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Abstract—Internet of Things (IoT) have broad and deep
penetration into our society, and many of them are resource-
constrained, calling for lightweight security protocols. Physical
unclonable functions (PUFs) leverage physical variations of
circuits to produce responses unique for individual devices,
and hence are not reproducible even by their manufacturers.
Implementable with simplistic circuits and operable with low
energy, PUFs are promising candidates as security primitives for
resource-constrained IoT devices. Arbiter PUF (APUF) and its
variants are lightweight in resource requirements but suffer from
vulnerability to machine learning attacks. To defend APUF vari-
ants against machine learning attacks, in this paper we investigate
a challenge input interface, which incurs low overhead. Analytical
and experimental studies were carried out, showing substantial
improvement of resistance against machine learning attacks when
a PUF is equipped with the interface, rendering interfaced APUF
variants promising candidates for security critical applications.

Index Terms—IoT security, physical unclonable function, ma-
chine learning attack, arbiter PUF variants

I. INTRODUCTION

Many IoT devices are resource-constrained, and can support

only a low level of operating power, calling for lightweight

security protocols. Physical unclonable functions (PUFs) are

an emerging class of hardware primitives for implementing

security protocols. Small scale variations of integrated circuits

exist in manufactured silicon chips. These variations are re-

garded as side effects for conventional circuits [1], [2], but

they make each chip unique and can be exploited to prevent

semiconductor re-fabrication. PUFs utilize these variations

as hardware fingerprints to produce responses unique for

individual PUF circuits [1]–[5], and hence are not reproducible

even by the PUF manufacturers. Such features of PUFs present

a potential solution for challenges that many IoT devices

are facing. Implementable with simplistic circuits with only

thousands of transistors, PUFs require low fabrication cost and

consume very low operating power, rendering them potential

candidates for resource-constrained IoT devices

Though physically unclonable, some PUFs are “mathemati-

cally clonable” in the sense that the responses of a PUF can be

predicted accurately by machine-learning methods. Attackers

can eavesdrop on the communications between a PUF and

its trusted partner, and the challenges sent to a PUF and

the responses from the PUF can be collected by attackers

to train machine learning models. Such models are able to

accurately predict the responses of the PUFs after the models

are trained with sufficient challenge-response pairs (CRPs).

Thus, mathematical clonability allows attackers to develop

malicious software to impersonate the PUF.

The arbiter PUF (APUF) [6], [7] is highly lightweight but

vulnerable to machine learning attacks. Efforts to improve its

security resulted in many APUF variants including XOR PUFs

(XPUFs) [2], LSPUFs, FF PUFs [6], [7], Interpose PUFs. But

these PUFs still succumb to machine learning attacks [8], and

the vulnerable ones include XPUFs [8]–[10], LSPUFs with

6 or fewer component arbiter PUFs [11], [12], FF PUFs [8],

and Interpose PUFs [12]. Besides sophisticated PUFs, there

are also protocols obfuscating challenges and/or responses, or

hiding PUF responses but transmitting transformed responses

[13]–[17]. These protocols incur hardware cost not very small

compared with the APUF itself, e.g. TRNG and transistors to

make use of TRNG, fuzzy extractor, or cryptographic cipher.

Observing that all successful machine learning attack meth-

ods employ a transform of the challenge into a “feature”

vector that simplifies the relationship between the “feature”

and the response, we analysed that machine learning attacks

might be thwarted if an input interface can prevent attackers

from obtaining the desirable “feature” vector. We developed a

challenge input interface based on our analysis, and carried out

experimental studies to examine the interfaced PUFs, which

clearly showed the effectiveness of the interface.

II. DEFENSIVELY INTERFACED PUFS

An interface that would probably naturally occur to many

people is the one that outputs the permuted challenge bits to

PUF stages. Wisiol et al. [11] attacked 4-XOR PUFs with a

master challenge and the challenge fed to each of the four

component APUFs of the 4-XOR PUF is a permutation of

the master challenge, and these XPUFs can be considered

as equipped with permutation interfaces. Their attack study

showed permutations led to improved security against machine

learning attacks, but still there is a significant percentage of

interfaced XPUFs succumbed to machine learning attacks.

