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Abstract We report the first chromosome-length 

genome assemblies for three species in the mamma-

lian order Pholidota: the white-bellied, Chinese, and 

Sunda pangolins. Surprisingly, we observe extraor-

dinary karyotypic plasticity within this order and, in 

female white-bellied pangolins, the largest number of 

chromosomes reported in a Laurasiatherian mammal: 

2n = 114. We perform the first karyotype analysis of 

an African pangolin and report a Y-autosome fusion 

in white-bellied pangolins, resulting in 2n = 113 for 

males. We employ a novel strategy to confirm the 

fusion and identify the autosome involved by find-

ing the pseudoautosomal region (PAR) in the female 

genome assembly and analyzing the 3D contact fre-

quency between PAR sequences and the rest of the 

genome in male and female white-bellied pangolins. 

Analyses of genetic variability show that white-bel-

lied pangolins have intermediate levels of genome-

wide heterozygosity relative to Chinese and Sunda 

pangolins, consistent with two moderate declines of 

historical effective population size. Our results reveal 

a remarkable feature of pangolin genome biology and 

highlight the need for further studies of these unique 

and endangered mammals.
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Introduction

The linear chromosomes found in the cells of eukary-

otic taxa are characterized by a vast diversity of mor-

phologies (defined by the position of centromeres), 

sizes, and numbers. Changes in chromosome num-

ber among taxa have been used to infer mechanisms 

of speciation (King 1993), determine phylogenetic 

relationships (Robinson et al. 2008; Nie et al. 2012), 

reconstruct ancestral karyotypes (Graphodatsky et al. 

2011; Deakin and Ezaz 2014), and discern mecha-

nisms of genome evolution and function (Bernardi 

2015; Mayrose and Lysak 2021). Moreover, the 

highly organized way that genomes are packaged into 

chromosomes within the cell nucleus and the distribu-

tion of loci (synteny) among different chromosomes 

is likely associated with transcriptional regulation of 

genes (Sexton and Cavalli 2015).

Differences in chromosome number and struc-

ture have been characterized in many species of 
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mammals using traditional comparative cytogenetic 

methods such as chromosome banding and paint-

ing (Graphodatsky et  al. 2011) and more recently, 

through the application of high-throughput chromo-

somal conformation capture (Hi-C) using proximity 

ligation sequencing (Lieberman-Aiden et  al. 2009) 

coupled with whole genome sequencing technolo-

gies (Burton et  al. 2013; Dudchenko et  al. 2017). 

These efforts have led to the development of com-

pendiums that summarize and synthesize the evo-

lution of mammalian chromosomes (Graphodatsky 

et al. 2020; DNAZoo.org). To date, the karyotypes 

of more than 2000 species of mammals have been 

characterized, representing all extant supraordinal 

and ordinal clades. However, this represents only 

about one-third of the 6399 species of extant mam-

mals (Burgin et al. 2018). While chromosome num-

ber and evolution have been well characterized in 

some clades of mammals (e.g., Carnivora, Nie et al. 

2012; Beklemisheva et al. 2020), the cytogenomics 

of other clades remains largely understudied.

One of the least studied orders is the Pholidota, 

which includes the pangolins, or scaly anteaters. Pan-

golins belong to the monotypic family Manidae, with 

eight extant species distributed in Asia and Africa. 

Four Asian species are included in the genus Manis 

(M. crassicaudata, M. culionensis, M. javanica, M. 
pentadactyla; Maninae) while the four African spe-

cies are divided into two genera representing the 

ground pangolins (Smutsia gigantea, S. temminckii; 
Smutsiinae) and tree pangolins (Phataginus tetradac-
tyla, P. tricuspis; Phatagininae) (Gaubert et al. 2018). 

Pangolin species are listed as vulnerable, endangered, 

or critically endangered on the IUCN Red List of 

Threatened Species and are considered the most  traf-

ficked mammals in the world (Heinrich et al. 2016). 

Populations are decreasing rapidly due to habitat loss, 

overexploitation for bushmeat, and high demand for 

the large protective scales that cover their body and 

are used in traditional Asian medicine (Heinrich et al. 

2016; Choo et al. 2022).

Cytogenetic studies of pangolins have been limited 

to three of the four species found in Asia. Synthesis 

of past studies and modern cytogenetic techniques 

indicate that Asian pangolin species have four diploid 

numbers: 2n = 36 (M. crassicaudata from northeast 

and south India), 2n = 38 (M. javanica, Yunnan Prov-

ince, China), 2n = 40 (a single male M. pentadactyla, 

Taiwan) (Makino and Tateishi 1951), and 42 (M. 

pentadactyla, Taiwan and China) (Yang et  al. 2006; 

Nie et  al. 2009). These chromosome numbers fall 

within the typical range of 2n = 36–60 found in most 

mammalian species that have been characterized thus 

far (Graphodatsky et al. 2020).

None of the four pangolin species that occur in 

Africa has been previously karyotyped. Given the 

results obtained from Asian pangolin species, it 

seems reasonable to expect that chromosome numbers 

should be relatively similar, despite the ~ 38 million 

year divergence time separating the clades of African 

and Asian pangolins (Gaubert et al. 2018). To explore 

the cytogenomics of African pangolins, we gener-

ated the first genome assembly and karyotypes from 

a species within the group, the white-bellied pango-

lin (P. tricuspis). Our results revealed that this species 

carries one of the highest numbers of chromosomes 

among mammals, demonstrating a hitherto unknown 

karyotypic plasticity within the Pholidota.

