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Modular Computation of Restoration Entropy for
Networks of Systems: A Dissipativity Approach
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Abstract—The problem of state estimation based on
information received over a finite bit rate channel gives
rise to the study of minimal bit rate above which state can
be estimated with any desired accuracy. In the past few
years, researchers have studied the minimal average bit
rate which is sufficient enough for state estimation such
that the estimation error stays within a given factor of its
initial value. The notion of restoration entropy character-
izes this type of bit rate. Recent results proposed numerical
schemes to estimate restoration entropy by the compu-
tation of singular values of the linearized systems. Such
schemes are either complex to implement or suffer severely
from computational complexity and the size of the state
dimension. In this letter, we describe a modular approach
to compute an upper bound of the restoration entropy
of a large network by decomposing the network to an
interconnection of smaller subsystems. Then, we formulate
a distributed optimization problem which is solved for each
subsystem separately and then their optimization results
are composed to get an upper bound of the restoration
entropy for the overall network. We illustrate the effective-
ness of our results by two examples.

Index Terms—Networked control systems, entropy,
estimation.

I. INTRODUCTION

R
ECENT progresses in digital fabrication and technology

are promoting great reduction in size and cost of sen-

sors and actuators and, hence, contribute to increasing spatial

distribution of the system components including plants, sen-

sors, controllers, and actuators. Such networks of distributed

components exchanging information over some communica-

tion channels are referred to as networked control systems.

A networked control system such as an autonomous vehicle,

transportation network, a swarm of drones or robotic-assisted
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surgery often involves a shared digital communication chan-

nel for the transfer of information from a sensor to a decoder

located close to the controller. The finite data rate of the com-

munication channel results in the inexactness of information

about the system state at the location of the decoder. For unsta-

ble dynamics, this inexactness/uncertainty increases over time.

To ensure the satisfaction of a control specification, it is nec-

essary to transmit state information at a rate which is larger

than the rate of the growth of this uncertainty. This gives rise

to the study of the minimal data rate that permits satisfaction

of the desired control objectives; see for example [1], [2], [3]

or the surveys on control under communication constraints

in [4], [5].

For many control tasks, the minimal data rates have been

characterized in terms of some notions of entropy that are

intrinsic quantities of the system dynamics and are indepen-

dent of any particular choice of coder-decoder. Various notions

of entropy have been introduced for different control tasks; for

example, see [6] for exponential stabilization, [7], [8] for con-

trolled invariance, [9] for reachability, [3] for invariance in

networks, [10] for stochastic stabilization, and [2], [11], [12]

for state estimation.

The smallest data rate or channel capacity, above which

the state of a dynamical system can be estimated with an

arbitrary precision, can be described by the classical notion

of topological entropy [13]. Estimation of topological entropy

for nonlinear systems is a hard problem (see, e.g., [14], [15]).

This, along with the lack of robustness of the topological

entropy with respect to the system parameters resulted in

the study of three types of observation criteria [16] (char-

acterized based on the way estimation error progresses over

time) and the introduction of restoration entropy in [17] for

continuous-time systems which was adapted to discrete-time

systems in [18]. Roughly speaking, for a forward invariant

set K, the restoration entropy quantifies the minimal data rate

above which the state of a system can be estimated so that

the estimation accuracy is not just preserved but can also be

improved over time.

For a compact set satisfying certain properties, a closed-

form expression in terms of the singular values of the lin-

earized system, described in [19] as an upper bound for

the topological entropy, also specifies the restoration entropy.

A numerical scheme to compute the upper bound utilizing

semidefinite optimization techniques was described in [20].

A different formulation of the restoration entropy that does
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not involve any temporal limit was proposed in [21] which

characterizes its estimation with any desired accuracy by

a suitable choice of the Riemannian metric. A subgradi-

ent algorithm to estimate an upper bound of restoration

entropy by searching for a suitable Riemannian metric was

described in [22]. For interconnections of nonlinear subsys-

tems, the results in [23] describe a compositional computa-

tion of upper bounds of restoration entropies by considering

a small gain criterion as in [24, Sec. 2.2]. Particularly,

for each subsystem and using the linearized dynamics, a

quantity is computed. By assuming that a small gain cri-

terion hold, the summation of those quantities over all

the subsystems gives an upper bound for the restoration

entropy.

