
Accelerated and instance-optimal policy evaluation with linear function1

approximation∗2

Tianjiao Li† , Guanghui Lan† , and Ashwin Pananjady‡3

4

Abstract. We study the problem of policy evaluation with linear function approximation and present efficient5
and practical algorithms that come with strong optimality guarantees. We begin by proving lower6
bounds that establish baselines on both the deterministic error and stochastic error in this prob-7
lem. In particular, we prove an oracle complexity lower bound on the deterministic error in an8
instance-dependent norm associated with the stationary distribution of the transition kernel, and9
use the local asymptotic minimax machinery to prove an instance-dependent lower bound on the10
stochastic error in the i.i.d. observation model. Existing algorithms fail to match at least one11
of these lower bounds: To illustrate, we analyze a variance-reduced variant of temporal difference12
learning, showing in particular that it fails to achieve the oracle complexity lower bound. To remedy13
this issue, we develop an accelerated, variance-reduced fast temporal difference algorithm (VRFTD)14
that simultaneously matches both lower bounds and attains a strong notion of instance-optimality.15
Finally, we extend the VRFTD algorithm to the setting with Markovian observations, and provide16
instance-dependent convergence results. Our theoretical guarantees of optimality are corroborated17
by numerical experiments.18
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1. Introduction. Reinforcement learning (RL) problems are generally formulated in terms21

of Markov decision processes (MDPs). At each time step, the agent observes the current state22

and subsequently takes an action, which leads to the realization of some reward as well as a23

transition to the next state according to the underlying, but unknown, stochastic transition24

function. The eventual goal of the agent is to learn a policy, i.e., a mapping from states to25

actions, to optimize the reward accrued over time. The setting is a very general one, with26

applications ranging from engineering to the natural and social sciences; see, e.g., [14, 17] for27

surveys of RL applications.28

A fundamental building block in RL is the problem of policy evaluation, in which we are29

interested in estimating the long-term (discounted) value of each state under a fixed policy30

with sample access to the transition and reward functions. The literature considers three31

observation models for transition and reward samples, namely the generative model, the so-32

called “i.i.d.” model, and the Markovian noise model1. Furthermore, in modern applications33

with large state spaces, it is common to seek an approximation to the true value function within34

the span of a small number of basis functions, a setting that is commonly known as linear35

function approximation. In the canonical setting of the problem, one is interested in using36
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2 T. LI, G. LAN, AND A. PANANJADY

random observations to compute an approximate value function within the subspace, with the37

distance between the true value function and its approximation being measured according to38

an instance-dependent “weighted ℓ2-norm” that depends on the stationary distribution of the39

transition kernel.40

It is common to use stochastic approximation (SA) algorithms to solve the policy evalu-41

ation problem in the setting described above. Given the iterative nature of these algorithms,42

their convergence rates can be decomposed into two types of error: a deterministic error that43

measures how fast the algorithm converges to its fixed point even in the absence of noise,44

and a stochastic error that measures the contribution of the noise. Either of these errors45

could dominate in practice. While the stochastic error is typically larger in noisy problems,46

the deterministic error of the algorithm can dominate, for example, in settings with multiple47

processors. In particular, the collection and use of multiple samples/trajectories in parallel48

can reduce the stochastic error considerably.49

Loosely speaking, the deterministic error is measured in terms of the oracle complexity of50

the algorithm and the stochastic error is measured in terms of the sample complexity. The51

eventual goal of algorithm design is to develop practical algorithms that have optimal oracle52

and sample complexities. Ideally, these optimality guarantees should be instance-specific, in53

that they depend explicitly on the problem at hand and enable us to draw distinctions between54

the performance profiles of different algorithms.55

With this context in hand, let us briefly discuss the state of the art relevant to char-56

acterizing the complexity of policy evaluation and related problems. Classical work by Ne-57

mirovsky [29, 30] established oracle complexity lower bounds for solving linear operator equa-58

tions in ℓ2-norm. However, these results do not extend to the more specific policy evaluation59

setting under the weighted ℓ2-norm. On the other hand, Khamaru et al. [15] recently provided60

an instance-specific analysis of the sample complexity of policy evaluation under the ℓ∞-norm,61

focusing on the generative observation model without function approximation. Mou et al. [27]62

studied the broader problem of solving projected fixed point equations, with a focus on char-63

acterizing the error incurred due to projection onto a subspace. By virtue of studying the64

more general problem, the lower bounds on the statistical error proved in this paper are not65

specific enough to capture the policy evaluation setting with function approximation. Con-66

current work by Mou et al. [28] studied SA methods for solving linear fixed point equations67

with Markovian samples and established a non-asymptotic, instance-dependent lower bound.68

Given this state of affairs, the central question that motivates this paper is the following:69

What are the optimal oracle and sample complexities of policy evaluation in weighted ℓ2-norm70

with linear function approximation, and do existing algorithms achieve these bounds?71

1.1. Related work. There is a large literature on stochastic approximation for policy72

evaluation. The most popular stochastic iterative algorithm used for policy evaluation is73

temporal difference (TD) learning; see Dann et al. [6] for a survey. The TD learning algorithm74

was first introduced by Sutton [40], and convergence guarantees for TD have been proven in75

both asymptotic and non-asymptotic settings. Asymptotic convergence of TD with linear76

function approximation was established in Tsitsiklis and Van Roy [43], and other classical77

asymptotic guarantees include those due to Borkar and co-authors [4, 3]. The vanilla TD78

algorithm can also be combined with the iterate averaging technique, and the asymptotic79
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ACCELERATED AND INSTANCE-OPTIMAL POLICY EVALUATION 3

convergence of this algorithm was shown by Tadic [42], who extended the convergence results80

for solving noisy linear systems [35].81

While asymptotic convergence results offer a proof-of-concept, the algorithm is often run82

in large-scale applications with relatively small sample sizes. The first results proving finite83

time convergence under i.i.d. setting were proposed by Sutton et al. [41] and later extended by84

Lakshminarayanan and Szepesvári [21]. Finite-time analysis of TD learning under Markovian85

noise was carried out by Bhandari et al. [1], where the authors employed nonsmooth analysis86

to a variant of TD learning, by requiring projections at each iteration onto a pre-specified87

ball. A consequence of the nonsmooth approach is that there is no obvious way of benefiting88

from the variance reduction effect of parallel computing. In recent work, a subset of the89

current authors [20] provided an improved analysis of vanilla TD algorithm that overcomes90

this hurdle. There are also several other notable finite sample analyses of policy evaluation91

in various settings, e.g., [39, 5, 10, 24, 26], and statistical lower bounds have also been shown92

for offline reinforcement learning with linear function approximation, e.g., [47, 51].93

While some of these analyses are sharp, to our knowledge, vanilla TD learning is not94

known to attain the optimal oracle complexity and instance-dependent sample complexity. Li95

et al. [24] recently proved that TD learning achieves the minimax lower bound on stochastic96

error up to logarithmic factors, but their analysis is not instance dependent. Recent work by97

Kotsalis et al. [20] presented two new algorithms, the conditional temporal difference (CTD)98

and the fast temporal difference (FTD) learning, where FTD exhibits an accelerated rate in99

deterministic error. However, these algorithms fail to capture the correct stochastic error in100

the policy evaluation problem, and the bounds can be shown to be suboptimal for policy101

evaluation both in an instance-dependent sense, and in the worst-case over natural problem102

classes.103

During the past decade, there has been a flurry of parallel work in stochastic optimization104

on developing first-order methods with variance-reduction; early examples include IAG [2],105

SAG [37], SVRG [13, 49], and SAGA [7]. There are several papers that apply variance106

reduction to reinforcement learning, e.g., [8, 34, 45]. Recent work in policy evaluation has107

shown that variance reduction techniques can also be applied to algorithms of the TD-type [18,108

44, 50, 15]. Among these, the paper [15] is motivated by the desire to draw distinctions109

between RL algorithms with similar worst-case performance and follows a line of work deriving110

instance-dependent bounds on the stochastic error in policy evaluation [33, 25]. Specifically,111

the results of [15] capture the optimal instance-dependent stochastic error in the ℓ∞-norm.112

However, the optimal sample complexity is not achieved in [15] since the algorithm requires113

O{1/(1− γ)3} samples in each epoch.114

1.2. Contributions and organization. Towards answering the question posed at the end115

of Section 1, we make three distinct contributions:116

• Lower bounds. We construct a worst-case instance that shows an oracle complexity117

lower bound of order Ω{(1 − γ)−1 · log(1/ϵ)} for any iterative method whose iterates118

lie within the linear span of the initial point v0 and subsequent temporal differences,119

to converge to ϵ-error in weighted ℓ2-norm. We also prove a lower bound on sam-120

ple complexity using the classical local minimax theorem [11, 22, 23] to provide an121

instance-specific baseline for algorithm design.122
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4 T. LI, G. LAN, AND A. PANANJADY

• Algorithm design in the i.i.d. setting. We start by applying the variance re-123

duction technique to the classical TD algorithm, showing that the resulting variance-124

reduced temporal difference (VRTD) algorithm nearly matches the optimal stochastic125

error, but the analysis suggests a suboptimal deterministic error. This motivates126

us to further improve the VRTD algorithm with the stochastic operator extrapolation127