Materials and methods

Cell cultures and chromosome preparations

We performed classical cytogenetic analysis and kar-

yotyping on two male and one female P. tricuspis; all 

three animals were USFWS confiscations thought to 

have originated in Cameroon. Chromosomes from the 

female (Laboratory number #16406) were obtained 

from blood lymphocytes. Short-term lymphocyte cul-

ture, harvesting, and banding followed Kumamoto 

et  al. (1996). Fibroblast cell lines were established 

from the two males using post mortem samples (skin, 

trachea and testes) and  using a collagenase disag-

gregation technique previously described by Houck 

et al. (1994). The fibroblast cell lines were archived at 

the San Diego Zoo Wildlife Alliance’s Frozen Zoo® 

(Lab #16213 and #16405). Metaphase chromosomes 

of all three animals were examined by non-differ-

ential staining using Giemsa and also C-banding. 

Male #16213 was further analyzed with G-banding. 

Karyotyping was done using the CytoVision Genus® 

system by Leica Microsystems (Wetzlar, Germany). 

C-banding of Sunda and Malayan pangolin chromo-

somes followed Sumner (1972). The nucleolar organ-

izing region was localized by FISH with ribosome 

probes (Maden et  al. 1987, Yang and Graphodatsky 

2009).



 Chromosome Res           (2023) 31:13 

1 3

   13  Page 4 of 18

Vol:. (1234567890)

Chromosome-length genome assembly of the 

white-bellied pangolin

We opportunistically collected 3 ml of whole blood 

into an EDTA blood tube from a female white-bel-

lied pangolin (“Jaziri”) maintained at the Pittsburgh 

Zoo & Aquarium, Pittsburgh, PA, USA, during a 

routine veterinary examination. The Pittsburgh Zoo 

& Aquarium is one of the seven members that com-

prise the Pangolin Consortium (https:// pango linco 

nsort ium. org/), which aims to establish ex situ con-

servation programs for pangolins in US zoos. Jaziri 

was one of a group of white-bellied pangolins that 

were rescued from the wild in Togo in 2016. The 

whole blood sample was stored on dry ice and then 

shipped on dry ice by overnight delivery to Psoma-

gen, Inc., Rockville, MD, USA, for genomic DNA 

extraction, genomic library preparation, and high-

throughput sequencing.

Genomic DNA was extracted from a 200-μl ali-

quot of the whole blood sample using a MG Blood 

Genomic DNA Extraction SV kit according to 

the manufacturer’s instructions (MGmed, Seoul, 

Korea). The isolated genomic DNA was quanti-

tated using the PicoGreen dsDNA assay kit (Ther-

moFisher Scientific, MA, USA) with a Victor 3 

fluorometer (PerkinElmer, MA, USA), with a final 

concentration of 9.2 ng/μl. A 0.5-μl aliquot of DNA 

was run for 30 min at 160 V on a 1% TBE agarose 

gel to assess quality, with no signs of degradation 

observed. Finally, DNA fragment size analysis with 

capillary electrophoresis using the Agilent 4200 

TapeStation system (Agilent Technologies, CA, 

USA) showed a peak of fragments around 60  Kb, 

indicating the genomic DNA was suitable for 10X 

Genomics Chromium library preparation.

Parallel libraries were prepared from 1.0  μg 

genomic DNA using the Chromium Genome Rea-

gent Kit version  2 chemistry in conjunction with 

the 10X Genomics Chromium Controller instru-

ment containing a micro-fluidic Genome Chip 

(10X Genomics, CA, USA). DNA molecules were 

partitioned and nick-translated using bead-specific 

unique molecular identifiers (UMIs) to produce gel 

bead-in emulsions (GEMs). The libraries were frag-

mented, followed by 5  and 3  adapter ligation, and 

then bridge amplified using isothermic PCR to gen-

erate clusters of each fragment size. The template 

size distribution of the libraries was checked with 

an Agilent Technologies 2100 Bioanalyzer using a 

DNA 1000 chip (Agilent Technologies, CA, USA). 

Furthermore, the prepared libraries were quanti-

tated using qPCR on a LightCycler PCR instru-

ment following the Illumina qPCR Quantification 

Protocol Guide. Libraries were then sequenced to 

a minimum depth of 60 × using 150-bp paired-end 

reads with dual indexing on an Illumina NovaSeq 

6000 instrument (Illumina, CA, USA). A total of 

2,828,846,794 reads (GC content: 43.68%, Q30: 

89.86%) were assembled into two partially phased 

pseudohaplotypes using Supernova version 2.0, 

following the manufacturer’s instructions (10X 

Genomics, CA, USA).

Hi-C was done to generate chromosome-length 

scaffolding of the initial Supernova v2.0 assembly. An 

aliquot of whole blood from Jaziri was shipped on dry 

ice via overnight delivery to the Center for Genome 

Architecture, Baylor College of Medicine, Houston, 

TX, USA, where in  situ Hi-C data generation and 

scaffolding were performed by the DNA Zoo Con-

sortium (www. dnazoo. org) following the Rao et  al. 

