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Abstract—Internet of Things (IoT) have broad and deep
penetration into our society, and many of them are resource-
constrained, calling for lightweight security protocols. Physical
unclonable functions (PUFs) leverage physical variations of
circuits to produce responses unique for individual devices,
and hence are not reproducible even by their manufacturers.
Implementable with simplistic circuits and operable with low
energy, PUFs are promising candidates as security primitives for
resource-constrained IoT devices. Arbiter PUF (APUF) and its
variants are lightweight in resource requirements but suffer from
vulnerability to machine learning attacks. To defend APUF vari-
ants against machine learning attacks, in this paper we investigate
a challenge input interface, which incurs low overhead. Analytical
and experimental studies were carried out, showing substantial
improvement of resistance against machine learning attacks when
a PUF is equipped with the interface, rendering interfaced APUF
variants promising candidates for security critical applications.

Index Terms—IoT security, physical unclonable function, ma-
chine learning attack, arbiter PUF variants

I. INTRODUCTION

Many IoT devices are resource-constrained, and can support
only a low level of operating power, calling for lightweight
security protocols. Physical unclonable functions (PUFs) are
an emerging class of hardware primitives for implementing
security protocols. Small scale variations of integrated circuits
exist in manufactured silicon chips. These variations are re-
garded as side effects for conventional circuits [1], [2], but
they make each chip unique and can be exploited to prevent
semiconductor re-fabrication. PUFs utilize these variations
as hardware fingerprints to produce responses unique for
individual PUF circuits [1]-[5], and hence are not reproducible
even by the PUF manufacturers. Such features of PUFs present
a potential solution for challenges that many IoT devices
are facing. Implementable with simplistic circuits with only
thousands of transistors, PUFs require low fabrication cost and
consume very low operating power, rendering them potential
candidates for resource-constrained IoT devices

Though physically unclonable, some PUFs are “mathemati-
cally clonable” in the sense that the responses of a PUF can be
predicted accurately by machine-learning methods. Attackers
can eavesdrop on the communications between a PUF and
its trusted partner, and the challenges sent to a PUF and
the responses from the PUF can be collected by attackers
to train machine learning models. Such models are able to
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accurately predict the responses of the PUFs after the models
are trained with sufficient challenge-response pairs (CRPs).
Thus, mathematical clonability allows attackers to develop
malicious software to impersonate the PUF.

The arbiter PUF (APUF) [6], [7] is highly lightweight but
vulnerable to machine learning attacks. Efforts to improve its
security resulted in many APUF variants including XOR PUFs
(XPUFs) [2], LSPUFs, FF PUFs [6], [7], Interpose PUFs. But
these PUFs still succumb to machine learning attacks [8], and
the vulnerable ones include XPUFs [8]-[10], LSPUFs with
6 or fewer component arbiter PUFs [11], [12], FFPUFs [8],
and Interpose PUFs [12]. Besides sophisticated PUFs, there
are also protocols obfuscating challenges and/or responses, or
hiding PUF responses but transmitting transformed responses
[13]-[17]. These protocols incur hardware cost not very small
compared with the APUF itself, e.g. TRNG and transistors to
make use of TRNG, fuzzy extractor, or cryptographic cipher.

Observing that all successful machine learning attack meth-
ods employ a transform of the challenge into a “feature”
vector that simplifies the relationship between the “feature”
and the response, we analysed that machine learning attacks
might be thwarted if an input interface can prevent attackers
from obtaining the desirable “feature” vector. We developed a
challenge input interface based on our analysis, and carried out
experimental studies to examine the interfaced PUFs, which
clearly showed the effectiveness of the interface.

II. DEFENSIVELY INTERFACED PUFs

An interface that would probably naturally occur to many
people is the one that outputs the permuted challenge bits to
PUF stages. Wisiol et al. [11] attacked 4-XOR PUFs with a
master challenge and the challenge fed to each of the four
component APUFs of the 4-XOR PUF is a permutation of
the master challenge, and these XPUFs can be considered
as equipped with permutation interfaces. Their attack study
showed permutations led to improved security against machine
learning attacks, but still there is a significant percentage of
interfaced XPUFs succumbed to machine learning attacks.

