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Abstract

Background Gastrointestinal (GIT) helminthiasis is a global problem that affects livestock health, especially in small
ruminants. One of the major helminth parasites of sheep and goats, Teladorsagia circumcincta, infects the abomasum
and causes production losses, reductions in weight gain, diarrhoea and, in some cases, death in young animals.
Control strategies have relied heavily on the use of anthelmintic medication but, unfortunately, T. circumcincta has
developed resistance, as have many helminths. Vaccination offers a sustainable and practical solution, but there

is no commercially available vaccine to prevent Teladorsagiosis. The discovery of new strategies for controlling T.
circumcincta, such as novel vaccine targets and drug candidates, would be greatly accelerated by the availability

of better quality, chromosome-length, genome assembly because it would allow the identification of key genetic
determinants of the pathophysiology of infection and host-parasite interaction. The available draft genome assembly
of T. circumcincta (GCA_002352805.1) is highly fragmented and thus impedes large-scale investigations of population
and functional genomics.

Results We have constructed a high-quality reference genome, with chromosome-length scaffolds, by purging
alternative haplotypes from the existing draft genome assembly and scaffolding the result using chromosome
conformation, capture-based, in situ Hi-C technique. The improved (Hi-C) assembly resulted in six chromosome-
length scaffolds with length ranging from 66.6 Mbp to 49.6 Mbp, 35% fewer sequences and reduction in size.
Substantial improvements were also achieved in both the values for N50 (57.1 Mbp) and L50 (5 Mbp). A higher and
comparable level of genome and proteome completeness was achieved for Hi-C assembly on BUSCO parameters.
The Hi-C assembly had a greater synteny and number of orthologs with a closely related nematode, Haemonchus
contortus.

Conclusion This improved genomic resource is suitable as a foundation for the identification of potential targets for
vaccine and drug development.
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Background

Roundworms (phylum Platyhelminthes; class Nematoda)
include some economically important species that infect
livestock globally and incur huge annual losses in pro-
duction [1, 2]. For example, Teladorsagia circumcincta,
also known as the brown stomach worm, infects small
ruminants including sheep [3] and is one of the major
problematic helminth species in the southwestern part of
Australia. This region has a Mediterranean-type climate
with winter rainfall that favours the propagation of the
larval stages of T. circumcincta on pasture [4].

The life cycle of T. circumcincta continues when third-
stage (L,) larvae on pasture are ingested by grazing sheep,
exsheath and invade the mucosa of the abomasum where
they develop into the fourth stage (L,). Immature worms
emerge from the mucosa into the gastric lumen where
they develop into adult males and females and become
sexually mature. The infection leads to functional dis-
ruption of the gastric mucosa, oedema of abomasal
folds and sloughing of the mucosal lining, resulting in
increased production of mucus, decreased production
of acid, increased serum levels of pepsinogen and, possi-
bly, protein deficiency (hypoalbuminemia). The host can
suffer anorexia, dehydration, weight loss and diarrhoea,
collectively leading to significant economic losses [2].
The helminth eggs leave the host in faecal material to re-
contaminate the pasture and complete the life cycle, thus
leading to recurrent infections [1].

For decades, control of the infection has relied on the
extensive use of anthelmintic medications that were orig-
inally able to control the helminths, including T. circum-
cincta. Unfortunately, this practice has led to widespread
development of resistance to some of the most effective
anthelmintics on the market, including monepantel [5,
6]. Among the alternative, sustainable options are vac-
cination, but for T. circumcincta, a vaccine is not com-
mercially available [7]. All issues considered; therefore,
we need to be able to identify new targets for vaccine
and drug development and elucidate the mechanisms
that lead to anthelmintic resistance. Clearly, a good start-
ing point in this quest would be a high-quality reference
genome assembly.

Advances in high-throughput sequencing technolo-
gies over the past two decades have triggered a massive
output of genomic data. The improvements in the tech-
nology provide an opportunity to revisit the original
sequencing and genome assembling attempts. The origi-
nal sequencing attempt that resulted in a highly frag-
mented genome thus offers a real opportunity to develop
a high-quality genomic resource for T circumcincta,
potentially allowing major gains in our basic understand-
ing of the physiology, evolutionary biology, pathogenesis
of infection, host immune response, and the mechanisms
that underpin the anthelmintic resistance [8, 9].
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Table 1 Quality assessments of the original and Hi-C integrated
genome assemblies of T circumcincta

Parameters Original Purged Chromo-
assembly Hi-C somes
assembly®  only?