The study of Wisiol et al. [11] led us to a careful considera-

tion of guiding principles for designing permutation interfaces,

and we figured that two ideal conditions for a set of interfaces

to secure PUFs against machine learning attacks are:
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• each member of the set turns an interfaced PUF into one

that is secure against the all machine learning attacks, and

practically against the most powerfully machine learning

attacks developed so far, and

• there are exponentially many members in the set.

The need for exponentially many permutations is to thwart

exhaustive search attacks to find the permutation implemented

on a PUF instance. To look for such a set of permutations,

there is a big challenge. The set should have exponentially

many interfaces and each interface can secure a PUF against

the most powerful machine learning attacks developed so far,

but it is not possibleto experimentally test every interface using

existing machine learning attacks. But we have the following

idea that could lead to a solution for this challenge.

An interfaced PUF is viewable as a classification to be

machine learned. Due to the lack of full mathematical under-

standing of machine learning, in general it is difficult to know

if there is a machine learning method that can attain adequate

modeling accuracy for an interfaced PUF without applying the

method to it. But there is hope. As pointed out by Princeton

mathematics professor Weinan E, machine learning is function

approximation [18]. While it is difficult to tell if an interfaced

PUF can be accurately modelled without trying any method, it

is generally true that the more nonlinear a function is the more

difficult the function can be approximated. Thus, to estimate

the potential of an interfaced PUF against machine learning

before trying any machine learning method, we will choose

an appropriate indicator for the level of nonlinearity of the

classification’s separating surface. We wish to comment that

we are not looking for a metric for nonlinearity to measure

how “far away” a function is from being linear because, first,

we have seen no existing nonlinearity metric and, second, we

also believe it not useful since different functions of different

forms of nonlinearity make such a metric not practical if not

impossible.

Seeing that the classification separation surface of a k-

XOR PUF is representable by a k-th order multivariate poly-

nomial [8], and realizing that higher-order polynomials are

in general more difficult to be accurately approximated than

lower order polynomials, and also realizing that the polyno-

mial order is an indicator reasonably easy to estimate for some

PUFs, our investigation is to focus on looking for

• a set of similar permutation interfaces with different

interfaces in the set turning the APUF into classification

problems with separation surfaces defined by similar

polynomials of different orders, and

• there are exponentially many members in the set.

We are targeting interfaces that will resulting in similar

polynomials, because we believe similar polynomials have

similar properties and then the orders of the polynomials

might be the distinguisher in their behaviours in resistance

to machine learning, which would reasonably allow us to

avoid doing experimental attacks of all exponentially many

interfaces. With this line of thought, we propose the following

set of permutation interfaces.

The Proposed Set of Permutation Interfaces
For n-stage PUFs with n ≥ 64, and for m∈{3, 4, · · · , n/3},
let Sm = {i1, i2, · · · , im} be a subset of {1, 2, · · · , n} with

i1 < i2 < · · · < im satisfying ij + 1 < ij+1 for all j =
1, 2, · · · ,m−1, that is, any two integers in Sm are separated

by a distance of 1 or larger. For a positive integer k ≤ m/2,

let P k
Sm

be a permutation on {1, 2, · · · , n} such that{
P k
Sm

(ij) = i(j+k)%m for ij ∈ Sm,

P k
Sm

(i) = i for i �∈ Sm,
(1)

where x%m = 1+(x mod m). The permutation P k
Sm

is called

the k-hop circular right-shift on Sm, and integers in Sm are

called the non-stationary points of the permutation P k
Sm

and

other integers in {1, 2, · · · , n} are called stationary points.

Fig. 1. A permutation interface with Sm = {1, 3, 5, 8} and k = 2.

An illustration of an interface with Sm = {1, 3, 5, 8} and

k = 2 is given in Fig. 1. Below is a result revealing the

nonlinear relationship between the response and input bits,

with proof omitted due to page limit.

Theorem 1. An n-stage APUF equipped with the interface

P k
Sm

has a classification separation surface defined by an n-

variable polynomial of an order between (4k−2) to (4k+1). An

n-stage x-XOR PUF is equipped with the permutation interface

P k
Sm

has a classification defined by an n-variable polynomial

of order (4k−2) or higher.

