gordon up-
dates, we handle a family of loss functions that is strictly more general than those used
for proving analogous results in linear models [59, 67]. Our techniques are based on ar-
guing about carefully chosen growth properties of these loss functions, and may prove
useful in other nonasymptotic instantiations of the CGMT machinery.

e Characterizing algorithmic behavior near a random initialization requires a sharper
bound on the deviation of the parallel component than what is provided by the general
technique alluded to above. We develop a refined bound—applicable to higher-order
updates that involve a matrix inversion in each iteration—by using a leave-one-out de-
vice. This characterization allows us to replace a polylogarithmic factor in the sample
complexity bound with a doubly-iterated logarithm, and the technique may prove more
broadly useful in analyzing other higher-order updates from a random initialization.

e Finally, our local convergence analysis for particular algorithms relies on a first-order
expansion of the Gordon update. In particular, we show that the Gordon update is con-
tractive in a local neighborhood of the ground truth 6*, and combine this structural
characterization with our refined concentration bounds on the sample state evolution
to show deterministic upper and lower bounds on, that is, a high-probability envelope
around, the error of the empirical trajectory of the algorithm. Such a technique may
prove more broadly useful in producing sharp characterizations of convergence behav-
ior for other classes of iterative algorithms and statistical models.
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1.3. Related work. The literature on nonconvex optimization in statistical settings is vast,
and we cannot hope to cover all of it here. We refer the reader to a few recent monographs
[16, 18, 43, 100] for surveys, and the webpage [76] for an ever-expanding list of relevant
references. We focus in this subsection on describing a few papers that are most closely
related to our contributions, categorized for convenience under three broad headings.

Predictions in random optimization problems. As alluded to before, the population update
has proven useful in analyzing many algorithms in a variety of settings including Gaussian
mixture models [5, 19, 93], mixtures of regressions [5, 49, 51], phase retrieval [17], mix-
tures of experts [57] and neural networks [88]. In addition to providing local convergence
guarantees, it has enabled researchers to study the more challenging setting with random
initialization [17, 28, 92], and also revealed several surprising phenomena related to overpa-
rameterization and stability [41, 94]. The Gordon update that we derive is a much sharper
deterministic predictor of convergence behavior than its population counterpart, and we hope
that other surprising phenomena—over and above those that we present in the current paper—
can be uncovered by making use of it.

In addition to papers that characterize the random loss landscape by utilizing properties
of the population loss (e.g., [20, 39, 58]), we mention another line of inquiry—rooted in
the literature on statistical physics—that leads to deterministic predictions. This framework
is especially appealing when a prior on the underlying parameter is assumed, and employs
the approximate message passing (AMP) algorithm [6, 25, 26, 60]. AMP is carefully de-
signed to satisfy certain (approximate) independence properties across iterates and leads to
a simple state evolution without sample splitting; see the recent tutorial [29] for an intro-
duction. The analysis framework has recently been used to explore the (sub)optimality of
first-order methods in terms of their eventual parameter estimation error [10], to predict com-
putational barriers in a variety of problems including phase retrieval in high dimensions [56]
and to demonstrate that logistic regression is biased in high dimensions [78]. We emphasize
that analyses involving AMP do not require a sample-splitting assumption. In the context of
first- order methods, a recent preprint [8] that was made available after our own exactly ana-
lyzes the dynamics of gradient flow—that is, a gradient descent algorithm with the stepsize
tending to zero—for generalized linear models. In contrast to our motivation, predictions in
this family are not designed with the dual goal of characterizing the (optimization-theoretic)
rate of convergence of various algorithms as well as the statistical error of the eventual so-
lution. Instead, they focus on producing a single algorithm that eventually attains statistical
optimality—which is typically a member of the AMP family—or, in the case of the recent pa-
pers [8, 10], on writing down explicit state evolutions for the asymptotic correlation between
iterates, from which optimization-theoretic rates of convergence may not be straightforward
to derive.

Finally, we note that Oymak and Soltanolkotabi [65] focused on showing sharp time-data
tradeofsf in linear inverse problems. In particular, they considered random design linear re-
gression where the underlying parameter was constrained to an arbitrary (possibly noncon-
vex) set, and showed that employing projected gradient descent on the square loss with a
particular choice of stepsize enjoys a linear rate of convergence to an order-optimal neigh-
borhood of the true parameter. They also showed that a linear rate is the best achievable when
the constraint set is convex. Follow-up work [66] obtained similar results for single-index
model estimation, following the paradigm pioneered by Brillinger (see, e.g., [7, 69]). While
these results are compelling, they are restricted to the analysis of a single algorithm, do not
provide sharp iterate-by-iterate predictions and their primary focus is on exploiting struc-
ture in the underlying parameter. For comparison, and on the one hand, we do not explicitly
model structure in the parameter of interest, and also require that each iteration of the algo-
rithm solves a convex program. On the other hand, we allow for arbitrary nonlinear models,
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and our machinery allows us to derive sharp tradeoffs applying to a broad class of iterative
algorithms that go beyond first-order methods for linear regression.

Convergence guarantees for iterative algorithms beyond first-order updates. As made clear
shortly, the Gordon state evolution recipe is particularly powerful when dealing with itera-
tive algorithms that go beyond first-order updates, and consequently involve highly nonlin-
ear functions of the random data. There are several “direct” analyses of such higher-order
updates in the literature on matrix factorization, mixture models, neural networks, and in-
dex models, including for alternating projections [1, 33, 37, 40, 42, 44, 68, 77, 90, 97, 99],
composite optimization [15, 27] and Gauss—Newton methods [31]. For the expectation max-
imization (EM) algorithm and its Newton (i.e., second-order) analog, the population update
has been widely used to prove parameter estimation guarantees [5, 41, 93], although conver-
gence in function value can be shown via other means [50, 95]. All of the analyses mentioned
here are only able to provide upper bounds on the parameter estimation error over iterations,
and we expect that employing our recipe in these settings would yield either matching lower
bounds or sharper convergence rates.

Gordon’s Gaussian comparison theorem in statistical models. Gordon proved his celebrated
minmax theorem for doubly-indexed Gaussian processes in the 1980s [35, 36], which was
later popularized in the statistical signal processing literature [11, 64, 70, 72]. Following a
line of work [3, 67, 73—75], a sharp version of Gordon’s result in the presence of convexity—
providing both upper and lower bounds on the minmax value—was formalized in [86]; see
[83] for broader historical context. Since then, the convex Gaussian minmax theorem (or
CGMT for short) has been used to provide sharp performance guarantees for several con-
vex programs with Gaussian data, including regularized M-estimators [85, 87], one-bit com-
pressed sensing [84], regularized logistic regression [4, 24, 71, 79, 80], adversarial training
for linear regression and classification [45, 46], max-margin linear classifiers [23, 48, 61], dis-
tributional characterization of minimum norm linear interpolators [14] and minimum £; norm
interpolation and boosting [52]. While this line of work typically uses the Gordon machin-
ery to provide a one-step—and asymptotic—guarantee, the results of our paper are obtained
by using the CGMT in each step of the iterative algorithm, which requires a nonasymptotic
characterization. Having said that, we note that some nonasymptotic bounds have been ob-
tained using the CGMT in the context of the LASSO [9, 59, 67], SLOPE [91] and a class of
generalized linear models [54].

1.4. General notation. We use boldface small letters to denote vectors and boldface cap-
ital letters to denote matrices. We let sgn(v) denote the sign of a scalar v, with the convention
that sgn(0) = 1. We use sgn(v) to denote the sign function applied entrywise to a vector v.
Let I{-} denote the indicator function. For p > 1, let B, (v;7) = {x : |x — v|, <t} denote
the closed £, ball of radius ¢ around a point v, with the shorthand B,(z) = B,(0; 7); the
dimension will usually be clear from context. Analogously, let B,(S;7) ={x : [[x — v, <
t for some v € S} denote the 7-fattening of a set S in £ ,-norm. For an operator A : S — §, let
A= A® --- ® A denote the operator obtained by 7 repeated applications of A.