Number of scaffolds 81,730 52,860 6

Total size of scaffolds (bp) 700,607,159 614,147,289 363,201,533

Longest scaffold (bp) 1,473,920 66,586,561 66,586,561

N50 scaffold length (bp) 47,089 57,133,369 62,733,602

count

150 scaffold count 3152 5 3

Number of contigs 213,313 175,861 76,733

Longest contig (bp) 98,345 98,345 98,345

N50 contig length (bp) 3624 4009 5700

.50 contig count 40,623 32,178 14,421

BUSCO assessment*©

Complete 2099 (67%) 2112 (67.5%) 1840

(single-copy + duplicated) (58.8%)

Complete and single-copy 1835 (58.6%) 1978 (63.2%) 1821
(58.2%)

Complete and duplicated 264 (8.4%) 134 (4.3%) 19 (0.6%)

Fragmented 350 (11.2%) 358(11.4%) 269 (8.6%)

Missing 682 (21.8%) 661 (21.1%) 1022
(32.6%)

2Includes all available scaffolds; PIncludes only six chromosome-length
scaffolds; “BUSCO assessment was performed using the nematode odb10
dataset which contains 3131 orthologs.

In the present study, we aimed to improve the current
T circumcincta draft genome to a chromosome-length
assembly, using chromosome conformation capture tech-
nique, or in situ Hi-C [10], and thus increase the value of
the genome resource by annotating and analysing it for
genome-wide synteny and orthologs.

Results
Genome contiguity and completeness
The original draft genome assembly (GCA_002352805.1)
was highly fragmented with 81,730 scaffolds, with N50 of
47,089 bp and L50 of 3152, and a total size of 700 Mbp
(Table 1). Following the purging of alternative haplotypes
and the integration of Hi-C sequencing data, the new
Hi-C assembly contained 52,860 scaffolds approximately
35% fewer sequences than the original draft. Notably, of
these, six were chromosome-length as shown in Fig. 1,
with lengths ranging from 66.6 Mbp to 49.6 Mbp. Sub-
stantial improvements were achieved in both the values
for N50 (57.1 Mbp) and L50 (5 Mbp). The longest scaffold
had increased markedly in length, from approximately
1.4 Mbp in the original assembly to nearly 66.6 Mbp in
the Hi-C assembly, while the estimated genome size was
reduced from 700 Mbp to 614 Mbp, probably due to
improved identification and separation of haplotypes.
Next, BUSCO (with nematode odb10 data) was used
to assess and compare the genome completeness lev-
els of both assemblies. After adding scaffolds (n=353)
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Fig. 1 Comparison of the Hi-C and draft genome assemblies for genome contiguity and completeness. Top: Hi-C matrix of the spatial clustering of
Hi-C reads to six chromosome-length scaffolds in Hi-C assembly. The interactive contact map is available at https://www.dnazoo.org/assemblies/Tela-
dorsagia_circumcincta. Bottom: comparison of the scaffold lengths of Hi-C and draft genome assembilies (values for N50 and L50 are indicated for both

assemblies)

to the Hi-C assembly from the draft assembly that con-
tained missing BUSCOs, we detected a higher level of
genome completeness in the Hi-C assembly, with 67.5%
(2112/3131) of BUSCO genes identified compared to
67% (2099/3131) in the original assembly (Table 1).
More importantly, the Hi-C assembly contained 143
more single-copy and 130 fewer duplicated BUSCO
genes, than the original assembly, indicating a significant
reduction in the number of duplicated sequences. We
then examined the genome completeness of only the six

chromosome-length scaffolds, achieving an overall com-
pleteness score of 58.8% compared to 67.5% in the entire
Hi-C-assembly. The sequences for the missing BUSCOs
were retrieved manually from https://www.orthodb.org/
and 1269 scaffolds containing missing BUSCOs were
added to the six chromosome-length scaffolds and the
completeness score rose to 67.1%, very similar to the
Hi-C assembly containing 52,860 scaffolds.
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Table 2 Comparison of genome annotations in the purged, Hi-C
integrated and original genome assemblies of T. circumcincta