From Theorem 1, one can see that if m≥6 and 3≤k≤m/2,

the polynomial for an interfaced APUF is of at least 10-th

order, and the polynomial for an interfaced 3-XOR PUF is of

at least 30-th order. It can also be verified that the number

of sets Sm that satisfy 10 ≤m ≤ n/3 and ij+1 < ij+1 for

all j=1, 2, · · · ,m−1 grows exponentially with n. This can

be verified by choosing m=n/3 and i1 from {1, 2}, i2 from

{4, 5}, · · · , ij from {3j − 2, 3j − 1} for j = 1, 2, · · · ,m,

resulting in 2m = 2n/3 permutations whose polynomials are

of at least 10-th order for interfaced APUFs.

Theorem 1 and the subsequent discussion indicate the

existence of exponentially many permutation interfaces, each

of which turns an APUF into a classification with a separation

surface defined by a high-order polynomial. We wish to em-

phasize that they do not necessarily guarantee the existence of

exponentially many permutation interfaces capable of securing

APUFs against the most powerful machine learning attacks.

Though the order of a polynomial is an indicator, but exactly

how large the values of permutation parameters m and k can
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lead to secure PUFs have to be experimentally determined.

Thus, in Sec. III, we will experimentally examine how well

interfaced APUs perform against attacks with different values

for interface parameters.

III. EXPERIMENTAL STUDIES OF INTERFACED PUFS

A. Machine Learning Methods for Attacking PUFs

Existing PUF attack studies [8]–[10], [12], [19] show

that among various machine learning attack methods, neural

network has the highest modeling power for capturing the

behavior of a broad range of PUFs, and hence we have decided

to use neural networks for our attack study.

After having tried multiple sets of parameters, including

parameter sets used in studies [10], [19], the neural network

we used in our attack study of PUFs and their interfaced

counterparts has the following structure of layers with other

neural network parameters listed in Table I.

• The input layer of n input bits b1, b2, · · · , bn;

• the second layer that transforms input layer to φ’s ac-

cording to φ(i) = (2bi − 1)(2bi+1 − 1) · · · (2bn − 1);

• four hidden layers of the neurons whose weights for all

neurons are to be trained, where the number of neurons

at these layers is specified in Table I; and

• the last layer is the single-bit output layer.

TABLE I
NEURAL NETWORK FOR ATTACKING 64-STAGE PUFS

Parameter Description
Optimizing Method ADAM

Hidden Lyr. Actv. Fx. tanh

Output Lyr. Actv. Fx. Sigmoid

Learning Rate Adaptive

Hidden Layers 4 hidden lyr. (64, 32, 32, 64)

Loss Function Binary cross entropy

Mini-batch Size 100K

Kernel Initializer Random Normal

Epoch 500

Early Stopping Validation accuracy ≥ 98%

The attack method was implemented in Python using the

TensorFlow library. The machine learning method for each

PUF instance is run for up to 500 epochs with an early

stopping when the training validation accuracy reaches 98%.

The experiments used an 84-1-15 split, with 84% of CRP data

for training, 1% of data for validation, and 15% of the data

for testing the trained model.

B. Attack Study on Interfaced PUFs

We applied the interface to APUFs and XPUFs, all 64

stages. We chose a set of interfaces with different types of per-

mutations as indicated by interface notations in Table II with

the notations explained in Table III, where in the column titled

“Sm Property”, words “Pts separated” means that all points ij
in the set Sm satisfy ij + 1 < ij+1 for j = 1, 2, · · · ,m−1,

TABLE II
ATTACK RESULTS WITH/WITHOUT PERMUTATION INTERFACE

PUF Type Interface CRPs Avg. Acc. Success Rate
No interface 1 K 98% 100%

A5,1,1 10 M 72% 10%

A5,1,2 10 M 68% 0%

A6,1,1 10 M 62% 0%

A6,1,2 10 M 66% 0%

Arbiter A6,1,3 10 M 67% 0%

PUF A7,1,1 10 M 66% 0%

A7,1,2 10 M 65% 0%

A7,1,3 10 M 61% 0%

A8,1,3 10 M 67% 0%

A8,0,3 10 M 71% 20%

A9,0,3 10 M 75% 20%

No interface 6 K 98% 100%

A3,1,1 10 M 74% 0%

A4,1,1 10 M 71% 0%

3-XOR A4,1,2 10 M 72% 0%

PUF A5,1,1 10 M 65% 0%

A5,1,2 10 M 69% 0%

A6,1,1 10 M 63% 0%

A6,1,2 10 M 66% 0%

For the Success Rate, an attack is considered a success if its prediction
accuracy is 80% or higher. Lower success rate indicates higher security.