In this letter, we also focus on large-scale interconnected

systems as described in [23] and generalize its results by

using the most general quadratic expression for the so-called

supply rate similar to [24, eq. (2.4)]. This new structure

expands the class of systems for which upper bounds for the

restoration entropy can be computed compositionally. Unlike

the results in [23] that use a fixed dissipativity property

for each subsystem, we combine the overall composition-

ality criterion with a simultaneous search over compatible

subsystem dissipativity properties. We employ a distributed

optimization based on the Alternating Direction Method of

Multipliers (ADMM) algorithm [25] to decompose and solve

this problem. In particular, we alternately solve a local and a

global feasibility problem. The local problems are solved in

a parallel fashion for each subsystem and the values obtained

are then utilized in the global problem which checks for the

satisfaction of a compositionality criterion. To solve local

feasibility problems, we resort to a sum-of-squares (SOS)

optimization formulation; to this end we restrict the dynam-

ics describing the subsystems to be of polynomial structure.

Compared to the numerical schemes in [20] and [22], our

approach breaks down the computational complexity to the

level of subsystems and, hence, can be applied to large-scale

interconnected systems. Finally, we illustrate the effectiveness

of our approach by two examples for which either the exact

value of the restoration entropy is known to us or its upper

bound.

II. PRELIMINARIES AND SYSTEM DEFINITIONS

Notation: By [k1; k2] we denote the set of integers {j | k1 ≤

j ≤ k2}. We use AT to denote the transpose of matrix A. Im

denotes the m × m identity matrix. The induced 2-norm is

denoted by ‖ · ‖ and the Frobenius norm by ‖ · ‖F . For vectors

pi ∈ R
ri , i ∈ [1; N], the result of stacking them on top of each

other is denoted by stack(pi)∈ R
r1+···+rN .

We consider interconnections of discrete-time nonlinear

subsystems �i, i ∈ [1; N]. The ith subsystem is described by:

xi(t + 1) = φi(xi(t), ui(t)), yi(t) = hi(xi(t)), (1)

where xi(t) ∈ Xi ⊆ R
ni is the state, ui(t) ∈ Ui ⊆ R

mi is the

input to the system, and yi(t) ∈ Yi ⊆ R
ki is the output. The

interconnection constraint is given by

ui(t) =

N
∑

j=1

Vijyj(t),

for some Vij ∈ R
mi×kj .

The interconnected system can be written as

x(t) := stack(xi(t)), φ(x(t)) := stack(φi(x
�

i (x(t)))), (2)

where

x�i (x) :=

⎛

⎝xi,

N
∑

j=1

Vijhj(xj)

⎞

⎠, and n :=

N
∑

i=1

ni.

Let X :=
∏N

i=1 Xi. We consider only those trajectories that start

in a compact set K ⊂ X. The map φ : X → X is assumed to be

continuous. The state estimator is composed of a coder, located

near the sensor, and a decoder. The decoder has access to the

state measurements through a finite capacity communication

channel, i.e., the state information received by the decoder is

inaccurate (not perfect). For systems with unstable dynamics

and insufficient channel data rate, the inaccuracy in the state

estimation may worsen with time.

Now, we describe the definition of fine state observation,

for which the required minimal average bit rate is equal to the

restoration entropy for the case of a forward invariant set. We

assume that both coder and decoder have access to a common

initial estimate x̂(0) and its accuracy δ > 0:
∥

∥x(0) − x̂(0)
∥

∥ < δ. (3)

Definition 1: An observer is said to finely observe the

system in (2) if the observation error exponentially decays

to zero with time, i.e., there exists δ∗ > 0, G > 0, and g > 0

such that for all δ ≤ δ∗ (δ defined in (3)), the following holds
∥

∥x(t) − x̂(t)
∥

∥ < Gδe−gt ∀t ≥ 0, x(0), x̂(0) ∈ K.