(SOE) device [19]. We provide a sharp analysis of our new algorithm—termed variance-128

reduced fast temporal difference (VRFTD)—showing that it achieves a convergence129

rate nearly matching both the deterministic error lower bound (for well-conditioned130

feature matrices) and the stochastic error lower bound.131

• Extension to the Markovian setting. We extend the VRFTD algorithm to the132

Markovian setting by introducing a burn-in period during sample collection. We show133

that the resulting algorithm also achieves similarly fast convergence, with a dominating134

stochastic error term that matches the instance-dependent lower bound proved in [28]135

and a deterministic error that matches that of the i.i.d. setting up to a multiplicative136

factor of the mixing time. In particular, in the so-called realizable case when the137

approximation error caused by linear function approximation is 0 (e.g., in the tabular138

setting), the leading Markovian stochastic error term is equal to the i.i.d. stochastic139

error term, indicating that the additional dependence on mixing time only appears in140

terms whose dependence on the final tolerance ϵ is weak.141

The rest of this paper is organized as follows. In Section 2, we formally present the problem142

setting. The three aforementioned main contributions are presented in Sections 3—5. In143

Section 6, we provide numerical experiments that corroborate our optimality guarantees. The144

proofs of our main results are postponed to Section 7, and auxiliary results are collected in145

the supplementary materials.146

1.3. Notation. For a positive integer n, we define [n] := {1, 2, ..., n}. We let 1 denote the147

all-ones vector in RD. We let ej denote the j-th standard basis vector in RD. Let IS : X →148

{0, 1} denote the indicator function of the subset S ⊆ X. Given a vector x ∈ Rm, denote its149

i-th entry by2 x(i). Let ∥x∥1 :=
∑m

i=1|x(i)|, ∥x∥2 :=
√∑m

t=1x
2
(i) and ∥x∥∞ := maxi∈[m] |x(i)|150

denote the ℓ1, ℓ2 and ℓ∞-norms respectively. Given a matrix A, denote its (i, j)-th entry by151

Pi,j . Let ∥A∥2 denote the spectral norm of matrix A. We let λmin(A) and λmax(A) denote152

the smallest and largest eigenvalue of a square matrix A, respectively. For a symmetric153

positive definite matrix A, define the inner product ⟨x, y⟩A := x⊤Ay and the associated norm154

∥x∥A :=
√
x⊤Ax. We refer to ∥x∥A as the ℓA-norm of x.155

2. Background and problem setting. In this section, we formally introduce Markov re-156

ward processes (MRPs) and the (discounted) policy evaluation problem. We also define linear157

function approximation of the value function, and present the concrete observation models158

that we study.159

2.1. Markov reward process and policy evaluation. An MRP is described by a tuple160

(S,P, R, γ), where S = [D] denotes the state space, P is the transition kernel, R is the reward161

function and γ ∈ (0, 1) is the discount factor. At each iteration, the system moves from the162

2In situations in which there is no ambiguity, we also use xi to denote the i-th coordinate of a vector x.
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current state s ∈ S to some state s′ ∈ S with probability P(s′|s), while the agent realizes163

the reward R(s, s′). We denote by r(s) :=
∑

s′∈SP(s
′|s)R(s, s′) the expected instantaneous164

reward generated at state s. Let P denote the transition probability matrix having (i, j)-th165

entry Pi,j = P(j|i). The reward R can also be written in matrix form, i.e., Ri,j = R(i, j).166

The value function specifies the infinite-horizon discounted reward as a function of the initial167

state:168

v∗(s) := E
[∑∞

t=0γ
tR(st, st+1)|s0 = s

]
.169170

In the case where the number of states is finite and equal to D, both the expected reward171

function r and the value function v∗ are D-dimensional vectors of reals. The value function172

is given by the solution to the Bellman equation173

v∗ = γPv∗ + r.(2.1)174175

Throughout this paper, we assume that the Markov chain is aperiodic, ergodic and that176

there exists a unique stationary distribution π := (π1, ..., πD) with strictly positive entries,177

satisfying πP = π. Let Π := diag(π1, ..., πD) denote a D×D diagonal matrix whose non-zero178

elements are given by the entries of the stationary distribution.179

2.2. Linear function approximation. In modern applications with large state spaces, it180

is common to seek approximate solutions to the Bellman equation (2.1), and the standard181

approach is to choose a d-dimensional subspace S for the purposes of approximation. In par-182

ticular, one chooses S := span{ψ1, ..., ψd} for d linearly independent basis vectors ψ1, . . . , ψd.183

For each state s ∈ [D] we let ψ(s) := [ψ1(s), ψ2(s), ..., ψd(s)]
⊤ denote its feature vector. Let-184

ting ΠS denote the projection onto the subspace with respect to the ∥ · ∥Π-norm, define v̄ as185

the solution to the projected fixed point equation186

v̄ = ΠS(γP v̄ + r).(2.2)187188

It is convenient to write this projection in matrix notation. Let Ψ := [ψ1, ψ2, ..., ψd]
⊤, and for189

v♢ in S, use θ♢ to denote its corresponding parameterization in Rd, e.g., Ψ⊤θ′ = v′. With this190

shorthand, equation (2.2) can be equivalently written as191

ΨΠΨ⊤θ̄ = ΨΠγPΨ⊤θ̄ +ΨΠr.(2.3)192193

It is convenient in the analysis to have access to an orthonormal basis spanning the pro-
jected space S. Define the matrix B ∈ Rd×d by letting Bi,j := ⟨ψi, ψj⟩Π for each i, j, and
let

Φ := [ϕ1, ϕ2, ..., ϕd]
⊤ = B− 1

2Ψ.

By construction, the vectors ϕ1, . . . , ϕd satisfy ⟨ϕi, ϕj⟩Π = I(i = j). Next, define the scalars194

β := λmax(B), and µ := λmin(B),(2.4)195196

so that β/µ is the condition number of the covariance matrix of the features. Finally, let197

M := γΦΠPΦ⊤
198199

denote the d-dimensional matrix that describes the action of γP on the projected space S.200
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6 T. LI, G. LAN, AND A. PANANJADY

2.3. Observation models and problem statement. We start by introducing the i.i.d.
observation model, in which we have access to a black box or simulator that generates samples
from the transition kernel and reward functions. In particular, we observe independent tuples
ξi = (si, s

′
i, R(si, s

′
i)), such that

si ∼ ω, s′i ∼ P (·|si),
where ω := (ω1, ..., ωD) is a distribution with strictly positive entries, and we use the shorthand201

Ω := diag([ω1, ..., ωD]). A natural and popular choice is ω = π, in which case the i.i.d. model202

is meant to approximate the stationary Markov chain.203

In the Markovian noise model, we assume that all of our observations come from a single204

trajectory of a Markov chain. Precisely, the sequence of states {s0, s1...., } generated by the205

MRP is a time-homogeneous Markov chain, with s0 ∼ π. The tuple ξt = (st, st+1, R(st, st+1))206

is observed at each time t. The highly correlated nature of these observations renders algorithm207

design and analysis in the Markovian setting more challenging than in the i.i.d. setting.208

Our goal in both cases is to use the observations to generate an estimator v̂n of v∗ which209

satisfies an oracle inequality of the form210

E∥v̂n − v∗∥2Π ≤ O(1)∥v̄ − v∗∥2Π + δn∥v0 − v̄∥2Π + ϵn,σ,(2.5)211212

where v0 is the initial iterate of the algorithm. The three terms appearing on the RHS of213

inequality (2.5) all have concrete interpretations. The first term ∥v̄ − v∗∥2Π characterizes214

the approximation error incurred by the linear function approximation. As a point of the215

background, we recall the following instance-dependent upper bound on the approximation216

error due to Mou et al. [27]:217

∥v̄ − v∗∥2Π ≤ A(M,γ) inf
v∈S

∥v − v∗∥2Π,(2.6)218
219

where A(M,γ) = 1 + λmax

(
(I −M)−1(γ2Id −MM⊤)(I −M)−⊤). See Mou et al. [27] for a220

proof, alongside guarantees of information-theoretic optimality.221

This work focuses on sharply analyzing the last two terms on the RHS of inequality (2.5),222

both of which have concrete operational interpretations. The term δn∥v0 − v̄∥2Π is the deter-223

ministic error, which characterizes the convergence of the iterative algorithm in the purely224

deterministic setting. Specifically, the term δn, which should tend to zero as the number of225

iterations (or oracle calls) n goes to infinity, quantifies how fast the discrepancy between the226

initialization v0 and the approximate solution v̄ diminishes by running the iterative algorithm.227

The third term ϵn,σ is the stochastic error, which is incurred due to the stochastic observation228

model. Here we use the notation σ as a placeholder for the “noise level” in the observed229

samples. One should expect the stochastic error ϵn,σ to go to zero as n goes to infinity or as230

σ goes to zero. Several previous works mix the deterministic error with stochastic error in231

their guarantees (see, e.g., [1, 27]). However, the key benefit of separating the deterministic232

error from the stochastic error is that it allows a clean understanding of situations in which233

either the observations have low noise or parallel implementation may be available. In these234

cases, the deterministic error dominates the overall convergence rate of the algorithm, and so235

having algorithms that attain the optimal deterministic error is a key desideratum.236

Having precisely defined the deterministic and stochastic errors, we are now in a position237

to present our first set of results on lower bounds for both of these terms.238
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3. Lower bounds in weighted ℓ2-norm. We study the oracle complexity lower bound on239

deterministic error in Section 3.1 and the instance-specific stochastic error lower bound in240