The study of Wisiol et al. [11] led us to a careful considera-
tion of guiding principles for designing permutation interfaces,
and we figured that two ideal conditions for a set of interfaces
to secure PUFs against machine learning attacks are:
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« each member of the set turns an interfaced PUF into one
that is secure against the all machine learning attacks, and
practically against the most powerfully machine learning
attacks developed so far, and

o there are exponentially many members in the set.

The need for exponentially many permutations is to thwart
exhaustive search attacks to find the permutation implemented
on a PUF instance. To look for such a set of permutations,
there is a big challenge. The set should have exponentially
many interfaces and each interface can secure a PUF against
the most powerful machine learning attacks developed so far,
but it is not possibleto experimentally test every interface using
existing machine learning attacks. But we have the following
idea that could lead to a solution for this challenge.

An interfaced PUF is viewable as a classification to be
machine learned. Due to the lack of full mathematical under-
standing of machine learning, in general it is difficult to know
if there is a machine learning method that can attain adequate
modeling accuracy for an interfaced PUF without applying the
method to it. But there is hope. As pointed out by Princeton
mathematics professor Weinan E, machine learning is function
approximation [18]. While it is difficult to tell if an interfaced
PUF can be accurately modelled without trying any method, it
is generally true that the more nonlinear a function is the more
difficult the function can be approximated. Thus, to estimate
the potential of an interfaced PUF against machine learning
before trying any machine learning method, we will choose
an appropriate indicator for the level of nonlinearity of the
classification’s separating surface. We wish to comment that
we are not looking for a metric for nonlinearity to measure
how “far away” a function is from being linear because, first,
we have seen no existing nonlinearity metric and, second, we
also believe it not useful since different functions of different
forms of nonlinearity make such a metric not practical if not
impossible.

Seeing that the classification separation surface of a k-
XORPUF is representable by a k-th order multivariate poly-
nomial [8], and realizing that higher-order polynomials are
in general more difficult to be accurately approximated than
lower order polynomials, and also realizing that the polyno-
mial order is an indicator reasonably easy to estimate for some
PUFs, our investigation is to focus on looking for

o a set of similar permutation interfaces with different
interfaces in the set turning the APUF into classification
problems with separation surfaces defined by similar
polynomials of different orders, and

o there are exponentially many members in the set.

We are targeting interfaces that will resulting in similar
polynomials, because we believe similar polynomials have
similar properties and then the orders of the polynomials
might be the distinguisher in their behaviours in resistance
to machine learning, which would reasonably allow us to
avoid doing experimental attacks of all exponentially many
interfaces. With this line of thought, we propose the following
set of permutation interfaces.
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The Proposed Set of Permutation Interfaces

For n-stage PUFs with n > 64, and for me€ {3,4,--- ,n/3},
let Sy, = {41,492, - ,im} be a subset of {1,2,--- ,n} with
11 < dg < -+ < iy satisfying i; +1 < 4544 for all j =
1,2,--- ;m—1, that is, any two integers in .S,, are separated
by a distance of 1 or larger. For a positive integer k& < m/2,
let P§ be a permutation on {1,2,--- ,n} such that

{

where 2%m = 14 (z mod m). The permutation Pgm is called
the k-hop circular right-shift on .S,,, and integers in S,, are
called the non-stationary points of the permutation P§ and

for i; € Sy,
for i & S,

P, (i) = i (jk) %om

1
P§ (i) =i W

other integers in {1,2,--- ,n} are called stationary points.
input by b, bs b, bs be b, bg b,
output ¢; C Cs Ca Cs Ce ¢ Cs Cn

Fig. 1. A permutation interface with Sy, = {1,3,5,8} and k = 2.

An illustration of an interface with S,,, = {1,3,5,8} and
k = 2 is given in Fig.1. Below is a result revealing the
nonlinear relationship between the response and input bits,
with proof omitted due to page limit.

Theorem 1. An n-stage APUF equipped with the interface
Pg has a classification separation surface defined by an n-
variable polynomial of an order between (4k—2) to (4k-+1). An
n-stage x-XOR PUF is equipped with the permutation interface
Pg has a classification defined by an n-variable polynomial
of order (4k—2) or higher.

