Sifter: Protecting Security-Critical Kernel Modules in Android
through Attack Surface Reduction

Hsin-Wei Hung Yingtong Liu Ardalan Amiri Sani
University of California, Irvine University of California, Irvine University of California, Irvine
Irvine, CA, USA Irvine, CA, USA Irvine, CA, USA
hsinweih@uci.edu yingtong@uci.edu ardalan@uci.edu
ABSTRACT ACM Reference Format:

The Linux kernel is an important part of the Trusted Computing
Base (TCB) of a mobile device using the Android OS, making it
attractive to attackers. While all vulnerabilities in the kernel are
important, those that are directly reachable by untrusted programs
pose a grave threat. This paper introduces Sifter, a solution for
protecting security-critical kernel modules, i.e., those modules that
are directly exposed to untrusted programs. Sifter's key approach
is the use of fine-grained, highly-selective filters to reduce the at-
tack surface of these kernel modules and make their vulnerabilities
unreachable for untrusted programs. The key observation in Sifter
is that there are rich patterns in how legitimate programs issue
syscalls to these kernel modules; thus, one can generate filters that
only allow such syscall patterns, and as a result mitigate vulnera-
bilities (including zero-day ones) that could only be exploited by
the use of unorthodox syscall patterns.

We report a prototype of Sifter and use it to generate filters for
two security-critical kernel modules used in many mobile devices:
Qualcomm KGSL GPU device driver and Binder IPC. Our detailed
study and evaluation of 41 recent CVEs in these two modules show
that Sifter is capable of mitigating about half of all syscall-triggered
vulnerabilities without a priori knowledge of these vulnerabilities.
Moreover, our evaluation shows that when using an adequately
large number of legitimate programs to generate the filter policies
for a given module, the filter’s false positive rate goes to 0%. Finally,
our experiments with these filters show that, despite numerous fine
-grained checks on syscalls, Sifter adds a very small or negligible
performance overhead to real programs and incurs a very small
amount of energy consumption.

CCS CONCEPTS

« Security and privacy - Malware and its mitigation; Mobile
platform security; Systems security.

KEYWORDS

Syscall filtering, attack surface reduction, Linux kernel security,
Android security, eBPF

This work is licensed under a Creative Commons Attribution International 4.0 License.
ACM MohiCom 22, October 17-21, 2022, Sydney, NSW, Australia

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9181-8/22/10.

https://doi.org/10.1145/3495243.3560548

Hsin-Wei Hung, Yingtong Liu, and Ardalan Amiri Sani. 2022. Sifter: Protect-
ing Security-Critical Kernel Modules in Android through Attack Surface
Reduction. In The 28th Annual International Conference on Mobile Computing
and Networking (ACM MobiCom '22), October 17-21, 2022, Sydney, NSW, Aus-
tralia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3495243.
3560548

1 INTRODUCTION

The Linux kernel is an important part of the TCB of a mobile device
using the Android OS. To compromise these devices (e.g., through
privilege escalation), adversaries seek to exploit vulnerabilities in
the kernel. Kernel exploits are very powerful; for example, a suc-
cessful privilege escalation attack may allow malware to perform
arbitrary operations. Kernel modules, e.g., device drivers, are es-
pecially concerning as they are often developed by third-party
developers and contain many bugs (e.g., according to a report from
Google on Android [1]).

However, not all vulnerabilities are created equal. More specifi-
cally, those vulnerabilities that can be reached from untrusted pro-
grams pose a grave threat as they can be exploited by any program, e.g.,
any Android app. Fortunately, Android makes most kernel modules
inaccessible to untrusted programs, which greatly helps address
this concern. For example, programs cannot directly interact with
the camera and audio device drivers. They instead have to use these
drivers through proxies, i.e., Android OS services with the unique
permission to use these modules [2, 3].

This approach, while effective, cannot be applied to all kernel
modules. This is because it impacts performance by adding another
layer of indirection. Therefore, in Android, some performance-
sensitive modules are still exposed to and directly used by untrusted
programs. We refer to these modules as security-critical since their
vulnerabilities are reachable by untrusted programs. Important ex-
amples of security-critical modules are Binder IPC, GPU device
driver, and WiFi device driver. Indeed, an analysis from Google of
bugs observed in Android’s kernel shows that the majority of bugs
reachable by untrusted program reside in these modules (exclud-
ing the debugfs and perf kernel modules as they can be simply
disabled on production devices) [1].

Our goal in this paper is to protect security-critical kernel
modules in Android. Our idea to is to mitigate vulnerabilities in
these modules by narrowing the attack surface through system call
(syscall) filtering. Using syscalls is one of the key methods malware
uses to exploit a vulnerability in these modules (§7). A syscall filter
is deployed in the kernel. It analyzes every syscall issued by an
untrusted process to these modules and decides whether to allow or
reject it according to some policies. The hope is that, even though
the vulnerability is still present, malware will not be able to exploit

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3495243.3560548
https://doi.org/10.1145/3495243.3560548
https://doi.org/10.1145/3495243.3560548

the vulnerability since it simply cannot trigger it using syscalls
because of the filter.

We present Sifter, the first system designed to generate fine-
grained, highly-selective filters for mitigating vulnerabilities in
security-critical kernel modules in Android. Sifter is motivated by two
simple observations. First, syscalls needed to interact with a kernel
module follow a rich set of patterns, encoded in the module itself,
often through a set of ioctl syscalls. Second, to exploit a vulnera-
bility in a module, malware often issues syscalls with meticulously-
crafted arguments and sequences, which are not normally used by
legitimate programs. Therefore, by rejecting bizarre-looking syscall
patterns, Sifter can make it impossible for malware to trigger a
large number of kernel vulnerabilities in security-critical modules
even if the module is directly exposed to malware.

We pursue three goals in Sifter. First, Sifter filters need to perform
deep inspections of syscall arguments, including direct arguments
passed on registers as well as in-memory (sometimes nested) data
structures. Second, they need to be stateful, considering the se-
quences of issued syscalls as opposed to making decisions on one
syscall only. Third, the process of filter generation should be as easy
as possible. More specifically, it should not require us to provide
complex domain knowledge about the syscall interface of a kernel
module.

To achieve these goals, Sifter leverages two recent advances
related to Linux. First, it leverages eBPF programming, which is
widely available in modern Android-based mobile devices, to se-
curely deploy stateful syscall filters and to safely access the program
memory. Second, Sifter leverages syscall definition templates avail-
able in syzkaller [4], the state-of-the-art kernel fuzzer, to provide
the required domain knowledge for kernel modules.

We report a prototype of Sifter and use it to generate filters for
two security-critical kernel modules used in many mobile devices:
Qualcomm KGSL GPU device driver and Binder IPC.1 We address
two important practical challenges in our prototype. First, we show
how we can deploy complex filters using eBPF by breaking them
into multiple eBPF programs. Second, we devise solution to block
collusion and Time-of-Check to Time-of-Use (TOCTTOU) attacks.

We answer two important research questions:

Q1. Can effective filtering policies be automatically generated? Sifter
automatically generates and enforces three types of filtering poli-
cies. First, it restricts the syscall arguments depending on the type of
argument, e.g., alength or a flag argument. Second, it serializes non

-sleeping module-related operations (i.e., one or multiple syscalls
used together to perform an operation). Third, it filters out legacy
and deprecated operations never used by legitimate programs. We
address several challenges in constructing these filters including
dealing with argument outliers and identifying non-sleeping indi-
visible syscall sequences forming the aforementioned operations.

To demonstrate the benefits of these policies, we did a detailed
study and evaluation of all CVEs reported for these two modules be-
tween 2016 and 2020 (41 in total). We show that Sifter can mitigate
about half of all syscall-triggered vulnerabilities without a priori

1we open source our prototype to facilitate future research and adoption at:
https://trusslab.github.io/sifter/

624

long kgsl_ioctl_drawctxt_create(...) {

write_lock(&device->context_lock);
idr_replace(&device->context_idr, context,
context->id);
write_unlock(&device->context_lock);
param->drawctxt_id = context->id;
done:
return result;

}

BPOONGOU DA WNR

15

Figure 1: Simplified code illustrating CVE-2017-9682.

knowledge of the vulnerabilities (hence Sifter can mitigate zero-
day vulnerabilities). More specifically, Sifter prevents the Proof-of-
Concept (PoC) programs of these CVEs from triggering the vul-
nerabilities. Moreover, we discuss why the adversary cannot use
mimicry attacks, which try to change the PoC to fool the filter.

In addition, using a large number of programs (and using disjoint

sets of programs for training and testing), we demonstrate that
Sifter filters do not break the execution of legitimate programs,
resulting in 0% false positive rates, as long as an adequate number
of programs are used for training.
Q2. Do such filters introduce prohibitive performance overhead? As
mentioned earlier, these security-critical kernel modules are
performance-sensitive (indeed, as discussed, that is why they are
directly exposed to untrusted programs). \We report a performance
evaluation of Sifter. Our evaluation shows that Sifter adds a modest
performance overhead to micro-benchmarks. More importantly, it
incurs a very small or negligible performance overhead to real pro-
grams. We also show that Sifter incurs a very small amount of
energy consumption.