Section 3.2.241

3.1. Oracle complexity lower bound on deterministic error. It is well-known that a linear242

rate can be achieved for the deterministic policy evaluation problem, and the convergence rate243

is highly dependent on the effective horizon (1−γ)−1 [36]. Accordingly, our goal in this section244

is to prove an oracle complexity lower bound in terms of (1 − γ)−1, which can be done even245

in the tabular setting in which the subspace is all of RD. The following assumption on the246

oracle captures algorithms in the temporal difference learning family.247

Assumption 1 (Amenable iterative method). An amenable iterative method M generates248

a sequence of iterates vk such that249

vk ∈ v0 + span{G(v0), G(v1), ..., G(vk−1)}, k ≥ 1,(3.1)250251

where G(v) = (I − γP )v − r.252

Noting that G(v) is precisely the temporal difference operator applied at the point v, an253

amenable algorithm is one whose iterates are always in the linear span of the initial point254

v0 and subsequent temporal differences. The linear span assumption is commonly used in255

proving oracle complexity lower bounds [31, 32], and as such, nearly all the algorithms in256

the temporal difference family can be shown to be amenable. The sole exceptions that we257

are aware of occur in cases where there are projections involved in the algorithm, e.g., [1].258

However, in policy evaluation problems with unbounded feasible region RD, projection steps259

are often unnatural and vanilla TD algorithms are able to attain similar performance (see, e.g.,260

[20]). The following theorem provides an oracle complexity lower bound for policy evaluation261

problem under the ℓΠ-norm for amenable algorithms.262

Theorem 3.1. Fix a constant γ > 1
2 and an initialization v0. There exists a transition ker-263

nel P and an expected reward vector r such that any iterative method M satisfying Assump-264

tion 1 produces iterates {vk}k≥1 satisfying the following. If (D, k) satisfies 1−(2γ−1)2D−2k

1−(2γ−1)2D
≥ 1

2 ,265

then266

∥vk − v∗∥2Π ≥ 1
2(2γ − 1)2k∥v0 − v∗∥2Π,(3.2)267268

where v∗ is the solution of equation (2.1).269

See Section 7.1 for the proof of this theorem.270

Noting that 2γ − 1 = 1− 2(1− γ), Theorem 3.1 shows an oracle complexity lower bound271

O{ 1
1−γ log(

∥v0−v∗∥2Π
ϵ )} for finding a solution v̂ ∈ Rm such that ∥v̂ − v∗∥2Π ≤ ϵ. It should be272

noted that the metric (i.e., the ℓΠ-norm) used in Theorem 3.1 depends on the problem instance273

through the stationary distribution of the transition kernel P . Such an instance-dependent274

metric makes the construction of our worst-case instance non-standard and challenging.275

On a related note, it is instructive to recall that classical oracle complexity bounds for276

solving linear operator equations [29, 30] allow the conjugate operator to be queried within277

the oracle, making the method class wider than the class of amenable algorithms captured in278

Assumption 1. On the one hand, the conjugate operator is not natural for solving a policy279
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evaluation problem under stochastic settings since the vector (I − γP )⊤v is hard to estimate280

with transition and reward samples. On the other hand, our construction used in proving281

Theorem 3.1 naturally extends to this wider method class, and we provide an even stronger282

deterministic error lower bound than Theorem 3.1 in Appendix SM1.283

3.2. Instance-specific lower bound on stochastic error. We now turn our attention to284

proving lower bounds on the instance-specific sample complexity under the i.i.d. observation285

model introduced in Section 2.3. We assume that the feature matrix Ψ is fixed and known,286

and let ϑ = (ω, P,R) denote an individual problem instance parameterized by the initial state287

distribution ω, transition kernel P , and reward function R. Note at this juncture that we do288

not require that ω = π; this is akin to the so-called off-policy situation in which the sampling289

(or behavior) policy may differ from the policy that we are interested in evaluating. Our result290

will apply in this general case; but given that the initial state is drawn from the distribution291

ω, it is convenient to consider solving the projected fixed point equation with respect to the292

∥ · ∥Ω-norm (cf. Eq. (2.3)), written as293

ΨΩΨ⊤θ = ΨΩγPΨ⊤θ +ΨΩr.294295

Use the function θ̄(ϑ) := (ΨΩΨ⊤ −ΨΩγPΨ⊤)−1ΨΩr to denote the target of interest.296

In order to state our result, we require some additional notation. Fix an instance ϑ =297

(ω, P,R), and for any ϵ > 0, define an ϵ-neighborhood of problem instances by298

N(ϑ; ϵ) := {ϑ′ = (ω′, P ′, R′) : ∥ω − ω′∥2 + ∥P − P ′∥F + ∥R−R′∥F ≤ ϵ}.299300

Define the matrix B̃ ∈ Rd×d by B̃i,j := ⟨ψi, ψj⟩Ω for i, j ∈ [d]. Thus B̃ satisfies301

B̃− 1
2ΨΩΨB̃− 1

2 = Id.(3.3)302303

Adopting the ℓ
B̃
-norm as our loss function, define the following local asymptotic minimax risk304

[11, 22]:305

M(ϑ) := lim
c→∞

lim
N→∞

inf
θ̂N

sup
ϑ′∈N(ϑ;c/

√
N)

N · Eϑ′

[∥∥∥θ̂N − θ̄(ϑ′)
)∥∥∥2

B̃

]
.(3.4)306

307

The infimum in Eq. (3.4) is taken over all estimators θ̂N that are measurable functions of308

N observations drawn according to the i.i.d. observation model. In contrast to the global309

minimax risk—which takes a supremum of the risk over all the problem instances within a310

reasonable class—the local minimax risk M(ϑ) looks for the hardest alternative in a small311

neighborhood of the instance ϑ with diameter c/
√
N . To capture the hardest local alternative312

(in an asymptotic sense) it suffices to take the diameter of the neighborhood to be of the order313

1/
√
N . Invoking Eq. (3.3) yields the equivalent definition314

M(ϑ) = lim
c→∞

lim
N→∞

inf
θ̂N

sup
ϑ′∈N(ϑ;c/

√
N)

N · Eϑ′

[∥∥∥Ψ⊤θ̂N −Ψ⊤θ̄(ϑ′)
)∥∥∥2

Ω

]
.(3.5)315

316

The following proposition characterizes the local asymptotic risk M(ϑ) explicitly.317
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Proposition 3.2. Consider the i.i.d. observation model with the initial state drawn from318

the distribution ω. Let Z ∈ Rd be a multivariate Gaussian319

Z ∼ N
(
0, (Id − M̃)−1Σ̃(Id − M̃)−T

)
,320321

where Σ̃ := cov
[
B̃− 1

2

(
⟨ψ(s) − γψ(s′), θ̄⟩ − R(s, s′)

)
ψ(s)

]
and M̃ := γB̃− 1

2ΨΩPΨB̃− 1
2 . Then322

we have323

M(ϑ) = E[∥Z∥22] = trace
{
(Id − M̃)−1Σ̃(Id − M̃)−T

)}
.(3.6)324

325

See Section 7.2 for the proof of this theorem.326

A few comments are in order. First, it should be noted that this lower bound is distinct327

from the asymptotic minimax lower bound shown in Khamaru et al. [15], in which a generative328

observation model is assumed (where we observe transitions from allD initial states) and there329

is no function approximation. Consequently, our choice of a problem instance of interest is330

ϑ = (ω, P,R) rather than (P,R) in [15]. Second, and on a related note, it is important that ω331

be unknown and included in the set of parameters ϑ; if in contrast ω is known a priori, then332

the local asymptotic minimax risk differs from the characterization (3.6). Finally, we note that333

Mou et al. [27] provide non-asymptotic, instance-dependent lower bounds on stochastic error334

for solving projected fixed-point equations using the Bayesian Cramér–Rao bound. However,335

these lower bounds do not directly apply here, since the family of hardest local alternatives336

constructed in [27] may not be valid instances in the policy evaluation setting.337

Let us now specialize Proposition 3.2 by taking ω = π, where π is the stationary distribu-338

tion of the transition kernel P . Denote by ϑπ := (π, P,R) the instance of interest. Let339

Σ̄iid := cov
[
B− 1

2
(
⟨ψ(s)− γψ(s′), θ̄⟩ −R(s, s′)

)
ψ(s)

]
for s ∼ π and s′ ∼ P(·|s).340341

Applying Proposition 3.2, the local asymptotic minimax risk (3.5) under this setting is then342

given by343

lim
c→∞

lim
N→∞

inf
θ̂N

sup
ϑ′∈N(ϑπ ;c/

√
N)

N · Eϑ′

[∥∥∥Ψ⊤θ̂N −Ψ⊤θ̄(ϑ′)
)∥∥∥2

Π

]
344

= trace
{
(Id −M)−1Σ̄iid(Id −M)−T

)}
.(3.7)345346

Taking stock, we have proved two lower bounds (3.2) and (3.7) on the deterministic and347

stochastic errors in ℓΠ-norm under the i.i.d. observation model s ∼ π and s′ ∼ P(·|s). Given348

these baselines, it is natural to ask whether there is a practical iterative algorithm in the TD349

family that can achieve both lower bounds, which is the main focus of Section 4.350

4. Algorithms for policy evaluation in the i.i.d. setting. Taking both lower bounds351

proved in Section 3 as our baseline, we now turn our attention to the question of algorithm352

design. In this section, we assume the i.i.d. observation model introduced in Section 2.3 with353