Parameters Purged Hi-C  Original
assembly assembly
mMRNAs (n) 30,055 39,896
Genes (n) 28,082 37,276
Exons (n) 239,113 281,766
CDS (n) 239,106 281,759
Introns (n) 197,880 231,167
Start Codon (n) 26,422 32,685
Stop codon (n) 27,090 33,400
BUSCO assessment*
Complete (single-copy +duplicated) 2402 (76.7%) 2409
(76.9%)
Complete and single-copy 1834 (586%) 1816
(58.0%)
Complete and duplicated 568 (18.1%) 593 (18.9%)
Fragmented 239 (7.6%) 250 (8%)
Missing 490 (15.7%) 472 (15.1%)

*BUSCO assessment was performed using the nematode odb10 dataset which
contains 3131 orthologs.

Genome and functional annotations
The genome annotation results generated from the
Braker2 pipeline are outlined in Table 2. The annotated
Hi-C assembly had fewer genes (28,082) and mRNA tran-
scripts (30,055), compared to the original draft (37,276
genes; 39,896 mRNA transcripts), but the BUSCO assess-
ment scores of both protein sequence sets were highly
comparable. In the Hi-C assembly, the overall genome
completeness level was 76.7%, slightly less than that of
the original assembly (76.9%). However, it is important
to note that, in comparison to the original assembly,
the Hi-C assembly contained more single-copy (58%
vs. 58.6%), fewer duplicates (18.9% vs. 18.1%) and fewer
fragmented (8% vs. 7.6%) orthologs, demonstrating the
improvement in genome accuracy and fragmentation.
The complete functional annotation outcomes are
available in Additional File 1. Overall, based on the
protein sequences extracted from the annotated Hi-C
assembly, nearly half of the predicted Gene Ontology
(GO) terms (49.18%; 12,265 terms), were classified under
the molecular function category, followed by the cellular
component (31.68%; 8,133 terms) and biological pro-
cesses (19.14%; 4,915 terms). As depicted in Fig. 2 some
of the most frequent GO biological process terms were
‘translation; ‘intracellular signal transduction, ‘carbo-
hydrate metabolic process, ‘regulation of transcription’
and ‘intracellular protein transport. The most frequent
GO terms in the cellular component category included
‘integral component of membrane, “nucleus, ‘cyto-
plasm; ‘extracellular region’ and ‘plasma membrane’ In
the molecular function group, bindings to nucleic acids
and both ATP and GTP, as well as metal ions, including
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zinc and calcium, were the most common GO terms
predicted.

Genome synteny analysis

Both versions of the T. circumcincta assembly were com-
pared with H. contortus using pairwise synteny analysis
because H. contortus has a near-complete genome assem-
bly [11] and, more importantly, phylogenetic analysis
shows that it is closely related to T. circumcincta [12].
The synteny between the H. contortus genome and the
original assembly for 7. circumcincta was relatively poor
(Fig. 3A) and greatly improved with the Hi-C assembly
(Fig. 3B). It is important to note the strikingly high level
of synteny between all six chromosome-length scaffolds
in the Hi-C assembly and the six chromosomal sequences
of H. contortus. Further, synteny analysis allowed iden-
tification, for the first time, of the X-chromosome in T
circumcincta, with Hi-C scaffold 6 evident as the coun-
terpart of the X-chromosome of H. contortus. Interest-
ingly, no syntenic links could be drawn between any
unplaced scaffolds in the Hi-C assembly and H. contortus
genome sequences, perhaps because the parameters were
too stringent during the alignment process and when
bundling the syntenic links in Circos.