We follow [17] and assume that there exists a uniform upper

bound b+(�t) and a lower bound b−(�t) on the number of

bits that can be transferred in any interval of duration �t.

We further assume that the average number of transmittable

bits converges, i.e., b±(�t)/(�t) → c as �t → ∞. Then we

denote by Rfo the infimum channel bit rate c needed to finely

observe the system in (2). Now, we present the definition of

restoration entropy.

Definition 2: Consider the interconnected system in (2). Let

Bδ
a denote the open ball with radius δ centered at a and φn

denote the n-th iterate of φ, with φ0(a) := a and φn+1 :=

φ ◦ φn. For every a ∈ K, n ∈ N and ε > 0, let p(n, a, ε)

denote the smallest number of open ε-balls required to cover

φn(Bδ
a ∩ K). Then the restoration entropy of the system in (2)

on K is1

Hres(φ, K) := lim
n→∞

1

n
lim
ε→0

sup
a∈K

log2 p(n, a, ε).

From [17, Th. 8], one has

Hres(φ, K) ≤ Rfo(φ, K),

1We use lim to denote the limit superior.
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and Hres(φ, K) = Rfo(φ, K) for a forward invariant set K (i.e.,

{φ(x) | x ∈ K} ⊆ K).

Let us denote by φt(a) the state of the network at time t

which starts from x(0) = a ∈ X. Now we define sets:

X(t) := {φt(a) | a ∈ K}, and X∞ := ∪∞
t=0X(t).

The set X∞ denotes the set of all reachable states from the

initial states in K over an infinite time horizon. The following

assumptions are made to arrive at an upper bound for the

restoration entropy.

Assumption 1: Maps φi : Xi × Ui → Xi and hi : Xi → Yi

are continuously differentiable for any i.

This ensures that the derivatives of φi and hi are also contin-

uous. Next we define uniform continuity near a subset which

is used in Assumption 2.

Definition 3: A function f : R
n → R

q is said to be uni-

formly continuous near a subset X∗ ⊂ R
n if for any ε > 0,

there exists δ > 0 such that:

‖f (x) − f (χ)‖ < ε ∀x ∈ X∗,∀χ ∈ R
n,

where ‖x − χ‖ < δ.

Note that continuous functions are uniformly continuous

near compact sets.

Assumption 2: For any subsystem �i, functions

∂φi

∂xi

(x�i (x)),
∂φi

∂ui

(x�i (x))),
∂hi

∂xi

(xi),

are bounded on X∞ and uniformly continuous near this set.

Assumption 2 holds when the set X∞ is bounded, which is

true for a compact forward invariant set K of initial states.

Now consider the first-order approximation of subsystems

near any trajectory:

zi(t + 1) = Ai(x(t))zi(t) + Bi(x(t))wi(t),

ζi(t) = Ci(x(t))zi(t). (4)

Here, zi, wi, and ζi denote the “increments” of xi, ui, and yi,

respectively, and

Ai(x) :=
∂φi

∂xi

(x�i (x)), Bi(x) :=
∂φi

∂ui

(x�i (x)),

Ci(x) :=
∂hi

∂xi

(xi),

where x�i (x) = (xi, ui) and ui =
∑N

j=1 Vijhj(xj).

For the first-order approximation of a subsystem as in (4),

we assume the following dissipation-like inequality [24].

Assumption 3: Consider a subsystem �i as in (1). There

exist ni × ni symmetric matrices Pi > 0, Qi ≥ 0 and (mi +

ki) × (mi + ki) symmetric matrices Xi with conformal block

partitions X
jl
i , j, l ∈ {1, 2}, such that the following inequality

is true along all solutions of the interconnected system in (1)

starting in the given compact set K:

[Ai(x)zi + Bi(x)wi]
TPi[Ai(x)zi + Bi(x)wi] ≤ zT

i Qizi

+

[

wi

ζi

]T[

X11
i X12

i

X21
i X22

i

][

wi

ζi

]

, ζi = Ci(x)zi, (5)

for all zi ∈ R
ni , wi ∈ R

mi and x ∈ X∞.