(2014) protocol by (1) crosslinking DNA and pro-

teins in intact nuclei with formaldehyde, (2) digest-

ing the genomic DNA using restriction enzymes, 

(3) incorporating biotinylated nucleotides on the 

5  overhangs followed by ligation of the blunt-end 

fragments, (4) shearing the genomic DNA by soni-

cation, and (5) capturing of biotinylated DNA liga-

tion junctions with streptavidin beads. The captured 

fragments were then PCR amplified and sequenced 

on an Illumina NovaSeq 6000 instrument. The Hi-C 

read data were aligned to the Supernova v2.0 assem-

bly of Jaziri using the Juicer pipeline (Durand et  al. 

2016a). A candidate assembly was then generated 

using the 3D-DNA pipeline (Dudchenko et al. 2017). 

Juicebox Assembly Tools (Durand et al. 2016b; Dud-

chenko et al. 2018) was then used to polish and man-

ually review the candidate assembly to obtain a final 

assembly (Fig. 1).

Chromosome-length scaffolding of Chinese and 

Sunda pangolin genomes

Primary fibroblast cell lines of Sunda (passage 4) 

and Chinese pangolin (passage 2) were used to pro-

duce in  situ Hi-C libraries as described above for 

the white-bellied pangolin, Jaziri. A Sunda pangolin 

(Manis javanica) cell line (MJA-21) was established 
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from a skin biopsy collected at the Singapore Zoo, 

Singapore, from a male pangolin. The primary fibro-

blast cell line (MPE-891) of a male Chinese pango-

lin (Manis pentadactyla; microchip #0066C1955) 

was established from skin biopsy collected at the 

Taipei Zoo, Taiwan. Skin biopsies were processed 

through collagenase/hyaluronidase enzymatic diges-

tion according to the protocol by Stanyon and Galleni 

1991, with modifications. Pangolin cell lines were 

cultured at 32  °C in AlphaMEM with nucleosides 

(Gibco 12,571–063; ThermoFisher Scientific, MA, 

USA), 15% fetal bovine serum, antibiotics (penicillin, 

streptomycin, gentamicin, and fungizone in concen-

trations recommended for cell cultures), and supple-

mented with bFGF at 20–50 ng/ml (Gibco PHG0264; 

ThermoFisher Scientific, MA, USA).

The cell cultures of the Chinese and Sunda pango-

lins were shipped on dry ice via overnight delivery 

to the Center for Genome Architecture, Baylor Col-

lege of Medicine, Houston, TX, USA. Hi-C library 

preparation, data generation, and chromosome-length 

scaffolding were performed by the DNA Zoo Consor-

tium (www. dnazoo. org) following the same protocols 

described above for the white-bellied pangolin. The 

Hi-C reads were aligned to the previously reported 

draft assemblies of the Chinese pangolin and Sunda 

pangolin (Choo et  al. 2016), and candidate assem-

blies were prepared using 3D-DNA (Dudchenko et al. 

2017). Juicebox Assembly Tools (Dudchenko et  al. 

2018) was used to polish and validate the assemblies 

of both species.

Male white-bellied pangolin Hi-C data generation 

and analysis

In order to identify the autosome associated with the 

Y-autosome fusion in white-bellied pangolins, we 

generated in situ Hi-C data from a 2013 necropsy sam-

ple (muscle) collected  from a male individual origi-

nally housed at the San Antonio Zoo, San Antonio, 

TX, USA. The sample was used to generate an in situ 

Hi-C library following the Rao et al. (2014) protocol, 

and the resulting data aligned to the finalized female 

sample-based chromosome-length genome assembly 

using the Juicer pipeline (Durand et  al. 2016a). The 

male and female maps were overlayed and compared 

using the “versus mode” feature in the Juicebox visu-

alization software (Durand et al. 2016b).

Assembly completeness

We quantified the completeness of the chromosome-

length assemblies of the three pangolin species using 

the approach of benchmarking universal single-copy 

orthologs (BUSCOs) with the program BUSCO 

v5.2.2 (Manni et  al. 2021). The program was run 

in genome mode using the Laurasiatheria ortholog 

gene set (laurasiatheria_odb10; 12,234 BUSCOs), 

the Augustus gene predictor with the default(human) 

gene model (Stanke et  al. 2006), and the parameter 

“--long,” for the gene annotations.

Annotation of repetitive elements and protein-coding 

genes

Repeat annotations were done using RepeatMasker 

v4.1.1 (Smit et  al. 2013-2015) using known repeats 

associated with the species from the RepBase Update 

library version 20181026 (Bao et  al. 2015) and the 

parameters “-s -no_is -xsmall.”