These results indicate that Sifter is a practical method to effec-
tively curb the attack surface of security-critical kernel modules
and mitigate many vulnerabilities.

2 OVERVIEW

Our goal in this work is to mitigate vulnerabilities in security-
critical kernel modules in Android, i.e., those directly exposed to

untrusted programs. Examples of such kernel modules are Binder
IPC, GPU device driver, and WiFi device driver. Our key insights

in this work are that (1) there are rich patterns in how legitimate

programs issue syscalls to these kernel modules, and (2) in order to
exploit a vulnerability in a module, malware uses syscall patterns
different from those used by legitimate programs. Therefore, our
key idea in Sifter is to develop filters in order to enforce the syscall
patterns used by well-behaved, legitimate programs to interact with
these modules.

2.1 Motivating Examples

CVE-2017-13162. To exploit this vulnerability, a malicious pro-
gram must first issue an mmap syscall to Binder with a size that is

smaller than BINDER_MIN_ALLOC. However, this argument value

is never used by legitimate programs. This is because legiti-

mate programs interact with Binder using the library libbinder,

which passes a fixed size for mmap, one that is larger than
BINDER_MIN_ALLOC.

CVE-2017-9682. Figure 1 shows this CVE, which is a Use-After-
Free (UAF) vulnerability in the KGSL GPU driver. When a pro-
gram creates a draw context by calling the ioct! syscall with the

IOCTL_KGSL_DRAWCTXT_CREATE command, the driver first allocates
and initializes the context. Then, at line 4, it adds the context to
context->idr, where idr is a kernel API to build a mapping be-
tween integers (i.e., ID) and pointers, which in this case are pointers
to contexts. Finally, after leaving the critical section protecting the
idr, the driver retrieves the ID of the context, which will later be
returned to the user. However, the final step at line 7 may lead
to a UAF vulnerability if another thread is destroying the same
context through another ioctl, I0CTL_KGSL_DRAWCTXT_DESTROY,
making context a dangling pointer. In this example, to exploit
the vulnerability, an adversary has to call the two ioctl syscalls
from two threads concurrently. However, it makes no sense for
legitimate programs to destroy a context simultaneously without
knowing its ID returned by the creation. Indeed, during our training
phase studying how legitimate programs interact with this driver
(84), the only syscall we see after IOCTL_KGSL_DRAWCTXT_CREATE
is IOCTL_KGSL_GPUOBJ_ALLOC.

2.2 Goals

We pursue three goals in Sifter.

Goal I: perform deep inspection of syscall arguments. Syscall
arguments are not limited to a few values passed on CPU registers.
Many syscalls pass complex data structures in memory. For exam-
ple, the third argument of the ioctl syscall is a pointer to a data
structure, which itself might contain pointers to other data struc-
tures (i.e., a nested data structure). An example of such a syscall is
ioctl(fd, BINDER_WRITE_READ, ...), which programs use to
pass a large set of “commands” to Binder.

Goal II: use stateful filtering policies. The same syscall (with the
same argument) may or may not trigger a vulnerability depending
on the state of the kernel. Therefore, filtering policies that only
inspect one syscall at a time to make a decision cannot cope with
complex vulnerabilities. Therefore, an effective filter must be able
to securely store and read some state information across syscall
invocations and use the information for enforcing effective filtering
policies.

Goal lll: eliminate the required domain knowledge from the
analyst. Since kernel modules are complex, requiring intimate
knowledge of a module’s syscall interface makes the process of
generating fine-grained filters laborious and error-prone.

2.3 Feasibility

Is it even feasible today to deploy fine-grained syscall filters with-
out impacting the performance and without requiring significant
amount of domain knowledge (and hence manual effort)? We ob-
serve that this might be feasible only now due to two recent ad-
vances:

(1) Extended Berkeley Packet Filter (eBPF). Previously, an an-
alyst who wanted to deploy a filter in Linux had two main options.
One option was ptrace, which allows a tracer process to monitor
another process (i.e., tracee process). Whenever the tracee calls
syscalls, the tracer is woken up to check the tracee’s syscall number
and arguments. The major problem of ptrace is the performance
overhead it introduces to the tracee process due to the context
switches needed between the tracee and tracer on every syscall.

625

Another option was seccomp, which operates fully in the ker-
nel and hence eliminates the aforementioned overhead. However,
seccomp has two important limitations. First, it lacks the ability
to inspect arguments passed in memory. Second, it cannot keep
persistent state across syscalls, preventing stateful filters.

Fortunately, eBPF (extended BPF) support has been added to
the Linux kernel (and hence Android) recently [5] and it addresses
the aforementioned limitations. eBPF has a richer (compared to
BPF) set of instructions and supports a persistent data structure
across syscalls (called map). In addition to the greatly extended
capability, it also improves performance due to the use of just-
in-time compilation. For enhanced security, eBPF programs are
verified before being loaded into the kernel.

Indeed, there are several frameworks that can deploy eBPF pro-
grams in the kernel today. Since its introduction, kernel tracing
mechanisms such as kprobe, tracepoint, perf event, and raw trace-
point have gradually supported eBPF[6]. In fact, our own tracer in
Sifter leverages eBPF with tracepoint, as we will discuss. In 2018,
integration of eBPF with seccomp was supported [7], although it
has not been yet integrated into the mainline Linux. Finally, in 2020,
integration of eBPF with Linux security hooks, also known as Ker-
nel Runtime Security Instrumentation (KRSI), has been supported
and added to the mainline Linux (starting version 5.7) [8—10].

Use of eBPF can enable us to achieve the first two goals in §2.2.

Since all their policies are implemented in eBPF programs, Sifter
filters can be deployed in practice using either seccomp/eBPF or
KRSI. We use seccomp/eBPF in our prototype, but also provide a
discussion of how Sifter can be deployed using KRSI (§9).
(2) Syscall definition templates from syzkaller. Kernel mod-
ules export a custom syscall interface, mostly implemented through
theioctl syscall. Each call to the syscall needs to specify a com-
mand number and pass a potentially complex data structure specific
to that command. Developing effective kernel filters for a module
hence requires understanding this interface, i.e., domain knowledge.
Requiring the security analyst to provide this domain knowledge
makes the process time-consuming and error-prone.

We observe that kernel fuzzers also require the same domain
knowledge to be able to effectively fuzz a kernel module. They
rely on syscall definition templates to achieve this goal. As a result,
security analysts have developed a large number of such templates.
More specifically, syzkaller [4], the state-of-the-art kernel fuzzer
provides such templates for 170 kernel modules (as of December
2021) including those specific to Android. Therefore, we reuse these
templates in Sifter to eliminate the need for domain knowledge
provided manually by the analyst. This enables us to achieve the
last goal in 82.2.

syzkaller's templates include a comprehensive list of syscalls
and the attributes of their arguments (e.g., field name, data type,
data size, and the hierarchy of fields within arguments). The
templates categorize the arguments into several types, for ex-
ample: IntType, LenType, FlagsType, ConstType, ArrayType,
StructType, PtrType, BufferType, VmaType (virtual memory ar-
eas), and ResourceType (values passed between syscalls, e.g., file
descriptor).

We note that syzkaller might not have a template for a kernel
module. In this case, the analyst needs to develop the template.
This involves studying the syscall interface of a kernel module

Syscall - h

. Trainin .

definions Tracer orograms \ Tracing
P generator agent

Load tracer
and record
traces

tracepoint/
eBPF
tracer

Generate
tracer

Syscall

definitions Filter
template generator
seccomp/
Syscall Analyze Generate BPE

traces filter

traces filter

Figure 2: Sifter's workflow. The blue shapes are part of Sifter and the white ones are external.

and then defining the syscalls along with their arguments using
syzkaller's syscall description language. However, given the popu-
larity of syzkaller and other kernel fuzzers [11-19], we believe that
in the near future, many kernel modules will have their templates
available. As an example, at the time of this work, syzkaller's main
repository did not have a template for the KGSL GPU driver used
in our prototype. However, our own research group had previously
developed the template for this module as part of a fuzzing research
project [20]. Therefore, we borrowed the template from that project
and added minor improvements. This significantly reduced our
manual effort.

2.4 Remaining Research Questions

Despite these new developments in Linux, two important research

questions remain:

Q1. Can effective filtering policies be automatically generated? We
show that we can automatically extract three different types of poli-

cies (i.e., argument limiting, operation serialization, and operation
deprecation policies) related to a security-critical kernel module by
observing how legitimate programs issue syscalls to the module
(84 and §85). We also show that our automatically generated policies
can mitigate about half of all syscall-triggered vulnerabilities (87).
Moreover, we show that they do not introduce false positives (88.1).
Q2. Do such filters add prohibitive performance overhead to legitimate

programs? We demonstrate that our filters introduce very small or
negligible performance overhead to real programs (88.2). Moreover,
they incur a very small amount of energy consumption (§8.3).