The following compositionality assumption relates matri-

ces Xi for subsystems, from the above inequality, via the

interconnection matrix2 V .

Assumption 4: Assume the following inequality holds:

[

V

Ik

]T

Xcomp

[

V

Ik

]

≤ 0 (6)

where

Xcomp :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X11
1 X12

1
. . .

. . .

X11
N X12

N

X21
1 X22

1
. . .

. . .

X21
N X22

N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and k =
∑N

i=1 ki.

Inequality (6) is similar to [24, eq. (2.8)] in the context

of compositional verification of stability for interconnected

systems.

Let us now write the first-order approximation of the

network as

z(t + 1) = A(x(t))z(t)

= stack(Ai(x(t))zi(t) + Bi(x(t))wi(t))

for all z(t) := stack(zi(t)) with

wi =

N
∑

j=1

Vijζj, ζj = Cj(x)zj, and A(x) :=
∂φ

∂x
(x).

For given n × n symmetric matrices P > 0 and Q ≥ 0, let

HL(P, Q) := 0.5
∑n

j=1 max{0, log2 λj} where λj, j ∈ [1; n], are

the eigenvalues3 of QP−1 (or P−1Q).

Now we have all the ingredients to present the main result

of this letter.

Theorem 1: For a network as in (2) and under

Assumptions 1-4, the following holds

Rfo(φ, K) ≤

N
∑

i=1

HL(Pi, Qi). (7)

Proof: The proof is inspired by that of [23, Th. 3.7]. From

Assumption 2, we have that A(x) = ∂φ
∂x

(x) is bounded on X∞

and is uniformly continuous near this set.

Let P and Q denote the following positive definite and pos-

itive semidefinite block-diagonal n × n matrices, respectively:

P = diag(P1, . . . , PN), Q = diag(Q1, . . . , QN).

We have

zTA(x)TPA(x)z

=

N
∑

i=1

[Ai(x)zi + Bi(x)wi]
TPi[Ai(x)zi + Bi(x)wi]

2Here V is a block matrix with the (i, j)th block given by the matrix Vij.
3Note that eigenvalues λj are non-negative since they are the roots of

det(Q − λjP) = 0 and as a result λj = xT Qx/(xT Px) for some x �= 0.
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(5)
≤

N
∑

i=1

(

zT
i Qizi +

[

wi

ζi

]T[

X11
i X12

i

X21
i X22

i

][

wi

ζi

]

)

=

N
∑

i=1

zT
i Qizi

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w1

...

wN

ζ1

...

ζN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X11
1 X12

1
. . .

. . .

X11
N X12

N

X21
1 X22

1
. . .

. . .

X21
N X22

N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w1

...

wN

ζ1

...

ζN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= zTQz +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V

⎡

⎢

⎣

ζ1

...

ζN

⎤

⎥

⎦

ζ1

...

ζN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

Xcomp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V

⎡

⎢

⎣

ζ1

...

ζN

⎤

⎥

⎦

ζ1

...

ζN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= zTQz +

⎡

⎢

⎣

ζ1

...

ζN

⎤

⎥

⎦

T
[

V

Ik

]T

Xcomp

[

V

Ik

]

⎡

⎢

⎣

ζ1

...

ζN

⎤

⎥

⎦

(6)
≤ zTQz ∀z. (8)

In the rest of the proof, we leverage Theorem 2 and

Lemma 2 given in the appendix. In Theorem 2, we

have
∑d

i=1 log2 λi(x) ≤ HL(P, A(x)T PA(x)) for all d ∈

[1; n] and x ∈ X∞. From (8) and Lemma 2, we have

HL(P, A(x)TPA(x)) ≤ HL(P, Q) for every x ∈ X∞. Thus,

by using Theorem 2 with vd(·) := 0 and �d := 2HL(P, Q),

d ∈ [1; n], we get Rfo(φ, K) ≤ HL(P, Q). Since P and Q

are block diagonal, the set of roots of det(Q − λP) = 0

is the same as {λ | det(Qi − λPi) = 0, i ∈ [1; N]}. Thus

HL(P, Q) =
∑N

i=1 HL(Pi, Qi) which completes the proof.