Homology-based gene annotation was done on the 

Manis javanica genome assembly using Gene Model 

Mapper (GeMoMa) v1.7 (Keilwagen et  al. 2016, 

2018). GeMoMa is a homology-based gene annota-

tor that uses gene models from multiple references 

to annotate genomes. The reference species (with 

specific genome assembly reference number) used to 

annotate the M. javanica genome were Homo sapiens 

(GRCh38.p13; GCA_000001405.28), Mus musculus 

(GRCm39; GCA_000001635.9), Canis lupus famil-
iaris (CanFam3.1; GCA_000002285.4), and Felis 
catus (Felis_catus_9.0; GCA_000181335.5). Com-

plete coding DNA sequences (CDS) with no ambig-

uous nucleotides were extracted from the genome 

annotation files provided by the NCBI Eukaryotic 

Genome Annotation Pipeline (Fong et  al. 2013) for 

each reference species. The extraction was performed 

using the “Extractor” function in GeMoMa. The soft-

masked genome generated from RepeatMasker was 

indexed with MMseqs2 release 8-fac81 (Steinegger 

and Söding 2017) using the createdb function and 

the parameter “--dont-split-seq-by-len.” The model 

reference CDS files were indexed using MMseq2 as 

well but without the parameter used for the refer-

ence genome. The CDS regions were mapped to the 

M. javanica genome using parameters “-e 100.0 -s 

8.5 -a --comp-bias-corr 0 --max-seqs 500 -mask 0 

--orf-start-mode 1 -v 2” and the resulting output was 



Chromosome Res           (2023) 31:13  

1 3

Page 7 of 18    13 

Vol.: (0123456789)

converted to text format using the MMseq2 function 

“convertalis” using the parameters “--format-output 

‘query,target,pident,alnlen,mismatch,gapopen,qstart,q

end,tstart,tend,evalue,bits,empty,raw,nident,empty,em

pty,empty,qframe,tframe,qaln,taln,qlen,tlen’ -v 2.”

The text MMseqs2 outputs were used in GeMo-

Ma’s “GeMoMa” setting the parameters “sort = True” 

and “Score = ReScore.” Once all the MMseq2 outputs 

were run with GeMoMa independently, they were 

combined and evaluated using “GAF” with default 

parameters. Finally, “AnnotationFinalizer” was used 

to finalize and format the gene models. This was 

repeated for both the Manis pentadactyla and Phatag-
inus tricuspis genome assemblies with the exception 

that the M. javanica gene models were used as a ref-

erence in GeMoMa.

Comparison of whole genome synteny

Using the repeat masked genome assemblies, pair-

wise genome alignments were generated using LAST 

v1180 (Kiełbasa et  al. 2011) and filtered into one-

by-one pairwise alignments and then formatted to be 

visualized by MCScanX (Wang et  al. 2012) for the 

JCVI utility package (Tang et al. 2015) using custom 

Python scripts. MCScanX identifies intergenomic 

syntenic blocks from LAST hits. The Phataginus 
tricuspis X chromosome was identified from the 

karyotype and Hi-C data, and verified by mapping 

the mammalian X-linked SOX3 gene against it using 

BLAST (Dutoit et al. 2017; Altschul et al. 1990).

Read mapping and variant calling

Hi-C reads were mapped against the chromosome-

length scaffolds of each species using BWA-MEM 

v0.7.17 (Li and Durbin 2009). The resulting SAM 

file was then converted into a BAM alignment file 

with SAMtools v1.8 (Li et  al. 2009) using “view” 

and “sort.” Read groups were added to the alignment 

using Picard v2.24.0 (http:// broad insti tute. github. io/ 

picard/) “AddOrRemoveReadGroups.” PCR and opti-

cal duplicates were marked in the alignment using 

Picard v2.24.0 “MarkDuplicates.” PCR duplicates 

(exact copies of reads) were removed from the align-

ment. To increase base-call qualities, we realigned 

reads surrounding insertions and deletions (indels) 

using GATK v3.8.1 (Van der Auwera and O’Connor 

2020) producing an alignment file which was used for 

all downstream analyses. Mosdepth vD4 (Pedersen 

and Quinlan 2018) was used in quick mode to calcu-

late average read depth of the realigned BAM, which 

was used for variant filtering downstream.

Variant calling was performed on the realigned 

BAM, which includes the Hi-C scaffolds of each pan-

golin species as a reference, using bcftools v1.8 (Li 

2011) mpileup and call pipeline for all sites, which 

annotated the output with both allele depth and read 

depth. We filtered SNPs with a bcftools filter using 

a minimum read depth of 1/3 the average depth, a 

maximum read depth of 2 × the average depth, and 

a QUAL score of 20. Variants were extracted using 

bcftools view, and we retained only bi-allelic sites.

Genome-wide heterozygosity

Filtered variants for each pangolin species were used 

as input for a custom Python script (Robinson et  al. 

2016, 2019) to calculate heterozygosity using a slid-

ing window approach, with non-overlapping windows 

of 1 Mbp and step size of 1 Mbp per chromosome. 

The heterozygosity outputs were used to generate 

a Manhattan plot of heterozygosity across chromo-

somes using a custom R script (Robinson et al. 2016, 

2019).