ω = π. In order to state the results clearly, we require some additional notation. For θ ∈ Rd,354

we define the deterministic operator for solving equation (2.3) as355

g(θ) = ΨΠ(Ψ⊤θ − r − γPΨ⊤θ);(4.1)356357
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10 T. LI, G. LAN, AND A. PANANJADY

note that θ̄ is the solution to g(θ) = 0 The corresponding stochastic operator calculated from358

sample ξi is defined as359

g̃(θ, ξi) =
(
⟨ψ(si), θ⟩ −R(si, s

′
i)− γ⟨ψ(s′i), θ⟩

)
ψ(si);(4.2)360361

note that Esi∼π,s′i∼P(·|si)[g̃(θ, ξi)] = g(θ). To characterize the “variance” of the stochastic362

operator under the i.i.d. observation model, we make the following assumption:363

Assumption 2. There exists a constant ς ≥ 0 such that for every θ, θ′ ∈ Rd,364

E∥g̃(θ, ξ)− g̃(θ′, ξ)−
(
g(θ)− g(θ′)

)
∥22 ≤ ς2∥v − v′∥2Π,(4.3)365366

where v = Ψ⊤θ and v′ = Ψ⊤θ′.367

In words, instead of bounding the “variance” of the stochastic operator directly as in [20],368

Assumption 2 guarantees that the variance of the difference between stochastic operators369

with different variables θ under the same data ξ is upper bounded by the distance between370

the variables. This assumption is critical for implementing the variance-reduction techniques371

and capturing the instance-dependent stochastic error at the approximate solution θ̄. Clearly,372

the parameter ς2 is bounded provided the features ψ(s) are bounded, and provides a natural373

measure of “noise” in the problem. Accordingly, we make use of Assumption 2 throughout374

Sections 4 and 5.375

We are now ready to present our algorithms. We start with a variance-reduced version376

of the TD algorithm that captures the instance-specific stochastic error lower bound but fails377

to achieve the oracle complexity lower bound on deterministic error. To remedy this issue,378

we develop an accelerated variance-reduced TD algorithm that matches both lower bounds379

proved in Section 3.380

4.1. A warm-up algorithm: variance-reduced temporal difference learning. Variance-381

reduced temporal difference learning (VRTD) solves the policy evaluation problem using382

epochs. With a slight ambiguity of notation, we let vt and its corresponding parameteri-383

zation θt denote the iterates generated within each epoch, and let v0 and its corresponding384

parameterization θ0 denote the initialization of the algorithm. At the beginning of each epoch385

k, the algorithm uses Nk samples to compute an averaged stochastic operator ĝ and evaluates386

it at a point θ̃, where θ̃ should be understood as the best current approximation of the optimal387

solution. The vector ĝ(θ̃) is used to recenter the updates in each epoch.388
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Algorithm 4.1 Variance-reduced Temporal Difference Algorithm under i.i.d observations

Input: θ0 = θ̂0 ∈ Rd, η > 0, {ζt}Tt=1 ≥ 0 and {Nk}Kk=1 ⊂ Z+.
for k = 1, . . . ,K do

Set θ1 = θ̃ = θ̂k−1. Collect Nk samples ξki = (si, s
′
i, R(si, s

′
i)) from the i.i.d. model.

Calculate ĝ(θ̃) = 1
Nk

∑Nk
i=1g̃(θ̃, ξ

k
i ).

for t = 1, . . . , T do
Collect a sample ξt = (st, s

′
t, R(st, s

′
t)) from the i.i.d. observation model and compute

(4.4) θt+1 = θt − η
(
g̃(θt, ξt)− g̃(θ̃, ξt) + ĝ(θ̃)

)
.

end for
Output of the epoch:

(4.5) θ̂k =

∑T+1
t=1 ζtθt∑T+1
t=1 ζt

.

end for

Note that this algorithm is distinct from previous instantiations of variance-reduced tem-389

poral difference algorithms [50, 15], since the output of each epoch (4.5) is a weighted average390

of the iterates. The following theorem provides a convergence guarantee on the VRTD algo-391

rithm.392

Theorem 4.1. Consider the i.i.d. observation model with the initial state drawn from the393

distribution π. Fix the total number of epochs K and a positive integer N . Assume that for394

each epoch k ∈ [K], the parameters η, Nk and T satisfy395

η ≤ min
{

1−γ
2β(1+γ)2

, 1−γ
32ς2

}
, T ≥ 32

µ(1−γ)η , and Nk ≥
{

38ς2

µ(1−γ)2
, (34)

K−kN
}
.396

397

Set the output of the epoch to be v̂k :=
∑T

t=1 η(1−γ)vt+(1/β)vT+1

Tη(1−γ)+(1/β) . Then for each δ > 0, we have398

E[∥v̂K − v∗∥2Π] ≤ (1 + δ)A(M,γ) inf
v∈S

∥v − v∗∥2Π399

+ (1 + 1
δ )

[
1
2K

∥v0 − v̄∥2Π + 15
N trace

(
(Id −M)−1Σ̄iid(Id −M)−⊤

)]
.(4.6)400

401

See Section 7.3 for the detailed proof of this theorem.402

The first term in the bound (4.6) is the approximation error term alluded to previously;403

let us extract the deterministic and stochastic errors from the remaining terms. The number404

of epochs required by the VRTD method to find a solution v̂ ∈ RD, such that E[∥v̂− v̄∥2Π] ≤ ϵ405

is bounded by O
{
log(∥v0 − v̄∥2Π/ϵ)

}
. The total number of samples used is

∑K
k=1(T + Nk),406

which is of the order407

β
(1−γ)2µ

log(
∥v0−v̄∥2Π

ϵ )︸ ︷︷ ︸
deterministic error

+ ς2

(1−γ)2µ
log(

∥v0−v̄∥2Π
ϵ ) +

trace
(
(Id−M)−1Σ̄iid(Id−M)−⊤

)
ϵ︸ ︷︷ ︸

stochastic error

.(4.7)408

409

A few comments on the upper bound provided in Theorem 4.1 are in order.410
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12 T. LI, G. LAN, AND A. PANANJADY

Comparing the upper and lower bounds. We first focus on the stochastic error in the411

bound (4.7). The VRTD algorithm requires at least O{ ς2

(1−γ)2µ
} samples in each epoch, which412

accounts for the first term. Note that with noisy observations, it is necessary to haveO{ 1
(1−γ)2

}413

samples in order to obtain an estimate of the value function within O(1) error, so this higher-414

order term is natural. The dominating stochastic error term is the last term, and matches the415

lower bound in equation (3.7). Therefore the VRTD algorithm is instance-optimal in terms416

of its stochastic error.417

Next, we turn our attention to the deterministic error, noticing that the dependence on 1
1−γ418

is quadratic. Comparing with the oracle complexity lower bound proved in Theorem 3.1, this419

quadratic dependence is suboptimal. This shortcoming motivates us to develop an accelerated420

algorithm in the next subsection.421

Comparing with related work. To our knowledge, the only work using variance reduction422

that captures the correct instance-specific stochastic error is that of Khamaru et al. [15], which423

showed that the VRTD algorithm can match the lower bound on stochastic error in ℓ∞-norm.424

However, their guarantees require O{ 1
(1−γ)3

} samples in each epoch to compute the recentered425

update, and this sample size is suboptimal. In addition, the deterministic error proved in this426

paper is of the order 1
(1−γ)2ϵ

which is also suboptimal.3 The work of Mou et al. [27] provided an427

analysis for the Polyak–Ruppert averaged temporal difference learning algorithm with linear428

function approximation in the weighted ℓ2-norm, showing that the dominant stochastic error429

term matches the stochastic lower bound proved in Proposition 3.2. However, the sample430

complexity is suboptimal due to the presence of higher-order terms (see [15] for simulations431

demonstrating this suboptimality), as is the oracle complexity.432

4.2. Variance-reduced fast temporal temporal difference algorithm. Motivated by the433

suboptimality of VRTD in its oracle complexity, we now present a variance-reduced “fast”434

temporal difference (VRFTD) algorithm, which incorporates the idea of operator extrapola-435

tion introduced in [19]. This serves to accelerate the algorithm, and our analysis of VRFTD436

shows a convergence rate matching both the deterministic and stochastic error lower bounds.437

The VRFTD algorithm is formally presented in Algorithm 4.2, and we introduce the basic438

idea of the algorithm below. First, it utilizes the idea of recentering updates from VRTD439

with the operator ĝ(θ̃) used in each epoch. Second, in terms of iterate updating in the440

inner loop, it involves an inner mini-batch that generates the averaged operator g̃t, which441

allows the algorithm to be run with a much larger stepsize. Finally, each iteration within an442

epoch involves an operator extrapolation step (4.8). This is crucial to achieving the optimal443

deterministic error (cf. the VRTD update (4.4)).444

The following theorem establishes a convergence rate for the VRFTD algorithm.445

Theorem 4.2. Fix the total number of epochs K and a positive integer N . Assume that for446

each epoch, the parameters η, λ, m, Nk, T satisfy447

(4.10)

η ≤ 1
4β(1+γ) , λ = 1, T ≥ 32

µ(1−γ)η , m ≥ max
{
1, 256ης

2

1−γ

}
and Nk ≥ max

{
56ς2

µ(1−γ)2
, (34)

K−kN
}
.448

3In more detail, a family of such deterministic error guarantees is possible to extract from the paper. The
dependence on ϵ can be improved but the dependence on (1− γ)−1 is at least quadratic.
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Algorithm 4.2 Variance-reduced Fast Temporal Difference Algorithm under i.i.d. observa-
tions

Input: θ0 = θ̂0 ∈ Rd, η > 0, λ ≥ 0, {ζt}Tt=1 ≥ 0 and nonnegative integers m, {Nk}Kk=1.
for k = 1, . . . ,K do

Set θ0 = θ1 = θ̃ = θ̂k−1. Collect Nk sample tuples ξki = (si, s
′
i, R(si, s

′
i)) from the i.i.d.

observation model.
Calculate ĝ(θ̃) = 1

Nk

∑Nk
i=1g̃(θ̃, ξ

k
i ).

for t = 1, . . . , T do
Collect m sample tuples ξtj = (sj , s

′
j , R(sj , s

′
j)) from the i.i.d. observation model.