From Theorem 1, one can see that if m>6 and 3<k<m/2,
the polynomial for an interfaced APUF is of at least 10-th
order, and the polynomial for an interfaced 3-XOR PUF is of
at least 30-th order. It can also be verified that the number
of sets Sy, that satisfy 10 <m <n/3 and 4;+1 <, for
all j=1,2,--- ;m—1 grows exponentially with n. This can
be verified by choosing m=n/3 and iy from {1, 2}, i from
{4,5}, -+, i; from {3j —2,3j — 1} for j = 1,2,---,m,
resulting in 2™ = 2"/3 permutations whose polynomials are
of at least 10-th order for interfaced APUFs.

Theorem 1 and the subsequent discussion indicate the
existence of exponentially many permutation interfaces, each
of which turns an APUF into a classification with a separation
surface defined by a high-order polynomial. We wish to em-
phasize that they do not necessarily guarantee the existence of
exponentially many permutation interfaces capable of securing
APUFs against the most powerful machine learning attacks.
Though the order of a polynomial is an indicator, but exactly
how large the values of permutation parameters m and k can
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lead to secure PUFs have to be experimentally determined.
Thus, in Sec. III, we will experimentally examine how well
interfaced APUs perform against attacks with different values
for interface parameters.

III. EXPERIMENTAL STUDIES OF INTERFACED PUFSs
A. Machine Learning Methods for Attacking PUFs

Existing PUF attack studies [8]-[10], [12], [19] show
that among various machine learning attack methods, neural
network has the highest modeling power for capturing the
behavior of a broad range of PUFs, and hence we have decided
to use neural networks for our attack study.

After having tried multiple sets of parameters, including
parameter sets used in studies [10], [19], the neural network
we used in our attack study of PUFs and their interfaced
counterparts has the following structure of layers with other
neural network parameters listed in Table I.

The input layer of n input bits by, ba, -+, by;

the second layer that transforms input layer to ¢’s ac-
cording to  ¢(i) = (2b; — 1)(2b;41 — 1) -+ (2b,, — 1);
four hidden layers of the neurons whose weights for all
neurons are to be trained, where the number of neurons
at these layers is specified in Table I; and

the last layer is the single-bit output layer.

TABLE I
NEURAL NETWORK FOR ATTACKING 64-STAGE PUFS

Parameter Description
Optimizing Method ADAM
Hidden Lyr. Actv. Fx. tanh
Output Lyr. Actv. Fx. Sigmoid
Learning Rate Adaptive

4 hidden lyr. (64,32, 32, 64)

Binary cross entropy

Hidden Layers

Loss Function

Mini-batch Size 100K
Kernel Initializer Random Normal
Epoch 500

Early Stopping Validation accuracy > 98%

The attack method was implemented in Python using the
TensorFlow library. The machine learning method for each
PUF instance is run for up to 500 epochs with an early
stopping when the training validation accuracy reaches 98%.
The experiments used an 84-1-15 split, with 84% of CRP data
for training, 1% of data for validation, and 15% of the data
for testing the trained model.

B. Attack Study on Interfaced PUFs

We applied the interface to APUFs and XPUFs, all 64
stages. We chose a set of interfaces with different types of per-
mutations as indicated by interface notations in Table II with
the notations explained in Table III, where in the column titled
“Sm Property”, words “Pts separated” means that all points ¢;
in the set S, satisfy i; +1 < ij4q for j =1,2,--- ,m—1,
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TABLE 11
ATTACK RESULTS WITH/WITHOUT PERMUTATION INTERFACE

PUF Type Interface CRPs | Avg.Acc. | SuccessRate
No interface 1 K 98% 100%
As.1,1 10 M 72% 10%
As1,2 10 M 68% 0%
Ag11 10 M 62% 0%
Ag,1,2 10 M 66% 0%
Arbiter Ag,1,3 10 M 67% 0%
PUF A711 10M 66% 0%
A71,2 10 M 65% 0%
A71,3 10 M 61% 0%
Ag 1,3 10 M 67% 0%
Ag0,3 10 M 71% 20%
A9g.0,3 10 M 75% 20%
No interface 6 K 98% 100%
A3z 1,1 10 M 74% 0%
As1 10 M 71% 0%
3-XOR As2 10 M 72% 0%
PUF As.1,1 10 M 65% 0%
As1,2 10 M 69% 0%
Ag11 10 M 63% 0%
Ag,1,2 10 M 66% 0%

For the Success Rate, an attack is considered a success if its prediction
accuracy is 80% or higher. Lower success rate indicates higher security.