Next, we describe a distributed optimization approach to

search for Pi, Qi and Xi in (5) in order to compute the upper

bound in (7).

III. DISTRIBUTED OPTIMIZATION

In this section, we describe a distributed optimization

method, based on the alternating direction method of

multipliers (ADMM) algorithm [25], for computation of the

upper bound in (7). If Assumptions 1-4 hold, then our objec-

tive is to find, for each subsystem, matrices Pi, Qi, and

Xi that satisfy (5) and (6). For this, we alternately solve

local feasibility problems and a global feasibility problem. By

local feasibility problem, we refer to a search for the triple

(Pi, Qi, Xi), i ∈ [1; N], that satisfy (5). And by global feasi-

bility problem, we refer to a search for matrices X1, . . . , XN

that satisfy (6).

Local feasibility problem:

Si = {(Pi, Qi, Xi) | Pi, Qi, and Xi satisfying

the requirements in Assumption 3}. (9)

Global feasibility problem:

G = {(X1, . . . , XN) | condition (6) is satisfied}. (10)

Now consider the following indicator functions:

ISi
(Pi, Qi, Xi) =

{

0, (Pi, Qi, Xi) ∈ Si,

∞, otherwise,

IG(X1, . . . , XN) =

{

0, (X1, . . . , XN) ∈ G,

∞, otherwise.

We introduce auxiliary variables Zi for each subsystem to

formulate an optimization problem

min
d

N
∑

i=1

ISi
(Pi, Qi, Xi) + IG(Z1, . . . , ZN), (11)

s.t. Xi − Zi = 0, ∀i ∈ [1; N], (12)

where d = (P1, . . . , PN, Q1, . . . , QN, X1, . . . , XN, Z1,

. . . , ZN).

Often large optimization problems can be converted into

smaller sub-problems by separating the objective function

across decision variables. In our objective function, the first

part ISi
is separable by subsystems. This permits parallel com-

putation of the local problems across subsystems. For this, we

introduce dual variables �i. The variables in the ADMM are

updated as follows:

1) For each i ∈ [1; N], we solve local problems:

Pk+1
i , Qk+1

i , Xk+1
i = argmin(Pi,Qi,Xi)∈Si

∥

∥

∥
Xi − Zk

i + �k
i

∥

∥

∥

2

F
.

2) If Xk+1
1:N ∈ G, then the optimal solution is achieved and

the algorithm terminates. Otherwise, we solve the global

problem:

Zk+1
1:N = argmin(Z1:N )∈G

N
∑

i=1

∥

∥

∥
Xk+1

i − Zi + �k
i

∥

∥

∥

2

F
.

3) Now we update the dual variables:

�k+1
i = Xk+1

i − Zk+1
i + �k

i , i ∈ [1; N],

and continue with the first step until a possible

convergence.

The local problems are solved parallelly by sum-of-squares

(SOS) optimization formulation as described in the follow-

ing paragraphs. If required, these values are then used in the

global problem which can be solved by semi-definite program-

ming. The dual variables are updated using the values obtained

from steps 1 and 2. The procedure repeats until convergence is

achieved. Since the indicator functions in (11) are convex, the

solutions are guaranteed to converge to the optimal ones [26].

We reformulate the condition in (5) as an SOS problem to

search for suitable values of Pi, Qi, and Xi. For this we make

the following assumption.

Assumption 5: Maps φi : Xi × Ui → Xi and hi : Xi → Yi

in (1) are polynomial functions of xi and ui.

The SOS formulation is given by the following lemma.

Lemma 1: Let Assumption 5 holds and assume set X∞ can

be written in terms of a vector of polynomial inequalities4

4The inequalities are considered element-wise.
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X∞ = {x ∈ R
n | b(x) ≥ 0}. Further, assume that for each

subsystem �i, there exists a vector of sum-of-squares polyno-

mial β(x, α), α ∈ R
mi+ni of an appropriate dimension so that

the expression in (13) is a sum-of-squares polynomial. Then

Assumption 3 holds.

