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Modular Computation of Restoration Entropy for
Networks of Systems: A Dissipativity Approach

Mahendra Singh Tomar

Abstract—The problem of state estimation based on
information received over a finite bit rate channel gives
rise to the study of minimal bit rate above which state can
be estimated with any desired accuracy. In the past few
years, researchers have studied the minimal average bit
rate which is sufficient enough for state estimation such
that the estimation error stays within a given factor of its
initial value. The notion of restoration entropy character-
izes this type of bit rate. Recent results proposed numerical
schemes to estimate restoration entropy by the compu-
tation of singular values of the linearized systems. Such
schemes are either complex to implement or suffer severely
from computational complexity and the size of the state
dimension. In this letter, we describe a modular approach
to compute an upper bound of the restoration entropy
of a large network by decomposing the network to an
interconnection of smaller subsystems. Then, we formulate
a distributed optimization problem which is solved for each
subsystem separately and then their optimization results
are composed to get an upper bound of the restoration
entropy for the overall network. We illustrate the effective-
ness of our results by two examples.

Index Terms—Networked control
estimation.

systems, entropy,

[. INTRODUCTION

ECENT progresses in digital fabrication and technology

are promoting great reduction in size and cost of sen-
sors and actuators and, hence, contribute to increasing spatial
distribution of the system components including plants, sen-
sors, controllers, and actuators. Such networks of distributed
components exchanging information over some communica-
tion channels are referred to as networked control systems.
A networked control system such as an autonomous vehicle,
transportation network, a swarm of drones or robotic-assisted
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surgery often involves a shared digital communication chan-
nel for the transfer of information from a sensor to a decoder
located close to the controller. The finite data rate of the com-
munication channel results in the inexactness of information
about the system state at the location of the decoder. For unsta-
ble dynamics, this inexactness/uncertainty increases over time.
To ensure the satisfaction of a control specification, it is nec-
essary to transmit state information at a rate which is larger
than the rate of the growth of this uncertainty. This gives rise
to the study of the minimal data rate that permits satisfaction
of the desired control objectives; see for example [1], [2], [3]
or the surveys on control under communication constraints
in [4], [5].

For many control tasks, the minimal data rates have been
characterized in terms of some notions of entropy that are
intrinsic quantities of the system dynamics and are indepen-
dent of any particular choice of coder-decoder. Various notions
of entropy have been introduced for different control tasks; for
example, see [6] for exponential stabilization, [7], [8] for con-
trolled invariance, [9] for reachability, [3] for invariance in
networks, [10] for stochastic stabilization, and [2], [11], [12]
for state estimation.

The smallest data rate or channel capacity, above which
the state of a dynamical system can be estimated with an
arbitrary precision, can be described by the classical notion
of topological entropy [13]. Estimation of topological entropy
for nonlinear systems is a hard problem (see, e.g., [14], [15]).
This, along with the lack of robustness of the topological
entropy with respect to the system parameters resulted in
the study of three types of observation criteria [16] (char-
acterized based on the way estimation error progresses over
time) and the introduction of restoration entropy in [17] for
continuous-time systems which was adapted to discrete-time
systems in [18]. Roughly speaking, for a forward invariant
set K, the restoration entropy quantifies the minimal data rate
above which the state of a system can be estimated so that
the estimation accuracy is not just preserved but can also be
improved over time.

For a compact set satisfying certain properties, a closed-
form expression in terms of the singular values of the lin-
earized system, described in [19] as an upper bound for
the topological entropy, also specifies the restoration entropy.
A numerical scheme to compute the upper bound utilizing
semidefinite optimization techniques was described in [20].
A different formulation of the restoration entropy that does
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not involve any temporal limit was proposed in [21] which
characterizes its estimation with any desired accuracy by
a suitable choice of the Riemannian metric. A subgradi-
ent algorithm to estimate an upper bound of restoration
entropy by searching for a suitable Riemannian metric was
described in [22]. For interconnections of nonlinear subsys-
tems, the results in [23] describe a compositional computa-
tion of upper bounds of restoration entropies by considering
a small gain criterion as in [24, Sec. 2.2]. Particularly,
for each subsystem and using the linearized dynamics, a
quantity is computed. By assuming that a small gain cri-
terion hold, the summation of those quantities over all
the subsystems gives an upper bound for the restoration
entropy.

