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Accelerated and instance-optimal policy evaluation with linear function
approximation®

Tianjiao Lif, Guanghui Lan®, and Ashwin Pananjady?

Abstract. We study the problem of policy evaluation with linear function approximation and present efficient
and practical algorithms that come with strong optimality guarantees. We begin by proving lower
bounds that establish baselines on both the deterministic error and stochastic error in this prob-
lem. In particular, we prove an oracle complexity lower bound on the deterministic error in an
instance-dependent norm associated with the stationary distribution of the transition kernel, and
use the local asymptotic minimax machinery to prove an instance-dependent lower bound on the
stochastic error in the i.i.d. observation model. Existing algorithms fail to match at least one
of these lower bounds: To illustrate, we analyze a variance-reduced variant of temporal difference
learning, showing in particular that it fails to achieve the oracle complexity lower bound. To remedy
this issue, we develop an accelerated, variance-reduced fast temporal difference algorithm (VRFTD)
that simultaneously matches both lower bounds and attains a strong notion of instance-optimality.
Finally, we extend the VRFTD algorithm to the setting with Markovian observations, and provide
instance-dependent convergence results. Our theoretical guarantees of optimality are corroborated
by numerical experiments.

Key words. policy evaluation, temporal difference, variance reduction, acceleration, Markovian noise

AMS subject classifications. 62M20, 68Q25, 90C15, 90C60, 93E10

1. Introduction. Reinforcement learning (RL) problems are generally formulated in terms
of Markov decision processes (MDPs). At each time step, the agent observes the current state
and subsequently takes an action, which leads to the realization of some reward as well as a
transition to the next state according to the underlying, but unknown, stochastic transition
function. The eventual goal of the agent is to learn a policy, i.e., a mapping from states to
actions, to optimize the reward accrued over time. The setting is a very general one, with
applications ranging from engineering to the natural and social sciences; see, e.g., [14, 17] for
surveys of RL applications.

A fundamental building block in RL is the problem of policy evaluation, in which we are
interested in estimating the long-term (discounted) wvalue of each state under a fixed policy
with sample access to the transition and reward functions. The literature considers three
observation models for transition and reward samples, namely the generative model, the so-
called “i.i.d.” model, and the Markovian noise model'. Furthermore, in modern applications
with large state spaces, it is common to seek an approximation to the true value function within
the span of a small number of basis functions, a setting that is commonly known as linear
function approrimation. In the canonical setting of the problem, one is interested in using
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1Two of these observation models are formally discussed in Section 2.
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2 T. LI, G. LAN, AND A. PANANJADY

random observations to compute an approximate value function within the subspace, with the
distance between the true value function and its approximation being measured according to
an instance-dependent “weighted fo-norm” that depends on the stationary distribution of the
transition kernel.

It is common to use stochastic approximation (SA) algorithms to solve the policy evalu-
ation problem in the setting described above. Given the iterative nature of these algorithms,
their convergence rates can be decomposed into two types of error: a deterministic error that
measures how fast the algorithm converges to its fixed point even in the absence of noise,
and a stochastic error that measures the contribution of the noise. Either of these errors
could dominate in practice. While the stochastic error is typically larger in noisy problems,
the deterministic error of the algorithm can dominate, for example, in settings with multiple
processors. In particular, the collection and use of multiple samples/trajectories in parallel
can reduce the stochastic error considerably.

Loosely speaking, the deterministic error is measured in terms of the oracle complexity of
the algorithm and the stochastic error is measured in terms of the sample complexity. The
eventual goal of algorithm design is to develop practical algorithms that have optimal oracle
and sample complexities. Ideally, these optimality guarantees should be instance-specific, in
that they depend explicitly on the problem at hand and enable us to draw distinctions between
the performance profiles of different algorithms.

With this context in hand, let us briefly discuss the state of the art relevant to char-
acterizing the complexity of policy evaluation and related problems. Classical work by Ne-
mirovsky [29, 30] established oracle complexity lower bounds for solving linear operator equa-
tions in fo-norm. However, these results do not extend to the more specific policy evaluation
setting under the weighted fo-norm. On the other hand, Khamaru et al. [15] recently provided
an instance-specific analysis of the sample complexity of policy evaluation under the £,,-norm,
focusing on the generative observation model without function approximation. Mou et al. [27]
studied the broader problem of solving projected fixed point equations, with a focus on char-
acterizing the error incurred due to projection onto a subspace. By virtue of studying the
more general problem, the lower bounds on the statistical error proved in this paper are not
specific enough to capture the policy evaluation setting with function approximation. Con-
current work by Mou et al. [28] studied SA methods for solving linear fixed point equations
with Markovian samples and established a non-asymptotic, instance-dependent lower bound.
Given this state of affairs, the central question that motivates this paper is the following;:

What are the optimal oracle and sample complexities of policy evaluation in weighted fo-norm
with linear function approximation, and do existing algorithms achieve these bounds?

1.1. Related work. There is a large literature on stochastic approximation for policy
evaluation. The most popular stochastic iterative algorithm used for policy evaluation is
temporal difference (TD) learning; see Dann et al. [6] for a survey. The TD learning algorithm
was first introduced by Sutton [40], and convergence guarantees for TD have been proven in
both asymptotic and non-asymptotic settings. Asymptotic convergence of TD with linear
function approximation was established in Tsitsiklis and Van Roy [43], and other classical
asymptotic guarantees include those due to Borkar and co-authors [4, 3]. The vanilla TD
algorithm can also be combined with the iterate averaging technique, and the asymptotic
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ACCELERATED AND INSTANCE-OPTIMAL POLICY EVALUATION 3

convergence of this algorithm was shown by Tadic [42], who extended the convergence results
for solving noisy linear systems [35].

While asymptotic convergence results offer a proof-of-concept, the algorithm is often run
in large-scale applications with relatively small sample sizes. The first results proving finite
time convergence under i.i.d. setting were proposed by Sutton et al. [41] and later extended by
Lakshminarayanan and Szepesvari [21]. Finite-time analysis of TD learning under Markovian
noise was carried out by Bhandari et al. [1], where the authors employed nonsmooth analysis
to a variant of TD learning, by requiring projections at each iteration onto a pre-specified
ball. A consequence of the nonsmooth approach is that there is no obvious way of benefiting
from the variance reduction effect of parallel computing. In recent work, a subset of the
current authors [20] provided an improved analysis of vanilla TD algorithm that overcomes
this hurdle. There are also several other notable finite sample analyses of policy evaluation
in various settings, e.g., [39, 5, 10, 24, 26], and statistical lower bounds have also been shown
for offline reinforcement learning with linear function approximation, e.g., [47, 51].

While some of these analyses are sharp, to our knowledge, vanilla TD learning is not
known to attain the optimal oracle complexity and instance-dependent sample complexity. Li
et al. [24] recently proved that TD learning achieves the minimax lower bound on stochastic
error up to logarithmic factors, but their analysis is not instance dependent. Recent work by
Kotsalis et al. [20] presented two new algorithms, the conditional temporal difference (CTD)
and the fast temporal difference (FTD) learning, where FTD exhibits an accelerated rate in
deterministic error. However, these algorithms fail to capture the correct stochastic error in
the policy evaluation problem, and the bounds can be shown to be suboptimal for policy
evaluation both in an instance-dependent sense, and in the worst-case over natural problem
classes.

During the past decade, there has been a flurry of parallel work in stochastic optimization
on developing first-order methods with variance-reduction; early examples include TAG [2],
SAG [37], SVRG [13, 49], and SAGA [7]. There are several papers that apply variance
reduction to reinforcement learning, e.g., [8, 34, 45]. Recent work in policy evaluation has
shown that variance reduction techniques can also be applied to algorithms of the TD-type [18,
44, 50, 15]. Among these, the paper [15] is motivated by the desire to draw distinctions
between RL algorithms with similar worst-case performance and follows a line of work deriving
instance-dependent bounds on the stochastic error in policy evaluation [33, 25]. Specifically,
the results of [15] capture the optimal instance-dependent stochastic error in the {-norm.
However, the optimal sample complexity is not achieved in [15] since the algorithm requires
O{1/(1 — v)3} samples in each epoch.