3 THREAT MODEL

Our goal is to prevent malware from exploiting vulnerabilities in
security-critical kernel modules through the syscall interface. We
assume that malware controls one or multiple processes and can
execute arbitrary code in them. We assume that malware can only
leverage the syscall interface, but not other interfaces to the kernel.
For example, we do not consider the hardware interface, e.g.,
incoming network packets and interrupts.

4 WORKFLOW

Figure 2 shows the workflow of Sifter. There are three components
in Sifter: the automatic syscall tracer generator, the tracing agent,
and the automatic filter generator.

Imagine a security analyst who wants to use Sifter to generate a
filter for a security-critical kernel module in Android. In the first
step, the analyst uses the tracer generator to generate a tracer for
that kernel module. To do so, the analyst feeds the syscall definition

626

template of that module (§2.3) to the tracer generator, which auto-
matically generates the source code of a tracepoint/eBPF syscall
tracer.

In the second step, the analyst uses the tracing agent to col-
lect traces of syscalls from a set of training programs. The analyst
needs to choose a representative and comprehensive set of training
programs in order to capture all legitimate and expected syscall
patterns (see Table 2 in 86.5 for the detailed list of the training
programs in our prototype). To perform this step, the analyst uses
the agent to deploy the tracer, execute the training programs, and
collect the syscall traces. The tracing agent automatically hooks the
tracepoint/eBPF tracer program to syscall entry and return points.
The tracer logs the syscall number, the arguments in the registers
and the timestamp for all syscalls into an eBPF map. When the
syscall is for the kernel module of interest, the tracer will addition-
ally perform a deep copy of arguments from the user space memory
to additional eBPF maps.

In the third step, the analyst uses the filter generator to generate
the filter. The generator reads the syscall traces, performs a series
of analyses to extract filter policies (§85), and then generates a sec-
comp/eBPF filter to enforce the policies. The filter generator also
uses the syscall definition template to generate code to parse syscall
arguments at runtime.

In the fourth step, the analyst evaluates the false positive rate of
the filter (§8.1). If not zero, the analyst chooses additional programs
for training and goes back to the second step. This continues until
the false positive rate reaches zero.

In the final step, the analyst deploys this filter into a target mobile
device. As mentioned in §2.3, our prototype currently leverages
seccomp to deploy the eBPFfilter. In this case, the filter is deployed
selectively for operating system processes. More specifically, similar
to existing seccomp filters, the filter needs to be installed for the
process before the execution of any untrusted code in that process.
Given that a seccomp filter cannot be disabled once installed, the
untrusted code cannot escape the filter. As also mentioned in §2.3,
we can also use KRSI to deploy our filters. In that case, the filter
will be deployed for a specific module (see §9 for a discussion on
this matter). Figure 3 illustrates the filter in action.

We finally note that this workflow requires the analyst to in-
vest time in selecting and running the training programs as well
as inspecting and evaluating the generated filters. However, the
analyst is not required to encode domain knowledge about the
syscall interface of a kernel module, which would be a laborious
and error-prone process.

Untrusted
program

Syscalls

User
space

Kernel
space

Security-
critical
kernel

module

seccomp/
eBPF
filter

syscalls

Figure 3: The Sifter’s filter limits syscalls of untrusted pro-
grams.

Violation policy. When our filters detect a policy violation, they
react according to a violation policy. Our default policy (which we
also use in our prototype) is to block the violating syscall, potentially
resulting in breaking/terminating the guilty program. This policy
prevents exploitation of vulnerabilities and hence mitigates them.
However, it is possible to use a less strict policy, which just logs the
violation and reports it for future auditing.

5 FILTER POLICIES

Sifter generates three filtering policies based on the collected syscall
traces from training programs. We next discusses these policies.

5.1 Argument Limiting Policy

This policy has stateless rules that constrain the values of syscall
arguments of the following types: integers, length arguments, and
flags. It also walks the arguments contained within arrays and
structs and generate policies for them too.

A naive approach to implementing the argument policy is to

blindly limit the arguments to only the values that have been
recorded in the training phase. Unfortunately, this approach would
require the filter to store a potentially prohibitively large number of
values seen in the training phase, which is impractical. Moreover, it
would require the training phase to cover extremely large number
of training programs so that all possible values are seen. To address
these challenges, Sifter generates the constraints statistically de-
pending on their types. It does so in two steps: outlier analysis and
policy generation.
Outlier analysis. Sifter prunes out outlier arguments from the
traces. In our experience with a large amount of syscall traces,
we have noticed that some legitimate programs issue erroneous
syscalls, i.e., those with outlier arguments. For example, we have
seen a binder command buffer containing an erroneous command
with a 0x0 flag, which is undefined. To identify and remove outliers,
Sifter analyzes the traces twice. In the first run, it builds knowledge
of the arguments. It then scans all the syscall traces again to drop
the outliers.

Sifter prunes out the outliers based on shared characteristics of
anomalies between the same type of arguments: for a flag argument,
if the frequency of a unique value is below a given threshold and it
only appears in one training program, then Sifter views it as an
outlier. For a length argument, Sifter first computes its weighted
mean, m, and the mean absolute deviation, d. Then, values that are
Col - d away fromm are considered as outliers.

627

We have found two outliers in all of the programs that we tested

(86.5) and we have manually confirmed that each of the detected
outliers are indeed incorrect usages of a syscall.
Policy generation. Sifter analyzes the cleaned-up traces (i.e.,
traces without outliers) to generate argument policies. For length
arguments, Sifter calculates the new weighted mean, m, and the
mean absolute deviation, d. Then, it calculates the legitimate range
of alength argumentas [m-cq -d,m+cgq -d], or [0,m +cq -d] if the
lower bound is a negative number. For flag arguments, the policy
will only allow the values seen in traces. Since the distributions
of these arguments vary, we currently determine cq empirically.
However, we are considering automating this process by using the
traces themselves to determine these constants.

Note that for pointers (i.e., PtrType), although the filter does
not impose specific restrictions on the values, if the filter fails to
copy the memory from the user space, the argument will be deemed
invalid.

5.2 Operation Serialization Paolicy

A large number of vulnerabilities in the kernel are race conditions
(e.g., 43% of all syscall-triggered vulnerabilities that we study in
87). To exploit a race condition, a malicious program often needs to
issue syscalls simultaneously from multiple threads to cause a
race. A straightforward approach to mitigating such vulnerabilities
is serialization, which eliminates concurrency.

A naive approach is to serialize each and all syscalls. However,
this strawman approach has two important limitations:

First, it cannot prevent race conditions that are triggered as a
result of a specific ordering of issued syscalls. For example, con-
sider two syscalls issued consecutively, the first of which allocates
a kernel structure containing a pointer and the second allocates the
memory pointed by the pointer. If another syscall tries to derefer-
ence the pointer before the second syscall, a null pointer dereference
will happen.

Second, it may cause a program to deadlock if the syscalls have
some form of a dependency on each other. For example, we tested
this strawman approach on the Binder module and noticed a dead-
lock in the few programs we tested (including a micro-benchmark
and a game). This is because these programs use two threads to
interact with Binder, one for sending and one for receiving IPC
messages, where the latter sleeps in the kernel. Since these two
threads have dependencies (i.e., the receiving thread would not
receive any messages until the sending thread sends the message),
serializing the syscalls causes a deadlock.

To address these limitations, we introduce the operation serial-
ization policy. In this policy, we serialize operations, defined as a
sequence of one or multiple syscalls always used together and in a
specific order by programs to perform some higher-level opera-
tion related to the kernel module. Examples of these operations are
Binder initialization, GPU initialization, and GPU cache flushing.
Since these operations represent semantically-independent tasks,
they are better candidates for serialization. We note that our fil-
ter will not be able to mitigate race conditions that rely on the
order of execution of operations, but those vulnerabilities are by
definition a subset of race conditions triggered by reordering the

syscalls. Hence, our operation serialization policy is a stricter policy
compared to the strawman syscall serialization policy.

It is important to clarify: since most of the operations on kernel
modules are done through ioctl syscalls with different commands,
we must differentiate these syscalls. This is achieved by treating
ioctls with different commands as different syscalls in the se-
quence. Besides, since FlagsType arguments might carry additional
semantics in syscalls (e.g., an ioctl, I0CTL_KGSL_SETPROPERTY,
may set different properties of the GPU driver depending on the
type field in the structure, kgsl_device_getproperty), we also
differentiate syscalls when these arguments are different.

Next, we discuss how we identify the operations by monitoring

the syscalls issued by legitimate programs. We will also explain
how we prevent deadlocks.
Operation detection. To detect operations, Sifter tries to find
indivisible sequences of syscalls in the traces. The syscalls in such
a sequence are always used by legitimate programs together and
in a fixed order. In other words, one does not find a subset of an
indivisible sequence in the traces.

Sifter identifies indivisible sequences in two steps. In the first
step, it scans through syscall traces and breaks them down into
smaller syscall sequences. Sifter breaks down the traces based on
the temporal proximity of two kernel module syscalls defined by
the time and the number of other syscalls between them. If the
time of a kernel module syscall since the last kernel module syscall
exceeds a threshold (250 ms in our prototype), it breaks down the
sequence. (We determine this threshold, as well as a few other con-
stants/thresholds discussed later, empirically by studying syscalls
issued by programs.) During the scanning, there will also be other
generic syscalls (i.e., syscalls not related to the kernel module of
interest) between kernel module syscalls. As the number of these
generic syscalls between two module syscalls grows, it is less likely
the two module syscalls are associated and used together. Therefore,
when the number exceeds a threshold (10 in our prototype), Sifter
breaks the syscall sequence down.