Calculate g̃t(·) = 1
m

∑m
j=1g̃(·, ξtj).

Denote F̃t(θt) = g̃t(θt)− g̃t(θ̃) + ĝ(θ̃). Set F̃0(θ0) = F̃1(θ1). Let

(4.8) θt+1 = θt − η
[
F̃t(θt) + λ

(
F̃t(θt)− F̃t−1(θt−1)

)]
.

end for
Output of the epoch:

(4.9) θ̂k =

∑T+1
t=1 ζtθt∑T+1
t=1 ζt

.

end for

Set the output of this epoch to be v̂k :=
∑T+1

t=2 vt
T . Then for δ > 0,449

E[∥v̂K − v∗∥2Π] ≤ (1 + δ)A(M,γ) inf
v∈S

∥v − v∗∥2Π450

+ (1 + 1
δ )

[
1
2K

∥v0 − v̄∥2Π + 15
N trace

(
(Id −M)−1Σ̄iid(Id −M)−⊤

)]
.451

452

See Section 7.4 for the detailed proof of this theorem.453

In view of Theorem 4.2, the number of epochs required by the VRFTD method to find a454

solution v̂ ∈ RD, such that E[∥v̂ − v̄∥2Π] ≤ ϵ is bounded by O{log(∥v0 − v̄∥2Π/ϵ)}. The total455

number of samples used is
∑K

k=1(mT +Nk), which is bounded on the order456

β
(1−γ)µ log(

∥v0−v̄∥2Π
ϵ )︸ ︷︷ ︸

deterministic error

+ ς2

(1−γ)2µ
log(

∥v0−v̄∥2Π
ϵ ) +

trace
(
(Id−M)−1Σ̄iid(Id−M)−⊤

)
ϵ︸ ︷︷ ︸

stochastic error

.(4.11)457

458

Similar to the VRTD algorithm, the VRFTD algorithm achieves optimal sample complexity459

in terms of stochastic error. For the deterministic error, the dependence on 1/(1−γ) matches460

the oracle complexity lower bound proved in Theorem 3.1. Note that the term β/µ is the461

condition number of the feature matrix in ℓΠ-norm. Therefore, for “well-conditioned” feature462

matrices, the VRFTD algorithm achieves optimal oracle complexity4. In summary, VRFTD463

4It is an interesting open problem to prove an oracle complexity lower bound for policy evaluation with
linear function approximation having linear dependence on β/µ.
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is an accelerated and instance-optimal policy evaluation algorithm, and answers the central464

question posed in this paper.465

5. Algorithm for policy evaluation in the Markovian setting. Finally, we extend the466

VRFTD algorithm to the Markovian setting, noting in passing that such an extension is also467

possible for the VRTD algorithm. The challenge of Markovian noise stems from the presence468

of dependent data that leads to biased samples. To control the bias caused by correlation, we469

need a standard ergodicity assumption on the underlying Markov chain.470

Assumption 3. There exist constants CP > 0 and ρ ∈ (0, 1) such that471

max
s∈S

∥P(st = ·|s0 = s)− π∥∞ ≤ CP · ρt for all t ∈ Z+.(5.1)472
473

In other words, with the following definition of mixing time474

tmix := inf{t ∈ Z+ | max
s∈S

∥P(st = ·|s0 = s)− π∥∞ ≤ 1/4},475
476

Assumption 3 guarantees that the mixing time is bounded as5 tmix ≤ log(4CP )
log(1/ρ) .477

In order to overcome the difficulty caused by highly-correlated data, we introduce a burn-in478

period for sample collection. For instance, to compute the operator ĝ defined in Algorithm 4.2,479

we collect Nk successive samples and only use the last Nk − n0 of them. With this method,480

we are able to reduce the bias induced by Markovian samples and achieve the desired variance481

reduction properties. The following two lemmas make this quantitative.482

Lemma 5.1. For every t, τ ∈ Z+, with probability 1,483

∥E[g̃(θ̄, ξt+τ )|Ft]− g(θ̄)∥2 ≤ CM · ρτ∥v̄ − v∗∥Π.(5.2)484485

where CM := CP√
mini∈[D] πi

∥Ψ∥2∥I − γP∥2 and Ft := [ξ1, ..., ξt].486

See Appendix SM3.1 for a proof of this lemma. In words, Lemma 5.1 provides an upper bound487

on the bias of the stochastic operator at the solution θ̄ in terms of the approximation error,488

and the bound decays exponentially with τ .489

Lemma 5.2. For every t, τ ∈ Z+ and θ, θ′ ∈ Rd, with probability 1,490

∥E[g̃(θ, ξt+τ )|Ft]− E[g̃(θ′, ξt+τ )|Ft]− [g(θ)− g(θ′)]∥2 ≤ CM · ρτ∥v − v′∥Π.(5.3)491492

See Appendix SM3.2 for a proof of this lemma. In contrast to Lemma 5.1, Lemma 5.2 provides493

an upper bound on the bias of the difference of stochastic operators, which allows us to get494

rid of any dependence on the approximation error. We are now ready to formally state the495

VRFTD algorithm in the Markovian noise setting in Algorithm 5.1.496

5Note that while our choice of the constant 1/4 in the definition is arbitrary, there is no additional depen-
dence on ϵ when accounting for the mixing time, unlike in the assumptions made by [1, Eq. (21)].
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Algorithm 5.1 Variance-reduced Fast Temporal Difference Algorithm under Markovian noise

Input: θ0 = θ̂0 ∈ Rd, η > 0, λ ≥ 0, {ζt}Tt=1 ≥ 0 and nonnegative integers m, m0, n0,
{Nk}Kk=1.
for k = 1, . . . ,K do

Set θ1 = θ̃ = θ̂s−1. Collect Nk successive samples ξki := (si, si+1, R(si, si+1)) from the
single Markov trajectory. Calculate

(5.4) ĝ(θ̃) = 1
Nk−n0

∑Nk
i=n0+1 g̃(θ̃, ξki ).

for t = 1, . . . , T do
Collect m successive samples ξ̂tj := (sj , sj+1, R(sj , sj+1)) from the Markov trajectory.

Calculate g̃t(·) = 1
m−m0

∑m
j=m0+1g̃(·, ξ̂tj).

Let F̃t(θt) = g̃t(θt)− g̃t(θ̃) + ĝ(θ̃) and set F̃0(θ0) = F̃1(θ1). Let

(5.5) θt+1 = θt − η
[
F̃t(θt) + λ

(
F̃t(θt)− F̃t−1(θt−1)

)]
.

end for
Output of the epoch:

(5.6) θ̂k =

∑T+1
t=1 ζtθt∑T+1
t=1 ζt

.

end for

Before presenting our main convergence result for the VRFTD algorithm, we first define
the matrix Σ̄Mkv, which is a covariance matrix analog for the Markovian case (see Mou et
al. [28] and references therein). Letting {s̃t}∞t=−∞ define a sequence of samples obtained from
a stationary Markov trajectory, define

Σ̄Mkv :=
∞∑

t=−∞
B−1

2 E
[(
g̃(θ̄, ξ̃t)− g(θ̄)

)(
g̃(θ̄, ξ̃0)− g(θ̄)

)⊤]
B−1

2 ,

where ξ̃t := (s̃t, s̃t+1, R(s̃t, s̃t+1)). This matrix is an infinite sum of matrices where one of the497

summands (when t = 0) is the matrix Σ̄iid defined in Eq. (3.2).498

Similarly to the i.i.d. setting, the instance-dependent complexity of Markovian linear499

stochastic approximation was shown in [28] to be governed by the trace of the matrix (Id −500

M)−1Σ̄Mkv(Id −M)−T . To interpret this functional, consider the special case in which the501

approximation error caused by linear function approximation is 0, i.e., v∗ = v̄. Let F̃i denote502

the σ-field generated by samples ξ̃0, ..., ξ̃i and let Π̃i
j := diag{[P(s̃j = 1|s̃i), ...,P(s̃j = D|s̃i)]}503

This manuscript is for review purposes only.