1.2. Contributions and organization. Towards answering the question posed at the end
of Section 1, we make three distinct contributions:

e Lower bounds. We construct a worst-case instance that shows an oracle complexity
lower bound of order Q{(1 — ~)~! -log(1/¢)} for any iterative method whose iterates
lie within the linear span of the initial point vy and subsequent temporal differences,
to converge to e-error in weighted f2-norm. We also prove a lower bound on sam-
ple complexity using the classical local minimax theorem [11, 22, 23] to provide an
instance-specific baseline for algorithm design.

This manuscript is for review purposes only.
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4 T. LI, G. LAN, AND A. PANANJADY

e Algorithm design in the i.i.d. setting. We start by applying the variance re-
duction technique to the classical TD algorithm, showing that the resulting variance-
reduced temporal difference (VRTD) algorithm nearly matches the optimal stochastic
error, but the analysis suggests a suboptimal deterministic error. This motivates
us to further improve the VRTD algorithm with the stochastic operator extrapolation
(SOE) device [19]. We provide a sharp analysis of our new algorithm—termed variance-
reduced fast temporal difference (VRFTD)—showing that it achieves a convergence
rate nearly matching both the deterministic error lower bound (for well-conditioned
feature matrices) and the stochastic error lower bound.

o Extension to the Markovian setting. We extend the VRFTD algorithm to the
Markovian setting by introducing a burn-in period during sample collection. We show
that the resulting algorithm also achieves similarly fast convergence, with a dominating
stochastic error term that matches the instance-dependent lower bound proved in [28]
and a deterministic error that matches that of the i.i.d. setting up to a multiplicative
factor of the mixing time. In particular, in the so-called realizable case when the
approximation error caused by linear function approximation is 0 (e.g., in the tabular
setting), the leading Markovian stochastic error term is equal to the i.i.d. stochastic
error term, indicating that the additional dependence on mixing time only appears in
terms whose dependence on the final tolerance € is weak.

The rest of this paper is organized as follows. In Section 2, we formally present the problem
setting. The three aforementioned main contributions are presented in Sections 3—5. In
Section 6, we provide numerical experiments that corroborate our optimality guarantees. The
proofs of our main results are postponed to Section 7, and auxiliary results are collected in
the supplementary materials.

1.3. Notation. For a positive integer n, we define [n] := {1,2,...,n}. We let 1 denote the
all-ones vector in RP. We let ej denote the j-th standard basis vector in RP. Let Ig: X —
{0, 1} denote the indicator function of the subset S C X. Given a vector x € R™, denote its

i-th entry by2 Z(i)- Let ”le = 2?1:1|.%'(2)|, H.%'”Q = 1/2?;1.%'%2-) and HfUHoo = MaX;e[m) ’.%'(Z)|
denote the ¢, ¢ and fo-norms respectively. Given a matrix A, denote its (i, j)-th entry by
P; ;. Let ||All2 denote the spectral norm of matrix A. We let Ayin(A) and Apax(A) denote
the smallest and largest eigenvalue of a square matrix A, respectively. For a symmetric
positive definite matrix A, define the inner product (z,4)4 := z " Ay and the associated norm
|z]|a :== VaT Az. We refer to ||x||4 as the £4-norm of z.

2. Background and problem setting. In this section, we formally introduce Markov re-
ward processes (MRPs) and the (discounted) policy evaluation problem. We also define linear
function approximation of the value function, and present the concrete observation models
that we study.

2.1. Markov reward process and policy evaluation. An MRP is described by a tuple
(S,P, R,v), where S = [D] denotes the state space, P is the transition kernel, R is the reward
function and v € (0,1) is the discount factor. At each iteration, the system moves from the

2In situations in which there is no ambiguity, we also use z; to denote the i-th coordinate of a vector x.
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ACCELERATED AND INSTANCE-OPTIMAL POLICY EVALUATION 5

current state s € S to some state s’ € S with probability P(s’|s), while the agent realizes
the reward R(s,s’). We denote by r(s) := > sP(s'|s)R(s,s") the expected instantaneous
reward generated at state s. Let P denote the transition probability matrix having (i, j)-th
entry P;; = P(j|i). The reward R can also be written in matrix form, ie., R;; = R(3,J).
The value function specifies the infinite-horizon discounted reward as a function of the initial
state:

v*(s) == E[} 7207V R(st, 5141)]s0 = s].

In the case where the number of states is finite and equal to D, both the expected reward
function r and the value function v* are D-dimensional vectors of reals. The value function
is given by the solution to the Bellman equation

(2.1) v =~yPv" 4.

Throughout this paper, we assume that the Markov chain is aperiodic, ergodic and that
there exists a unique stationary distribution 7 := (7, ...,7p) with strictly positive entries,
satisfying 7P = m. Let II := diag(my, ..., 7p) denote a D x D diagonal matrix whose non-zero
elements are given by the entries of the stationary distribution.

2.2. Linear function approximation. In modern applications with large state spaces, it
is common to seek approximate solutions to the Bellman equation (2.1), and the standard
approach is to choose a d-dimensional subspace S for the purposes of approximation. In par-

ticular, one chooses S := span{1, ..., ¥4} for d linearly independent basis vectors 91, ..., 4.
For each state s € [D] we let ¥(s) := [11(s),%a(s), ...,1q(s)] T denote its feature vector. Let-
ting IIs denote the projection onto the subspace with respect to the || - ||;;-norm, define v as

the solution to the projected fixed point equation
(2.2) v = Ig(yPv + ).

It is convenient to write this projection in matrix notation. Let ¥ := [t)1, 2, ...,1bgq] ", and for
v? in S, use 69 to denote its corresponding parameterization in R%, e.g., U7 = o/. With this
shorthand, equation (2.2) can be equivalently written as

(2.3) YTV "9 = Uy PY ' 0 + Ulr.

It is convenient in the analysis to have access to an orthonormal basis spanning the pro-
jected space S. Define the matrix B € R¥? by letting B;; = (¢i,v;)n for each i,j, and
let

1
® = [p1, P2, ..., 0] = B 2.
By construction, the vectors ¢1, ..., ¢q satisfy (¢;, ¢j)nm = 1(i = j). Next, define the scalars

(2.4) B = Amax(B), and p:= Apin(B),
so that /p is the condition number of the covariance matrix of the features. Finally, let
M := ~®IIPH "

denote the d-dimensional matrix that describes the action of 7P on the projected space S.

This manuscript is for review purposes only.
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6 T. LI, G. LAN, AND A. PANANJADY

2.3. Observation models and problem statement. We start by introducing the i.i.d.
observation model, in which we have access to a black box or simulator that generates samples
from the transition kernel and reward functions. In particular, we observe independent tuples
& = (si, sh, R(si, s})), such that

si ~w, s~ P(dsy),

where w := (w1, ...,wp) is a distribution with strictly positive entries, and we use the shorthand
Q0 := diag([w1, ...,wp]). A natural and popular choice is w = 7, in which case the i.i.d. model
is meant to approximate the stationary Markov chain.

In the Markovian noise model, we assume that all of our observations come from a single
trajectory of a Markov chain. Precisely, the sequence of states {sg, $1...., } generated by the
MRP is a time-homogeneous Markov chain, with sg ~ m. The tuple & = (s, S¢41, R(St, St+1))
is observed at each time t. The highly correlated nature of these observations renders algorithm
design and analysis in the Markovian setting more challenging than in the i.i.d. setting.

Our goal in both cases is to use the observations to generate an estimator v, of v* which
satisfies an oracle inequality of the form

(2.5) E[5, — v*[[ft < OW)|o — v*[|f + dnllvo — ollE + €no,

where vg is the initial iterate of the algorithm. The three terms appearing on the RHS of
inequality (2.5) all have concrete interpretations. The first term [|o — v*||} characterizes
the approzimation error incurred by the linear function approximation. As a point of the
background, we recall the following instance-dependent upper bound on the approximation
error due to Mou et al. [27]:

(2.6) 19— v*[[f < A(M,7) iggllv—v*%
v

where A(M,7) = 1+ Amax (I = M)} (21 — MM T)(I — M)~T"). See Mou et al. [27] for a
proof, alongside guarantees of information-theoretic optimality.