Demographic reconstruction

We used the pairwise sequentially Markovian coales-

cent (PSMC) model v0.6.5 (Li and Durbin 2011) to 

estimate past changes in effective population size in 

Phataginus tricuspis, Manis javanica, and M. penta-
dactyla. A psmcfa file was generated from the rea-

ligned BAM files for each species using the bcftools 

mpileup/call/vcfutils.pl pipeline using 1/3 the average 

depth as the minimum depth filter and 2 × the aver-

age depth as the maximum depth filter. This pipeline 

generated a fastq file which was then converted into 

a psmcfa using fq2psmc. The X chromosome was 

removed from the psmcfa file and the resulting psm-

cfa was split for bootstrapping using splitfa from the 

PSMC package. The main PSMC run was done using 

the parameters “-t15 -r5 -p ‘4 + 25*2 + 4 + 6’.” The 

trajectories of effective population size were scaled 

using a generation length of 7 years and a mutation 

rate of 1.47 ×  10−8 per generation, following Choo 

et  al. (2016). One hundred bootstrap replicates were 
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performed using the same parameters as the main 

PSMC run but using the split psmcfa. All 100 boot-

straps were run using parallel and psmc. The results 

for all three species were visualized together using a 

custom R script.

Testing for whole genome duplication

We assessed the possibility of whole genome dupli-

cation events in the white-bellied genome pango-

lin assembly (Phataginus tricuspis) relative to the 

genome assemblies of three other species (Chinese 

pangolin, Manis pentadactyla, GCA_014570555.1; 

Sunda pangolin, Manis javanica, GCA_001685135.1; 

domestic dog, Canis familiaris, GCA_000002285.4) 

using the program WGDdetector (Yang et al. 2019). 

The program estimates the distribution of synony-

mous substitutions per synonymous site (dS) of pair-

wise paralogs within a genome to detect dS devia-

tions (peaks in cumulative distributions of dS) that 

indicate whole genome duplication.

Distribution of diploid chromosome numbers in 

mammals

We compiled a data set of diploid (2n) chromosome 

numbers for 2112 named species of mammals in 

Microsoft Excel, using a variety of sources report-

ing karyotypes, but relying primarily on the Atlas 
of Mammalian Chromosomes (Graphodatsky et  al. 

2020) and the online Chromosomes Network data-

base (Graphodatsky et al. 2000). As many species of 

mammals show intraspecific differences in chromo-

some number according to sex or population/subspe-

cies, we selected the sex or population/subspecies 

with the highest 2n number. We combined box plots 

and scatter plots to visualize the chromosome num-

bers grouped by mammalian orders. The final figure 

was produced in R (R Core Team 2018) using rou-

tines from the ggplot2 package (Wickham 2016).

Results and discussion

The linked-read/Hi-C-guided chromosome-length 

genome assembly of a female white-bellied pangolin 

had a contig and scaffold N50 = 112.9 Kb and 46.35 

Mbp, respectively, and a completeness of 90.2%, 

based on 11,043 complete single-copy and duplicated 

BUSCOs out of a total of 12,234 BUSCOs evaluated 

(Table  1). Remarkably, the Hi-C interaction matrix 

visualized against the chromosome-length assembly 

showed a total of 57 contact blocks, which represents 

the haploid number of chromosomes and translates 

into 2n = 114 (Fig. 1). This high diploid number was 

validated by the karyotype generated from blood 

lymphocytes collected from a another female white-

bellied pangolin (Fig.  1). The X chromosome was 

identified as the largest scaffold in females according 

to the karyotype, and was further verified by map-

ping the  X-linked SOX3  gene against the genome 

assembly.

To conduct comparative genomic analyses of the 

P. tricuspis assembly, we generated Hi-C data from 

primary fibroblasts for Manis pentadactyla (2n = 40) 

and M. javanica (2n = 38) to scaffold the previously 

published draft genome assemblies of these species 

(Choo et  al. 2016) to chromosome-length (Fig.  1). 

The haploid number of chromosome-length scaffolds 

was concordant with the diploid number of chromo-

somes based on previously established karyotypes for 

both species. Interestingly, we identified a 30-Mbp 

heterozygous inversion in M. pentadactyla (Fig. S2), 

suggesting that pangolin chromosomes may be plastic 

at the level of individual species as well as at the level 

of the whole order.

Genome assembly size varied among the three 

species, with 2.47 Gbp in P. tricuspis, 2.56 Gbp in M. 
javanica, and 2.22 Gbp in M. pentadactyla (Table 1). 

The scaffold N50 of P. tricuspis is the lowest among 

the three pangolin species, but in the case of chromo-

some-length assemblies, this reflects the size distribu-

tion of the numerous small C-scaffolds found in this 

species rather than assembly quality. Repeat content 

also varied among the species: 36.63% in P. tricus-
pis, 32.53% in M. javanica, and 30.10% in M. pen-
tadactyla. Consistent with the increased repeat con-

tent and differences in contigging strategy, the contig 

N50s were lower for M. javanica and M. pentadactyla 

(16,350 bp and 20,721 bp compared to 112,908 bp in 

P. tricuspis).

Given the expanded number of chromosomes 

found in P. tricuspis, we tested for whole genome 

duplication (WGD) events unique to P. tricus-
pis based on deviations in the distribution of 
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synonymous substitutions per synonymous site 

(dS) among pairwise paralogs within a genome. 

Evidence for recent or ancient WGD events is 

inferred from the presence of distinct peaks in the 

cumulative density of pairwise dS among gene 

families, which violate the assumption that the 

rate of gene duplication is constant (Maere et  al. 