—_
t times

For two sequences of nonnegative reals { f,},>1 and {g,},>1, we use f, < g, to indicate
that there is a universal positive constant C such that f, < Cg, for all n > 1. The relation
fu 2 gn indicates that g, < f,, and we say that f, < g, if both f,, < g, and f,, = g, hold
simultaneously. We also use standard-order notation f,, = O(g,) to indicate that f,, < g,
and f, = (5(gn) to indicate that f, < gnlogn, for a universal constant ¢ > 0. We say that
fn = Q(gn) (resp., fn = Q(gn)) if 8n = O(fn) (resp., 8n = O(fn)) The notation fn = O(gn)
is used when lim,,, » f,/gn =0, and f,, = w(g,) when g, = o(f;). Throughout, we use c,
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C to denote universal positive constants, and their values may change from line to line. All
logarithms are to the natural base unless otherwise stated.

We denote by NV'(u, X) a normal distribution with mean g and covariance matrix X. Let
Unif(S) denote the uniform distribution on a set S, where the distinction between a discrete

and continuous distribution can be made from context. We say that X D'y for two random
variables X and Y that are equal in distribution. For ¢ > 1 and a random variable X taking
values in R, we write || X gy = (E[X]4 1)!/4 forits L? norm. Finally, for a real valued random
variable X and a strictly increasing convex function v : R>o — R satistying ¥ (0) =0, we
write || X ||y =inf{z > 0| E[v (:~'|X])] < 1} for its ¥-Orlicz norm. We make particular use
of the ¥,-Orlicz norm for ¥, (u) = exp(|u|?) — 1. We say that X is sub-Gaussian if || X||y,
is finite and that X is subexponential if || X ||y, is finite.

2. General methodology. We begin with a high-level overview of the steps involved
in our recipe. For concreteness, we focus on analyzing iterative algorithms on regression
models—in which we observe covariate-response pairs (x;, y;) and the covariates x; are
drawn i.i.d. from a normal distribution. Our rigorous results in the next subsection—showing
that the empirical iteration concentrates around an explicit Gordon prediction—are proved
on a concrete class of regression models with latent variables.

2.1. High-level sketch of the steps. We begin with the ansatz—which will be proved
rigorously when establishing the main results to follow—that it suffices to track the two-
dimensional state evolution (« (@), 8(#)) defined in equation (1). In particular, when one
step of the algorithm is run from the parameter 6, to obtain 6, |, we are interested in a
deterministic prediction (o;1, EH) for the random pair («(0;+1), B(0;+1)) that is (a) a
function only of the pair («(8;), 8(8;)), and (b) accurate up to a small error. We use several
steps to derive such a deterministic state evolution update. Let us begin by introducing the
convex Gaussian minmax theorem, or CGMT, which forms the bedrock of our recipe.

PROPOSITION 1 (CGMT [86]). Let G denote an n x d standard Gaussian random ma-
trix,and lety ; € R? and y . € R" denote standard Gaussian random vectors drawn indepen-
dently of each other and of G. Let L € R¥*4 and M € R"*" denote two fixed matrices. Also,
let U CRY and V C R" denote compact sets, and let Q :U x V — R denote a continuous
function. Define

(3a) P(G) :=minmax(Mv, GLu) + Q(u,v) and

ueld veV
(3b) Ay, yg) =minmax [Mv|y - {y g, Lu) + |[Lull2 - {y,. Mv) + Q(u, ).
Then
(a) Forallt € R, we have
P{P(G) <t} <2P{A(y,.vq) <t}.

(b) If, in addition, the sets U,V are convex and the function Q is convex—concave, then
forallt € R, we have

P{P(G) =t} <2P{A(y,. 7y = t}.
Strictly speaking, Proposition 1 is a generalization of the result appearing in [86], which is

stated without the matrix pair (L, M). However, its proof follows identically, and we choose
to state the more general result since it is most useful for our development. Following prior
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terminology [86], we refer to equation (3a) as the primary optimization problem, and to equa-
tion (3b) as the auxiliary optimization problem. Having stated the CGMT, let us now provide
a rough outline of the steps involved in deriving the Gordon state evolution update.

Step 1: Write one iteration of algorithm as solution to convex optimization problem.
As alluded to in the Introduction, each iteration of most algorithms—even on nonconvex
functions—can be written as the solution to a convex optimization problem. To make this
explicit under our assumption of sample splitting, suppose that at each iteration, we form
a fresh batch* of n observations by collecting the covariates in a matrix X € R"*¢ and the
responses in a vector y € R". By design, the pair (X, y) is statistically independent of the
algorithmic iterates thus far. At iteration 7, we update our current estimate of the parameter
0, to 0,11 by solving the optimization problem

“4) 0;+1 €argmin £(0;0,, X, y),
0cR4
for some loss function £ that depends implicitly on the current point 6, and is formed using
the data (X, y). In typical applications, £ is convex in @ for each fixed triple (0, X, y).
Alternatively, and as alluded to in Section 1, each step of the algorithm can be viewed
through the lens of a random, empirical operator T, : R¢ — R4, with

5) Tn(0) = argmin £(0";0, X, y) foreach 6 eR?,

0'cR4
and 6,41 = 7,(0;). The population update/operator alluded to before corresponds to the lim-
iting object lim,_, o 7, (treating the dimension d as fixed), which is deterministic but an
overly optimistic predictor of convergence behavior in high dimensions.

Step 2: Write equivalent auxiliary optimization problem. In this step, our goal is to write
the minimization of the loss function £—which is a function of the Gaussian design matrix
X—as a simpler minimization involving fewer Gaussian random variables. In particular, we
would like to show that
(©6) min £(0;60;, X, y)~ min £(0;60;,y,,7,):

0cR4 0cRd
where y 4, y,, denote (either d or n-dimensional) standard Gaussian vectors and the ~ symbol
denotes some form of approximate equality in distribution. The key workhorse in this step is
the CGMT (Proposition 1).

Step 3: Scalarize to obtain deterministic Gordon state evolution update. Writing the op-
timization problem in terms of the objective £ is motivated by the fact that this objective
can typically be scalarized, and equivalently written in terms of a small number of decision
variables. In this step, our goal is to establish the low-dimensional representation

(7) ;reller}lﬂ(a;at,}’d,)’n)%mgmlln(&gt),

as well as the approximate equivalence

®) Iréinfn(’é;'s';)%rrginf(é;’éz,/\),

where L, (-; &): R3>— Rand L(-; E,N): R3 — R are functions solely of a low (i.e., three)
dimensional parameter, and moreover, depend on the previous iterate only through the three-
dimensional parameter &, that captures certain key properties of §;. We emphasize that the
loss L, is a random function, whereas L is a deterministic function, which depends explicitly

4Owing to sample splitting, the pair (X, y) can also be thought of as depending on the iteration number #, but
we suppress this dependence and opt for more manageable notation.



188 K. A. CHANDRASEKHER, A. PANANJADY AND C. THRAMPOULIDIS

on A. The minimizers of the RHS of (8)—along with some algebraic simplification—then
yield the deterministic, two-dimensional Gordon state evolution update (@1, Bi41)-

Step 4: Argue that the empirical state evolution is tracked by the Gordon update. The final
step is to use growth properties of the objective functions £ and L, around their minima
to show that if their optimum values coincide, then so must their optimizers, up to some
negligible deviation. This is a technical step, and a large portion of our instantiation of the
recipe is dedicated to establishing these properties.

2.2. Model and main result. Having described the recipe at a high level, we now formally
derive and prove concentration of the one-step Gordon updates for higher-order and first-
order methods run on a generic class of problems. To begin, let us set up a formal observation
model, and provide a general form for the iterative algorithms that we study.

Suppose that we observe i.i.d. covariate-response pairs (x;, y;) generated according to the
model®

9) vi = f((xi,0%); qi) + €.