16 T. LI, G. LAN, AND A. PANANJADY

for j ≥ i. Then we have504

E
〈
(Id −M)−1B− 1

2
(
g̃(θ̄, ξ̃0)− g(θ̄)

)
, (Id −M)−1B− 1

2
(
g̃(θ̄, ξ̃i)− g(θ̄)

)〉
505

= E
〈
(Id −M)−1B− 1

2
(
g̃(θ̄, ξ̃0)− g(θ̄)

)
, (Id −M)−1B− 1

2
(
E[g̃(θ̄, ξ̃i)|F̃0]− g(θ̄)

)〉
506

= E
〈
(Id −M)−1B− 1

2
(
g̃(θ̄, ξ̃0)− g(θ̄)

)
, (Id −M)−1B− 1

2Ψ(Π̃i
j −Π)(Ψ⊤θ̄ − γPΨ⊤θ̄ − r)

〉
= 0,507

508

where the last equation follows from the fact that v∗ = v̄ = Ψ⊤θ̄ and the Bellman equation509

(2.1). Then510

trace
(
(Id −M)−1Σ̄Mkv(Id −M)−⊤

)
= trace

(
(Id −M)−1Σ̄iid(Id −M)−⊤

)
.511

512

Armed with this intuition, we are now ready to establish the main convergence result for the513

VRFTD algorithm under Markovian noise. Given the calculation above, we discuss the cases514

v̄ = v∗ and v̄ ̸= v∗ separately for clarity.515

Theorem 5.3. Fix the total number of epochs K and a positive integer N . Consider an516

integer τ satisfying ρτ ≤ min{2(1−ρ)ς
3CM

, 2(1−ρ)2

5CM
}. Suppose the parameters n0 and m0 satisfy517

ρn0 ≤ mini∈[D] πi

CP
, and ρm0 ≤ min

{
mini∈[D] πi

CP
,
√
µητς2(1−ρ)

CM

}
.(5.7)518

519

Assume that for each epoch k ∈ [K], the parameters η, λ, m, Nk, T satisfy520

η ≤ 1
4β(1+γ) , λ = 1, T ≥ 64

µ(1−γ)η , m−m0 ≥ max
{
1, 792η(τ+1)ς2

1−γ

}
,521

ρNk−n0 ≤ τ(1−ρ)
5CM (Nk−n0)

, and Nk − n0 ≥
{

206(τ+1)ς2

µ(1−γ)2
, (34)

K−kN
}
.(5.8)522

523

Set the output of each epoch to be v̂k :=
∑T+1

t=2 vt
T . Then the following results hold.524

(a) If v̄ = v∗, we have525

E[∥v̂K − v∗∥2Π] ≤ 1
2K

∥v0 − v̄∥2Π + 30
N · trace

(
(Id −M)−1Σ̄iid(Id −M)−⊤

)
.(5.9)526

527

(b) If v̄ ̸= v∗, then for any δ > 0 we have528

E[∥v̂K − v∗∥2Π] ≤
(
1 + δ + 18(τ+1)(1+1/δ)

µ(1−γ)2N2

)
· A(M,γ) · inf

v∈S
∥v − v∗∥2Π529

+ (1 + 1
δ )

[
1
2K

∥v0 − v̄∥2Π + 30
N · trace

(
(Id −M)−1Σ̄Mkv(Id −M)−⊤

)
+ H

N2

]
,(5.10)530

531

where H := (90τ2 + 18τ + 18) · trace
(
(Id −M)−1Σ̄iid(Id −M)−⊤) .532

See Section 7.5 for detailed proofs of Theorem 5.3. Let us now discuss a few aspects of the533

theorem.534

Estimation of mixing time. From the conditions above, e.g., Ineq. (5.7), the parameters535

τ, n0,m0 scale linearly in the mixing time tmix and logarithmically in other problem parameters.536

As such, only some rough estimation of the mixing time is sufficient, which has been the topic537

of active research. Nontrivial confidence intervals for the reversible case can be found in Hsu538

et al. [12]. There are also guarantees in the more challenging and prevalent case when the539

underlying Markov chain is non-reversible [48].540
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Sample complexities. We first consider the case when v̄ = v∗. In view of Ineq. (5.9) in541

Theorem 5.3, the total number of samples required by the VRFTD method to find a solution542

v̂ ∈ RD, such that E[∥v̂ − v∗∥2Π] ≤ ϵ is
∑K

k=1(mT +Nk), which is bounded on the order6543

tmixβ
(1−γ)µ log(

∥v0−v̄∥2Π
ϵ )︸ ︷︷ ︸

deterministic error

+ tmixς
2

(1−γ)2µ
log(

∥v0−v̄∥2Π
ϵ ) +

trace
(
(Id−M)−1Σ̄iid(Id−M)−⊤

)
ϵ︸ ︷︷ ︸

stochastic error

,(5.11)544

545

where the mixing time only enters along with terms that scale logarithmically in 1/ϵ. The546

phenomenon that the mixing time does not enter multiplicatively with the leading-order sto-547

chastic error term was also noticed by Li et al. [24] for vanilla TD learning, but as mentioned548

before, this algorithm does not attain the correct instance-dependent stochastic error.549

When v̄ ̸= v∗, the Markovian setting has a biased stochastic operator at optimal solution550

v̄, and a larger approximation error ∥v̄ − v∗∥2Π caused by linear function approximation en-551

larges the bias of the stochastic operator and consequently enlarges the dependence on the552

approximation error in Eq. (5.10). Therefore, a natural stopping criterion for the Markovian553

setting is to find a solution v̂ ∈ RD satisfying E[∥v̂− v∗∥2Π] ≤ c∥v̄− v∗∥2Π+ ϵ for some absolute554

constant c > 0. From Ineq. (5.10), the total number of required samples
∑K

k=1(mT +Nk) is555

bounded on the order556

tmixβ
(1−γ)µ log(

∥v0−v̄∥2Π
ϵ )︸ ︷︷ ︸

deterministic error

+
tmixς

2 log(
∥v0−v̄∥2Π

ϵ
)

(1−γ)2µ
+

√
H√
ϵ
+

trace
(
(Id−M)−1Σ̄Mkv(Id−M)−⊤

)
ϵ︸ ︷︷ ︸

stochastic error

.(5.12)557

558

Note that, in this bound, the leading stochastic error matches the lower bound proved in [28],559

which can depend on the mixing time, but is generally smaller than the product of the i.i.d.560

stochastic error and the mixing time. These results show a delicate difference between how561

the mixing time of the Markov chain enters the bound depending on whether the function562

approximation is exact or not. It should be noted that, the stronger stopping criterion, i.e.,563

finding v̂ to satisfy E[∥v̂ − v̄∥2Π] ≤ ϵ, can also be applied in this setting. We can generate564

a similar sample complexity by enlarging the constants τ and Nk by an additive factor of565

log(∥v∗ − v̄∥2Π). However, given that the approximation error is unavoidable and generally566

unknown, there is marginal benefit to using this stronger stopping criterion.567

Mou et al. [28] established convergence guarantees for TD with averaging in the Markovian568

noise setting, showing a similar leading order stochastic error term but without accelerating the569

deterministic error. Besides improving on the deterministic error, Theorem 5.3 also guarantees570

that the higher-order terms on stochastic error are smaller than those proved in [28].571

6. Numerical experiments. In this section, we report numerical experiments for both572

VRTD and VRFTD, comparing them against temporal difference learning (TD), conditional573

temporal difference learning (CTD), and fast temporal difference learning (FTD) [19, 20]. To574

generate a comprehensive performance profile, we conduct experiments under both the i.i.d.575

and Markovian noise models.576

6Note that we omit the logarithmic dependence on the problem parameters, e.g., µ, β, γ. Same for the
following complexity.
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6.1. The i.i.d. setting: A simple two-state construction. We consider a family of two-577

state MRPs inspired by the construction of Duan et al. [9]. For a discount factor γ ∈ (12 , 1),578

the transition kernel P and reward vector r are given by P =

[
2γ−1
γ

1−γ
γ

1−γ
γ

2γ−1
γ

]
and r =

[
1
−1

]
.579

Clearly the transition kernel is symmetric, thus the stationary distribution is π = [0.5, 0.5].580

For simplicity, we choose the feature matrix Ψ = diag([
√
2,
√
2]), which forms an orthonormal581

basis under ℓΠ-norm. Assuming the i.i.d. model in which si ∼ π and s′i ∼ P (·|si), it can be582

shown via simple calculation that the stochastic error term is given by583

trace
(
(Id −M)−1Σ̄iid(Id −M)−⊤) = 40

81 · 2γ−1
(1−γ)3

.(6.1)584
585
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(a) TD algorithm
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Figure 1. Log-log plots of the squared ℓΠ-norm error versus 1/(1− γ). Logarithms are to the
natural base. The number of samples used in each single experiment is N = ⌈5/(1−γ)2⌉. Each
point in the plot is an average of 1000 independent trials. The slope of the lower bound is 1.

Instance-optimality. We generate a range of MRPs with different values of discount factor586

γ and run the four aforementioned algorithms on each MRP. In order to test the robustness of587

our results, we simulate various step-sizes for each algorithm. To be fair in our comparison, we588

also include a simulation of the best-tuned stepsize for each algorithm. We plot the prediction589

from the lower bound (6.1) as well.590

From subplots (a) and (b) of Figure 1, it is clear that the vanilla TD and FTD algorithms591

with diminishing stepsizes [20] do not achieve the lower bound calculated in equation (6.1).592
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On the other hand, sub-plots (c) and (d) show that the VRTD and VRFTD algorithms achieve593

the lower bound (6.1), and that these behaviors are robust to the choice of stepsize param-594

eters. However, given their epoch-wise nature, the outputs of variance-reduced algorithms595

are more volatile than TD and FTD. Another interesting observation is that the accelerated596

algorithms—FTD and VRFTD—are less sensitive to stepsize parameters. Our next set of597

experiments explores this further.598

599

Ablation analysis of VRFTD. Notice that VRFTD includes two new ingredients when com-600

pared with VRTD: mini-batching and operator extrapolation (OE). We now perform an ab-601

lation analysis to disentangle the contribution of both ingredients. We generate a range of602

MRPs with different values of γ and run the experimental and control groups on each MRP.603

3.5 4 4.5 5
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(a) Ablation study for OE (I)
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(b) Ablation study for OE (II)
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2
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7
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(c) Ablation study for mini-
batching

Figure 2. Log-log plots of the squared ℓΠ-norm error versus 1/(1− γ). Logarithms are to the
natural base. The number of samples used in each single experiment is N = ⌈5/(1−γ)2⌉. Each
point in the plot is an average of 1000 independent trials.