This work focuses on sharply analyzing the last two terms on the RHS of inequality (2.5),
both of which have concrete operational interpretations. The term 6, ||vg — 9||% is the deter-
manistic error, which characterizes the convergence of the iterative algorithm in the purely
deterministic setting. Specifically, the term é,, which should tend to zero as the number of
iterations (or oracle calls) n goes to infinity, quantifies how fast the discrepancy between the
initialization vy and the approximate solution v diminishes by running the iterative algorithm.
The third term €, , is the stochastic error, which is incurred due to the stochastic observation
model. Here we use the notation o as a placeholder for the “noise level” in the observed
samples. One should expect the stochastic error €, , to go to zero as n goes to infinity or as
o goes to zero. Several previous works mix the deterministic error with stochastic error in
their guarantees (see, e.g., [1, 27]). However, the key benefit of separating the deterministic
error from the stochastic error is that it allows a clean understanding of situations in which
either the observations have low noise or parallel implementation may be available. In these
cases, the deterministic error dominates the overall convergence rate of the algorithm, and so
having algorithms that attain the optimal deterministic error is a key desideratum.

Having precisely defined the deterministic and stochastic errors, we are now in a position
to present our first set of results on lower bounds for both of these terms.

This manuscript is for review purposes only.
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ACCELERATED AND INSTANCE-OPTIMAL POLICY EVALUATION 7

3. Lower bounds in weighted />-norm. We study the oracle complexity lower bound on
deterministic error in Section 3.1 and the instance-specific stochastic error lower bound in
Section 3.2.

3.1. Oracle complexity lower bound on deterministic error. It is well-known that a linear
rate can be achieved for the deterministic policy evaluation problem, and the convergence rate
is highly dependent on the effective horizon (1—+)~! [36]. Accordingly, our goal in this section
is to prove an oracle complexity lower bound in terms of (1 —~)~!, which can be done even
in the tabular setting in which the subspace is all of RP. The following assumption on the
oracle captures algorithms in the temporal difference learning family.

Assumption 1 (Amenable iterative method). An amenable iterative method M generates
a sequence of iterates vy such that

(3.1) v € vo +span{G(vg), G(v1), ..., G(vk—_1)}, k>1,

where G(v) = (I —yP)v —r.

Noting that G(v) is precisely the temporal difference operator applied at the point v, an
amenable algorithm is one whose iterates are always in the linear span of the initial point
vo and subsequent temporal differences. The linear span assumption is commonly used in
proving oracle complexity lower bounds [31, 32], and as such, nearly all the algorithms in
the temporal difference family can be shown to be amenable. The sole exceptions that we
are aware of occur in cases where there are projections involved in the algorithm, e.g., [1].
However, in policy evaluation problems with unbounded feasible region R”, projection steps
are often unnatural and vanilla TD algorithms are able to attain similar performance (see, e.g.,
[20]). The following theorem provides an oracle complexity lower bound for policy evaluation
problem under the ¢-norm for amenable algorithms.

Theorem 3.1. Fix a constant v > % and an wnitialization vg. There exists a transition ker-

nel P and an expected reward vector r such that any iterative method M satisfying Assump-
(o~ 1\2D—2k

tion 1 produces iterates {vy}r>1 satisfying the following. If (D, k) satisfies % > %,

then
(3.2) ok = v* [ > 52y — 1)*F|lvo — o* ||,

where v* is the solution of equation (2.1).

See Section 7.1 for the proof of this theorem.
Noting that 2y —1 =1 —2(1 — ), Theorem 3.1 shows an oracle complexity lower bound

O{%log(%)} for finding a solution ¥ € R™ such that |7 — v*||% < e. It should be
noted that the metric (i.e., the ¢;-norm) used in Theorem 3.1 depends on the problem instance
through the stationary distribution of the transition kernel P. Such an instance-dependent
metric makes the construction of our worst-case instance non-standard and challenging.

On a related note, it is instructive to recall that classical oracle complexity bounds for
solving linear operator equations [29, 30] allow the conjugate operator to be queried within
the oracle, making the method class wider than the class of amenable algorithms captured in
Assumption 1. On the one hand, the conjugate operator is not natural for solving a policy
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8 T. LI, G. LAN, AND A. PANANJADY

evaluation problem under stochastic settings since the vector (I —~P) v is hard to estimate
with transition and reward samples. On the other hand, our construction used in proving
Theorem 3.1 naturally extends to this wider method class, and we provide an even stronger
deterministic error lower bound than Theorem 3.1 in Appendix SM1.

3.2. Instance-specific lower bound on stochastic error. We now turn our attention to
proving lower bounds on the instance-specific sample complexity under the i.i.d. observation
model introduced in Section 2.3. We assume that the feature matrix ¥ is fixed and known,
and let ¥ = (w, P, R) denote an individual problem instance parameterized by the initial state
distribution w, transition kernel P, and reward function R. Note at this juncture that we do
not require that w = 7r; this is akin to the so-called off-policy situation in which the sampling
(or behavior) policy may differ from the policy that we are interested in evaluating. Our result
will apply in this general case; but given that the initial state is drawn from the distribution
w, it is convenient to consider solving the projected fixed point equation with respect to the
| - [o-norm (cf. Eq. (2.3)), written as

QU = UQyPE 0 + TOr,

Use the function 8(¢9) := (VQUT — ¥QyPYTT)~1WQr to denote the target of interest.
In order to state our result, we require some additional notation. Fix an instance ¥ =
(w, P, R), and for any € > 0, define an e-neighborhood of problem instances by

NW; €)= {0 = (W, P, R) : o —|ls + |P = Pllp+ |[R— R|lp < e}.
Define the matrix B € Rd*d by Eu = (i, ¢j)q for i,j € [d]. Thus B satisfies
(3.3) B 2UQUB 2 = I
Adopting the £z-norm as our loss function, define the following local asymptotic minimax risk

[11, 22]:

o 2
(3.4) M) := lim lim inf  sup N-Ey [HQN - 0(19,))“~] '
c—=00 N—00 g, 9 €N(Y5¢/VN) ’

The infimum in Eq. (3.4) is taken over all estimators fx that are measurable functions of
N observations drawn according to the i.i.d. observation model. In contrast to the global
minimax risk—which takes a supremum of the risk over all the problem instances within a
reasonable class—the local minimax risk 9t(J) looks for the hardest alternative in a small
neighborhood of the instance 9 with diameter ¢/v/N. To capture the hardest local alternative
(in an asymptotic sense) it suffices to take the diameter of the neighborhood to be of the order
1/v/N. Invoking Eq. (3.3) yields the equivalent definition

R ~ 2
(3.5) M) = lim lim inf  sup N -Ey [H\PTHN _qJTQ(ﬂ,))H ] |
c—00 N—00 On 19’697(19§C/\/N) )

The following proposition characterizes the local asymptotic risk Dt() explicitly.
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ACCELERATED AND INSTANCE-OPTIMAL POLICY EVALUATION 9

Proposition 3.2. Consider the i.i.d. observation model with the initial state drawn from
the distribution w. Let Z € R% be a multivariate Gaussian

Z ~ N (0,(Ia = M)™'S(1g — M)™"),
where ¥ 1= cov [E‘é ((¥(s) —v(s),0) — R(s,s"))w(s)] and M = 'yé_%\IIQP\I!E_%. Then

we have
(3.6) M(9) = B[ Z]3] = trace { (1~ M)"'S(1s - M) 7).

See Section 7.2 for the proof of this theorem.