TABLE III
PERMUTATION INTERFACES USED IN EXPERIMENTAL STUDIES

Notation | N-stationry Pts S Property Permutation

Am,1k m Pts are separated | k-hop circular r-shift

m All pts consecutive | k-hop circular r-shift

Am,O«,k

and “All pts consecutive” means that 7; + 1 = 7;; for all
i=12-- m-—1

For each type of interfaces listed in Table II, i.e. each row
in the table, 20 different instances of interface-PUF pairs were
generated. In the generation of these interface-PUF instances,
for each interface-PUF pair,

« a set of permutations was chosen to satisfy the specifica-
tions of the interfaces of the row with some parameters
randomly chosen (e.g. the positions of non-stationary
points but still satisfying the requirements of the inter-
faces listed on the table like consecutive or not) and some
other parameters uniquely selected (e.g. m and k); and
an instance of the PUF was generated to meet the
specification of the PUF type, with some specification
parameters randomly chosen (e.g. gate delays) and oth-
ers are uniquely chosen (e.g. the XOR size of 3 for
XOR PUFs).

In the experiments, from each instance of interface-PUF
pair, 10 million random CRPs were generated using the
simulation software [20]. In each attack of a PUF-interface
instance, the number of CRPs listed in Table II is the total
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number of CRPs used for the training, validation and testing,
the Success Rate column lists the percentage of attacks that
produced testing accuracy of at least 80%, and the Avg. Acc.
column list the average testing accuracy of all attacks for
the row, including both successful and unsuccessful attacks.
An attack of at least 80% accuracy is considered a success
because attacks with accuracy below 80% cannot successfully
impersonate a PUF with PUFs’ noise usually below 5%, and
80% is a reasonably high standard for examining the security
of an interface since choosing 95% will make a lot more
interfaces look secure.

The results in Table II clearly show the effectiveness of
the interface. As indicated by the decrease of success rate for
interfaces with separated non-stationary points, the interfaced
PUFs are secure against attacks when the number of non-
stationary points m and the number of hops k£ become high.

The permutation interface is the most effective for XOR
PUFs, as indicated by 0% attack success rate. Theorem 1
reveals that the order of the representing polynomial of an
interfaced x-XOR PUF is x times higher than that of an inter-
faced APUF, and the experimental data support the analysis.
The data also showed that interfaces with consecutive non-
stationary points are weak against attacks (Rows Ag 3 and
Ag.0,3), which is consistent with Theorem 1.

For all tested PUFs, experimental data show that the number
m needed to attain 0% success rate is less than n/3, with
n = 64 for our tested PUFs. Then, the discussion following
Theorem 1 suggests that there are exponentially many inter-
faces that can make all three types of PUFs secure against
neural network attacks, the most powerful ML attack method
as of now according to studies [10], [12], [19].

IV. CONCLUSION

Many IoT devices are resource-constrained and demand
security mechanisms implementable with low cost and oper-
able with low energy. Leveraging integrated circuits’ internal
variability as hardware fingerprints, PUFs have the potential
as underlying primitives for implementing lightweight secu-
rity protocols. The arbiter PUF and its variants are highly
lightweight but have succumbed to machine learning attacks.
This paper introduces a challenge interface to improve security
against machine learning attacks. With the interface, analytical
and experimental studies have shown that the strength of inter-
faced PUFs against machine learning attacks is substantially
improved. The proposed interface incur a low resource over-
head, and hence can maintain the lightweightness of the PUFs.
With low resource footprint and substantial improvement of
resistance to machine learning attacks, the proposed interface
render itself a fitting companion of PUFs for delivering
security for resource-constrained IoT devices.
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