The covariates x; are assumed to be d-dimensional and drawn i.i.d. from the standard normal
distribution A/ (0, I ), and the function f is some known link function. The random variable
gi ~ Q represents a possible latent variable, that is, some source of auxiliary randomness that
is unobserved, and ¢; represents additive noise drawn from the distribution N (0, o2); both
of these are drawn i.i.d. Our goal is to use observations of pairs (x;, y;);>1 to estimate the
unknown d-dimensional parameter 8*. We assume that ||#*|, = 1 in order to simplify state-
ments of our theoretical results, but note that all our techniques extend to the more general
case. We consider two classes of iterative algorithms run on observations from this model.
Higher-order methods: The class of higher-order methods that we consider typically in-
volves running least squares in each iteration. These can be written in the form (4) by taking

n

1
(10a) £O):= | (w(bxi.01). ) — (xi.0))’.

i=1

where w : R — R denotes a problem-dependent weight function and the square root is taken
for convenience. The minimizer of the loss (10a) is given by

n -1 n
(10b) 041 = (inx,-T> (Zw((xi,é’z),yi) -xi>,
i=1 i=1
and involves matrix inversion at each step. Several families of algorithms, including alternat-
ing projections and expectation maximization, can be written in this form [5, 97].
First-order methods: These take the form (4), with loss

013 21 5
% — 0.0+ =13 wo((xi.00). yi) (xi. 0).

i=1

(11a) L£(6) =

Here, n denotes a stepsize and w is another problem-dependent weight function, typically
distinct from the corresponding choice for higher-order updates in (10a). Note that the loss

STt is important to note that owing to our sample-splitting heuristic, the total sample size when the iterative
algorithm is run for 7 iterations is given by n - T'. In the specific examples that we study, the number of iterations
T required to obtain order-optimal parameter estimates will turn out to be at most logarithmic in the dimension,
so that the total sample size nT also scales near linearly in the dimension d.
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TABLE 2
Gordon state evolution updates for both classes of algorithms run on the model (9), where Q2 is given by (13) and
A =n/d. As justified in Section 3.1, setting n = 1/2 in the first-order updates and taking A — oo yields the
same update for both types of methods, which in turn coincides with the population prediction

First-order Higher-order
90" a—2n-E[Z1Q] E[Z:9]
B \/ (B —2n-E[Z:QD)2 + 22 . E[02?] JEZ:2)% + £ BI92] - E[Z,9)2 - E[Z:2])?)

(11a) is clearly convex as required by Step 1 of our recipe. Further, its minimizers take the
form
2 n
(11b) 01 =0, —n-— > o((xi,00), ) - xi,
i=1

which correspond to running a (sub)gradient algorithm.

Having described the model and class of algorithms that we study, we are now in a position
to state our main result. Fix an arbitrary d-dimensional parameter # and consider the one-step
update (5). For convenience, use the shorthand

(12) (o, ) = ((0), B(0)) and (aF,B7) = (a(Tn(9)), B(Ta(8))).

The main result of this section shows that for algorithms whose one-step updates take the
form (10) or (11), the pair («*, 87) concentrates around the deterministic Gordon state evo-
lution update run from («, 8), denoted by (@9°", 89°") and provided explicitly in Table 2. This
result holds under mild assumptions on the weight functions @ : R> — R used to define the
algorithms. Recalling the model in (9), let Q ~ QQ denote the latent variable. Let (Z1, Z2, Z3)
denote a triple of i.i.d. standard Gaussians, and define the random variable

13) Q=w(aZi +BZs, f(Z1; Q) +0Z3).

The first assumption requires that this random variable is light-tailed (see, e.g., [89], Chap-
ter 2). The second assumption requires a lower bound on a particular functional of 2.

ASSUMPTION 1. The random variable €2 is sub-Gaussian with bounded Orlicz norm
12|y, < Ky, for some Ky > 0.

ASSUMPTION 2. For a parameter K, > 0, we have E[92] — (E[Z,2])? — (E[Z,Q])? >
K.

We next state our main results characterizing the concentration of the random pair
(a™, BF) around (a9°", B9°T). We state two very similar theorems for convenience since they
apply under a slightly different set of assumptions. The first theorem applies to higher-order
updates under both Assumptions 1 and 2, and the second theorem applies to first-order up-
dates but requires only Assumption 1 to hold.

THEOREM 1 (Higher-order deterministic prediction). Consider the general model (9)
for the data, and procedures that obey the general one-step update (10). Recall the shorthand
(o, B, o™, BY) from equation (12). Suppose that Assumptions 1 and 2 hold on the associated
weight function w with parameters K| and K», respectively. Consider the pair of scalars
(90", B9°N) for higher-order updates from Table 2. There exists a universal positive constant
Ci as well as a pair of positive constants (Cg, Cy) depending only on the pair (K1, K»)
such that the following is true. If A > C1, then
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(a) Provided we further have n > C’ -log(1/8), the perpendicular component satisfies

log(1/8)\ /4
(14a) IP{|/8+ — B > Ck (M) } <6, and
n
(b) The parallel component satisfies

7 1/2
(14b) P{}oﬁ — %" > CK(W) } <$é

For first-order methods, we make the additional assumption® « v 8 < 3/2 and obtain a
sharper rate via a more direct analysis. We also state the theorem for stepsize n < 1/2 for
convenience.

THEOREM 2 (First-order deterministic prediction). Consider the general model (9) for
the data, and procedures that obey the general one-step update (11) for some n < 1/2. Recall
the shorthand (a, B, a™, BT) from equation (12) and assume that o v B < 3/2. Suppose
that Assumption 1 holds on the associated weight function @ with parameter K. Consider
the pair of scalars (a9, B9°7) for first-order updates from Table 2. There exists a universal
positive constant Cy as well as a pair of positive constants (Cg , C), depending only on K
such that the following is true. If A > C1, then

(a) Provided we further have n > C' -log(1/8), the perpendicular component satisfies

log(1/8)\'/2
(152) P{|ﬂ+—ﬁg°f| ch<M) }55, and
n
(b) The parallel component satisfies
log(1/8)\/?
(15b) P{W—ag‘”\ch(M) }53.
n

A few comments are in order. First, our formulas for f9°" in Table 2 make transparent the
O(A~1/2) . A; term alluded to in equation (2). Indeed, the population update can be derived
from these formulas by taking A — oo (see Section 3 for explicit evaluations of these quan-
tities). Second, we emphasize that Theorems 1 and 2 provide a nonasymptotic concentration
result of the random state evolution around its deterministic counterpart, in contrast to re-
sults typically derived using the CGMT machinery, for example, [4, 24, 46, 48, 61, 71, 79].
While some recent nonasymptotic studies have been carried out for sparse linear regression
[9, 59, 67, 91], our bounds are more general in that they apply under the general observation
model (9), and not just to the overall minimizer of the empirical risk. A nonasymptotic char-
acterization is essential for our purposes because we intend to apply these results iteratively,
once per step of the algorithm. As mentioned earlier, this becomes particularly important
near a random initialization of the algorithm, for which we have o =< d~!/? (see, e.g., the
Supplementary Material [13], Lemma 24). In this case, the predictions from Table 2 show
that 9% =< d~1/2 and the deviation bound (14b) for a* of O(n~1/?) is crucial. In particular,
even when the sample size scales linearly in the dimension (i.e., A = O(1)), we can then
show that the next iterate still retains nontrivial correlation with the ground truth with high
probability, so that @t > «. The derivation of this sharp bound requires significant technical

OThis assumption is not required for higher-order methods because the sub-Gaussianity of the w function suf-
fices to ensure that the pair (29, 9°") remains bounded (see Table 2). The same is not true for first-order
methods; as is evident from Table 2, we also require the pair («, ) to be bounded.
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effort over and above the general recipe presented in the previous section, which produces
O(n~1/4) deviation bounds and would only be useful near a random initialization provided
n > d*. Note that since our results only assume a constant lower bound on the oversampling
ratio A, they hold in this regime as well. Theorems 1 and 2 are proved in the Supplementary
Material [13], Sections 1 and 2.

As briefly alluded to before, we note that Theorem 2 does not require the Gordon state-
evolution machinery and can instead be proved from first principles by directly using the
update (11b). For completeness, we provide a proof with suboptimal deviation bounds for
first-order methods using the Gordon state evolution machinery in [13], Section 1.3. The
higher-order updates considered in Theorem 1, on the other hand, seem out of reach of such
a direct method, and the machinery developed here allows to analyze both first as well as
higher-order methods under a common framework. In addition, the Gordon state evolution
machinery can—in principle—also be used to understand updates which do not even admit
closed-form solutions such as the prox-linear method [15, 27] when applied on related statis-
tical models.