A few comments are in order. First, it should be noted that this lower bound is distinct
from the asymptotic minimax lower bound shown in Khamaru et al. [15], in which a generative
observation model is assumed (where we observe transitions from all D initial states) and there
is no function approximation. Consequently, our choice of a problem instance of interest is
¥ = (w, P, R) rather than (P, R) in [15]. Second, and on a related note, it is important that w
be unknown and included in the set of parameters ¥J; if in contrast w is known a priori, then
the local asymptotic minimax risk differs from the characterization (3.6). Finally, we note that
Mou et al. [27] provide non-asymptotic, instance-dependent lower bounds on stochastic error
for solving projected fixed-point equations using the Bayesian Cramér—Rao bound. However,
these lower bounds do not directly apply here, since the family of hardest local alternatives
constructed in [27] may not be valid instances in the policy evaluation setting.

Let us now specialize Proposition 3.2 by taking w = 7, where 7 is the stationary distribu-
tion of the transition kernel P. Denote by 9, := (7, P, R) the instance of interest. Let

Yiid 1= cov [B_%(W(s) — yp(s'),0) — R(s,s'))w(s)] for s ~ 7 and s’ ~ P(:|s).

Applying Proposition 3.2, the local asymptotic minimax risk (3.5) under this setting is then
given by

~ _ 2
lim lim inf sup N -Ey [H‘I’TQN - ‘IjTawl))H }
c—00 N—00 On ﬂ/em(,&ﬂ_;c/\/ﬁ) I

(3.7) = trace {(I; — M) 'Sia(ly — M)~ 1) }.

Taking stock, we have proved two lower bounds (3.2) and (3.7) on the deterministic and
stochastic errors in ¢;;-norm under the i.i.d. observation model s ~ 7 and s ~ P(:|s). Given
these baselines, it is natural to ask whether there is a practical iterative algorithm in the TD
family that can achieve both lower bounds, which is the main focus of Section 4.

4. Algorithms for policy evaluation in the i.i.d. setting. Taking both lower bounds
proved in Section 3 as our baseline, we now turn our attention to the question of algorithm
design. In this section, we assume the i.i.d. observation model introduced in Section 2.3 with
w = m. In order to state the results clearly, we require some additional notation. For 6 € R¢,
we define the deterministic operator for solving equation (2.3) as

(4.1) g(0) = V(U9 —r — yPTTH);
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10 T. LI, G. LAN, AND A. PANANJADY

note that 6 is the solution to g(#) = 0 The corresponding stochastic operator calculated from
sample &; is defined as

(4.2) 9(0,&) = ((¥(s4:),0) — R(si, s7) — v(1(s}),0)) 1(s);

note that EsiNﬂ.’s;Np(,lsi)[g(Q,fi)] = ¢g(f). To characterize the “variance” of the stochastic
operator under the i.i.d. observation model, we make the following assumption:

Assumption 2. There exists a constant < > 0 such that for every 6,0' € R,

(4.3) E[9(0,€) = g(0",€) — (9(0) — 9(0))I3 < <*[lv = v'[If,

where v =U"0 and v/ = U9

In words, instead of bounding the “variance” of the stochastic operator directly as in [20],
Assumption 2 guarantees that the variance of the difference between stochastic operators
with different variables # under the same data £ is upper bounded by the distance between
the variables. This assumption is critical for implementing the variance-reduction techniques
and capturing the instance-dependent stochastic error at the approximate solution 6. Clearly,
the parameter ¢2 is bounded provided the features 1(s) are bounded, and provides a natural
measure of “noise” in the problem. Accordingly, we make use of Assumption 2 throughout
Sections 4 and 5.

We are now ready to present our algorithms. We start with a variance-reduced version
of the TD algorithm that captures the instance-specific stochastic error lower bound but fails
to achieve the oracle complexity lower bound on deterministic error. To remedy this issue,
we develop an accelerated variance-reduced TD algorithm that matches both lower bounds
proved in Section 3.

4.1. A warm-up algorithm: variance-reduced temporal difference learning. Variance-
reduced temporal difference learning (VRTD) solves the policy evaluation problem using
epochs. With a slight ambiguity of notation, we let v; and its corresponding parameteri-
zation 6; denote the iterates generated within each epoch, and let v° and its corresponding
parameterization #° denote the initialization of the algorithm. At the beginning of each epoch
k, the algorithm uses IV}, samples to compute an averaged stochastic operator g and evaluates
it at a point 6, where 6 should be understood as the best current approximation of the optimal

solution. The vector g(#) is used to recenter the updates in each epoch.
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Algorithm 4.1 Variance-reduced Temporal Difference Algorithm under i.i.d observations

Input: 0° =0y € R, > 0, {G}E, > 0and {Ny}E | CZ,.
for k=1,. K do
Set 61 = 9 = Qk 1. Collect Nj samples §k (si, 85, R(si, s})) from the i.i.d. model.

Calculate g(6 ) N va’“lﬁ(é?,ﬁf).
fort=1,...,T do
Collect a sample & = (s, 8}, R(st, 8;)) from the i.i.d. observation model and compute

(4.4) 01 = 0, — 1 (301, &) — 5(0,) +906) ).

end for
Output of the epoch:

. T+1
(4.5) 0, = ZZT HQQ’*

end for

Note that this algorithm is distinct from previous instantiations of variance-reduced tem-
poral difference algorithms [50, 15], since the output of each epoch (4.5) is a weighted average
of the iterates. The following theorem provides a convergence guarantee on the VRTD algo-
rithm.

Theorem 4.1. Consider the i.i.d. observation model with the initial state drawn from the
distribution 7. Fiz the total number of epochs K and a positive integer N. Assume that for
each epoch k € [K|, the parameters n, Ny and T satisfy

: 1 1—y 32 382 3\K—k
n S mln{25(1+’y,y)27 32¢2 } T Z M(l_ ) ) G/I’Ld Nk‘ Z {#(157)27 (Z) N} :
Set the output of the epoch to be Uy, : = Zim 10 —yut(1/BJorsy Then for each § > 0, we have
Tn(1—7)+(1/8) ‘ ’
E[l[ox —v*[[fi] < (1+8)A(M,7) inf flv - |1

() D) [ 100 = ol + erace (2 - M) Sia(ls — 30T,

See Section 7.3 for the detailed proof of this theorem.

The first term in the bound (4.6) is the approximation error term alluded to previously;
let us extract the deterministic and stochastic errors from the remaining terms. The number
of epochs required by the VRTD method to find a solution © € R”, such that E[||o —o[|3] < e
is bounded by O{log(||v" — 0||%/€)}. The total number of samples used is Zle(T + Ng),
which is of the order

[v°—3]2 ¢? l—aliz |, trace((la=M)~*Sia(Ta=2)"T)
(4.7) =y log( )+ - log( oy + :
=) u € (1=7)?u € €
deterministic error stochastic error

A few comments on the upper bound provided in Theorem 4.1 are in order.
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Comparing the upper and lower bounds. We first focus on the stochastic error in the
2
bound (4.7). The VRTD algorithm requires at least O{(lfm} samples in each epoch, which

accounts for the first term. Note that with noisy observations, it is necessary to have O{ﬁ}

samples in order to obtain an estimate of the value function within O(1) error, so this higher-
order term is natural. The dominating stochastic error term is the last term, and matches the
lower bound in equation (3.7). Therefore the VRTD algorithm is instance-optimal in terms
of its stochastic error.

Next, we turn our attention to the deterministic error, noticing that the dependence on ﬁ
is quadratic. Comparing with the oracle complexity lower bound proved in Theorem 3.1, this
quadratic dependence is suboptimal. This shortcoming motivates us to develop an accelerated
algorithm in the next subsection.

Comparing with related work. To our knowledge, the only work using variance reduction
that captures the correct instance-specific stochastic error is that of Khamaru et al. [15], which
showed that the VRTD algorithm can match the lower bound on stochastic error in £,-norm.
However, their guarantees require (9{(1_%)3} samples in each epoch to compute the recentered
update, and this sample size is suboptimal. In addition, the deterministic error proved in this
paper is of the order ﬁ)% which is also suboptimal.® The work of Mou et al. [27] provided an
analysis for the Polyak—Ruppert averaged temporal difference learning algorithm with linear
function approximation in the weighted fo-norm, showing that the dominant stochastic error
term matches the stochastic lower bound proved in Proposition 3.2. However, the sample
complexity is suboptimal due to the presence of higher-order terms (see [15] for simulations
demonstrating this suboptimality), as is the oracle complexity.