Proof: We use E(x) to refer to the matrix appearing between

αT and α in (13). Using ζi = Ci(x)zi and rearrangement of

terms, the inequality in (5) can be rewritten as E(x) ≥ 0 for

all x ∈ X∞.

When the expression in (13) is an SOS polynomial, we get

αTE(x)α − β(x, α)T b(x) ≥ 0 for all α ∈ R
mi+ni and x ∈ X∞.

Since b(x) ≥ 0 for x ∈ X∞ and each term of the vector β(x, α)

is an SOS polynomial, we get αTE(x)α ≥ 0 for all α ∈ R
mi+ni

and x ∈ X∞. This leads to E(x) ≥ 0 for all x ∈ X∞ which

completes the proof.

Remark 1: Note that X∞ denotes the set of all reachable

states starting from the initial set K over an infinite time

horizon. If K is forward invariant, then we have X∞ =

K. Computation of X∞ is a difficult task and in general

undecidable. However, one can satisfy (13) either with an over-

approximation of X∞ or for any x ∈ R
n (i.e., b(x) := 0) (if

successful) which still implies that Assumption 3 holds.

In the next section, we present a nonlinear and a linear

example, and compute the upper bound in (7) by selecting

appropriate values of Pi, Qi, and Xi for their subsystems.

IV. CASE STUDY

Example 1: Consider the Hénon system [27] with standard

parameters a = 1.4 and b = 0.3:

φ(x) =

[

1.4 − x2
1 + 0.3x2

x1

]

,

where x = (x1, x2) ∈ R
2. The quadrilateral K with the

following vertices is a compact forward invariant set [27]:

q1 = (−1.862, 1.96), q2 = (1.848, 0.6267),

q3 = (1.743,−0.6533), q4 = (−1.484,−2.3333).

From [16, Th. 16], we already know an upper bound of the

restoration entropy Hres(φ, K) ≤ 1.704793.

Now, we consider the system as a network of two scalar

subsystems:

φ1(x1, u1) := 1.4 − x2
1 + 0.3u1, h1(x1) := x1,

φ2(x2, u2) := u2, h2(x2) := x2,

where ui =
∑2

j=1 vijhj(xj) and vij denote the entries of the

matrix V =

[

0 1

1 0

]

. Using the distributed optimization algo-

rithm introduced in the previous section, we get P1 = 26,

P2 = 37, Q1 = 421.9223, Q2 = 36.99, X11
1 = 36.9483, X12

1 =

0.0356, X22
1 = −37.029, X11

2 = 37.015, X12
2 = −0.0178,

and X22
2 = −36.9696, satisfying conditions in (5) and (6),

and thus we obtain Hres(φ, K) ≤
∑2

i=1 HL(Pi, Qi) = 2.0102,

which is close enough to the known upper bound 1.704793

[16, Th. 16].

Next we describe a linear system and compare the upper

bound computed by our modular approach with the known

exact value of the restoration entropy.

Example 2: Consider a five dimensional linear system

φ(x) = Ax. Let aij denote the (i, j)-th entry of A where

a11 = 2, aii = 0.5 for i ∈ [2; 5], aij = 0 for i > j, and

aij = 1 for i < j. For linear systems, the restoration entropy

coincides with the topological entropy which is equal to the

sum of the logarithm of the absolute value of the unstable

eigenvalues of matrix A [16]. Thus, Hres(φ, K) = 1 for any

compact set K ⊂ R
5.

The system can be seen as a network of five scalar

subsystems

φ1(x1, u1) := 2x1 + u1, h1(x1) := x1,

φi(xi, ui) := 0.5xi + ui, hi(xi) := xi, i ∈ [2; 4],

φ5(x5) := 0.5x5, h5(x5) := x5,

where ui =
∑5

j=1 vijhj(xj), i ∈ [1 : 4], and the entries of the

matrix V are given as vij := 1, for i < j, and vij := 0, for

i >= j.