2005). For this analysis, we calculated the pair-

wise dS among the subset of total annotated gene 

models that constitute duplicated genes (paralogs) 

inferred from the GeMoMa annotations of the 

three pangolin species and the annotated assem-

bly of the domestic dog. The number of dupli-

cated/total number of annotated gene models for 

the four species was as follows: 7370/23,245 for 

P. tricuspis, 6125/21,113 for M. pentadactyla, 

6929/20,222 for M. javanica, and 5143/20,257 

for Canis lupus familiaris. We found no evi-

dence of independent whole genome duplication 

in P. tricuspis relative to M. pentadactyla and M. 
javanica or the more distantly related domestic 

dog (Fig.  S1). The distributions of the pairwise 

dS values formed one shallow and broad peak in 

all four species, suggesting the absence of WGD. 

This is consistent with  analysis of another mam-

mal with an unusually high chromosome count, 

the red vizcacha rat (Tympanoctomys barrerae), 

with 2n = 102 and a  C-value of 8.4 picograms, 

for which no signal of WGD was similarly  found 

(Evans et al. 2017).

Karyotypes generated by using fibroblast cell lines 

established for two male white-bellied pangolins revealed 

Table 1  Comparison of genome assembly statistics, assembly completeness, and repeat content for white-bellied, Sunda, and Chi-

nese pangolins. *Number of annotated gene models were determined using GeMoMa v.17 (Keilwagen et al. 2016, 2018)

Phataginus tricuspis Manis javanica Manis pentadactyla

Length 2,473,187,469 2,555,637,331 2,215,491,672

Contig N50 (bp) 112,908 16,350 20,721

Number of contigs 67,643 1,066,770 353,949

Longest contig 892,280 225,448 292,755

Scaffold N50 (bp) 46,351,422 131,848,799 111,940,472

Number of scaffolds 27,299 64,789 71,390

Longest scaffold (bp) 129,801,464 216,609,843 195,883,037

GC content (%) 40.85 40.74 40.97

Complete and single-copy BUSCO genes (%) 10,931 (89.3) 11,122 (90.9) 9688 (79.2)

Complete and duplicated BUSCO genes (%) 112 (0.9) 77 (0.6) 91 (0.7)

Fragmented BUSCO genes (%) 258 (2.1) 288 (2.4) 663 (5.4)

Missing BUSCO genes (%) 933 (7.7) 747 (6.1) 1792 (14.7)

Number of annotated genes* 23,245 20,222 21,113

Repeat content (% of genome assembly) 36.63 32.53 30.1

Repeat content breakdown (occupied bp and %):

  SINEs 66,138,782 (2.84) 65,879,076 (2.86) 61,157,621 (2.96)

  LINEs 599,505,025 (25.71) 495,716,016 (21.54) 392,529,724 (19.02)

  LINE 1 508,569,328 (21.81) 406,443,083 (17.66) 310,227,307 (15.03)

  LINE 2 79,244,281 (3.4) 77,768,702 (3.38) 71,763,251 (3.48)

  L3/CR1 8,458,211 (0.36) 8,346,367 (0.36) 7,649,784 (0.37)

  RTE 3,045,820 (0.13) 2,965,180 (0.13) 2,716,243 (0.13)

  LTR elements 104,418,821 (4.48) 103,542,891 (4.5) 92,527,957 (14.48)

  DNA elements 60,955,336 (2.61) 60,392,695 (2.62) 55,310,783 (2.68)

  Small RNA 451,460 (0.02) 488,787 (0.02) 379,094 (0.02)

  Simple repeats 17,254,632 (0.74) 17,884,914 (0.78) 15,337,834 (0.74)

  Low complexity 4,445,377 (0.19) 3,986,510 (0.17) 3,205,883 (0.16)
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a chromosome number of 2n = 113, with evidence of a 

fusion event between the Y chromosome and one of the 

autosomes (Fig.  2A). To confirm the Y chromosome 

fusion in males and identify the autosome involved in the 

fusion, we generated Hi-C data for a male white-bellied 

pangolin and mapped it against the female sample-based 

chromosome-length genome assembly. The result-

ing contact map shows enrichment between a portion 

of the X chromosome and the 5th largest autosome not 

observed in females. Notably the same portion of the X 

chromosome has ~ 2 × coverage as compared to the rest 

of the sex chromosome in a male sample, consistent with 
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it matching the pseudoautosomal region (PAR) and the 

enriched Hi-C signal resulting from a Y-specific fusion 

event (Fig. 2B).

The karyotypes of both sexes of the white-bellied 

pangolin are composed of five pairs of submetacen-

tric autosomes and 51 acrocentric/telocentric pairs 

in the female, while the males have 50 acrocentric/

telocentric pairs and one unpaired element that would 

pair with the autosome fused to the Y. The X is a 

submetacentric element roughly equal in size to the 

largest autosome. The complex Y chromosome is the 

largest element in the karyotype and is nearly meta-

centric (one arm represents the Y and the other arm is 

the fused autosome). Patterns of C-banding show the 

smaller arm of the complex Y stains almost entirely 

dark indicating constitutive heterochromatin often 

seen in Y chromosomes of other mammalian species. 