However, all the sequences found in the first step are not indivisi-
ble as some might be a subsequence of others. The high level idea in
the second step is to check if any of the sequences is a subsequence
of another, in which case the longer sequence is split. This process
continues until no new sequences are discovered.

After applying this algorithm to syscall traces from real pro-
grams (86.5), we do find some interesting sequences, representing
the aforementioned high-
level operations used by programs. For ex-
ample, we find a short ioctl(fd, 10CTL_KGSL_GPUOBJ_ALLOC)->
mmap(addr, PROT_READ|PROT_WRITE, MAP_SHARED, ...) se-
quence, which suggest that the GPU object allocation operation
always maps the GPU memory into user space after creating a
memory entry in the GPU driver. We also find some longer op-
erations. For example, we find an operation with 8 syscalls, all
IOCTL_KGSL_GETPROPERTY but with different values for a flag argu-
ment, type: 0x13->0x17->0x18->0x15->0x19->0x20->0x1a—>0x1b.
This operation is used during the GPU initialization phase.
Deadlock prevention. As discussed earlier, serializing all opera-
tions can result in a deadlock. We observe that a deadlock happens
only when one of the syscalls in an operation sleeps in the ker-
nel (that is, this is a necessary but not a suficient condition for
the deadlock). Therefore, we do not serialize such operations. We

628

Parg | Pops | Popp [#Inst. | Map size (byte)
Binder IPC | 15 3 B 1378 7700
GPUdriver | 60 23 To 1886 o134

Table 1: Information of filters generated by Sifter. Pargis the
number of argument limiting policies, Pop Sis the number of
operations in the operation serialization policy, and Pop pis
the number of syscalls allowed by the operation deprecation
policy. #Inst. is the number of eBPF instructions.

identify these operations by measuring the execution time of their
syscalls. We have only found two such operations (one in Binder
and one in the GPU driver) and have confirmed (by analyzing the
source code) that they do include sleeping syscalls.

5.3 Operation Deprecation Policy

Kernel modules often have several legacy and old syscalls not used
by legitimate programs. However, these syscalls can be used by
malware for exploits [1, 21]. We develop a policy that disallows
such syscalls.

We identify deprecated syscalls by analyzing the syscall traces
collected from legitimate programs. If a syscall has never been seen
in the traces, our filter disallows using it.

However, our policy goes beyond disallowing single deprecated
syscalls. It disallows deprecated operations. That is, if a sequence
of syscalls has never been seen in the traces, our filter disallows
it (even if all the syscalls forming the operation have been seen
separately in different operations).

6 IMPLEMENTATION & PROTOTYPE

We implemented Sifter in Go and C++ in 6000 LoC. We developed
the seccomp/eBPF filtering mechanism based on [7], and integrated
it with the Linux kernel 4.9 for Android on Google Pixel 3. As
discussed in 89, it is feasible to deploy Sifter’s filters using the
KRSI framework as well. We note that eBPF is widely available on
modern Android-based mobile devices, i.e., those with Linux kernel
version 4.9 or higher.

Using our prototype, we have generated filters for two security-
critical kernel modules and tested them on Pixel 3: Binder IPC and
Qualcomm KGSL GPU driver. We do not currently provide a filter
for the WiFi driver (which is also a security-critical module) since
our prototype currently only supports device files (e.g., /dev/binder
for Binder IPC), but not sockets used by network drivers.

Table 1 provides some information about the two filters we have
constructed. The table shows the number of rules of different poli-
cies of the generated filters. It also reports the number of eBPF
instructions along with the total size of the maps (where we cal-
culate the size of a map by multiplying the size of an entry by the
number of entries).

We next discuss some important practical challenges that we
needed to overcome to realize Sifter.

6.1 Checking File Descriptors

Sifter enforces its policies per opened file descriptor. When a pro-
gram needs to use a module, it first opens the module, which returns
a file descriptor. All following syscalls are then issued by passing

the file descriptor. We enforce the policies per file descriptor be-
cause kernel modules maintain different state information for each
opened file descriptor.

This creates a challenge: the filter needs to know which module a
file descriptor belongs to. This is challenging since seccomp checks
syscall arguments at the syscall entry point right after switching
to the kernel mode, but not at the implementation of the syscall
handler. To solve this, we implement a new eBPF helper function,
bpf_check_fd. The added helper function checks whether the fd
argument of a syscall is for the targeted module or not.

6.2 Deploying Complex Filters using eBPF

A filter generated by Sifter is complex since it walks through deep

memory arguments and maintains the state of the syscall sequences.
In our first prototype, we implemented the filter in a single eBPF

program. However, that exceeded the complexity limit of the eBPF
verifier and thus was rejected. This was because the verifier could
not traverse every possible path in the program to check its safety.
To address this challenge, we break the filter into several smaller
filters: multiple argument limiting filters, one filter to reject single-
syscall deprecated operations (and to reject syscalls not approved

by at least one argument-limiting filter), and one filter to serialize

the operations and to reject deprecated multi-syscall operations.

These filters use an eBPF map to share information.

6.3 Preventing Collusion Attacks

When analyzing syscall traces to extract operations (85.2), we look
at syscalls triggered by each thread separately. This is because in a
well-behaved program, there is no reason to use more than one
thread to issue a set of dependent syscalls to realize an operation
together. However, when enforcing the operations (i.e., sequence
of syscalls), we cannot simply enforce them per thread. If we do,
malware can use colluding threads or processes to bypass the filter.
We devise solutions to prevent such collusions, as discussed next.

First consider the case of colluding threads. This case is
taken care of by serializing the operation issued on a spe-
cific file descriptor. To implement the critical section, we add
three eBPF helper functions, bpf_lock_fd, bpf_unlock_fd and
bpf_wait_if_fd_locked. Note that our helper functions lock the
underlying struct file of the file descriptor, as opposed to the
file descriptor itself.

Now consider the case of colluding processes. Malware can
achieve this in two ways. One way is to fork a child process and use
the threads in this process to break the serialization. We prevent
this case by sharing the aforementioned lock with child processes.
Another way is to use two independent processes. In this case, one
process needs to be able to dup the file descriptor for the other pro-
cess. Therefore, we do not allow dup to duplicate the file descriptors
of our security-critical kernel modules.

6.4 Preventing TOCTOU Attacks

TOCTTOU attack is a check-evading technique, which succeeds
when the target of check can be modified after check and before
use. To prevent TOCCTOU attacks on in-memory arguments, Sifter
caches the arguments by their addresses when being examined
by the filter. Later when the kernel module fetches the argument

629

by calling copy_from_user and get_user, instead of copying the
argument from the user space again, Sifter returns the cached value.
Therefore, even if a malicious program uses another thread to mod-
ify the argument, the modified value will not be consumed by the
module.

We also prevent TOCTOU for file descriptors. Since there is a
window between the filter and the actual syscall handler, the file
pointed to by the file descriptor might be changed maliciously to
bypass the filter. The attacker can mount an attack by first calling
the syscall consisting illegal arguments to a file other than the
kernel module of interest. Then, right after it passes the filter, the
attacker can “redirect” the call by closing the file pointed by the
original file descriptor and then duplicating the file descriptor of the
kernel module to take the place of the original file descriptor in the
argument. However, as discussed, we do not allow dup to duplicate
on the file descriptors of our security-critical kernel modules, which
blocks this type of TOCTTOU attack.

6.5 Training Programs

We used a diverse set of training programs for our filters. For Binder
IPC and the GPU driver, we record syscalls issued by 60 Android
apps downloaded from the Google Play store. The training pro-
grams are selected from the top charts of various categories based
on popularity and review score. They include popular video stream-
ing apps, shopping apps, games, social media apps, and tools. Table 2

shows the detailed list of the training programs. For each of them,
we start the tracing agent and manually interact with the app for
30 minutes with the goal of exercising as much functionality as
possible. The syscall tracing results are later used to generate filters.
This manual interaction with the app is currently the most time-
consuming aspect of our system. However, we think the manual
effort is acceptable since there are only a limited number of security-
critical kernel modules that programs can directly access in Android.

Besides, the two security-critical kernel modules we analyzed are
widely available: Binder is available on all Android devices and
Qualcomm GPUs have a significant market share. Therefore, the
effort could benefit many devices in the wild with the potential of
mitigating zero days. One option to automate the manual trace
collection is to use a monkey, e.g., the Android Ul/Application ex-
erciser [22]. However, a monkey might not be able to invoke as
many functionalities of the app as we manually do since it often
gets stuck at certain Ul elements. We think that tuning a monkey to
generate syscall traces with high coverage needed by Sifter will be a
useful future work.