In the first experiments, we ran the experimental group with OE steps and the control604

group without OE steps. We first ran both groups with the stepsize policies suggested by the605

theoretical analysis (see subplot (a) of Figure 2). The results indicate that the experimental606

group significantly outperforms the control group. However, this performance difference can607

largely be attributed to the conservative stepsize for the control group, as prescribed by the608

theory. To be more fair to both algorithms, we further fine-tuned the stepsize parameters of609

both algorithms and obtained subplot (b), where the two algorithms exhibit similar conver-610

gence rates. Taking stock, the first set of experiments shows that the analysis and stepsize611

policy of the VRFTD (with OE steps) serves as a better theoretical guideline for practical612

applications.613

To demonstrate the benefits of mini-batching in the inner loop, we ran a second experiment614

with two groups with and without mini-batching. Note that we keep the stepsizes and the total615

number of samples the same for both groups (which means that the control group without616

mini-batching has larger epoch lengths). From subplot (c), we can see that the performance617

difference is significant, showing that without mini-batching, the algorithm exhibits instability618

when run with aggressive stepsize policies.619

This manuscript is for review purposes only.



20 T. LI, G. LAN, AND A. PANANJADY

6.2. The Markovian setting: 2D Grid World. Our experiments under the Markovian620

noise model are conducted on the 2D Grid World environment. This is a classical problem in621

reinforcement learning with finite state and action spaces. An agent realizes a positive reward622

when reaching a predetermined goal and negative ones when going through “traps”. The623

dimension of the state space is set to be D = 400, among which we assign a goal state (with624

reward r = 1) and 30 traps (with reward r = −0.2). The transition kernel is fixed as follows:625

With probability 0.95, the agent moves in a direction that points towards the goal and with626

probability 0.05 in a random direction. Our goal is to compute the value function v∗—for each627

possible initial state of the agent. We also incorporate linear function approximation in these628

experiments. Specifically, we generate random features with dimension d = 50 to estimate the629

D = 400 dimensional value function in this problem.630
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Figure 3. Comparison of the algorithms for the 2D-Grid world example. From left to right γ
is set to 0.99, and 0.999 respectively. In the y-axis we report ratios in terms of the Euclidean
norm ∥ · ∥Π.

We test the performance of four algorithms, with the discount factor γ set to 0.99 and631

0.999. Figure 3 plots the normalized error in ℓΠ-norm against the length of the trajectory. In632

both experiments, the VRFTD algorithm exhibits the fastest convergence to the true value633

function, thereby corroborating our theoretical results. Note that in both experiments, the634

estimation errors do not converge to zero, because there is a nontrivial error incurred by linear635

function approximation. Another salient takeaway is the following: Closer to the optimal636

solution v∗, the variance-reduced algorithms (VRTD/VRFTD) achieve faster convergence rate637

compared to their counterparts that do not employ variance reduction.638

7. Proofs. In this section, we provide the proofs of our main results. The proof of other639

auxiliary results are collected in the supplementary material.640

7.1. Proof of Theorem 3.1. First, it is clear that the methods of this type are invariant641

to a simultaneous shift of variables. The sequence of iterates for solving G(v) = 0 starting642

from v0 is just a shift of the sequence generated for solving G(v + v0) = 0 starting from the643

origin. Therefore, without loss of generality, we assume v0 = 0.644

Now let us construct a specific instance (P, r) to show the lower bound. Consider the645
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D ×D matrix646

P :=



1
2γ 0 0 ... 0 1− 1

2γ

1− 1
2γ

1
2γ 0 ... 0 0

0 1− 1
2γ

1
2γ ... 0 0

...
...

...
. . .

...
...

0 0 0 ... 1− 1
2γ

1
2γ

 .(7.1)647

648

Also define the D-dimensional vector649

r := [γ − 1
2 + (12 − γ)(2γ − 1)D, 0, 0, ..., 0, 0]⊤(7.2)650651

The matrix I − γP is square and full rank, and it is straightforward to verify that the unique652

solution of the linear equation (I − γP )v∗ = r is653

(v∗)(i) = (2γ − 1)i for all i ∈ [D].(7.3)654655

It is also easy to see that the Markov chain induced by the transition kernel P is irreducible656

and aperiodic. From the cyclical behavior of the Markov chain, we have that the stationary657

distribution is uniform, i.e.,658

Π = [ 1D ,
1
D ,

1
D , ...,

1
D ]⊤.659660

Thus, we obtain661

∥v0 − v∗∥2Π = 1
D

∑D
i=1(2γ − 1)2i = (2γ−1)2[1−(2γ−1)2D]

D[1−(2γ−1)2]
.(7.4)662

663

Let Rk,D := {v ∈ RD | v(i) = 0 for all k + 1 ≤ i ≤ D} denote the set of all D-dimensional664

vectors lying in the span of the first k standard basis vectors. Since all entries of I − γP665

below its subdiagonal are equal to 0 and all entries of r except for its first are equal to 0, we666

conclude that vk ∈ Rk,D. Therefore,667

∥vk − v∗∥2Π ≥ 1
D

∑D
i=k+1(2γ − 1)2i = (2γ−1)2k+2[1−(2γ−1)2D−2k]

D[1−(2γ−1)2]
.668

669

If D ≫ k is such that 1−(2γ−1)2D−2k

1−(2γ−1)2D
≥ 1

2 , then we conclude that670

∥vk − v∗∥2Π ≥ 1
2(2γ − 1)2k∥v0 − v∗∥2Π,671672

as desired.673

7.2. Proof of Proposition 3.2. For the reader’s convenience, we begin by stating a version674

of the Hájek-Le Cam local asymptotic minimax theorem.675

Theorem 7.1. Let {Pϑ}ϑ∈Θ denote a family of parametric models, quadratically mean dif-676

ferentiable with Fisher information matrix Jϑ′ . Fix some parameter ϑ ∈ Θ, and consider a677

This manuscript is for review purposes only.



22 T. LI, G. LAN, AND A. PANANJADY

function h : Θ → Rd that is differentiable at ϑ. Then for any quasi-convex loss L : Rd → R,678

we have679

lim
c→∞

lim
N→∞

inf
ĥN

sup
ϑ′:∥ϑ′−ϑ∥2≤c/

√
N

Eϑ′

[
L
(√
N(ĥN − h(ϑ′)

)]
= E[L(Z)],(7.5)680

681

where the infimum is taken over all estimators ĥN that are measurable functions of N i.i.d.
data points drawn from Pϑ′ , and the expectation is taken over a multivariate Gaussian

Z ∼ N
(
0,∇h(ϑ)⊤J†

ϑ ∇h(ϑ)
)
.

In our model, we have ϑ = (ω, P,R) and h(ϑ) = (ΨΩΨ⊤ −ΨΩγPΨ⊤)−1ΨΩr. We set the682

loss function L to be ∥ · ∥2
B̃
. Invoking Theorem 7.1 yields683

M(ϑ) = E
[
∥Z∥2

B̃

]
where Z ∼ N

(
0,∇h(ϑ)⊤J†

ϑ ∇h(ϑ)
)
.(7.6)684

685

The covariance is explicitly computed in the following lemma.686

Lemma 7.2. We have687

∇h(ϑ)⊤J†
ϑ ∇h(ϑ) = (ΨΩΨ⊤ − γΨΩPΨ⊤)−1Σ (ΨΩΨ⊤ − γΨΩPΨ⊤)−T ,(7.7)688689

where Σ = cov
[(
⟨ψ(s)− γψ(s′), θ̄⟩ −R(s, s′)

)
ψ(s)

]
for s ∼ ω, s′ ∼ P(·|s).690

The proof of this lemma is straightforward but involves some lengthy calculations, which we691

defer to Appendix SM3.3.692

Recall the definition of M̃ and Σ̃ in the statement of Proposition 3.2. By substituting
equality (7.7) into (7.6) and invoking the relation B̃− 1

2ΨΩΨ⊤B̃− 1
2 = Id, we obtain

B̃
1
2Z ∼ N

(
0, (Id − M̃)−1Σ̃(Id − M̃)−T

))
,

which completes the proof of Proposition 3.2.693

7.3. Proof of Theorem 4.1. Let θ satisfy g(θ)− g(θ̃) + ĝ(θ̃) = 0 and v = Ψ⊤θ. Recalling694

the definition of v̄ from Eq. (2.2), the following lemma provides a bound for ∥v − v̄∥2Π. This695

bound is also valid for the VRFTD algorithm in the i.i.d. setting.696

Lemma 7.3. Consider a single epoch with index k ∈ [K]. We have697

E[∥v − v̄∥2Π] ≤ 2
Nk

trace
(
(Id −M)−1Σ̄iid(Id −M)−⊤

)
+ 2ς2

Nk(1−γ)2µ
E∥ṽ − v̄∥2Π.(7.8)698

699

See Appendix SM3.4 for the proof of this lemma.700

Given Lemma 7.3, we can derive the following proposition which characterizes the progress701

of the VRTD algorithm in a single epoch.702

Proposition 7.4. Consider a single epoch with index k ∈ [K]. Suppose that the parameters703