The larger arm of the complex Y is C-band nega-

tive and represents the fused autosome. C-bands are 

also present at most centromere locations. We note 

that further standardization of the karyotype of both 

sexes by molecular techniques such as chromosome 

painting is required as many of the smaller chromo-

somes cannot be identified reliably based on G-bands.

It is often the case that the karyotypic differences 

between closely related species boil down to fusion 

events where acrocentric chromosomes combine 

to form bi-armed chromosomes or by fissioning of 

metacentric chromosomes into acrocentrics, while the 

fundamental number (FN) of autosomal arms remains 

the same. The karyotype analysis suggests FN = 122 

for P. tricuspis whereas the highest documented FNa 

(FN excluding sex chromosomes) in Manis is 70, sug-

gesting that chromosomal rearrangements in the order 

involved not only Robertsonian translocations, but 

also fission and fusion within the chromosomal arms. 

No interstitial telomeric sites that could mark recent 

fusion events were found in Sunda and Malayan pan-

golins via FISH, supporting that fissioning of the 

ancestral karyotype happened in P. tricuspis. Remark-

ably, several chromosomes in M. pentadactyla (2, 

6, 9, 10, 13, 14, 15) carry distinct telomeric C- and 

DAPI-positive blocks (AT-rich).

Consistent with the inferences based on the karyotype 

data, synteny analysis of the three pangolin assemblies 

suggests a predominance of fissioning of chromosome 

blocks in P. tricuspis relative to the two Asian species 

(Fig. 3). For example, while the large chromosome 3 in 

M. pentadactyla and chromosome 2 in Manis javanica 

show a one-to-one correspondence in synteny, this chro-

mosome has been divided across at least five smaller and 

distinct chromosome scaffolds in P. tricuspis. This chro-

mosome scaffold in the two Asian species is > 150 Mbp 

in length, yet has been split into C-scaffolds < 50 Mbp in 

P. tricuspis. Such a pattern of fissioning in P. tricuspis is 

consistently observed across all but the smallest C-scaf-

fold, which shows complete synteny with chromosomes 

18 and 19 in M. javanica and M. pentadactyla, respec-

tively. However, the analysis also reveals instances of 

chromosomal fusion in P. tricuspis relative to the Asian 

species, such as part of chromosome 3 and 4 in M. javan-
ica (corresponding to chromosomes 2 and 4 in M. penta-
dactyla) being joined in P. tricuspis (Fig. 3). The synteny 

of the X chromosome is largely intact, in agreement with 

the conservation in size and gene content of this chromo-

some across placental mammals (Brashear et al. 2021).

Based on analyses of chromosomal rearrange-

ments and syntenic relationships in mammals 

using chromosome-scale genome assemblies, the 

Fig. 2  Chromosome arrangement in the male white-bellied 

pangolin P. tricuspis. A G-banded karyotype of a male show-

ing the 2n = 113 chromosome number with inset of C-banded 

sex chromosomes. The karyotype represents the complete 

chromosome complement of a single metaphase cell. As in 

the female (Fig. 1), chromosomes are arranged based on mor-

phology, G-banding pattern (when possible), and size, with 

the five largest bi-armed pairs placed first. The Y chromosome 

contains a large constitutive heterochromatin block (see inset: 

C-bands of the sex chromosome group from another metaphase 

spread of the same individual). B Chr Y-autosome fusion iden-

tification from Hi-C data. For this analysis, we generated Hi-C 

data from a male white-bellied pangolin and mapped it to the 

female genome assembly (center), comparing the resulting 

contact pattern with Hi-C data from a female sample (left and 

right, the latter showing the male and female data in the “ver-

sus” Juicebox view mode (Durand et al. 2016b), with the male 

data in the upper right corner, and the female data in the lower 

left). For simplicity, only two chromosomes are shown: the 

fifth largest autosome (HiC_scaffold_5) and chr X. Note the 

increased contact frequency between a ~ 5-Mbp region at the 

proximal end of the assembled chr X and HiC_scaffold_5 in 

the male sample but not the female sample. The same 5-Mbp 

region also shows an elevated coverage (indicated by the blue 

coverage plots above the contact maps) as compared to the 

rest of chromosome X in the male sample, consistent with this 

being a PAR, and the overall pattern reflecting the Y-autosome 

fusion. Interactive contact maps can be explored here: https:// 

tinyu rl. com/ 2oknb nn2

◂
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ancestral karyotype of superorder Laurasiatheria, 

of which Pholidota is a member, was estimated to 

be 2n = 48 (n = 23 + X) (Damas et al. 2022). More-

over, the ancestral karyotype for the Carnivora, 

sister lineage to the Pholidota, was estimated as 

2n = 38 based on chromosome painting (Nash et al. 

2008). Given these estimates, we hypothesize that 

the high diploid chromosome number in P. tricus-
pis is primarily the result of fissioning of a smaller 

ancestral pangolin karyotype. The karyotypes of P. 
tetradactyla, Smutsia gigantea, and S. temminckii 
need to be obtained to determine whether this 

occurred in the Phatagininae lineage (i.e., prior to 

the split between P. tetradactyla and P. tricuspis) 

or in the ancestor of the Phatagininae + Smutsii-

nae (i.e., after the split from the Asian pangolins, 

Maninae).