4.2. Variance-reduced fast temporal temporal difference algorithm. Motivated by the
suboptimality of VRTD in its oracle complexity, we now present a variance-reduced “fast”
temporal difference (VRFTD) algorithm, which incorporates the idea of operator extrapola-
tion introduced in [19]. This serves to accelerate the algorithm, and our analysis of VRFTD
shows a convergence rate matching both the deterministic and stochastic error lower bounds.

The VRFTD algorithm is formally presented in Algorithm 4.2, and we introduce the basic
idea of the algorithm below. First, it utilizes the idea of recentering updates from VRTD
with the operator g(f) used in each epoch. Second, in terms of iterate updating in the
inner loop, it involves an inner mini-batch that generates the averaged operator g;, which
allows the algorithm to be run with a much larger stepsize. Finally, each iteration within an
epoch involves an operator extrapolation step (4.8). This is crucial to achieving the optimal
deterministic error (cf. the VRTD update (4.4)).

The following theorem establishes a convergence rate for the VREFTD algorithm.

Theorem 4.2. Fix the total number of epochs K and a positive integer N. Assume that for
each epoch, the parameters n, A, m, Ny, T satisfy
(4.10)

1< mamy A= 1 TZHL mZmax{l,%} andeZmax{ 56¢° (%)K_"’N}.

48(1+v)’ (1=y)n’ 1 p(1—7)2?

3In more detail, a family of such deterministic error guarantees is possible to extract from the paper. The
dependence on € can be improved but the dependence on (1 — 'y)*l is at least quadratic.
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Algorithm 4.2 Variance-reduced Fast Temporal Difference Algorithm under i.i.d. observa-
tions
Input: 6° =6y € R%, >0, A >0, {G}E, > 0 and nonnegative integers m, { Ny}
fork=1,...,K do
Set 6y = 91 = 6 = 0),_1. Collect N}, sample tuples ¢F = (s4,85, R(s;,8})) from the i.i.d.
observation model
Calculate §(6) = N ZNk 3, k).
fort=1,...,T do
Collect m Sample tuples f;- (sj,5 s ,R(sj,s j)) from the i.i.d. observation model.
Calculate g;(+) = %ZT:{QV(,%)
Denote Fy(0:) = g¢(0+) — g:(0) + g(6). Set Fy(0y) = F1(61). Let

(4.8) Ot =60, — 1 [E(et) Y (F}(et) - ﬁt,l(eH))] .

end for
Output of the epoch:

R T+1 Ct gt

(49) ZT—H

end for

T+1
149 Set the output of this epoch to be Uy := # Then for § > 0,
450 E[|[or — v*[|f] < (1 +8).A(M, ) inf flv - v II

+ 1+ ) [Gello® =il + Fptrace (2 = M) Sialla = 3T ]

153  See Section 7.4 for the detailed proof of this theorem.
454 In view of Theorem 4.2, the number of epochs required by the VRFTD method to find a
155 solution ¥ € RP, such that E[||7 — 9||%] < € is bounded by O{log(||v° — v||%/€)}. The total

456 number of samples used is Zszl(mT + Ng), which is bounded on the order

_ _ —1% -T
_ Jé] |v°—5]|2 (2 |0 —5||2 trace(([d—M) Sig(Ig—M) )
457 (4.11) = log(——1) + ==L log(——1) + - )
458 deterministic error stocha;tric error

159 Similar to the VRTD algorithm, the VRFTD algorithm achieves optimal sample complexity
460 in terms of stochastic error. For the deterministic error, the dependence on 1/(1 —~) matches
161 the oracle complexity lower bound proved in Theorem 3.1. Note that the term §/u is the
462 condition number of the feature matrix in f;-norm. Therefore, for “well-conditioned” feature
163 matrices, the VRFTD algorithm achieves optimal oracle complexity?. In summary, VRFTD

4Tt is an interesting open problem to prove an oracle complexity lower bound for policy evaluation with
linear function approximation having linear dependence on 3/ u.

This manuscript is for review purposes only.



464
465

466
467
468

169
470

474

475
476

177
478
479
480
481
482

483

186

487
188
489

190

493
494
495
496

14 T. LI, G. LAN, AND A. PANANJADY

is an accelerated and instance-optimal policy evaluation algorithm, and answers the central
question posed in this paper.

5. Algorithm for policy evaluation in the Markovian setting. Finally, we extend the
VRFTD algorithm to the Markovian setting, noting in passing that such an extension is also
possible for the VRTD algorithm. The challenge of Markovian noise stems from the presence
of dependent data that leads to biased samples. To control the bias caused by correlation, we
need a standard ergodicity assumption on the underlying Markov chain.

Assumption 3. There exist constants Cp >0 and p € (0,1) such that

(5.1) max IP(s; = -|so = 8) — T|loo < Cp-p* forall t€Z,.
se

In other words, with the following definition of mixing time
tmix := inf{t € Z1 | max IP(st = -|so = 5) — T|loo < 1/4},
se

Assumption 3 guarantees that the mixing time is bounded as® tmix < lﬁ) gg(é(;g )).

In order to overcome the difficulty caused by highly-correlated data, we introduce a burn-in
period for sample collection. For instance, to compute the operator g defined in Algorithm 4.2,
we collect NV successive samples and only use the last N — ng of them. With this method,
we are able to reduce the bias induced by Markovian samples and achieve the desired variance
reduction properties. The following two lemmas make this quantitative.

Lemma 5.1. For every t,7 € Zy, with probability 1,
(5.2) IE[G(0, &+7)1F] = 9(0) |2 < Car - o710 — v"| 1.
where Cyy := \/#WWHQHI — 4P|y and F; == [£1, ..., &].

See Appendix SM3.1 for a proof of this lemma. In words, Lemma 5.1 provides an upper bound
on the bias of the stochastic operator at the solution # in terms of the approximation error,
and the bound decays exponentially with 7.

Lemma 5.2. For every t,7 € Z, and 0,0 € RY, with probability 1,

(5.3)  |E[G(O, &vr) 7] = B[GO, &e4r) 2] = [9(0) — 9(0)]ll2 < Cs - p7[lv — 0|1

See Appendix SM3.2 for a proof of this lemma. In contrast to Lemma 5.1, Lemma 5.2 provides
an upper bound on the bias of the difference of stochastic operators, which allows us to get
rid of any dependence on the approximation error. We are now ready to formally state the
VRFTD algorithm in the Markovian noise setting in Algorithm 5.1.

®Note that while our choice of the constant 1/4 in the definition is arbitrary, there is no additional depen-
dence on € when accounting for the mixing time, unlike in the assumptions made by [1, Eq. (21)].

This manuscript is for review purposes only.
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Algorithm 5.1 Variance-reduced Fast Temporal Difference Algorithm under Markovian noise

Input: 6° = by € RY, n >0, A >0, {¢}_; > 0 and nonnegative integers m, moq, no,
{Nk}le-
fork=1,...,K do
Set #1 = 0 = 6,_1. Collect N, successive samples ﬂ’“ := (S84, Si+1, R(8i, Si+1)) from the
single Markov trajectory. Calculate

(5.4) 900) = x2Sk 4 900,€0).

fort=1,...,T do ~
Collect m successive samples §§ = (84,841, R(sj,5j41)) from the Markov trajectory.
Calculate g4(-) = 1m0 Z;n m0+1§(', f;)
Let Fy(6;) = §.(6;) — §:(9) + §(8) and set Fo(6y) = Fi(61). Let

(55) 0t+1 = Gt —-n {ﬁt(ﬁt) + )\ (ﬁt(et) — ﬁt_l(Ht_l))] .
end for
Output of the epoch:
T+1
(5.6) 0, = 2L G

ZT+1

end for

Before presenting our main convergence result for the VRFTD algorithm, we first define
the matrix Yy, which is a covariance matrix analog for the Markovian case (see Mou et
al. [28] and references therein). Letting {5;};2__, define a sequence of samples obtained from
a stationary Markov trajectory, define

Sui= 30 B3 E[(5(6.8) - 9(0)) (3(6.8) —90))| B3,

t=—00

where Et := (S, St+1, R(St, St+1)). This matrix is an infinite sum of matrices where one of the
summands (when t = 0) is the matrix g defined in Eq. (3.2).