Orthology analysis

Using OrthoVenn2, the protein sequences from anno-
tated T. circumcincta Hi-C assembly were also com-
pared with those from H. contortus, as well as with two
other more distant parasitic nematode species, Burgia
malayi and Trichinella spiralis. Of 12,504 ortholog clus-
ters, 3,214 were shared by all four species (Fig. 4a and
b). As expected, the closely related helminths, 7. circum-
cincta and H. contortus, shared the most orthologs (7,332
clusters), whereas T. circumcincta shared only 3,318
orthologs with B. malayi and 3,291 orthologs with T. spi-
ralis. Using Orthofinder, we also compared the number
of orthologs shared between H. contortus and the origi-
nal and Hi-C assemblies of 1. circumcincta. As shown
in Fig. 4c, the Hi-C assembly shared significantly more
orthologs (6948) with H. contortus than the original draft
(5313).

Discussion and conclusion
The present project aims to improve the current genome
reference for T. circumcincta, a helminth nematode that
is important for small ruminant livestock [8]. By purging
alternative haplotypes and using in situ Hi-C to order,
orient, correct and anchor draft sequences to chromo-
somes [10, 13], we have been able to improve the draft
genome and create the first chromosome-length assem-
bly for T. circumcincta.

The Hi-C assembly is more contiguous and complete
than the previously available draft, and, at 614 Mbp, 13%
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Fig. 2 Bar plots depicting the 10 most abundant Gene Ontology (GO) terms in the Hi-C assembly, for biological processes, cellular components and

molecular functions

smaller than the original assembly. This reduction in
size makes the revised genome of 7. circumcincta more
consistent with that of H. contortus, another helminth
nematode of the same clade, where the genome size has
recently been reduced from 465 Mbp to 283 Mbp [11].
The karyotype (2n=12) of the T. circumcincta genome,
identified for the first time in the present analysis, is also
consistent with that of H. contortus [11], as well as that of
C. elegans, a model organism that is a free-living nema-
tode [14]. Furthermore, the synteny analysis between the
chromosome-length assemblies of 1. circumcincta and
H. contortus suggest that chromosomes are syntenic [12]
but, while genes are conserved between the two species,
the gene order is not, and different regions are linked to
different chromosomes [11]. For example, Hi-C Scaffold
6 is syntenic to Chromosome-X on H. contortus, whereas
Hi-C Scaffold 1 is syntenic to Chromosome 5, Hi-C Scaf-
fold 2 is syntenic to Chromosome 4, and Hi-C Scaffold 3
is syntenic to Chromosome 3.

After genome annotation, there were fewer genes in
the Hi-C T. circumcincta assembly because haplotypes
had been removed and contiguity increased, compared to
the original T. circumcincta assembly [15]. Although the
number of predicted proteins was reduced in the Hi-C
assembly, completeness and accuracy were identical for
both assemblies, suggesting that, during Hi-C assembly,
the rearrangements and reductions in fragmentation
increased the number of curated gene models [15]. The
single-copy orthologs (SCOs) were also compared across
four helminth species from different clades — T. circum-
cincta, H. contortus, B. malayi and T. spiralis. As T. cir-
cumcincta and H. contortus belong to the same clade-Va,
they share more SCOs (7332) with each other than they
share with the other species showing that clade variation
can affect the number of shared SCOs within helminths
as T. circumcincta shares 3318 SCOs with B. malayi
(clade-IIT) and 3291 SCOs with T. spiralis (clade-I). This
variation in shared SCOs is an outcome of speciation
and differences among life cycle stages of each helminth
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Fig. 3 Syntenic relationships between Haemonchus contortus genome (orange) and (a) the original genome assembly (green) for T. circumcincta; and (b)
the Hi-C genome assembly for T. circumcincta (chromosome-length scaffolds in grey; unplaced scaffolds in green). Syntenic links were bundled using the
following parameters: --max_gap = 1,000,000 --min_bundle_size = 10,000 min_bundle_membership=5

— for example, T. spiralis with a broad host range, lives in
muscle and small intestine [16], whereas infective larvae
of T. circumcincta and H. contortus are found on pastures
and infect the abomasum [17], and B. malayi requires
the mosquito as an intermediate host and infects lymph
nodes [18].

Our improved Hi-C assembly still contains sev-
eral unplaced scaffolds. The analysis of completeness
and accuracy of the six Hi-C scaffolds (~59% BUSCO;
Table 1) suggests that most of the genetic information
is retained in the chromosome-length scaffolds. A total
of 1275 scaffolds (six chromosome-length scaffolds plus
1269 unplaced scaffolds), has the completeness level like
that for the total scaffolds in the Hi-C assembly (52,860),
indicating redundancy in the unplaced scaffolds.