7 EFFECTIVENESS STUDY

We present a study of 41 Linux CVEs from the Binder IPC module
and the Qualcomm KGSL GPU device driver used in many mobile
devices. These CVEs are all that we found for the period of 2016-
2020. We collect these CVEs from the MITRE CVE database and
the Android security bulletin. We have two key goals in this study.
First, we use the study to show empirically that a large number
of vulnerabilities are triggered by syscalls and hence can, at least
theoretically, be mitigated by syscall filters. Second, we use the
study as a framework to evaluate the effectiveness of Sifter.

Apps Games Google
Zoom, Snapchat, Discord, Webtoon, Duolingo, | Genshin Impact, Roblox, Terraria, Snake.io, Youtube,
McDonalds, Doordash, MyFitnessPal, AllTrails, | Dragon Ball Z Dokkan Battle, Tomb of the Mask, Crossy Road, Gmail,
Spotify, Shazam, Opera News, Adobe Acrobat, | Subway Surfers, Angry Bird Friends, Hungry Shark World, Maps,
Microsoft Word, Amazon Shopping, Walmart, Block Craft 3D, Candy Crush Saga, Coin Master, My Talking Tom 2, | Photos,
Facebook, Twitter, Reddit, NFL, Booking.com, Best Fiends, Toonblast, Cut the Rope 2, Need for Speed: No Limits, Calendar,
The Weather Channel, Twitch, Pintrest, Design Home: Real Home Decor, Fishing Clash, SimCity Buildit, Translate,
eBay, Wish, Dropbox 8 Ball Pool, Clash of Clans, Plants vs. Zombies, Egg Inc Sheets,
Earth
Table 2: Training programs used for generating syscall policies.
Components — Vsiter - Vsyscall-Vsifter Vall-Vsyscall
Argument limiting Op. serialization Op. deprecation Y
19-21817, 17-131627 20-0030%, 19-2215%, 20-0041°, 19-2214%, 19-2213%, 18-20510, 18-20509,
Binder 19-2000% 19-2025%, 19-1999°, 18-9465°, 16-8402, 16-6683
17-17770°, 17-13164*, 16-6689*
18-5831%, 17-7366°, | 18-13905°, 17-9682°, | 17-15829°, 17-15820°, | 19-10571¢, 19-10567°, 19-10529", | 19-10545, 18-3571
6PU driver 16-24682 17-8262%, 16-8479°, | 17-14886°, 16-26022 17-14891%, 17-110923, 17-11044%
16-2504%, 16-2503%, 16-6749*, 16-2067°
Total #bugs | 5 6 7 17 6

Table 3: Analysis of CVEs in Binder and Qualcomm KGSL GPU driver (CVE-20YY-XXXX is shortened to YY-XXXXT, where T is
the vulnerability type — 1: information leakage, 2: OOB access, 3: data race, 4: kernel APl misuse, and 5: logical bug).

30
Vsysca =
25 Viyscat = Vsifier T——
Z 20
z
g IS5
=}
=
> 10
+
5 H H
0 .
Binder GPU

Figure 4. The numbers of triggerable vulnerabilities in
Vsyscall before and after applying filters.

Out of all the vulnerabilities (Va), we determine those that are
triggered by the use of syscalls (VSyScall). We find that 35 of the
vulnerabilities (85%) fall in Vgyscai. Out of the 6 remaining vulnera-
bilities, five are triggered through the debugfs and one through the
initialization path with an erroneous configuration. These vulnera-
bilities are out of the scope of a syscall filtering solution.

We then determine whether Sifter can mitigate the syscall-
triggered vulnerabilities (Vsyscan). For each such vulnerability, we
first determine the sequences of syscalls needed to trigger it. This
is done mainly by analyzing the source code and studying PoC pro-
grams. We assess the effectiveness of Sifter by seeing if the syscall
sequence to trigger the vulnerability violates the policies generated
by Sifter (in which case Sifter mitigates that vulnerability). If we
determine that Sifter can mitigate a vulnerability, we confirm it by
actually running the PoC and checking that the Sifter’s filter neu-
tralizes it. Whenever PoCs were not available, we developed them
ourselves, a process that required a significant amount of effort. We
have released the 12 PoCs that we have developed alongside the
source code for Sifter, so that our results could be reproduced.

The number of triggerable vulnerabilities in Vsysca) before and af-
ter applying filters isillustrated in Figure 4 and the detail breakdown

630

is shown in Table 3. Our analysis shows that 18 of the vulnerabili-
ties are mitigated using Sifter (Vsifel). They account for about 51%
of syscall-triggered vulnerabilities (Vsyscan)-

We further analyze the severity of the vulnerabilities. Our anal-
ysis shows that the vulnerabilities mitigated by Sifter have high
severity, i.e., their average CVSS rating is 7.3. This shows the effec-
tiveness of Sifter in mitigating serious vulnerabilities.
Effectiveness of different policies. We find that different poli-
cies have varying levels of importance in mitigating different types
of vulnerabilities. We discuss how they succeed below.

First, the argument limiting policy mostly mitigates Out-Of-
Bounds (OOB) vulnerabilities. Figure 5 shows one such vulnera-
bility, CVE-2016-2468, in the Qualcomm GPU driver. During GPU
memory allocation, the driver updates sglen in the loop at line 12
based on len, which gets directly assigned from a user-controllable
argument of the function, size, earlier at line 8. Since the datatype
of len is a signed integer, assigning it with a value greater than
0x80000000 will result in a negative len. As as result, sglen never
gets updated in the loop, and when being used to index an array
at line 16, OOB access happens. However, during the training, it
never exceeds 0x80000000. The argument policy generated by Sifter
limits its upper bound to around 0x1E000000, therefore preventing
it from being exploited.

Second, the operation serialization policy in our analysis mostly
mitigates race condition vulnerabilities, especially UAFs. We explain
how it works using CVE-2018-13905 as an example, which is illus-
trated in Figure 6. In the Qualcomm GPU driver, the book-keeping
of sync-sources is done by using idr. The user can destroy a sync-
source by calling the ioctl syscall with an argument specifying
the ID. The driver first invokes kgsl_ioctl_syncsource_destroy
at line 14. It then looks up the sync-source from the idr, calls
kgsl_syncsource_cleanup to remove it from the idr, and then
releases the sync-source. While every operation on idr, namely

static int
_kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable,
size_t size) {
int ret = 0;
int len, page_size, sglen_alloc, sglen = 0;
len = size;
while (len > 0) {
sg_set_page(&memdesc->sg[sglen++], page, ...);

14}

sg_mark_end(&memdesc->sg[sglen -

11);

Figure 5: Simplified code illustrating CVE-2016-2468.

static void kgsl_syncsource_cleanup(
struct kgsl_process_private *private,
struct kgsl_syncsource *syncsource) {

1
2
3
4 e
5 spin_lock(&private->syncsource_lock);
6 if (syncsource->id != 0) {

7 idr_remove(&private->syncsource_idr, syncsource->id);
8 syncsource->id = 0;

spin_unlock(&private->syncsource_lock);

14 kgsl_ioctl_syncsource_destroy(

15 struct kgsl_device_private *dev_priv,
16 unsigned int cmd, void *data) {

17
18
19
20
21
22
23

spin_lock(&private->syncsource_lock);

syncsource = idr_find(&private->syncsource_idr,
param->id);

spin_unlock(&private->syncsource_lock);

if (syncsource == NULL)

return -EINVAL;
kgsl_syncsource_cleanup(private, syncsource);
return 0;

Figure 6: Simplified code illustrating CVE-2018-13905.

idr_find and idr_remove, seems to be protected by a spinlock,
the destroy process is not atomic. When one thread is trying to
destroy a sync-source, after it finds the sync-source and before
removing it, another thread might acquire a reference to the same
sync-source. After it is destroyed by the first thread, access to the
dangling pointer in the second thread will cause a UAF.

To exploit this vulnerability, an attacker will need to is-
sue the racy syscall from two concurrent threads. In this case,
it is I0CTL_KGSL_SYNCSOURCE_DESTROY. However, during auto-
matic syscall analysis running training programs, we discover
that the syscall only appears in one operation (i.e., an indi-
visible sequence of syscalls), IOCTL_KGSL_SYNSOURCE_CREATE—>
IOCTL_KGSL_SYNCSOURCE_DESTROY. When this syscall sequence
is enforced by the filter, during a call to the syscall sequence, no
other threads would be allowed to make syscalls to the driver and
therefore the vulnerability becomes impossible to exploit.

Finally, our operation deprecation policy is effective against
attacks exploiting vulnerabilities in deprecated syscalls. An exam-
ple is a race condition bug, CVE-2017-15829, in the deprecated
IOCTL_KGSL_SPARSE_BIND syscall.

631

Non-mitigated vulnerabilities. An example of these non-
mitigated vulnerabilities is CVE-2020-0041 in the Binder IPC. The
vulnerability is caused by an incorrectly calculated variable used
for checking the boundary. This allows an attacker to violate the
rules of how binder objects should be placed in the binder trans-
action buffer. The binder transaction buffer may hold a series of
objects with hierarchical relationships and requires specific logic
to validate its correctness. Sifter unfortunately cannot mitigate this
vulnerability.