Similarly to the i.i.d. setting, the instance-dependent complexity of Markovian linear
stochastic approximation was shown in [28] to be governed by the trace of the matrix (I; —
M) 'S\ (Ig — M)~T. To interpret this functional, consider the special case in which the
approximation error caused by linear function approximation is 0, i.e., v* = v. Let ]-" denote
the o-field generated by samples &, ..., & and let HZ = diag{[P(s; = 1|s ), -, P(5; = DIs;)]}

This manuscript is for review purposes only.
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for j > i. Then we have

E((Ls— M)*lB**( (0.80) — 9(8)). (I = M)™' B (5(0.€) — 9(9)) )

= E((la ~ M)™' B3 (3(0,&) — 9(0)), (I — M) B~ (E[5(0, &)| o] - 9(9)) )
—E((Ia— M) B4 (5(0.&) — 9(6)), (I, — M) B3 (T} — ) (¥ 70 — 7 PUT — 1)) =0,

where the last equation follows from the fact that v* = o = U'# and the Bellman equation
(2.1). Then

trace ((Id M) STy — M)—T) — trace ((Id M) Sy — M)_T) .

Armed with this intuition, we are now ready to establish the main convergence result for the
VRFTD algorithm under Markovian noise. Given the calculation above, we discuss the cases
v =v* and v # v* separately for clarity.

Theorem 5.3. Fiz the total number of epochs K and a positive integer N. Consider an

integer T satisfying pT < mln{liﬁ)g, %} Suppose the parameters ng and mqg satisfy

3 i . . 3 i . 2 1—
(57) pno < mmCE«]E,D] 771’ and pmo < min {mlnéLD] 7Tz’ \/ﬁmgM( P)} )

Assume that for each epoch k € [K], the parameters n, A, m, Ny, T satisfy

1 B 792n(7+1)s2
NS g A=L T2t meomo 2 max {1, PHTHIS L
_n r(1— 206(7+1)s2 -

Set the output of each epoch to be Uy : = Zi 2 Zt=2 " Then the following results hold.
(a) If v = v*, we have

(5.9)  Ellox —v*[lfi] < gellv® —ollf + % - trace ((Id — M) Siia(1y — M)‘T) ~
(b) If v # v*, then for any 6 > 0 we have
T [ . *
Eflox — v* 3] < (140 + SR . A, ) - int o -7 I
(5.10) +(1+3) [ Fello® = ollf + 39 - trace (T — M) Swo (T = M) ™7 ) + 7| |

where H := (9072 + 187 + 18) - trace ((Ig — M) ' Siq(Ig — M)~ 7).

See Section 7.5 for detailed proofs of Theorem 5.3. Let us now discuss a few aspects of the
theorem.

Estimation of mixing time. From the conditions above, e.g., Ineq. (5.7), the parameters
T, Ng, Mo scale linearly in the mixing time ¢,x and logarithmically in other problem parameters.
As such, only some rough estimation of the mixing time is sufficient, which has been the topic
of active research. Nontrivial confidence intervals for the reversible case can be found in Hsu
et al. [12]. There are also guarantees in the more challenging and prevalent case when the
underlying Markov chain is non-reversible [48].
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Sample complexities. We first consider the case when v = v*. In view of Ineq. (5.9) in
Theorem 5.3, the total number of samples required by the VRFTD method to find a solution
v € RP | such that E[||v — v*||}] < e is Zi(:l(mT + Nj), which is bounded on the order®

.y 1O—5l2\ | 42 [0—a)% , trace((Ig—M)~'Sig(Ia—M)~T)
(5.11) (1= log( € )+ (1—7)%p log( € )+ € ’
deterministic error stochastic error

where the mixing time only enters along with terms that scale logarithmically in 1/e. The
phenomenon that the mixing time does not enter multiplicatively with the leading-order sto-
chastic error term was also noticed by Li et al. [24] for vanilla TD learning, but as mentioned
before, this algorithm does not attain the correct instance-dependent stochastic error.

When v # v*, the Markovian setting has a biased stochastic operator at optimal solution
v, and a larger approximation error ||o — v*||% caused by linear function approximation en-
larges the bias of the stochastic operator and consequently enlarges the dependence on the
approximation error in Eq. (5.10). Therefore, a natural stopping criterion for the Markovian
setting is to find a solution ¥ € RP satisfying E[||v — v*||%] < c||v — v*||4 + € for some absolute
constant ¢ > 0. From Ineq. (5.10), the total number of required samples S5 | (mT + Ny) is
bounded on the order

0_ -2 B
(5 12) tmixﬁ 10 (”UO_ﬁle‘[) + tmix§2 lOg(%) + @ trace(([d_M)flekv(Id_M),T)
' T-—u 08 € (1—9)2u e p )
deterministic error stochastic error

Note that, in this bound, the leading stochastic error matches the lower bound proved in [28],
which can depend on the mixing time, but is generally smaller than the product of the i.i.d.
stochastic error and the mixing time. These results show a delicate difference between how
the mixing time of the Markov chain enters the bound depending on whether the function
approximation is exact or not. It should be noted that, the stronger stopping criterion, i.e.,
finding v to satisfy E[||o — v||4] < €, can also be applied in this setting. We can generate
a similar sample complexity by enlarging the constants 7 and N by an additive factor of
log(|lv* — 9||%). However, given that the approximation error is unavoidable and generally
unknown, there is marginal benefit to using this stronger stopping criterion.

Mou et al. [28] established convergence guarantees for TD with averaging in the Markovian
noise setting, showing a similar leading order stochastic error term but without accelerating the
deterministic error. Besides improving on the deterministic error, Theorem 5.3 also guarantees
that the higher-order terms on stochastic error are smaller than those proved in [28].

6. Numerical experiments. In this section, we report numerical experiments for both
VRTD and VRFTD, comparing them against temporal difference learning (TD), conditional
temporal difference learning (CTD), and fast temporal difference learning (FTD) [19, 20]. To
generate a comprehensive performance profile, we conduct experiments under both the i.i.d.
and Markovian noise models.

5Note that we omit the logarithmic dependence on the problem parameters, e.g., u,3,7. Same for the
following complexity.
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6.1. The i.i.d. setting: A simple two-state construction. We consider a family of two-
state MRPs inspired by the construction of Duan et al. [9]. For a discount factor v € (%, 1),

2vy—1 1—vy
o ) 1
the transition kernel P and reward vector r are given by P = | 17, 57| and r = [_ J :
v v

Clearly the transition kernel is symmetric, thus the stationary distribution is 7 = [0.5,0.5].
For simplicity, we choose the feature matrix ¥ = diag([v/2, v/2]), which forms an orthonormal
basis under /r;-norm. Assuming the i.i.d. model in which s; ~ 7 and s, ~ P(:|s;), it can be
shown via simple calculation that the stochastic error term is given by

(6.1) trace((Ig — M) 'Sig(Ig— M) T) = g3 - (ﬁjy)la.

o
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Figure 1. Log-log plots of the squared ¢y-norm error versus 1/(1 —«). Logarithms are to the
natural base. The number of samples used in each single experiment is N = [5/(1—+~)?]. Each
point in the plot is an average of 1000 independent trials. The slope of the lower bound is 1.

Instance-optimality. We generate a range of MRPs with different values of discount factor
~ and run the four aforementioned algorithms on each MRP. In order to test the robustness of
our results, we simulate various step-sizes for each algorithm. To be fair in our comparison, we
also include a simulation of the best-tuned stepsize for each algorithm. We plot the prediction
from the lower bound (6.1) as well.