We found that P. tricuspis was intermediate 

in genome-wide heterozygosity (mean = 0.0015) 

relative to M. pentadactyla (mean = 0.0009) and 

M. javanica (mean = 0.0022) (Fig.  4A). These 

levels of genetic diversity are notable given these 

species are categorized as either endangered (P. 

tricuspis) or critically endangered (M. pentadac-
tyla and M. javanica). Reconstruction of demo-

graphic history showed a trajectory of effective 

population size (Ne) punctuated by two moder-

ate declines for P. tricuspis, one ~ 100 Kya and 

the other more recently (Fig.  4B). In contrast, 

Ne has declined sharply during the last hundred 

thousand years in M. pentadactyla, resulting in 

a current effective population size that is only 

approximately one-fifth or less than that of P. tri-
cuspis or M. javanica. As pangolins are largely 

found in tropical and subtropical regions, fluctu-

ations and declines in population size may have 

been affected by climate and habitat changes that 

occurred during the Last Glacial Period (115–11.7 

Kya) (Hu et al. 2020).

The current highest recorded diploid numbers 

of chromosomes in mammals are found in two 

species of South American rodents, the Bolivian 

bamboo rat (Dactylomys boliviensis) with 2n = 118 

(Dunnum et  al. 2001), and the plains viscacha rat 

(Tympanoctomys barrerae) with 2n = 102 (Con-

treras et  al. 1990), belonging to the superorder 

Fig. 3  Synteny among the autosomes and X chromosomes 

of Chinese (top), Sunda (bottom), and white-bellied (bottom) 

pangolins. Chromosomes 2 and 3 in the former two species are 

highlighted to show the extensive fissioning of syntenic blocks 

in the white-bellied pangolin. Rearrangements of smaller syn-

tenic blocks, likely representing translocations, are apparent 

as well. The X chromosome of the three species is also high-

lighted to show the relative conservation of this sex chromo-

some
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Fig. 4  A Manhattan plot of genome-wide heterozygosity of a 

female white-belled pangolin (top), female Chinese pangolin 

(middle), and female Sunda pangolin (bottom). Heterozygosity 

was estimated using non-overlapping windows of 1 Mbp and 

step size of 1 Mbp per chromosome-length scaffold. C-scaf-

folds are numbered for Phataginus tricuspis, with c-scaffold 

2 corresponding to the X chromosome. For Manis javanica 

and M. pentadactyla, chromosomes are numbered according 

to assignment of C-scaffolds to each species’ karyotype. Mean 

heterozygosity of each species is shown. B Effective popula-

tion size trajectories derived from the instantaneous inverse 

coalescent rate through time of white-bellied pangolin (blue 

line), Chinese pangolin (red line), and Sunda pangolin (green 

line), estimated using the pairwise sequentially Markovian coa-

lescent (PSMC) model. Finer lines around bold lines represent 

trajectories estimated from 100 bootstrap replicates. The tra-

jectories were scaled using a generation length of 7 years and a 

mutation rate of 1.47 ×  10−08 per generation
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Euarchontoglires. Our finding of 2n = 113/114 in P. 
tricuspis is the highest documented among Laura-

siatheria and the second highest for all mammals 

(Fig.  5). Our results show that Pholidota, despite 

being a relatively small order, displays one of the 

largest disparities in diploid chromosome num-

bers (2n = 36–114), on par to what is found in 

much more speciose mammalian orders such as 

Rodentia (2n = 14–118), Carnivora (2n = 30–78), 

Artiodactyla (whales and terrestrial artiodactyls) 

(2n = 7–74), Chiroptera (2n = 13–62), Eulipoty-

phla (2n = 19–66), and Primates (2n = 16–80). 

Furthermore, to our knowledge, this is only the 

second example, after the Indian and the Chinese 

muntjacs with 2n = 6/7 and 2n = 46 respectively 

(Graphodatsky et al. 2020; Hoencamp et al. 2021), 

when closely related species with large karyotypic 

differences have been assembled to chromosome-

length. The extreme karyotype variation along with 

the availability of chromosome-length genome 

assemblies positions pangolins as a promising 

model group for studying the historical and mecha-

nistic processes behind extraordinary karyotype 

plasticity.

Fig. 5  Box plot showing diploid chromosome number among 

2112 named species of mammals, representing 27 orders 

of mammals. The three species with the highest known 2n 

are indicated and include Dactylomys boliviensis (2n = 118, 

Rodentia), P. tricuspis (2n = 114/113, Pholidota), and Tympa-
noctomys barrera (2n = 102, Rodentia). Three other species 

from the order Rodentia with 2n > 90 are shown in smaller let-

ter size. The boxes contain the 25th to 75th percentiles, with 

the inside lines indicating the median value of 2n numbers. 

The vertical lines represent the 5th (lower) and 95th (upper) 

percentiles and dots outside of these bounds are outliers. 

Box and dot colors correspond to mammalian superorders: 

Monotremata (red), Marsupialia (gold), Afrotheria (green), 

Xenarthra (teal), Euarchontoglires (blue), and Laurasiatheria 

(magenta)
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