3. Consequences for some concrete statistical models. In this section, we state conse-
quences of our main results for two specific models and algorithms, although it is important
to note that the Gordon recipe itself—as sketched in the previous section—is more broadly
applicable. In particular, we will consider phase retrieval and a symmetric mixture of linear
regressions, as well as the algorithms covered in Section 2. It is important to note that in both
these models, the global sign of the parameter 8 is not identifiable from observations, and
so parameter estimates should be assessed in terms of their “distance” to the set {—0*, 0*}.

As mentioned before, we track the two-dimensional state (« (@), 8(@)) of each parameter
0 € RY, with (@) = (8, 0*) and B(#) = || Py:0]|2. The sign ambiguity will be resolved by
the initialization, so we assume throughout that «(@) > 0 for parameters @ that we consider.
For any two-dimensional state evolution element ¢ = (¢, 8), define two metrics

(16) di,(§) :=y/(1 =)+ g% and d(f):=tan"'(B/a).

When o = «(0) and g = (@), the quantity ds,(cr, 8) measures the £, distance between 6
and the set {—0*, 0}, that is, we have dy, (o, 8) = min{||@ — 0 ||2, [|@ + 67 ||2}. Similarly, the
angular metric satisfies d/(a, 8) = min{Z£(0, 0%), Z(0, —6)}.

As alluded to in the previous sections. a state evolution operator, or update, is a function
from state to state, thereby mapping R? to itself. We begin with a few useful definitions for
such operators. First, for any state evolution operator S, recall that S’ denotes the operator
formed by ¢ iterated applications of S. Next, we define an S-faithful state evolution operator.

DEFINITION 1 (S-faithful operator). For a set S € R?, a state evolution operator S :
R? — R? is said to be S-faithful if S(¢) € S forall ¢ € S.

Next, we present two formal definitions of convergence rates, measuring linear (geometric)
and faster-than-linear convergence.

DEFINITION 2 (Linear convergence of state evolution). For parameters 0 <c <C < 1,
a state evolution operator S : R> — R? is said to exhibit (c, C, fp)-linear convergence in the
metric d within the set S to level ¢ if S is S-faithful, and for all ¢ € S, we have

17) c-d(S'(©)) + g <d(S™(@) < C-d(S'(©)) +e forallt > 1.
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DEFINITION 3 (Superlinear convergence). Set parameters 0 < ¢ < C and A > 1, and
suppose that S € {¢ : d(¢) < C!7*}. A state evolution operator S : R? — R? is said to exhibit
(c, C, A, tp)-superlinear convergence in the metric d within the set S to level ¢ if S is S-
faithful, and for all ¢ € S, we have

18) ¢ -[d(S'@O) + % <d(S*'(@) < C-[d(S' @) +¢ forallt > 1.

A few comments on our definitions are worth making. First, note that both definitions
require both upper and lower bounds on the per-step behavior of the algorithm, where the
bounds apply after a “transient” period of #¢ iterations. This is a key feature of our frame-
work, in that we are able to exactly characterize the convergence behavior as opposed to
solely providing upper bounds. Both upper and lower bounds are characterized both by a rate
of decrease of the error (linear in the case of equation (17) and superlinear in the case of
equation (18)) and the eventual statistical neighborhood €. Second, our choice of defining the
lower bounds in equations (17) and (18) with /2 is arbitrary; any absolute constant in the
denominator other than 2 preserves the qualitative convergence behavior.

As is common in the analysis of nonconvex optimization problems, our convergence guar-
antee will be established in two stages. In the first stage, we will show that the algorithm
converges (typically slowly) to a “good region” around the optimal solution; once in the
good region, the algorithm converges much faster. For both of the models that we consider,
the following definition of the good region suffices. It is important to note that the numerical
constants in this definition have not been optimized to be sharp. We note that the good region
should be thought of as stronger than a “locally converging region” as it additionally allows
us to show that the empirical iterates remain trapped in a small envelope around the determin-
istic predictions (see Theorems 3—6(b) to follow). This should be thought of as a sufficient
definition of region in which such an envelope-type behavior can be established—it is an
interesting technical question to pin down a necessary and sufficient definition.

DEFINITION 4 (Good region). Define the region
G={(a,p)0.55 < <1.05 and /B > 5}.
With slight abuse of terminology, we say that # € G if («(0), 8(0)) € G.
Recall that A = n/d denotes the per-step oversampling ratio. Also recall our notation for

the iterated empirical operator, whereby the ¢th iterate after initialization at @ is given by
6, =T!(#). We are now in a position to present our global convergence guarantees.

3.1. Phase retrieval. Our first example is phase retrieval, where equation (9) takes the
form
(19) yi = |(xi,0%)| + €,

that is, there is no auxiliary latent variable, and the function f (¢; ¢) = |¢| depends solely on its
first argument. We characterize the convergence behavior of both the alternating minimization
algorithm and the subgradient descent method for this model.

3.1.1. Alternating minimization. The update here takes the general form (10) with
w(x,y) =sgn(x) - y. That is, the empirical update run from the point 6 is given by

~1
1 & 1 &

(20) Tn(0) = (; inx,-T) (; ZSQH((xi,a)) Vi ‘xi)-
i=1 i=1
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The following corollary follows from Theorem 1; in it, we state both the explicit Gordon
state evolution and the concentration of the empirical iterates assuming that the update is run
from some arbitrary “current” point 6. Its proof is proved in the Supplementary Material [13],
Section C.1.

COROLLARY 1. Let a« = a(0) and B = B(0) with & = («, B) and ¢ = tan_l(g). Let
(99", B9°") = Sqor(¢) denote the Gordon state evolution from Table 2.

(a) We have

(2la) a9 =1- %(Zqﬁ —sin(2¢)) and

4 1 1 2 4

(21b) B9 = \/— sin*(¢) + —<1 — (1 ——(2¢ — sin(2¢))> — — sin*(¢) + 02).
w2 A—1 T w2

(b) Suppose o > 0. There is a constant C, > 0 depending only on o such that the fol-

lowing holds. With T, as defined in equation (20), the empirical state evolution (a™*, ) =

(«(74(0)), B(T(0))) satisfies

1 7 1/8 1/2
P{’a+_agor’ SC(T(M> } 58 and
n

p{lg" - 5| < Q(@)W} <s.

Note that the constant C, encodes the dependence on the parameters K and K> from As-
sumptions 1 and 2. Indeed, in the Supplementary Material ([13], Section C.1.2), we compute
K1 =2(140% and K, = 02.

From equation (21), the following population update is obtained by letting A — oo:

(22) aPP —1 — %(w —sin(2¢)) and BPP = %sinz(@.

The population state evolution predicts superlinear convergence with exponent 2 in the good
region, as shown in the following fact, proved in the Supplementary Material [13], Section
CJ5.

FACT 1. The population state evolution operator Spop = (PP, BPP) is (%, 1, A, fo)-
superlinearly convergent in the £> metric’ d¢, within the region G to level ¢ = 0, where
A=2andty=1.

However, the following theorem shows that the empirical quantities are instead tracked
faithfully by the Gordon state evolution, which converges more slowly than the population
state evolution. The proof of the theorem can be found in the Supplementary Material [13],
Section 3.2.

THEOREM 3. Consider the alternating minimization update T, from equation (20) and
the associated Gordon state evolution update Sgor from equation (21). There is a universal
positive constant C such that the following is true. If A > C (1 + o?), then:

(a) The Gordon state evolution update
Sgor is (cA, CA, A, to)-superlinearly convergent in the £y metric dg, within G to level &, 4 = %,

7In fact, the population state evolution (22) enjoys global quadratic convergence in the angular metric d /; see
[13], Remark 2.
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where 0 < cp < Cp <1 are constants depending solely on A, and we have
A=3/2 and tH=1.

(b) If 0 > 0, then there exist Co, C.. > 0 depending only on o such that for all n > C,,
and for any 0 such that &£ = (x(0), B(0)) € G, we have

1 1/4
ma [dey (Sge) = [ 7:0) =01, = Co (<2

with probability exceeding 1 —2Tn =10,
(c) Suppose 0g denotes a point such that

a(fo) - _ 1
B®0) = 50.d

cl. 10g7(%)f0r C! depending solely on o . Then for some t' < Clogd, we have

T (89) € G

and further suppose that A >

with probability exceeding 1 — §.