Another example of a non-mitigated vulnerability is CVE-2017-
14891 in the GPU driver. The driver does not zero out a variable
in the beginning, causing it to leak sensitive stack data to the user.
Since the filter does not have control of the leaking path, it fails to
mitigate this vulnerability.

The third example, CVE-2019-2213, is a race condition vulnera-
bility in the Binder IPC. It cannot be mitigated by Sifter because not
only the racing paths can be triggered with normal arguments, but
also concurrent access to the shared data cannot be serialized by
the operation serialization policy. More specifically, since the ioctl
with command BINDER_WRITE_READ may sleep during invocation,
the kernel module cannot be locked as doing so will break it. Asa
result, this vulnerability cannot be mitigated by the filter.

7.1 Mimicry Attacks

One might wonder about Sifter's defense against mimicry at-
tacks [23]. That is, one might wonder whether Sifter’s filters can
be bypassed by (1) crafting the syscall arguments, (2) substituting
some syscalls in the syscall sequence with equivalent syscalls, or
(3) inserting no-op syscalls or delays between the syscalls in an op-
eration to deceive the filter. (These are all types of mimicry attacks
that we could think of.) In our analysis, Sifter is secure against such
mimicry attacks, as discussed next.

(1): unlike existing syscall filtering mechanisms that only check
arguments in registers, Sifter checks deep in-memory arguments.
Therefore, if syscall arguments are maliciously modified, they will
be detected by Sifter. We do note that Sifter might not check all
the arguments of a syscall. This can happen if the syscall descrip-
tions of the module borrowed from syzkaller are not complete. But
according to our analysis, our argument checks are adequate to
thwart such mimicry attacks for all the CVEs we analyzed.

(2): in a complex kernel module such as the GPU driver, it is
possible to have multiple entry points that can reach a vulnerability
(i-e., equivalent syscalls). However, in our analysis, these equivalent
syscalls are mostly legacy ones, hence our operation deprecation
policy rejects them. According to our analysis, no such mimicry
attacks are feasible for all the CVEs we analyzed.

(3): our filters ignore delays and no-op syscalls when detecting
syscall sequences of operations, hence these attacks will not be
effective.

8 EVALUATION

8.1 False Positive Analysis

Sifter’'s dynamic approach in generating syscall policies could yield
stricter filters when compared to statically analyzing syscall usages
of the kernel module from applications or libraries. However, on
the other hand, it has a higher chance of accidentally blocking or

1400

T T
Binder FP —o—

1200 GPU FP —»—

1000 -
800 -

600

False Positives (#Blocked Syscalls)

0 | | | | |
20 30 40 50
#Training Programs

60

Figure 7: False positives of filters trained and tested using dif-
ferent numbers of training programs.

reporting (depending on the violation policy discussed in §4) a le-
gitimate syscall, i.e., afalse positive. In this section, we demonstrate
that, with enough data, our filters can achieve a 0% false positive
rate.

We use a leave-one-out cross-validation method to assess how
filters trained with different sizes of data set (numbers of traces)
perform. We first randomly select different numbers of programs
from all the available program traces collected from real programs.
Next, in each data set, we leave one program out for testing and use
the rest as training data. Then, we feed the traces of the training
programs to Sifter’s filter generator to produce syscall policies.

Finally, we configure the filter generator into testing mode and
feed the testing traces. The filter generator then acts as the syscall
filter imposing the policies and reports syscalls that violates the
policies when it scans through the traces. Note that during training,
we use pre-determined thresholds for each type of argument and
policy, and do not change them. Besides, to prevent overfitting the
model, the cross-validation method uses the trace unseen by the
trained model for testing. In addition, the train-and-test process is
repeated ten times independently without carrying over the result
for each size of the data set or across iterations.

The result, illustrated in Figure 7, shows that initially, filters of
both modules have significant amount of false positives, which are
contributed by all policies due to the lack of training data. How-
ever the false positive rate is reduced dramatically with increasing
the training data set size. For GPU driver, we can reach 0% false
positives after using 9 programs for training. For Binder, it needs
more training data to reach (% false positive. The false positives
drop to (% after we increase the number of training programs to
19. Note that the required amount of programs for different kernel
modules may vary, and the train-and-test method can serve as a
indication of whether the training data is enough.

Besides, while it is equally important to reduce false positives for
all policies as a single false positive can potentially break a normal
program, a false positive in operation serialization policy could be
more problematic. An overly long syscall sequence that is not truly
indivisible may lock the kernel module and prevent other threads
from using it, causing the program to freeze.

Our use of syscall traces collected from real programs provides a
reproducible way to evaluate the false positive rate under different

632

0.14 0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0.12

oS

0.08

Time (ms)

0.06
0.04
0.02

0

Average Latency (ms)

basline w/Sifter

(b) Latency

basline w/Sifter

(a) Throughput

Figure 8: Performance overhead of Sifter on Binder micro-
benchmarks.

training set sizes. Since we record all the syscalls issued by pro-

grams, this evaluation methodology does not add any inaccuracies.

To further demonstrate that our filters can achieve (% false positive
rates, in the second step, we also apply both of our filters to a couple

of programs (Booking.com, Youtube, Terraria, and Subway Surfers)

running in a smartphone and verify that the filter does not break

normal usages of these programs.

It is worth mentioning that although we do not change the
aforementioned thresholds in our evaluation for both modules, they
theoretically can differ for kernel modules even for the same type of
arguments as they carry different semantics. For the threshold used
in operation serialization policy, it serves as a hint to break down
the syscall sequence. Therefore, it should be set rather large than
small to avoid breaking an indivisible sequence. A large threshold
will only cause the indivisible sequence extraction process longer.
For the length-type arguments in the argument limiting policy, the
threshold is determined by mean absolute deviation. Therefore, if
the distribution of arguments changes a lot, it could require more
attention from the analyst.

8.2 Performance

We measure the performance overhead of Sifter on Binder IPC and

the Qualcomm KGSL GPU driver. To evaluate the performance

overhead introduced by Sifter, we install the filters generated by

Sifter on selected benchmark programs including both synthetic

benchmarks (i.e., micro-benchmarks) and real programs (i.e., macro-
benchmarks). Then, we report the execution time as well as the

CPU usage. We run each experiment ten times and show the mean

and standard deviation (the latter using error bars).

Binder. To evaluate the impact of Sifter on Binder, we choose two

micro-benchmarks, BinderThroughput and schd-dbg, and one

macro-benchmark, SurfaceFlingerStress. BinderTroughput

measures the average time consumed by Binder transactions of

various sizes, and schd-dbg measures the average latency of Binder
transactions. The results of the micro-benchmarks, shown in Fig-
ure 8, show that Sifter increases the transaction time by 49%. The

latency micro-benchmark shows transactions on average spend

56% more time in the kernel.

However, the overhead observed in micro-benchmarks might
not translate directly to degraded user experience since Binder IPC
normally takes only a small portion of a program’s execution time.
Therefore, it is also important to understand their real-world im-
pact on programs by running macro-benchmarks. We choose the
macro-benchmark because it has high Binder utilization, i.e., 50%

3 45
40
35
30
25
20
15
10

Execution time (s)
CPU Usage (%)

baseline w/Sifter

(b) CPU usage

baseline w/Sifter

(a) Performance

Figure 9: Performance overhead of Sifter on Binder macro-
benchmark (SurfaceFlingerStress).

baseline m—
w/Sifter C—1

baseline m—
w/Sifter C———

Frames Per Seconds (FPS)
CPU Usage (%)

PM1

PM2 PM3

PMI1
(b) CPU usage

PM2 PM3
(a) Performance

Figure 10: Performance overhead of Sifter on GPU macro-
benchmarks (PM1: Passmark 3D simple, PM2: Passmark 3D
complex, PM3: Passmark OpenGL ES).

of its syscalls are Binder ioctls. Figure 9a shows the execution
time of SurfaceFlingerStress, which is a test program stress-
ing SurfaceFlinger by creating and destroying surfaces for 1,000
times in 10 threads, respectively. Therefore, we use it to simulate
a Binder IPC intensive application. Although Sifter introduces a
noticeable overhead to Binder transactions, it only slows down the
extremely IPC-intensive program by 1.7% and increases the CPU
usage by 5% (Figure 9b).

GPU driver. To evaluate the performance overhead of the filter
on GPU in real world scenarios, we apply the filter to three 3D
benchmarks. We measure the average CPU usages and the frames-
per-second (FPS) during the testing session. Figure 10a shows the
FPS of the three macro-benchmarks. The performance overhead
introduced by the syscall filter in terms of FPS is almost negligi-
ble whether the benchmark programs stress the GPU or not. The
differences of FPS are within the measurements’ error margins.
Figure 10b shows the CPU usages of the benchmarks before and
after installing the filter. The CPU usage increase is also almost
unnoticeable in the first GPU benchmark. In the second and third
benchmarks, the CPU usage of the program with filter is slightly
lower than the one without by 44% and 3.3%, respectively. (We sus-
pect that the small amount of idle time caused by the locks in our
serialization policy results in the slightly lower CPU usage when
the filter is used.) This again shows that the performance overhead
introduced by Sifter is almost negligible in real world scenarios.
Scalability. To evaluate the performance impact of multiple filters
being installed to a program, we apply different combinations of
filters to a 3D game, Subway Surfers, that use both Binder IPC and
the GPU. The FPS and CPU usages difference are all within the
error margin even when both Binder and GPU filters are installed.