From subplots (a) and (b) of Figure 1, it is clear that the vanilla TD and FTD algorithms
with diminishing stepsizes [20] do not achieve the lower bound calculated in equation (6.1).
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On the other hand, sub-plots (c) and (d) show that the VRTD and VRFTD algorithms achieve
the lower bound (6.1), and that these behaviors are robust to the choice of stepsize param-
eters. However, given their epoch-wise nature, the outputs of variance-reduced algorithms
are more volatile than TD and FTD. Another interesting observation is that the accelerated
algorithms—FTD and VRFTD—are less sensitive to stepsize parameters. Our next set of
experiments explores this further.

Ablation analysis of VRFTD. Notice that VRFTD includes two new ingredients when com-
pared with VRTD: mini-batching and operator extrapolation (OE). We now perform an ab-
lation analysis to disentangle the contribution of both ingredients. We generate a range of
MRPs with different values of v and run the experimental and control groups on each MRP.

5 38
|:l—‘ ’—‘—‘ —o— VRFTD
o~ VRFTD —o— VRFTD ) .
. ) —6— VRFTD without mini-batch
45 |L—¢— VRETD without OE 36 [-{—9— VRFTD without OE} / ; without mini-bateh
¢ 34

=

-

@

w

' /’/ 20

25 . /
24 2
4 45 5 35
log(1/(1 - 7))

S

log squared #yy error
©
&

log squared fy; error

log squared #y; error
m
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4 45 4
log(1/(1 — 1)) log(1/(1-7))

(a) Ablation study for OE (I) (b) Ablation study for OE (II) (c) Ablation study for mini-
batching

Figure 2. Log-log plots of the squared ¢y-norm error versus 1/(1 —~). Logarithms are to the
natural base. The number of samples used in each single experiment is N = [5/(1—+~)?]. Each
point in the plot is an average of 1000 independent trials.

In the first experiments, we ran the experimental group with OE steps and the control
group without OE steps. We first ran both groups with the stepsize policies suggested by the
theoretical analysis (see subplot (a) of Figure 2). The results indicate that the experimental
group significantly outperforms the control group. However, this performance difference can
largely be attributed to the conservative stepsize for the control group, as prescribed by the
theory. To be more fair to both algorithms, we further fine-tuned the stepsize parameters of
both algorithms and obtained subplot (b), where the two algorithms exhibit similar conver-
gence rates. Taking stock, the first set of experiments shows that the analysis and stepsize
policy of the VRFTD (with OE steps) serves as a better theoretical guideline for practical
applications.

To demonstrate the benefits of mini-batching in the inner loop, we ran a second experiment
with two groups with and without mini-batching. Note that we keep the stepsizes and the total
number of samples the same for both groups (which means that the control group without
mini-batching has larger epoch lengths). From subplot (c), we can see that the performance
difference is significant, showing that without mini-batching, the algorithm exhibits instability
when run with aggressive stepsize policies.
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6.2. The Markovian setting: 2D Grid World. Our experiments under the Markovian
noise model are conducted on the 2D Grid World environment. This is a classical problem in
reinforcement learning with finite state and action spaces. An agent realizes a positive reward
when reaching a predetermined goal and negative ones when going through “traps”. The
dimension of the state space is set to be D = 400, among which we assign a goal state (with
reward r = 1) and 30 traps (with reward r = —0.2). The transition kernel is fixed as follows:
With probability 0.95, the agent moves in a direction that points towards the goal and with
probability 0.05 in a random direction. Our goal is to compute the value function v*—for each
possible initial state of the agent. We also incorporate linear function approximation in these
experiments. Specifically, we generate random features with dimension d = 50 to estimate the
D = 400 dimensional value function in this problem.

2D-Grid, S=400, gamma=0.99 1 2D-Grid, S=400, gamma=0.999
I

-—cm [ ;\
09 i FTD 1 09 i

O\ VRTD N
0.8 ~ VRFTDH 0.8 R

——CTD
FTD
VRTD

—-—VRFTD| |

4
Number of Samples %108 Number of Samples %107

Figure 3. Comparison of the algorithms for the 2D-Grid world example. From left to right
is set to 0.99, and 0.999 respectively. In the y-axis we report ratios in terms of the Euclidean
norm | - |-

We test the performance of four algorithms, with the discount factor + set to 0.99 and
0.999. Figure 3 plots the normalized error in ¢i-norm against the length of the trajectory. In
both experiments, the VRFTD algorithm exhibits the fastest convergence to the true value
function, thereby corroborating our theoretical results. Note that in both experiments, the
estimation errors do not converge to zero, because there is a nontrivial error incurred by linear
function approximation. Another salient takeaway is the following: Closer to the optimal
solution v*, the variance-reduced algorithms (VRTD/VRFTD) achieve faster convergence rate
compared to their counterparts that do not employ variance reduction.

7. Proofs. In this section, we provide the proofs of our main results. The proof of other
auxiliary results are collected in the supplementary material.

7.1. Proof of Theorem 3.1. First, it is clear that the methods of this type are invariant
to a simultaneous shift of variables. The sequence of iterates for solving G(v) = 0 starting
from vg is just a shift of the sequence generated for solving G(v + vg) = 0 starting from the
origin. Therefore, without loss of generality, we assume vg = 0.

Now let us construct a specific instance (P,r) to show the lower bound. Consider the
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D x D matrix

I % 1 (1) 0 0 1 %‘
— 5 % 1 (3 0 0
(7.1) P= 0 1-— 2 3y 0 0
: 1
i 0 0 0 1-— 7 % |
Also define the D-dimensional vector
(7.2) r=h-1+E-nE2y-1P 0 0,..,0 0"

The matrix I — P is square and full rank, and it is straightforward to verify that the unique
solution of the linear equation (I —yP)v* =r is

(7.3) (V)@ = 2y —1)" forall i € [D].

It is also easy to see that the Markov chain induced by the transition kernel P is irreducible
and aperiodic. From the cyclical behavior of the Markov chain, we have that the stationary
distribution is uniform, i.e.,

Thus, we obtain

. _1\211 _1\2D
(7.4) loo = 0" |1 = $327241 (27 — 1) = Bl

Let R¥P = {v € RP | v = 0forall k +1 <4 < D} denote the set of all D-dimensional
vectors lying in the span of the first k£ standard basis vectors. Since all entries of I — vP
below its subdiagonal are equal to 0 and all entries of r except for its first are equal to 0, we
conclude that vy, € R*P. Therefore,

. D ) 2~v_1 2k+2 1—(2~v—1 2D —2k
ow — vl = B2 (2y - 1% = G Gro 1207

1_(27_1)2D72k

If D > k is such that - (37-1)D

> %, then we conclude that

llor = v*[[f; = 5(2v = 1)*[lvo — v* (I,

as desired.

7.2. Proof of Proposition 3.2. For the reader’s convenience, we begin by stating a version
of the Hajek-Le Cam local asymptotic minimax theorem.

Theorem 7.1. Let {Py}yco denote a family of parametric models, quadratically mean dif-
ferentiable with Fisher information matrix Jy . Fix some parameter 9 € ©, and consider a
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function h : © — RY that is differentiable at V. Then for any quasi-convex loss L : R* — R,
we have

(7.5) lim lim inf sup Eyr [L(\/N(EN - h(ﬁ’))} =E[L(Z)],
c—00 N—00 hy o (9 — 19H2<C/\F

where the infimum is taken over all estimators iALN that are measurable functions of N i.i.d.
data points drawn from Py , and the expectation is taken over a multivariate Gaussian

Z~N (0, Vh(9)TJ} Vh(ﬁ)) .

In our model, we have ¥ = (w, P, R) and h(9) = (¥QU " — UQyPY ")~ WQr. We set the

loss function L to be || - H% Invoking Theorem 7.1 yields

(7.6) M) = E [||Z||2§} where Z ~ N (0, Vh(9)TJ} Vh(z?)) .
The covariance is explicitly computed in the following lemma.

Lemma 7.2. We have
(7.7) Vh(9) T J§ Vh(9) = (8QUT — 4 uQPYT)7IS (WU — yupPe )T
where ¥ = cov [((1¥(s) — v¥(s),0) — R(s,s'))(s)] for s ~w, s' ~P([s).