Note that if @ is chosen at random from the d-dimensional unit ball B, (1) with d > 130,

then we have Zgzg; > ﬁ with probability at least 0.95 (see the Supplementary Material

[13], Lemma 24(a)). Theorem 3 then shows that after t = O(logd + loglog(A /02)) itera-
tions, we have

23) |77 @) — 6], = O(a\/g) B

with high probability. Concretely, after taking O(logd) steps to converge to the good region
G, the AM update converges very fast to within statistical error of the optimal parameter.

Some remarks on specific aspects of Theorem 3 are in order. First, note that this theorem
predicts superlinear convergence with nonstandard exponent 3/2 whenever A is bounded
above. Comparing with Fact 1, we see that the population update is overly optimistic, and
this corroborates what we saw in Figures 1 and 2 in the Introduction. Nonstandard super-
linear convergence was recently observed in the noiseless case of this problem [34], but a
larger exponent was conjectured. Theorem 3 shows that the exponent 3/2 is indeed sharp,
since we obtain both upper and lower bounds on the error of the algorithm. Furthermore, the
convergence rate is superlinear with exponent 3/2 for every value of the noise level. As we
will see shortly, this is not the case for the closely related model of a symmetric mixture of
regressions, in which the convergence rate is linear for any constant noise level.

Second, note that part (b) of the theorem shows that the (random) empirical state evolution
is within ¢, distance n~!/* of its (deterministic) Gordon counterpart once the iterates enter
the good region. Consequently, the final result (23) on the empirical error has two terms. Note
that this error is dominated by the o//+/A term in modern high-dimensional problems.

Third, our convergence result is global, and holds from a random initialization. In particu-
lar, part (c) of the theorem guarantees that within O (logd) iterations, the iterations enter the
good region G, at which point parts (a) and (b) of the theorem become active. Convergence
from a random initialization is also established by showing that the empirical state evolution
tracks its Gordon counterpart closely. But rather than showing two deterministic envelopes
around the empirical trajectory, we leverage closeness of the updates iterate-by-iterate. It is
worth noting that this is the only step that requires the condition n = d log’ (logd); all other
steps only require sample complexity that is linear in dimension.

Finally, we note that our assumption that 0>/ A be bounded above by a universal constant
should not be viewed as restrictive. If this condition does not hold, then one can show using
our analysis that running just one step of the algorithm from a random initialization already
satisfies |01 — 0*||> = O(1) = O(6%/A) and achieves order-optimal error.
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3.1.2. Subgradient descent. To contrast with the superlinear convergence shown in the
previous section, we now consider subgradient descent with stepsize 1/2. As alluded to ear-
lier and shown explicitly below, this update shares the same population update as AM, con-
sidered before. This update takes the form (11) with w(x, y) = x — sgn(x) - y. The general
subgradient method for PR is thus given by the update

(24) (0)—0—— Z (xi,0)| — i) -sgn((xi,8)) - x;,

where 1 > 0 denotes the stepsize. The Gordon state evolution update is given by the following
corollary of Theorem 2, proved in the Supplementary Material [13], Section C.2.

COROLLARY 2. Let o = a(f) and B = B(0) with ¢ = tan—l(g). Let (a9, B9°) =
Sqor(a, B) denote the Gordon state evolution update for the subgradient descent operator
(24), given by Table 2. Let n < 1/2.

(a) We have

(25a) a%® =1 -2n)a+ 27](1 — %(2(]5 — sin(2¢)))), and

B = ({(1 — 2B +2n- %sin2¢}2

4n? 1 ,
(25b) + %{az + 8% — Za(l — ;(2¢ - sm(2¢)))

o) 1/2
-2 2
—2B8-—sin“p+ 140 }) .
T

(b) Suppose o >0and a Vv B <3/2. Then there is a positive constant C, depending only
on o such that with Ty, as defined in equation (24), the empirical state evolution (o™, BT) =

(@(74(0)), B(T(8))) satisfies
1/2
P{|a+_agor|fcg(W) }55 and

p|lp* - 5 < @(@)m} <s.

As in Corollary 1, C, encodes the dependence on the parameters K| = 2(10 4+ o) and
K> = o2 (see [13], Section C.2.2). Sending A — oo in equation (25) recovers the infinite-
sample population update

1 .
aPP = (1 = 2n)a + 217(1 ——2¢— sm(2¢))> and
(26) §

2
PP = (1 —2m)f +2n- —sin’§.
14
As previously noted, our interest® will be in analyzing the special case n = 1/2 so as to

compare and contrast with the AM update. In this case, the population updates (22) and (26)
coincide, and so Fact 1 suggests that subgradient descent ought to converge quadratically fast.

80ur techniques can also analyze the algorithm with general stepsize 1, but we do not do so in this paper since
a variety of other analysis methods tailored to first-order updates (e.g., [17, 82, 98]) also work in this case.
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This would be quite surprising for a first-order method, and already suggests that the popu-
lation update may be even more optimistic than before. However, the Gordon state evolution
updates (21) and (25) are distinct even when n = 1/2, and as we saw before, these provide
much more faithful predictions of convergence behavior. The proof of the following theorem
can be found in the Supplementary Material [13], Section 3.3.

THEOREM 4. Consider the subgradient descent update T, (24) and the associated Gor-
don state evolution update Syor from equation (25), with stepsize n = 1/2. There is a universal
positive constant C such that the following is true. If A > C (1 + ), then:

(a) The Gordon state evolution update

Sgor is (cp, Ca, 0)-linearly convergent in the £5 metric dg, on G to level &, 4 = %.

Here, 0 < cp < Cp < 1 are constants depending solely on A.
(b) Suppose o > 0. Then there are positive constants Co, C.. depending only on o such
that for all n > C. and for any 0 such that & = («(9), B(0)) € G, we have

logn>1/4

max [ (Spr(©)) — [ 70) ~ 0" = €

with probability exceeding 1 —2Tn =10,

(¢) Suppose 0q denotes a point such that %Ezg; > m and o (09) Vv B(0o) <3/2, and

further suppose that A > CJ) - log(%) for C! depending solely on o. Then for some
t' < Clogd, we have

7 (80) € G
with probability exceeding 1 — §.

To be concrete once again, suppose d > 130. Then using n > d observations (x;, y;)!_,

from the model (19) and setting 89 = ,/ % > yi2 - u with the vector u chosen uniformly
at random from the unit ball, we obtain the required initialization condition with probability
greater than 0.95 (see the Supplementary Material [13], Lemma 24(b)). The theorem then
guarantees that for some 7 = O(logd + log(A/o?)), we have

d ~
&7 17,7 00) — 0% = (’)(0\/;) T

with high probability. Given our extensive discussion of Theorem 3 and that most of these
comments also apply here, we make just one remark in passing that focuses on the difference.
Note that as expected, Theorem 4 shows that subgradient descent only converges linearly in
the good region. This corroborates what we saw in Figures 1 and 2, and shows once again—
and more dramatically than before—that the (quadratically convergent) population update
can be significantly optimistic in predicting convergence behavior.

3.2. Mixture of regressions. Our second specialization of (9) is the symmetric mixture
of linear regressions model [21, 47]

(28) yi =qi-(xi,0%)+ €.

Here, the latent variables ¢; are chosen i.i.d. from a Rademacher distribution Unif({3-1}), and
we have taken f(¢;q) = ¢ - t. Note that this model is statistically equivalent (for parameter
estimation) to the phase retrieval model (19) in the absence of additive noise (i.e., o = 0). On
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the other hand, we will see that the models and their associated algorithms exhibit distinct
behaviors for any nonzero noise level. We note in addition that Theorems 5 and 6 to follow
impose an additional assumption that o < c¢. This assumption is technical in nature and allows
to prove sharp “envelope” results (see Theorems 5, 6(b)). It is an interesting open question
to determine whether such “envelope” results can be shown without this assumption on the
noise level, and in particular whether such results hold when the o scales all the way up to

O(J/n/d).