633

8.3 Energy Consumption

To evaluate the energy consumption introduced by the filters, we

installed the filters for both Binder IPC and GPU driver to the afore-
mentioned 3D game. Then we measure the energy consumption

of a six-minute game play for ten times. Compared to running the

program without filters, the energy consumption is increased by

0.73mAh (which is 0.025% of the total battery capacity).

8.4 Training Time

The training time of a filter is proportional to the training data
set size. When using the largest data set, which comprises 60 30-
minute traces with a total size of 131 GB, it takes Sifter two hours
to analyze the traces and generate a syscall filter on an Intel Xeon
CPU E5-2697v4 machine using a single core.

9 DISCUSSIONS

Deploying Sifter filters with KRSI. In general, it is possible to
deploy Sifter filters with KRSI. To do so, a mapping of syscalls to
Linux security hooks is required since seccomp filters and KRSI
eBPF programs are invoked at different locations. While seccomp
filters hook to the syscall entry, KRSI eBPF programs are called at
Linux security hooks placed deeper in the kernel, often at syscall
handlers or other functions where the arguments need to be scru-
tinized. Also, a mapping of function argument are needed since
some of the syscall arguments are resolved to internal data struc-
tures when being passed to the security hooks (e.g., a file descriptor
argument is resolved to struct file *).

Deploying Sifter filters beyond Android. Sifter is built on top
of eBPF, which is originally developed for Linux. Thus, Sifter is
not limited to Android and can be used for all devices using the
Linux kernel. Moreover, due to the popularity of eBPF and its ability
of extending kernel functionality, Microsoft is also adopting it in
Windows [24]. Therefore, Sifter may be applicable to a wider
range of mobile devices in the future, such as laptops and
embedded devices.

Deploying Sifter filters along with other defenses. Sifter is or-
thogonal to other kernel hardening techniques. Since kernel hard-
ening techniques are developed to prevent specific types of attacks,
multiple of them are usually present on a system to make the kernel
harder to exploit. Sifter as an attack surface reduction approach
may prevent vulnerabilities from being triggered in the first place,
so that even if a vulnerability cannot be mitigated by other tech-
niques in the later stage of the exploitation, the kernel will remain
safe.

10 RELATED WORK

Syscall filtering. There is a long line of work on syscall filter-
ing frameworks [25—32]. These filtering frameworks use different
hooks, which give them different capabilities and performance im-
plications. ptrace-based approaches are generally slower due to
their inability to trace syscalls selectively [28]. Mbox [27] utilizes
seccomp/BPF to only monitor syscalls of interest and then invoke
the ptrace-based tracer to query the policy engine, which greatly
improves performance. However, they all require a policy engine
running in the user space. As a result, to check a syscall, at least
two context switches need to be made. In addition, more ptrace

syscalls are needed to inspect the user space memory or register
content in the tracee. These context switches make the approach
less eficient. Compared to Mbox, Sifter's eBPF approach does not
result in context switches since the eBPF filter runs within the same
context as the syscall-calling process. User memory probing helper
functions also eliminate the need for additional context switches.

SELinux [33] also has the ability to filter syscalls. With extended
permission access vector rules, it can also check some arguments
of syscalls. For example, the command argument of ioctl. How-
ever, it cannot probe and check deeper into in-memory arguments.
Without the ability to inspect in-memory arguments, 4 out of 5
vul-
nerabilities mitigated by Sifter’s argument limiting policy would not
have been mitigated. Also, it does not provide memory to construct
stateful policies.

Moreover, to the best of our knowledge, none of existing works
targets security-critical kernel modules, which requires low perfor-
mance overhead from the filtering solution.

Kernel specialization. To reduce the attack surface of the kernel,
kernel specialization methods restrict access to the kernel code for
target applications by debloating it. KASR [34] first uses ofline
training stage to generate the kernel code usage database for a
specific application in a trusted hypervisor. It then uses runtime
enforcement to remove access permission to unused code of exe-
cutable and selectively activate the corresponding used code. Face-
Change [35] differs from KASR by supporting multiple applications
running together. Using a hypervisor, it creates specialized kernel
views for each of the target applications and switches between
them. MULTIK [36] also supports multiple applications by orches-
trating multiple kernels specialized for applications, but avoids the
overhead of virtualization and runs natively on the system. Com-
pared to these three schemes, SHARD [37] significantly reduces the
attack surface by specializing at both the application and system
call levels and strictly enforcing debloating in a more fine-grained
way. A limitation of kernel specialization is that it cannot mitigate
a vulnerability if the vulnerable code is needed and used by the
application. Sifter, however, can mitigate such vulnerabilities.
Policy generation. To generate the syscall filtering policy without
domain knowledge, Sifter takes the approach of inferring it from
a set of programs, which is similar to systrace [31]. However, to
better capture the behavior of programs, systrace translates syscalls
with arguments to higher-level information with semantics. This
approach requires the developer to manually define the semantics
and craft the translation logic. Although Sifter lacks the complete
semantics, it does not blindly restrict syscalls arguments to known
values. With the syscall definition provided by syzkaller, we define
different argument policies for different type of arguments. More-
over, Sifter tries to automatically identify higher-level operations
consisting of multiple syscalls.

SPOKE [38] is a policy generation framework for SEAndroid. It
extracts the domain knowledge from functional tests since they
could carry rich semantics. Access patterns from multiple layers
(e.0., Dalvik layer, native layer, and kernel layer) are collected, cor-
related, and noise-filtered to form a knowledge base. In contrast,
Sifter collects syscall usage traces from real programs. Abhaya [39]
uses interprocedural static analysis to generate syscall policies auto-
matically. They do not however generate filters for kernel modules.

634

Offline intrusion detection. A long line of research has been con-

ducted on detecting intrusion or anomaly [40—49]. Syscall-based

intrusion detection [40—42, 44, 47, 48] works by first capturing nor-
mal program syscall behaviors using data models [40-42], classifi-
cation algorithms [44] or machine learning techniques [49]. Then,

at the next stage, it utilizes a syscall interposition mechanism to

track syscalls of an interesting process and check against the model.
Although some of the techniques are shown to be effective, they
often run the analysis ofline (i.e., syscall traces are analyzed after

being made) in the user space due to their complexity. Therefore, it

leaves a vulnerability window for an adversary to perform an attack

before being caught. Sifter does not have this problem because it

directly deploys its policies in the kernel and check syscalls against

those policies at runtime. In Sifter, we show that policies we use

incur little performance overhead and they stop a large number

of CVEs from being exploited without a priori knowledge of these

vulnerabilities.

Android Malware detection. In Android, app marketplaces such

as Google Play, Amazon Appstore, and T-Market perform malware

detection to prevent spreading them. Similar to ofline intrusion de-
tection, amodel is trained using different techniques and scanning is

performed when a developer submits an app. APIChecker [50] used

by T-Market takes a deny-list approach by training a API-usage-

based classification model using known good apps and malicious

apps. In Sifter, we take an allow-list approach: we only use a set

of good apps and assume zero-days are not yet known. In addi-

tion, Sifter is a runtime defense compared to the one-time scan. A
malicious app can evade “scan once and allow” approaches if the

analysis fails to cover the code containing malicious API calls, or the

malicious app is able to detect the sandbox environment and stay

dormant during the analysis. In fact, [51] has demonstrated that

creating an undetectable sandbox environment is extremely hard.

Therefore, our runtime approach that does not require knowledge
of vulnerabilities is orthogonal to APIChecker.

11 CONCLUSIONS

We presented Sifter, a syscall filtering solution to mitigate vulner-
abilities in security-critical kernel modules in Android. Security-
critical modules are those that are directly exposed to untrusted
programs. Sifter’s filters enforce the syscall patterns used by legiti-
mate programs, observed in a training phase and distilled into three
different types of policies. Through a comprehensive vulnerability
study and evaluation, we showed that Sifter can mitigate about half
of all syscall-triggered vulnerabilities. In addition, we showed that
Sifter’s filters have (%6 false positive rate. Finally, our performance
evaluation showed that Sifter adds a very small or negligible perfor-
mance overhead to real programs and incurs a very small amount
of energy consumption.

ACKNOWLEDGMENTS

The work was supported in part by NSF Awards #1763172 and
#1846230 as well as Google’'s 2020 Android Security and Prlvacy
REsearch (ASPIRE) Award. The authors thank the anonymous re-
viewers and shepherd for their insightful comments.

REFERENCES

(1]

(2]
(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

Jeffrey Vander Stoep. Android: Protecting the Kernel. In Linux Security Summit
(LSS), 2016.

Android Media Framework. https://source.android.com/devices/media.
Yingtong Liu, Hsin-Wei Hung, and Ardalan Amiri Sani. Mousse: A System for
Selective Symbolic Execution of Programs with Untamed Environments. In Proc.
ACM EuroSys, 2020.