The proof of this lemma is straightforward but involves some lengthy calculations, which we
defer to Appendix SM3.3.

Recall the definition of M and ¥ in the statement of Prop031t10n 3.2. By substituting
equality (7.7) into (7.6) and invoking the relation B~ SVQUT Bz = = I, we obtain

B2 ~ N (0, (1= M)7'S(1y - M)T)),
which completes the proof of Proposition 3.2.

7.3. Proof of Theorem 4.1. Let 0 satisfy g(8) — g(0) +(f) = 0 and v = ¥ 0. Recalling
the definition of ¥ from Eq. (2.2), the following lemma provides a bound for |lv — #||%. This
bound is also valid for the VRFTD algorithm in the i.i.d. setting.

Lemma 7.3. Consider a single epoch with index k € [K]. We have

262 ~_ =12
Mt Y — Ol

(78)  Ello—olf) < Ztrace (L — M)~ Sia(ls— M)~T) +
See Appendix SM3.4 for the proof of this lemma.
Given Lemma 7.3, we can derive the following proposition which characterizes the progress

of the VRTD algorithm in a single epoch.

Proposition 7.4. Consider a single epoch with index k € [K|. Suppose that the parameters
1, N and T satisfy

. (1—v) 38¢2
(79) n é mln{%,(l 2, 32< } T > W, and Nk Z H(lif’}’)Q
Set the output of this epoch to be Uy := Zis 1,_7,71511( W)gti(ll/{gﬂ))w“. Then we have
(700)  E{I5 - oli3) < L — ] + & trace{(Ta — M) Sig(Ts — M)~ T},
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See Appendix SM2.2 for the proof of this proposition. The basic idea of the proof is first
providing an upper bound on the term E|9y — v||% and then combining it with Lemma 7.3.

Taking Proposition 7.4 as given for the moment, let us complete the proof of the theorem.
The main idea is to bound the approximation error term [|o — v*||} separately from the term
|0k — v||4. To bound ||v — v*||%, we use the instance-dependent upper bound in Ineq. (2.6).
We bound the term |05 — 9|/} by using Ineq. (7.10) as follows

Blfok — 0% < e 0 = ol + SAS gy - trace{(L — M)~ Sig (I — M)~ T}
(@)

.

srcllo® = olf + 304, (5)F TR R - trace{(Ta — M) ™' Siia(Lg — M)~}

(7.11) [0 — 0||f + 12 - trace{(Iy — M) ' Sia(la — M)~ T}

IN

Here, step (i) from the condition that Ny > (2)K=*N for all k € [K]. To conclude, we use
Young’s inequality to obtain
Elox —v*l[f < (1+06) - Ello - v*|lg + (1 + 5) - Ellox — vll
< (L+0)- A, ) inf o~ "+ (14 3) - Elfoxc ~ ol

which completes the proof.

7.4. Proof of Theorem 4.2. The structure of the proof is similar to the analysis of VRTD
in Section 7.3. We first state a proposition that characterizes the progress of the VRFTD
algorithm in a single epoch.

Proposition 7.5. Assume that for each epoch k € [K], the parameter n, A, m, Ny and T
satisfy

1 _ 32 256742 562
(712) n < m, A= ]., T > w(d1—)n’ m > maX{l, 1_77; }, and Nk > }14(175’}/)2
T+1
Set the output of this epoch to be vy := # Then we have
(7.13) E[||ox — 17\\%] < %E[Hﬁk,l — 17”%] + Niktrace{(ld — M) 'S (I — M)—T}.

See Appendix SM2.3 for the proof of this proposition.
Taking Proposition 7.5 as given, the proof of Theorem 4.2 follows exactly as the proof of
Theorem 4.1 in Section 7.3.

7.5. Proof of Theorem 5.3. The structure of this proof is similar to proofs of Theo-
rems 4.1 and 4.2: We first derive a bound for a single epoch, and then apply it recursively to
obtain the eventual convergence result. The following proposition characterizes the progress
in a single epoch k € [K].

Proposition 7.6. Consider a single epoch with index k € [K|. Consider an integer T satis-

fying p” < min{Q(;TfA?g, %} Suppose the parameters Ny, ng and mqg satisfy

Np— T(1—p mine(p) m; . [ mingepym /EnTe?(1—p)
(714) P ko < 5CM((Nk—)n0)’ Pno < 6641[3] 5 and Pmo < mln{ CE'I[:] 5 VB Cu .
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Suppose that the parameter n, X\, m, Ni and T satisfy
(7.15)

2 2
n < m, A=1, T> ﬁ, m—mg > max{l,%}, and N —ng > %.
. ~ Zle VUt .

Set the output of this epoch to be vy := =t52—. Then we have the following results:

(a) If v* = v, we have

tr —M)~5 M)~ 7

(7.16) El[o — v* |} < $EI[Ge—y — olff + 20eellatD” Sialla=h)” )

(b) If v* # v, we have

10-tr I;—M) 1Sy (Tg—M)~T ]

(A7) Elffk — o'k < 3BTy - ol + el ol T A
where H := 3|6 — v* |} + (1072 + 27 + 2) - trace{(Iy — M) ™' Siig(Is — M)~ }.

See Appendix SM2.4 for the proof of this proposition.
Taking Proposition 7.6 as given for the moment, let us complete the proof of the theorem.
First, consider the case when v # v*. Recursively using Ineq. (7.17) yields

H
2K7k(Nk_nO)2

~ _ - 10- Iq—M) "' S (Ta—M)~ 7
Elox — ol < g [o” — ol + DI, (el g 0t

( ) race 1y ]
< shelle® = allf + i, () tmeellamtl B limMITd g g (8 Kk

_ —1¥ _
(718) < 27](”1) _1—}||12_I+30trace{(ld M)NEMkV(Id M)~ }+N2’

where step (i) follows from the condition Ny —ng > (2)X=FN. The proof of the case when
v = v* follows from the same derivation.

8. Discussion. In this paper, we investigated the problem of policy evaluation with linear
function approximation, making three contributions. First, we proved lower bounds on both
deterministic error and stochastic error. With these lower bounds in hand, we presented an
analysis of a variance-reduced variant of temporal difference algorithm (VRTD) in the i.i.d.
observation model and showed that it fails to match the oracle complexity lower bound on
the deterministic error. In order to remedy this difficulty, we developed an optimal variance-
reduced fast temporal difference algorithm (VRFTD) that nearly matches both lower bounds
simultaneously. Finally, we extended the VRFTD algorithm to the Markovian setting and
provided instance-dependent convergence results. The leading stochastic error matches the
instance-dependent lower bound for Markovian linear stochastic approximation [28], and the
deterministic error matches the i.i.d. setting up to a multiplicative factor proportional to
the mixing time of the chain. Our theoretical guarantees were corroborated with numerical
experiments in both the i.i.d. and Markovian settings, showing that the VRFTD algorithm
enjoys several advantages over the prior state-of-the-art.

Our work leaves open severaal salient future directions; let us mention two. First, our
oracle complexity lower bound is proved in the tabular setting. On the other hand, our upper
bounds on the deterministic error indicate that with linear function approximation, we pay
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a multiplicative factor depending on the condition number of the feature matrix. It would
be interesting to see if an oracle complexity lower bound can be proved under linear function
approximation, and whether the linear dependence on the condition number in our bounds is
optimal. Second, and more broadly, note that our analysis relies heavily on the linear structure
of the problem. However, there are many problems in the reinforcement learning literature
that have nonlinear structures, e.g., the policy optimization problem involving the Bellman
optimality operator. An interesting direction for future work is to understand problems with
nonlinear structure from an instance-specific point of view and develop efficient algorithms to
capture the optimal deterministic and stochastic errors. For instance, variance reduction has
been applied to the policy optimization problem under the generative model [38, 46] and some
instance-dependent bounds are known (e.g., for variants of Q-learning [16]). It is an important
open question to develop acceleration schemes for such algorithms in a fashion similar to our
paper, while extending the results to the more realistic Markovian setting.
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