3.2.1. Alternating minimization. The update here takes the general form (10) with
w(x,y) =sgn(xy) - y. That is, the empirical update applied at € is given by

1
1 & 1 &

(29) Tn(0) = <; inxiT) <; > sgn(yi - (xi.0)) - i ‘xi)-
i=1 i=1

The Gordon updates are given by the following corollary of Theorem 1, proved in the Sup-
plementary Material [13], Section C.3. Before stating it, we define the convenient shorthand

2 2 pz +O’2 +0-2p2
(30) Ag(p)i==tan~' (/o2 +02+0%?) and B, (p):= 2y
b4 b4 1+ p2

COROLLARY 3. Let « = a(f) and B = B(@) with ¢ = («, B) and p = g Let (a9,
B = Sqor(¢) denote the Gordon state evolution update in this case, given by Table 2.

(a) Using the shorthand (30), we have
(3la) o' =1—-A,(p)+ Bs(p), and

(1402 — (1= As(p) + Bs (p)* — p2 B (p)?).

gor _ [ 2 2
(lb) B —\/P Bo(p)"+

(b) Suppose o > 0. Then there is a positive constant C, depending only on o
such that with T, as defined in equation (29), the empirical state evolution (a™, ™) =

(«(74(0)), B(T(0))) satisfies

1 7 1/8 1/2
]P){|a+ _a90r| <C, (M) } <8 and
n

P|l6* - 5 < @(@)m} <s.

Note that C, is completely determined by the parameters K| =2(1 40?) and K, =02 as
computed in the Supplementary Material [13], Section C.3.2. By taking A — 00 in equation
(31), we recover the population update, given by

(32) aP® =1—As(p) + Bs(p) and BPP =pB,(p).

The update (32) has no dependence on A and thus cannot recover the noise floor of the
problem. On the other hand, and similar to before, the following theorem shows that the
empirical quantities are tracked instead by the Gordon update (31). The proof of the following
theorem can be found in the Supplementary Material [13], Section 3.4.

THEOREM 5. Consider the alternating minimization update T,, given in equation (29)
and the associated Gordon state evolution update Sqor (31). There are universal positive
constants (c, C) such that the following is true. If A > C and 0 < o < c, then:
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(a) The Gordon state evolution update
Sgor is (cA,o+ CA,o» 0)-linearly convergent in the angular metric d , on G to level &, g = %,
where 0 < cp o < Ca o <1 are constants depending solely on the pair (A, o).

(b) Ifn > C_, then for any 0 such that { = («(0), B(0)) € G, we have
logn)1/4

n

a0 (Sip(©)) = £(6.6)] = Co

with probability exceeding 1 —2Tn~1°. Here, Cy, and C! are positive constants depending
solely on o. 00
. a(0g 1
(c) Suppose 0¢ denotes a point such that BOo = 5070 NZi and further suppose that A >

cl. log%%)for C! depending solely on o. Then for some t' < Clogd, we have

T, 00) €G
with probability exceeding 1 — 6.

Owing to the discussion following Theorem 3 (see [13], Lemma 24), we deduce that with
a random initialization 6 and after t = O(logd + loglog(A/ 0?)) iterations, we have

d ~
(33) /(T (80),0%) = O(a\/;) + 0%

with high probability.

Let us make a few remarks to compare and contrast Theorem 5 with our previous results.
First, note that the convergence result proved here is in the angular metric d/ and not in the
(stronger) £, metric dg,. This is a crucial difference between the phase retrieval and mix-
ture of regressions models. Indeed, the parameter estimate for AM in mixtures of regressions
can be shown to be inconsistent in the £, distance; to see this, note that when 8 = 0*, we
have %" = 1 4+ ®(o>). Combining this estimate with part (b) of Corollary 3, we see that
dzz(O{+, B = ©(3) + o(1), and so for any constant noise level, the algorithm is not con-
sistent. Inconsistency of parameter estimation is a known phenomenon for alternating mini-
mization algorithms in mixture models with noise (for instance, a similar conclusion follows
from recent results [55] on label recovery for Lloyd’s algorithm in a Gaussian mixture).

Second, note that when o = 0, the mixture of regressions and phase retrieval models co-
incide. However, when there is noise, the convergence behavior predicted by Theorem 5
changes drastically to a linear rate, while in phase retrieval, superlinear convergence is pre-
served even when the noise level is nonzero (cf. Theorem 3). The Gordon update—and the
ensuing sharpness of our characterization—enable us to make this distinction.

Finally, note that our assumption on the noise level in this case is that o (as opposed to
o/~/\) be bounded above by a universal constant, resulting in a more stringent condition
than what we required in phase retrieval. While we make this assumption for convenience in
our proof, we conjecture that it can be weakened to the optimal condition o/+/A < c.

3.2.2. Subgradient AM. The update here is given by the general form (11) with
w(x,y) =x —sgn(xy) - y. That is, the empirical update with stepsize 7 is given by

n

2
G4 T® =013 (san(yi(x:.0)) - (x1.0) = i) - san(i (x,.9)) - x:.

i=1
While we are not aware of the subgradient AM algorithm having been considered in the
literature, it is natural for us to study it since when n = 1/2, it shares the same population
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update as AM. Given that AM converges linearly for a mixture of regressions, it is natural to
ask if the first-order method also does—while enjoying a much lower per-iteration cost.

The Gordon state evolution update in this case is given by the following corollary of The-
orem 2, proved in the Supplementary Material [13], Section C.4.

COROLLARY 4. Let a = a(f) and B = B(0) with & = (a, B) and p = g Let (%",
B = Sqor(8) denote the Gordon state evolution corresponding to the update (34), given by
Table 2. Let n < 1/2.

(a) Using the shorthand (30), we have
(35a) a9 =1 =-2na+2n-(1-As(p) + Bs(p)), and

poor — ({(1 — 2B+ 20 pBo(p))?

2
(35b) + 4%{042 + 8% —2a(1 — Ay (p) + By (p))

1/2
—2BpBs(p) + 1 +02}) .

(b) Suppose o > 0. Then there is a positive constant C, depending solely on o
such that with T, as defined in equation (24), the empirical state evolution (a™,BT) =

(a(T,(0)), B(Tx(8))) satisfies
12
IP’{|01+ —a% < C, (@) } <8 and

ooz ()

As computed in the Supplementary Material ([13], Section C.4.2), we have K| = 2(6+02)
and K> = o2, and C, is a function of only these constants. Sending A — oo recovers the
population update

aPP = (1 —2na+2n-(1—As(p) + Bs(p)) and

BPP = (1=2mpB +2n - pBs(p).
Once again, our interest will be in analyzing the special case n = 1/2, in which case the
population updates (36) and (32) of both the first-order and higher-order algorithm coincide.
The following theorem establishes a sharp characterization of the convergence behavior of the
subgradient method. Its proof can be found in the Supplementary Material ([13], Section 3.5).

(36)

THEOREM 6. Let the stepsize n = 1/2 and consider the subgradient update T, (29) and
the associated Gordon state evolution update Syor (35). There are universal positive constants
(c, C) such that the following is true. If A > C and o < c, then:

(a) The Gordon state evolution update

Sgor is (cA.o» CA o, 1)-linearly convergent in the angular metric d ; on G to level &, g = %=

\/K’
where 0 < cp o < Ca o <1 are constants depending solely on the pair (A, o).
(b) Ifn > C., then for any 0 such that & = («(0), B(0)) € G, we have

logn>1/4

n

max [d(She(§)) = £00.0)] = Co

with probability exceeding 1 —2Tn~10. Here, C ! and C, are positive constants depending
solely on o.
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; a(0o) 1
(¢) Suppose 0q denotes a point such that /3(08) > S0vd and o (09) v B(0o) < 3/2, and
further suppose that A > CJ) - log(%) for C! depending solely on o. Then for some
t' < Clogd, we have

T, (00) €G
with probability exceeding 1 — 6.

As in the case of subgradient descent for phase retrieval (see the Supplementary Material
[13], Lemma 24), we see that if 89 = ,/ % Y yl.2 - u for a random vector u chosen from the

unit sphere, then after T = O(logd + loglog(A /o2)) iterations, we have with high probabil-
ity, that

d ~
G7) Z(T7 69),0%) = o<a\/;) ey

The fact that both subgradient AM and AM (cf. Theorem 5) converge linearly in the good
region suggests that the first-order method, which has smaller per-iteration cost, may be a
more appropriate choice computationally. A closer look at the proof suggests that the corre-
sponding coefficients of contraction Cp , may be comparable for even moderately large A.
Indeed, this is illustrated in Figure 7(b), where we see two settings of the pair (A, o) in which
both algorithms exhibit nearly identical behavior. This observation provides further evidence
that our proposed subgradient AM method can be a compelling choice in such scenarios.