Syzkaller: coverage-guided Linux system call fuzzer. https://opensource.google.
com/projects/syzkaller, 2021.

Alexei Starovoitov. BPF syscall, maps, verifier, samples, llvm. https://lwn.net/
Articles/609433/, 2014,

BPF Features by Linux Kernel Version. https://github.com/iovisor/bcc/blob/
master/docs/kernel-versions.md, 2022.

Sargun Dhillon. [PATCH net-next 0/3] eBPF Seccomp filters. https://lists.
linuxfoundation.org/pipermail/containers/2018- February/038476.html, 2018.
Jonathan Corbet. The 5.7 kernel is out. https://lwn.net/Articles/821829/, 2020.
KP Singh. [PATCH bpf-next v1 00/13] MAC and Audit policy using eBPF
(KRSI). https://lwn.net/ml/linux-kernel/20191220154208.15895- 1-kpsingh@
chromium.org/, 2019.

Jake Edge. Kernel runtime security instrumentation. https://lwn.net/Articles/
798157/, 2019.

Dave Jones. Triforce linux syscall fuzzer. https:/github.com/nccgroup/
TriforceLinuxSyscallFuzzer, 2016.

Trinity: A Linux System call fuzz tester. https://codemonkey.org.uk/projects/
trinity/.

Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang Hao,
Christopher Kruegel, and Giovanni Vigna. DIFUZE: Interface Aware Fuzzing for
Kernel Drivers. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123-2138, 2017.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels. In
26th USENIX Security Symposium (USENIX Security 17), pages 167-182, 2017.
Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: Optimizing OS
Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Security Symposium
(USENIX Security 18), pages 729-743, 2018.

Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. HFL: Hybrid Fuzzing on the Linux Kernel. In Proc. Network
and Distributed Systems Security Symposium (NDSS), 2020.

Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. Razzer: Finding kernel race bugs through fuzzing. In 2019 I[EEE Symposium
on Security and Privacy (S&P). IEEE, 2019.

Meng Xu, Sanidhya Kashyap, Hanging Zhao, and Taesoo Kim. KRACE: Data race
fuzzing for kernel file systems. In 2020 IEEE Symposium on Security and Privacy
(S&P). IEEE, 2020.

Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V Krishna-
murthy, and Nael Abu-Ghazaleh. Syz\egas: Beating Kernel Fuzzing Odds with
Reinforcement Learning. In 30th USENIX Security Symposium (USENIX Security
21), pages 2741-2758, 2021.

Seyed Mohammadjavad Seyed Talebi, Zhihao Yao, Ardalan Amiri Sani, Zhiyun
Qian, and Daniel Austin. Undo Workarounds for Kernel Bugs. In 30th USENIX
Security Symposium (USENIX Security 21), pages 2381-2398, 2021.

Anil Kurmus, Alessandro Sorniotti, and Ridiger Kapitza. Attack surface reduction
for commodity os kernels: Trimmed garden plants may attract less bugs. In
Proceedings of the Fourth European Workshop on System Security, EUROSEC '11,
New York, NY, USA, 2011. Association for Computing Machinery.
Ul/Application Exerciser Monkey. https://developer.android.com/studio
/test/monkey.

David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion de-
tection systems. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, 2002.

eBPF for Windows. https://github.com/Microsoft/ebpf-for-windows, 2022.

Tal Garfinkel. Traps and Pitfalls: Practical Problems in System Call Interposi-
tion Based Security Tools. In Proc. Network and Distributed Systems Security
Symposium (NDSS), 2003.

Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A Delegating Architecture
for Secure System Call Interposition. In Proc. Network and Distributed Systems
Security Symposium (NDSS), 2004.

Taesoo Kim and Nickolai Zeldovich. Practical and Effective Sandboxing for
Non-root Users. In 2013 USENIX Annual Technical Conference (USENIX ATC 13),
pages 139-144, 2013.

Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna.
NJAS: Sandboxing Unmodified Applications in non-rooted Devices Running
stock Android. In Proceedings of the 5th Annual ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devices, pages 27-38, 2015.

Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der Mark.
Firedroid: Hardening security in almost-stock android. In Proceedings of the 29th
Annual Computer Security Applications Conference (ACSAC), pages 319-328, 2013.

635

[30] Mat(s$ Harvan and Alexander Pretschner. State-based usage control enforcement
with data flow tracking using system call interposition. 1n 2009 Third International
Conference on Network and System Security, pages 373-380, 2009.

Niels Provos. Improving Host Security with System Call Policies. In USENIX
Security Symposium, pages 257-272, 2003.

DeMarinis, Nicholas, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P.

Kemerlis. Sysfilter: Automated system call filtering for commodity software. In

In 23rd International Symposium on Research in Attacks, Intrusions and Defenses

(RAID), 2020.

[33] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing selinux as a
linux security module. NAI Labs Report, 1(43):139, 2001.

[34] Zhi Zhang, Yuegiang Cheng, Surya Nepal, Dongxi Liu, Qingni Shen, and Fethi

Rabhi. KASR: A reliable and practical approach to attack surface reduction

of commodity os kernels. In International Symposium on Research in Attacks,

Intrusions, and Defenses, pages 691—710. Springer, 2018.

Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Face-

change: Application-driven dynamic kernel view switching in a virtual machine.

In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, pages 491-502. IEEE, 2014.

Hsuan-Chi Kuo, Akshith Gunasekaran, Yeongjin Jang, Sibin Mohan, Rakesh B

Bobba, David Lie, and Jesse Walker. Multik: A framework for orchestrating

multiple specialized kernels. arXiv preprint arXiv:1903.06889, 2019.

[37] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. SHARD:

Fine-Grained Kernel Specialization with Context-Aware Hardening. In 30th
USENIX Security Symposium (USENIX Security 21), 2021.

Ruowen Wang, Ahmed M Azab, William Enck, Ninghui Li, Peng Ning, Xun Chen,
Wenbo Shen, and Yuegiang Cheng. SPOKE: Scalable Knowledge Collection
and Attack Surface Analysis of Access Control Policy for Security Enhanced
Android. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 612—624, 2017.

Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. Automated policy
synthesis for system call sandboxing. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1-26, 2020.

Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff. A
sense of self for unix processes. In 1996 IEEE Symposium on Security and Privacy
(S&P). [EEE, pages 120-128, 1996.

Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion Detection
Using Sequences of System Calls. Journal of computer security, 6(3):151-180,
1998.

Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting Intru-
sions Using System Calls: Alternative Data Models. In 1999 [EEE Symposium on
Security and Privacy (S&P). IEEE, pages 133145, 1999.

Farzad Sabahi and Ali Movaghar. Intrusion detection: A survey. In 2008 Third
International Conference on Systems and Networks Communications, pages 23—26.
IEEE, 2008.

Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel. Anoma-
lous system call detection. ACM Transactions on Information and System Security
(TISSEC), 9(1):61-93, 2006.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM computing surveys (CSUR), 41(3):1-58, 2009.

Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting intrusions
through system call sequence and argument analysis. |EEE Transactions on
Dependable and Secure Computing, 2010.

Raymond Canzanese, Spiros Mancoridis, and Moshe Kam. System call-based
detection of malicious processes. In2015 IEEE International Conference on Software
Quality, Reliability and Security, pages 119-124. IEEE, 2015.

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis.
Temporal system call specialization for attack surface reduction. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1749-1766, 2020.

Anup K Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning program
behavior profiles for intrusion detection. In Workshop on Intrusion Detection and

Network Monitoring, 1999.

Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang, Qi Alfred Chen, Zhiyun
Qian, Hao Lin, and Yunhao Liu. Experiences of landing machine learning onto

market-scale mobile malware detection. In Proc. ACM EuroSys, 2020.

Brian Kondracki, Babak Amin Azad, Najmeh Miramirkhani, and Nick Nikiforakis.
The droid is in the details: Environment-aware evasion of android sandboxes. In
Proc. Network and Distributed Systems Security Symposium (NDSS), 2022.

[31

[32

135

[36

38

[39

[40

[41

[42

[43

[44

[45

[46

[47

[48

[49

[50

51

https://source.android.com/devices/media
https://opensource.google.com/projects/syzkaller
https://opensource.google.com/projects/syzkaller
https://lwn.net/Articles/609433/
https://lwn.net/Articles/609433/
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
https://lists.linuxfoundation.org/pipermail/containers/2018-February/038476.html
https://lists.linuxfoundation.org/pipermail/containers/2018-February/038476.html
https://lwn.net/Articles/821829/
https://lwn.net/ml/linux-kernel/20191220154208.15895-1-kpsingh@chromium.org/
https://lwn.net/ml/linux-kernel/20191220154208.15895-1-kpsingh@chromium.org/
https://lwn.net/Articles/798157/
https://lwn.net/Articles/798157/
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://codemonkey.org.uk/projects/trinity/
https://codemonkey.org.uk/projects/trinity/
https://developer.android.com/studio
/test/monkey
https://github.com/Microsoft/ebpf-for-windows