Using the distributed optimization algorithm introduced in

the previous section, we get P1 = 0.01, P2 = 1, P3 = 6, P4 =

32, Q1 = 0.0432, Q2 = 0.7584, Q3 = 5.9853, Q4 = 28.2875,

X11
1 = 0.0773, X12

1 = 0.0093, X22
1 = −0.00145, X11

2 =

1.5495, X12
2 = 0.1785, X22

2 = −0.3203, X11
3 = 12.8680,

X12
3 = 0.0261, X22

3 = −3.1976, X11
4 = 13377530.7867,

X12
4 = −7.9311, X22

4 = −20.2875, X11
5 = −132323.8913,

X12
5 = 0, and X22

5 = −20251359.1959, and thus we obtain

Hres(φ, K) ≤
∑5

i=1 HL(Pi, Qi) = 1.0550. Here, HL(P5, Q5) =

0 for P5 = p and Q5 = 0.52p for any 0 < p ∈ R. One can

readily see that our computed upper bound is very close to the

exact restoration entropy which is 1.

To demonstrate the advantage of the proposed modular

approach here, we used the proposed algorithm in [22] for

which the code is publicly available in Example 2. In the

proposed algorithm in [22], the user needs to provide the num-

ber of grid points along each dimension. The grid points are

used to tackle the involved nonlinear nonconvex maximization

problem. By choosing a large number of grid points, one is

expected to get sound results. Table I compares the upper esti-

mates and the computation times from our approach with the

algorithm proposed in [22]. The number of grid points along

each dimension for columns [22](A), [22](B), and [22](C) are

10, 50, and 60, respectively, while the number of iterations

for all of them is 15. The computations were performed on an

Apple M1 with 8 cores and 16 GB RAM.

V. CONCLUSION

We provided a modular approach to compute upper bounds

of the restoration entropies for large-scale networks by looking

αT

[

−Bi(x)TPiBi(x) + X11
i − Bi(x)TPiAi(x) + X12

i Ci(x)

−Ai(x)TPiBi(x) + Ci(x)TX21
i − Ai(x)TPiAi(x) + Qi + Ci(x)TX22

i Ci(x)

]

α − β(x, α)T b(x), ∀α ∈ R
mi+ni . (13)
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TABLE I
COMPARISON WITH THE ALGORITHM IN [22] FOR EXAMPLE 2

at them as interconnections of smaller subsystems. In par-

ticular, we formulated a distributed optimization problem

composed of local problems and a global problem. The

local problems are solved separately for subsystems. We also

described an SOS formulation to solve the local problems

provided that the subsystem dynamics are of polynomial struc-

ture. The results from the local problems are then checked for

the satisfaction of a compositionality criterion in the global

problem. Finally, we applied the described approach on two

case studies and compared the obtained estimates with the

known values in the literature. Table I demonstrate the advan-

tage of the modular approach over the proposed algorithm

in [22]. As part of future work, we intend to formulate

local feasibility problems in a way that will also minimize

HL(Pi, Qi) in order to arrive at the best possible upper bound

given the proposed modular approach.

APPENDIX

Theorem 2: [16, Th. 12] For system in (2), let

Assumption 2 holds and let there exist continuous and

bounded on X∞ functions vd : Rn → R, constants �d ≥ 0,

d ∈ [1; n], and an n × n symmetric matrix P ≥ 0 such that

vd(φ(x)) − vd(x) +

d
∑

i=1

log2 λi(x) ≤ �d,∀x ∈ X∞,

where λi(x) ≥ λi+1(x) ≥ 0 are the roots of det(A(x)TPA(x) −

λP) = 0 repeated in accordance with their algebraic multiplic-

ities. Then Rfo(φ, K) ≤ 0.5 max{�1, . . . , �n}.

Lemma 2: For the symmetric matrices P > 0, Q2 ≥ Q1 ≥ 0

we have HL(P, Q2) ≥ HL(P, Q1).

Proof: Note that both det(Q − λP) = 0 and

det(P−1/2QP−1/2 − λI) = 0 have identical roots. Since,

Q2 ≥ Q1 and P−1/2 is symmetric, we have P−1/2Q2P−1/2 ≥

P−1/2Q1P−1/2. Then by Weyl’s inequality [28, Th. 4.3.1], we

obtain HL(P, Q2) ≥ HL(P, Q1).
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