3.3. A glimpse of the convergence proof mechanism. To conclude this section, we pro-
vide a high level overview of our convergence proof technique, aspects of which may be
of independent interest. A schematic of the proof mechanism is presented in Figure 3. The
blue curve in the panel (top) represents the empirical state evolution (¢, S;), and our proof
technique relies on tracking the transitions of this curve across three phases. Points («, ) in
Phase I are such that the ratio 8/« is greater than some threshold. Phase II is characterized by
B/a being between two distinct thresholds. Phase III corresponds to being in the good region
G, in which the ratio 8/« is smaller than some small threshold and the parallel component
« is larger than a threshold (see Definition 4). In each phase, depicted in detail in the (left),
(right), and (bottom) plots of Figure 3, we track particular Gordon state evolution updates
using red dots. The shaded light blue regions schematically depict confidence sets that show
how each empirical iterate is “trapped” around its Gordon counterpart with high probabil-
ity. In Phases I and II, we track Gordon state evolution updates when run from the “worst
possible” empirical iterate in the previous confidence set, depicted in the figure using light
blue triangles. In Phase III, on the other hand, we track the full Gordon trajectory, that is, the
deterministic sequence of points that results from iteratively running the Gordon update from
the initial dark blue triangle. The behavior of the Gordon update itself is model-dependent
and governed by specific structural properties of the corresponding state evolution maps. We
establish these properties in the Supplementary Material ([13], Section 3.1), and use them
to establish part (a) of all our theorems in this section. For now, let us sketch the key ideas
underlying our treatment of the empirical iterates in each phase.

Phase I: Immediately after initialization, the parallel component « is very small, of the
order d~'/2. To show that the empirical iterates proceed favorably through Phase I, we use
the fact that the Gordon state evolution satisfies «9°" > (1 + ¢)a whenever B/« is large,
thereby increasing the parallel component exponentially within this phase. The O(n~1/?)
concentration of the empirical «; update around its Gordon prediction traps each empirical
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FI1G. 3. A schematic showing convergence of the algorithm in terms of its state space representation (o, ), in
three distinct phases (top). The triangles in dark blue (and the corresponding curved line) denote the empirical
iterates as they proceed through three phases. The panels (left), (right) and (bottom) are zoomed-in versions of
Phases I, Il and 111, respectively, where the dark blue triangle at the start of the phase depicts the point of the
trajectory within that phase. Each red circle in these subfigures denotes an iterate of the deterministic Gordon
state evolution update when run from the point that it is connected to. The shaded blue regions in all three phases
represent high-probability confidence sets for the empirical iterates. In panel (left), we leverage the fact that the
B-component of each iterate is trapped around that of its Gordon counterpart. In panel (right), each such region
is an angular “wedge” around the corresponding Gordon iterate, and in panel (bottom), the entire region (across
iterations) is determined by a small envelope around the full Gordon trajectory. The light blue triangles in Phases
I and Il denote “worst-case” instances of the empirical updates within the corresponding confidence set. See the
accompanying text for a more detailed discussion.

iterate or; within a small interval—as depicted in Figure 3 (left)—and allows us to argue when
n 2 d that «; also increases exponentially with ¢ in Phase I. At the same time, the §; iterates
also remain bounded, so that 8;/«; decreases below a threshold and enters Phase II. Phase |
takes at most O(logd) iterations with high probability.

Phase II: Next, we show that the ratio 89°" /9" of the Gordon state evolution decreases
exponentially, and we translate this convergence to the empirical ratio f; /o, by using the rela-
tions (14) and (15). This traps each empirical iterate within a small angular neighborhood of
its Gordon counterpart, and is depicted in Figure 3 (right). Together with the aforementioned
convergence of the Gordon ratio 89" /a9, this ensures that we enter the good region G. We
show that with high probability, the iterates stay within Phase II for at most O(1) iterations.
Along with the previously established convergence in Phase I, this establishes part (c) of all
our model-specific theorems, showing that our iterates enter the good region, that is, Phase
I11, after at most O(logd) steps after random initialization.

Phase 11I: In this final phase, we show a property that, to the best of our knowledge, is
absent from local convergence guarantees in prior work. This is collected in part (b) of our
individual theorems, and shows that a small envelope around the Gordon state evolution tra-
jectory, as depicted in Figure 3 (bottom), fully traps the random iterates with high probability.
The key property that we use to show this is in fact what guides our choice of the good region:
The derivatives of the %" and B9°" maps when evaluated for any element in this region are
both bounded above by 1 — ¢ for some universal constant ¢ > 0, so that small deviations of
the empirical updates from these maps are not amplified over iterations.

4. Numerical illustrations. We conclude by providing several numerical simulations to
illustrate the sharpness of our results. For each of the two models and two algorithms we
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consider, we demonstrate both global convergence as well as local convergence. In particu-
lar, for each of the two models, we perform three families of experiments. The first explores
convergence from a random initialization for both the higher-order and first-order method.
These experiments are performed in dimension d = 800 with n = 80,000 samples per itera-
tion (that is, A = 100) and noise standard deviation & = 10~°. First, a true parameter vector
0* is drawn uniformly at random from the unit sphere. Subsequently, an initialization 6 is
drawn (independently of #*) uniformly at random on the unit sphere. Then, from this vector,
we simulate 12 independent trials of the algorithm for 12 iterations. In the second family of
experiments, we explore local convergence—from an initialization, which has constant cor-
relation with the ground truth @*—for three different settings of noise standard deviation o
and oversampling ratio A. Each experiment is performed in dimension d = 500 for various
values of n. Each simulation is done by first drawing the ground-truth vector * uniformly at
random on the unit sphere and subsequently generating an initialization

00=0.8-6"+,/1-0.82Pgy,

where p is uniformly distributed on the unit sphere and is independent of all other random-
ness. Next, we run 100 independent trials of both algorithms for 12 iterations. Finally, in
the third family of experiments, we demonstrate the sharpness of our results in the presence
of constant noise. In particular, we consider dimension d = 100 with n = 80,000 samples
per iteration (A = 100) and noise standard deviation o = 0.1. As before, we draw a true
parameter vector 8* uniformly at random on the unit sphere and an independent initializa-
tion uniformly at random on the unit sphere. We subsequently run 12 independent trials of
alternating minimization.

4.1. Phase retrieval. We first consider phase retrieval. Figure 4(a) illustrates the global
convergence of both alternating minimization and subgradient descent. Figure 4(a) plots (i)
filled in circular marks denoting the Gordon state evolution started at the state («(69), 8(00));
(i1) hollow triangular marks denoting the average of the empirical performance of AM over
the 12 independent trials and (iii) a shaded region denoting the region between the minimum
and maximum values taken in the empirical trajectory. The same three items are also plotted
for subgradient descent.

Recall that part (c) of Theorems 3 and 4 states that each algorithm—when started from
a random initialization—first consists of a transient phase which takes O(logd) iterations

I ol & Empirical: AM
| AN i 104, mpirical:
10f A 101 4 Empirical: GD
10-1 ] 10-2 A | Gordon: AM
~ \\ ~ 103 “® Gordon: GD
= 1n—2 = Na
P s 10! N
| 1073 107
g 10~ 41~ Empirical: AM g 10_7
.[* Gordon: AM 10 3 Y
1072 & Empirical: GD 10~
_¢/®_Gordon: GD 1079
10 l 1010 2
2 4 6 8 10 12 2 4 6 8 10 12
[teration [teration
(a) Global convergence, 0 = 1076, A =100 (b) Local convergence, 0 = 10710, A =20

FI1G. 4. Convergence plots for phase retrieval. Each subplot shows: (in purple) the empirical trajectory of alter-
nating minimization, (in red) the Gordon updates for alternating minimization, (in blue) the empirical trajectory
for subgradient descent and (in orange) the Gordon updates for subgradient descent. Hollow triangles denote the
average of the empirical iterates and the shaded regions denote the range of values taken by the empirical iterates
over 100 trials.
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FI1G. 5. Global convergence of alternating minimization for phase retrieval with constant noise. The noise level
is setas o = 0.1 and A = 100. We plot the empirical trajectory of AM (blue triangular marks) as well as the Gor-
don prediction of the AM iterates (red circular marks). Each triangular mark is the average over 12 independent
trials, and the shaded region denotes the range of values taken by the empirical iterates over the 12 trials.

to reach a “good” region. This transient phase is witnessed by the first 5 iterations of each
algorithm, which make very little progress in the £, distance. Subsequently, parts (a) and (b)
of each theorem state that in the “good” region, the Gordon state evolution converges at a
specified rate and the empirical trajectory is trapped in a small envelope around this state
evolution. Iterations 5 — 9 illustrate the superlinear convergence of alternating minimization
and iterations 5 — 12 illustrate the linear convergence of subgradient descent. We remark
that whereas the theorems show the empirical trajectory to be trapped in a small envelope
surrounding the Gordon state evolution in the “good” region, the simulations suggest that
this may hold even from random initialization—that is, even the transient phase may consist
of an empirical trajectory trapped in an envelope around the Gordon state evolution.