TABLE III
PERMUTATION INTERFACES USED IN EXPERIMENTAL STUDIES

Notation N-stationry Pts Sm Property Permutation
Am,1,k m Pts are separated k-hop circular r-shift

Am,0,k m All pts consecutive k-hop circular r-shift

and ”All pts consecutive” means that ij + 1 = ij+1 for all

j = 1, 2, · · · ,m−1.

For each type of interfaces listed in Table II, i.e. each row

in the table, 20 different instances of interface-PUF pairs were

generated. In the generation of these interface-PUF instances,

for each interface-PUF pair,

• a set of permutations was chosen to satisfy the specifica-

tions of the interfaces of the row with some parameters

randomly chosen (e.g. the positions of non-stationary

points but still satisfying the requirements of the inter-

faces listed on the table like consecutive or not) and some

other parameters uniquely selected (e.g. m and k); and

• an instance of the PUF was generated to meet the

specification of the PUF type, with some specification

parameters randomly chosen (e.g. gate delays) and oth-

ers are uniquely chosen (e.g. the XOR size of 3 for

XOR PUFs).

In the experiments, from each instance of interface-PUF

pair, 10 million random CRPs were generated using the

simulation software [20]. In each attack of a PUF-interface

instance, the number of CRPs listed in Table II is the total
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number of CRPs used for the training, validation and testing,

the Success Rate column lists the percentage of attacks that

produced testing accuracy of at least 80%, and the Avg. Acc.

column list the average testing accuracy of all attacks for

the row, including both successful and unsuccessful attacks.

An attack of at least 80% accuracy is considered a success

because attacks with accuracy below 80% cannot successfully

impersonate a PUF with PUFs’ noise usually below 5%, and

80% is a reasonably high standard for examining the security

of an interface since choosing 95% will make a lot more

interfaces look secure.

The results in Table II clearly show the effectiveness of

the interface. As indicated by the decrease of success rate for

interfaces with separated non-stationary points, the interfaced

PUFs are secure against attacks when the number of non-

stationary points m and the number of hops k become high.

The permutation interface is the most effective for XOR

PUFs, as indicated by 0% attack success rate. Theorem 1

reveals that the order of the representing polynomial of an

interfaced x-XOR PUF is x times higher than that of an inter-

faced APUF, and the experimental data support the analysis.

The data also showed that interfaces with consecutive non-

stationary points are weak against attacks (Rows A8,0,3 and

A9,0,3), which is consistent with Theorem 1.

For all tested PUFs, experimental data show that the number

m needed to attain 0% success rate is less than n/3, with

n = 64 for our tested PUFs. Then, the discussion following

Theorem 1 suggests that there are exponentially many inter-

faces that can make all three types of PUFs secure against

neural network attacks, the most powerful ML attack method

as of now according to studies [10], [12], [19].

IV. CONCLUSION

Many IoT devices are resource-constrained and demand

security mechanisms implementable with low cost and oper-

able with low energy. Leveraging integrated circuits’ internal

variability as hardware fingerprints, PUFs have the potential

as underlying primitives for implementing lightweight secu-

rity protocols. The arbiter PUF and its variants are highly

lightweight but have succumbed to machine learning attacks.

This paper introduces a challenge interface to improve security

against machine learning attacks. With the interface, analytical

and experimental studies have shown that the strength of inter-

faced PUFs against machine learning attacks is substantially

improved. The proposed interface incur a low resource over-

head, and hence can maintain the lightweightness of the PUFs.

With low resource footprint and substantial improvement of

resistance to machine learning attacks, the proposed interface

render itself a fitting companion of PUFs for delivering

security for resource-constrained IoT devices.
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