In conclusion, our chromosome-length scaffold assem-
bly and annotation have advanced the genomics of the
economically important small ruminant nematode para-
site, T. circumcincta (isolated from Western Australia).
The availability of a better reference genome, with greater
comprehension of the genetic architecture of Telador-
sagiosis, will help phylogenomic analysis of helminths
of various clades [19], and help understand the parasite
biology and host-parasite interactions. Ultimately, this
information should lead to new options for vaccine and
drug targets and, most importantly, pave the way to sus-
tainable solutions for gastrointestinal parasitism [20].
Finally, the inclusion of long-read sequencing (from
PacBio or Oxford Nanopore) should help resolve the
unplaced scaffolds in the current version of the genome
assembly [21, 22].

Materials and methods

Helminth collection and identification

Helminths were collected from the abomasum (predi-
lection site for T. circumcincta) of sheep obtained from
the Western Australian Meat Marketing Company
(WAMMCO). The sheep had been naturally infected
with T circumcincta, an important helminth in the
southwest of Western Australia. The abomasal contents
were carefully scraped onto a sieve (mesh size 150 pm)
and washed thoroughly and placed in a petri-dish from
which individual helminths were removed with the aid
of a dissecting microscope. Helminth species were iden-
tified based on morphological characteristics (Fig. 5)
using differential contrast and compound microscopy.
Males were identified by the shape and length of spicules
which are up to 450 um in length; females were identi-
fied by the presence of a vulvar flap, annular rings and
their body length (10-12 mm; about twice that of males)
[3]. Eggs can also be seen in females near the vulvar flap
from where they are laid. The worms were then thor-
oughly washed with physiological saline and stored at
—80 °C until processing. Extracted DNA (see below) was
subjected to PCR using helminth specific ITS2 primers,
as previously described [23]. Helminth’s identity was
confirmed by Sanger sequencing of the PCR product fol-
lowed by a blastn search against the NCBI database.

DNA extraction

Briefly, the helminths (100 mature male and female Tela-
dorsagia circumcincta in equal ratios) were mechani-
cally homogenized using a sterile micro-pestle in a
microcentrifuge tube containing 200 pL of Tris-EDTA
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Burgia malayi (Bmal, clade-Ill nematode), Trichinella spiralis (Tspi, clade-I nematode), H. contortus (Hcon, clade-Va nematode), T. circumcincta Hi-C assembly
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indicating one-to-one OrthologuesStats inferred from Orthofinder by comparing proteomes of H. contortus with T. circumcincta Hi-C and T. circumcincta
draft

buffer, 1% (v/v) p-mercaptoethanol, 200 mg proteinase K,  The supernatant was collected into a sterile microcen-
10 mg/ml RNAase, 0.5 M EDTA and 10% (v/v) sodium trifuge tube and resuspended with an equal volume of
dodecyl sulphate. The cell lysate was then incubated chloroform:isoamyl alcohol (24:1). After centrifugation,
at 65 °C for 2 h. After incubation, an equal volume of the supernatant was again collected into a sterile micro-
phenol:chloroform:isoamyl alcohol (25:24:1) was added centrifuge tube, this time with ice-cold ethanol (95% v/v)
and the mixture was centrifuged at 10,000 g for 5 min.  to precipitate the DNA. The DNA pellet was washed
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Fig. 5 Morphological identification of T. circumcincta. (a) Eggs towards the posterior end of the female; (b) Vulvar flap towards the posterior end of the
female; (c) Annular rings towards the posterior end of the female; (d) and (e) Spicules towards the posterior, a specific characteristic of the male of this

species

with ethanol (70% v/v) before being resuspended in 50
puL DEPC water. The integrity of the extracted DNA was
assessed by electrophoresis on 1% (w/v) agarose gel. The
quality and quantity of the DNA were assessed using a
NanoDrop 2000 spectrophotometer (Thermofisher, USA)
and a Qubit 2.0 fluorometer (Thermofisher, USA).