Figure 4(b) zooms in and demonstrates local convergence. The Gordon prediction is dis-
tinct for the two algorithms, as predicted by part (a) of Theorems 3 and 4. Both plots also
corroborate part (b) of these theorems: the empirical trajectory is trapped in a small envelope
around the Gordon prediction.

We note that while Figure 4 uses small noise levels 0 = 107® and o = 1071, our theorems
do not have such stringent noise requirements. Figure 5 illustrates global convergence in the
presence of high noise, with o = 0.1. Notice that our predictions remain exact.

In addition to plots showcasing global and local convergence, we provide another exper-
iment in noiseless phase retrieval to illustrate the effect of stepsize in subgradient descent.
Here, we take dimension d = 250, oversampling ratio A = 10 and start from an initial cor-
relation ag = 0.6. We take a large stepsize n = 0.95 and run 140 iterations of subgradient
descent over 10 independent trials. As evident from Figure 6, this is a situation in which the
population update predicts convergence, yet the empirical trajectory fails to converge. On
the other hand, the Gordon updates continue to sharply characterize the empirical curve, and
predict the lack of convergence to the ground truth parameter.

4.2. Mixture of linear regressions. The two sets of simulations performed in this subsec-
tion (Figure 7) follow the same dichotomy as the those performed in Figure 4 of the previous
subsection. An important distinction is that the error metric used is the angular metric rather
than the ¢, distance. Figure 7(a) plots the trajectory of both AM and subgradient AM when
started from a random initialization. As before, the simulations suggest that the empirical
trajectory is trapped around the Gordon state evolution trajectory even from random initial-
ization. Next, local convergence is illustrated in Figure 7(b), where the details of the setup
are identical to the corresponding experiment in phase retrieval. Note the linearly convergent
behavior evident in Figure 7(b), as well as the similarity in performance of the two algorithms
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(a) Empirical curve alongside population curve (b) Empirical curve alongside Gordon curve

FIG. 6. Subgradient descent for stepsize n = 0.95. Markers are placed once every 5 iterations.

in the same simulation. As alluded to before, the competitiveness of the first-order method is
an important feature of the mixtures of linear regressions model.

Finally, Figure 8 illustrates global convergence in the presence of constant noise. To this
end, we consider the noise level ¢ = 0.1 and plot the error of alternating minimization over
iterations. As before, we note that our predictions remain sharp even in this setting.

4.3. Revisiting the sample-splitting assumption. We conclude this section by performing
an experiment to further examine our sample-splitting assumption. Recall that at every itera-
tion, we assume the algorithm to use n = Ad samples. Consequently, after 7 iterations, a total
of AdT samples are used. We consider three settings: (i) a total of AdT samples are used, but
only Ad samples are used per iteration; (ii) total of Ad samples are used, and every sample is
used at each iteration; (iii) a total of AdT samples are used, and every sample is used at each
iteration. That is, setting (i) operates under our sample-splitting assumption. Setting (ii) does
not employ sample splitting and is designed to match the per iteration sample complexity of
setting (i), whereas setting (iii) does not employ sample splitting and is designed to match
the total sample complexity of setting (i). Figure 9 plots the result of this experiment where
the dimension is set as d = 800, the noise is set as o = 107, the per iteration oversampling
ratio is set as A = 20 and we have run T = 8§ iterations of the algorithm. We note that the
optimal statistical performance is obtained by using all available samples at every iteration.
Conversely, when the per iteration sample complexity is matched in settings (i) and (ii), both
sets of iterates follow similar trajectories and eventually reach the same error floor.

[ [ —
= A 10~0-2 2 Empirical: AM
10 " h # Empirical: GD
10~1 1004 \ # Gordon: AM
06 Gordon: GD
1072 % 107V
RS
é 10,3 6; 1070.8
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10 .| [® Gordon: AM .
10~°F |~ Empirical: GD 1012
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10 10-14 I
2 4 6 8 10 12 2 4 6 8 10 12
[teration Iteration
(a) Global convergence, o = 1076, A =100 (b) Local convergence, 0 = 10*27 A=6

F1G. 7. Convergence in the mixtures of linear regressions model. For both noise settings, the local convergence
is linear, even for the higher-order update (AM).
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FI1G. 8. Global convergence of alternating minimization for mixtures of linear regression with constant noise.
The noise level is set as 0 = 0.1 and A = 100. We plot the empirical trajectory of AM (blue triangular marks) as
well as the Gordon prediction of the AM iterates (red circular marks). Each triangular mark is the average over
12 independent trials, and the shaded region denotes the range of values taken by the empirical iterates over the
12 trials.

S. Discussion. We presented the Gordon state evolution recipe for deriving sharp, deter-
ministic predictions for the behavior of iterative algorithms in nonconvex statistical models
with random data, which applies provided each iteration can be written as a convex pro-
gram satisfying mild decomposability conditions and the data in the problem is normally
distributed conditioned on the past. The key takeaway is that this enables a sharp character-
ization of convergence behavior, which we hope will prove useful in rigorously comparing
algorithms in a wide range of problems. Using this recipe, we derived explicit Gordon up-
dates and deviation bounds for a broad class of regression models with latent variables (9),
and used this one-step characterization to establish several sharp, global convergence guaran-
tees for both higher-order and first-order algorithms in two canonical statistical models; these
global convergence results all appear to be novel contributions in themselves.

Our work opens the door to several interesting research directions, and we conclude by
highlighting a few of them. The first question is technical. For higher-order methods, we
showed that our deterministic predictions of the perpendicular component B were within
O(n~14) of their empirical counterparts. While a direct analysis reveals an On~1/?) rate
for first-order methods as well as an O (n~!/?) rate for the parallel component, we conjecture
that a similar improvement can be carried out for the 8 component in higher-order meth-

" A& Resampling: A =20
10% A, L No resampling: A = 20
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FI1G. 9. Comparison of trajectories with and without sample splitting. This simulation considers dimension
d = 800, noise o = 107°, and oversampling ratio A = 20. Blue triangular marks denote the trajectory of the
resampled iterates, tan triangular marks denote the trajectory of the unresampled iterates keeping A = 20, and
pink triangular marks denote the unresampled iterates when the total sample complexity (over T = 8 iterations)
matches that of the sample-split algorithm.
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ods.” The second question has to do with our assumptions. Our analysis—which relied on
Gaussianity of the data independent of the current iterate—used a sample-splitting device to
partition the data into disjoint batches. While this is a reasonable method to obtain a practical
algorithm—indeed, all the algorithms we analyzed converge very fast, so that at most a log-
arithmic number of batches suffices—how can the Gordon recipe be extended to analyze the
case without sample splitting, or, more broadly, without Gaussianity? A final direction would
be to broaden the scope of problems to which our analysis applies, for instance, by consid-
ering “weak” signal-to-noise regimes or settings with dependent data [96]. Weak signal-to-
noise regimes have been the subject of recent work [28, 41, 92], and it is known that the
optimal statistical rates of convergence are different from those in the strong signal-to-noise
regimes that we consider in this paper. Deriving sharp rates of convergence of optimization
algorithms in these settings should allow rigorous distinctions to be made among algorith-
mic behavior (using matching upper and lower bounds) in over, under and correctly specified
situations.
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