η, Nk and T satisfy704

(7.9) η ≤ min{ (1−γ)
2β(1+γ)2

, 1−γ
32ς2

}, T ≥ 32
µ(1−γ)η , and Nk ≥ 38ς2

µ(1−γ)2
.705

Set the output of this epoch to be v̂k :=
∑T

t=1 η(1−γ)vt+(1/β)vT+1

Tη(1−γ)+(1/β) . Then we have706

E[∥v̂k − v̄∥2Π] ≤ 1
2E[∥v̂k−1 − v̄∥2Π] + 5

Nk
trace{(Id −M)−1Σ̄iid(Id −M)−⊤}.(7.10)707

708
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See Appendix SM2.2 for the proof of this proposition. The basic idea of the proof is first709

providing an upper bound on the term E∥v̂k − v∥2Π and then combining it with Lemma 7.3.710

Taking Proposition 7.4 as given for the moment, let us complete the proof of the theorem.711

The main idea is to bound the approximation error term ∥v̄ − v∗∥2Π separately from the term712

∥v̂K − v̄∥2Π. To bound ∥v̄ − v∗∥2Π, we use the instance-dependent upper bound in Ineq. (2.6).713

We bound the term ∥v̂K − v̄∥2Π by using Ineq. (7.10) as follows714

E∥v̂K − v̄∥2Π ≤ 1
2K

∥v0 − v̄∥2Π +
∑K

k=1
5

2K−kNk
· trace{(Id −M)−1Σ̄iid(Id −M)−⊤}715

(i)
= 1

2K
∥v0 − v̄∥2Π +

∑K
k=1(

2
3)

K−k 5
N · trace{(Id −M)−1Σ̄iid(Id −M)−⊤}716

≤ 1
2K

∥v0 − v̄∥2Π + 15
N · trace{(Id −M)−1Σ̄iid(Id −M)−⊤}.(7.11)717718

Here, step (i) from the condition that Nk ≥ (34)
K−kN for all k ∈ [K]. To conclude, we use719

Young’s inequality to obtain720

E∥v̂K − v∗∥2Π ≤ (1 + δ) · E∥v̄ − v∗∥2Π + (1 + 1
δ ) · E∥v̂K − v̄∥2Π721

≤ (1 + δ) · A(M,γ) · inf
v∈S

∥v − v∗∥2Π + (1 + 1
δ ) · E∥v̂K − v̄∥2Π,722

723

which completes the proof.724

7.4. Proof of Theorem 4.2. The structure of the proof is similar to the analysis of VRTD725

in Section 7.3. We first state a proposition that characterizes the progress of the VRFTD726

algorithm in a single epoch.727

Proposition 7.5. Assume that for each epoch k ∈ [K], the parameter η, λ, m, Nk and T728

satisfy729

(7.12) η ≤ 1
4β(1+γ) , λ = 1, T ≥ 32

µ(1−γ)η , m ≥ max{1, 256ης
2

1−γ }, and Nk ≥ 56ς2

µ(1−γ)2
.730

Set the output of this epoch to be v̂k :=
∑T+1

t=2 vt
T . Then we have731

E[∥v̂k − v̄∥2Π] ≤ 1
2E[∥v̂k−1 − v̄∥2Π] + 5

Nk
trace{(Id −M)−1Σ̄iid(Id −M)−⊤}.(7.13)732

733

See Appendix SM2.3 for the proof of this proposition.734

Taking Proposition 7.5 as given, the proof of Theorem 4.2 follows exactly as the proof of735

Theorem 4.1 in Section 7.3.736

7.5. Proof of Theorem 5.3. The structure of this proof is similar to proofs of Theo-737

rems 4.1 and 4.2: We first derive a bound for a single epoch, and then apply it recursively to738

obtain the eventual convergence result. The following proposition characterizes the progress739

in a single epoch k ∈ [K].740

Proposition 7.6. Consider a single epoch with index k ∈ [K]. Consider an integer τ satis-741

fying ρτ ≤ min{2(1−ρ)ς
3CM

, 2(1−ρ)2

5CM
}. Suppose the parameters Nk, n0 and m0 satisfy742

ρNk−n0 ≤ τ(1−ρ)
5CM (Nk−n0)

, ρn0 ≤ mini∈[D] πi

CP
, and ρm0 ≤ min

{
mini∈[D] πi

CP
,
√
µητς2(1−ρ)

CM

}
.(7.14)743

744
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Suppose that the parameter η, λ, m, Nk and T satisfy745

(7.15)

η ≤ 1
4β(1+γ) , λ = 1, T ≥ 64

µ(1−γ)η , m−m0 ≥ max{1, 792η(τ+1)ς2

1−γ }, and Nk−n0 ≥ 206(τ+1)ς2

µ(1−γ)2
.746

Set the output of this epoch to be v̂k :=
∑T+1

t=2 vt
T . Then we have the following results:747

(a) If v∗ = v̄, we have748

E∥v̂k − v∗∥2Π ≤ 1
2E∥v̂k−1 − v̄∥2Π + 10·trace{(Id−M)−1Σ̄iid(Id−M)−⊤}

Nk−N0
.(7.16)749

750

(b) If v∗ ̸= v̄, we have751

E∥v̂k − v∗∥2Π ≤ 1
2E∥v̂k−1 − v̄∥2Π + 10·trace{(Id−M)−1Σ̄Mkv(Id−M)−⊤}

Nk−N0
+ H̃

(Nk−n0)2
,(7.17)752

753

where H̃ := 2(τ+1)
(1−γ)2µ

∥v̄ − v∗∥2Π + (10τ2 + 2τ + 2) · trace{(Id −M)−1Σ̄iid(Id −M)−⊤}.754

See Appendix SM2.4 for the proof of this proposition.755

Taking Proposition 7.6 as given for the moment, let us complete the proof of the theorem.756

First, consider the case when v̄ ̸= v∗. Recursively using Ineq. (7.17) yields757

E∥v̂K − v̄∥2Π ≤ 1
2K

∥v0 − v̄∥2Π +
∑K

k=1

(
10·trace{(Id−M)−1Σ̄Mkv(Id−M)−⊤}

2K−k(Nk−n0)
+ H̃

2K−k(Nk−n0)2

)
758

(i)

≤ 1
2K

∥v0 − v̄∥2Π +
∑K

k=1(
2
3)

K−k 10·trace{(Id−M)−1Σ̄Mkv(Id−M)−⊤}
N +

∑K
k=1(

8
9)

K−k H̃
N2759

≤ 1
2K

∥v0 − v̄∥2Π + 30·trace{(Id−M)−1Σ̄Mkv(Id−M)−⊤}
N + 9H̃

N2 ,(7.18)760761

where step (i) follows from the condition Nk − n0 ≥ (34)
K−kN . The proof of the case when762

v̄ = v∗ follows from the same derivation.763

8. Discussion. In this paper, we investigated the problem of policy evaluation with linear764

function approximation, making three contributions. First, we proved lower bounds on both765

deterministic error and stochastic error. With these lower bounds in hand, we presented an766

analysis of a variance-reduced variant of temporal difference algorithm (VRTD) in the i.i.d.767

observation model and showed that it fails to match the oracle complexity lower bound on768

the deterministic error. In order to remedy this difficulty, we developed an optimal variance-769

reduced fast temporal difference algorithm (VRFTD) that nearly matches both lower bounds770

simultaneously. Finally, we extended the VRFTD algorithm to the Markovian setting and771

provided instance-dependent convergence results. The leading stochastic error matches the772

instance-dependent lower bound for Markovian linear stochastic approximation [28], and the773

deterministic error matches the i.i.d. setting up to a multiplicative factor proportional to774

the mixing time of the chain. Our theoretical guarantees were corroborated with numerical775

experiments in both the i.i.d. and Markovian settings, showing that the VRFTD algorithm776

enjoys several advantages over the prior state-of-the-art.777

Our work leaves open severaal salient future directions; let us mention two. First, our778

oracle complexity lower bound is proved in the tabular setting. On the other hand, our upper779

bounds on the deterministic error indicate that with linear function approximation, we pay780
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a multiplicative factor depending on the condition number of the feature matrix. It would781

be interesting to see if an oracle complexity lower bound can be proved under linear function782

approximation, and whether the linear dependence on the condition number in our bounds is783

optimal. Second, and more broadly, note that our analysis relies heavily on the linear structure784

of the problem. However, there are many problems in the reinforcement learning literature785

that have nonlinear structures, e.g., the policy optimization problem involving the Bellman786

optimality operator. An interesting direction for future work is to understand problems with787

nonlinear structure from an instance-specific point of view and develop efficient algorithms to788

capture the optimal deterministic and stochastic errors. For instance, variance reduction has789

been applied to the policy optimization problem under the generative model [38, 46] and some790

instance-dependent bounds are known (e.g., for variants of Q-learning [16]). It is an important791

open question to develop acceleration schemes for such algorithms in a fashion similar to our792

paper, while extending the results to the more realistic Markovian setting.793
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[11] J. Hájek, Local asymptotic minimax and admissibility in estimation, in Proceedings of the Sixth Berkeley821
Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, University822
of California Press, 1972, pp. 175–194.823

[12] D. Hsu, A. Kontorovich, D. A. Levin, Y. Peres, C. Szepesvári, and G. Wolfer, Mixing time824
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