PCR amplification of the helminth specific ITS2 region

The ITS2 primer sequences were 5-CTTAATGATCTC-
GCCTAGACG-3 (forward) and 5-TTTCATCGATAC-
GCGAATCG-3’ (reverse). A 50 pL reaction mixture
(reaction buffer 10 pL; forward and reverse primer 2 pL
each; DNA polymerase 1 pL; DNA sample 3 pL; water
32 pL) was run through 35 cycles of PCR with MyTaq
HS DNA (Bioline, Canada), using following conditions:

initial denaturation at 95 °C for 1 min followed by 35
amplification cycles, each comprising denaturation at
95 °C for 15 s, annealing at 54 °C for 30 s, and extension
at 72 °C for 10 s.

Hi-C sequencing, chromosome-length scaffolding and
quality assessment

In situ Hi-C sequencing was performed as described
previously [10] using 100 adult 7. circumcincta, includ-
ing both males and females. We constructed one in situ
library which was then sequenced using the Illumina
NovaSeq 6000 platform. The generated Hi-C reads were
used to anchor, order, orient, and correct misjoins in
the existing draft genome assembly (GCA_002352805.1)
using the 3D de novo assembly (3D-DNA) pipeline [24].
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Before scaffolding with Hi-C reads, the draft assem-
bly was run through purge haplotigs software [25]. The
resulting assembly was then polished using the Juice-
box Assembly Tools [13]. The resulting contact map was
visualized using Juicebox visualization software [13].
QUAST (v5.0.2) was used to assess the assembly metrics
[26]. Benchmark for Universal Single Copy Orthologues
(BUSCO, v5.1.2) was used in genome mode to deter-
mine the genome completeness [27]. In this analysis, the
sequences for missing BUSCOs in the Hi-C assembly
were retrieved manually from https://www.orthodb.org/
(orthoDB v10) and blasted against the draft genome to
obtain the relevant scaffolds which were then addedto
the Hi-C assembly. The list of added scaffolds can be
found in Additional File 2.

Genome and functional annotations

The original (GCA_002352805.1) and Hi-C integrated
draft genome assemblies were annotated using Braker2
v2.1.6 [28]. First, each genome was softmasked using
RepeatMasker v4.1.1 [29] with custom repeat library
built upon itself by RepeatModeler v2.0.1 [29]. The
Braker2 was run with the --etpmode parameter enabled
to train GeneMark-ETP [30] with RNA-Seq data and
protein hints. The GeneMark-ETP predictions were
then used for training AUGUSTUS, following which
genes with hints were predicted by AUGUSTUS [30-34].
Five sets of T. circumcincta RNA-Seq data (sequence
read accession numbers SRX1507697, SRX1507698,
SRX2485888, SRX2485887, SRX2485886) derived from
two previous studies [8, 35], were downloaded from the
NCBI Database and aligned to both the original draft
and our improved Hi-C version of genome assemblies,
using STAR (v2.7.6a) with default parameters [36, 37].
The Caenorhabditis elegans proteome from the UniProt
Database served as protein hints when running Braker2.
BUSCO was run in protein mode to assess the annotation
results. After genome annotation, functional analysis was
performed using the web-based Gene Ontology Func-
tional Enrichment Annotation Tool (GO FEAT) [38].

Genome synteny and orthology analyses

Genome-wide synteny was analysed using Cactus v1.3.0
and halSynteny [39] to compare the Hi-C integrated
T circumcincta genome assembly with the original
GCA_002352805.1 genome assembly, and the genome
of a closely related helminth species, Haemonchus con-
tortus (GCA_000469685.2). A hierarchical alignment
(hal) output file was generated using the Cactus package,
and a PSL output file with syntenic links was generated
using the halSynteny function within Cactus, using the
following parameters: --minBlockSize 10,000 --maxAn-
chorDistance 1,000,000. The syntenic links were bundled
using Circos tools v0.69-8 in Galaxy platform v7 [40, 41]
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and then visualized using shinyCircos [42]. The single
copy orthologs in both the original and Hi-C integrated
T. circumcincta genome assemblies, as well as the draft
assembly of Haemonchus contortus, were inferred using
Orthofinder [43]. OrthoVenn2 [44] was also used to
compare the orthologs between four nematode species:
Burgia malayi; Trichinella spiralis; H. contortus; T. cir-
cumcincta [12].
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