In this letter, we also focus on large-scale interconnected
systems as described in [23] and generalize its results by
using the most general quadratic expression for the so-called
supply rate similar to [24, eq. (2.4)]. This new structure
expands the class of systems for which upper bounds for the
restoration entropy can be computed compositionally. Unlike
the results in [23] that use a fixed dissipativity property
for each subsystem, we combine the overall composition-
ality criterion with a simultaneous search over compatible
subsystem dissipativity properties. We employ a distributed
optimization based on the Alternating Direction Method of
Multipliers (ADMM) algorithm [25] to decompose and solve
this problem. In particular, we alternately solve a local and a
global feasibility problem. The local problems are solved in
a parallel fashion for each subsystem and the values obtained
are then utilized in the global problem which checks for the
satisfaction of a compositionality criterion. To solve local
feasibility problems, we resort to a sum-of-squares (SOS)
optimization formulation; to this end we restrict the dynam-
ics describing the subsystems to be of polynomial structure.
Compared to the numerical schemes in [20] and [22], our
approach breaks down the computational complexity to the
level of subsystems and, hence, can be applied to large-scale
interconnected systems. Finally, we illustrate the effectiveness
of our approach by two examples for which either the exact
value of the restoration entropy is known to us or its upper
bound.

II. PRELIMINARIES AND SYSTEM DEFINITIONS

Notation: By [k1; k] we denote the set of integers {j | k1 <
Jj < ko}. We use AT to denote the transpose of matrix A. I,
denotes the m x m identity matrix. The induced 2-norm is
denoted by || - || and the Frobenius norm by || - ||r. For vectors
pi € R, i € [1; N], the result of stacking them on top of each
other is denoted by stack(p;)e RV,

We consider interconnections of discrete-time nonlinear
subsystems X;, i € [1; N]. The ith subsystem is described by:

xi(t+ 1) = ¢i(xi (D), u;(®), yi(®) = hi(x; (1)), (D

where x;(f) € X; C R" is the state, u;(t) € U; C R" is the
input to the system, and y;(f) € ¥; € R¥ is the output. The

interconnection constraint is given by

N
wit) = Vigyj(0),

J=1

for some Vj; € Rk
The interconnected system can be written as

x(1) = stack(x;(1)), ¢ (x(1) = stack(¢;(x;" (x(1)))), (2)

where

N
x () = xi7ZVijhj(xj) ,
j=1

N
and n = Z”i‘
i=1

LetX == ]—[f\': 1 Xi. We consider only those trajectories that start
in a compact set K C X. The map ¢ : X — X is assumed to be
continuous. The state estimator is composed of a coder, located
near the sensor, and a decoder. The decoder has access to the
state measurements through a finite capacity communication
channel, i.e., the state information received by the decoder is
inaccurate (not perfect). For systems with unstable dynamics
and insufficient channel data rate, the inaccuracy in the state
estimation may worsen with time.

Now, we describe the definition of fine state observation,
for which the required minimal average bit rate is equal to the
restoration entropy for the case of a forward invariant set. We
assume that both coder and decoder have access to a common
initial estimate x(0) and its accuracy § > 0:

[x(0) — 20| <. (3)

Definition 1: An observer is said to finely observe the
system in (2) if the observation error exponentially decays
to zero with time, i.e., there exists 8, > 0, G > 0, and g > 0
such that for all § < §, (6 defined in (3)), the following holds

|x(@) — 2| < Gse 8" V¥t > 0,x(0),3%0) € K.

We follow [17] and assume that there exists a uniform upper
bound b4 (Atf) and a lower bound b_(Arf) on the number of
bits that can be transferred in any interval of duration At.
We further assume that the average number of transmittable
bits converges, i.e., b+ (At)/(At) — ¢ as At — oo. Then we
denote by Ry, the infimum channel bit rate ¢ needed to finely
observe the system in (2). Now, we present the definition of
restoration entropy.

Definition 2: Consider the interconnected system in (2). Let
Bg denote the open ball with radius & centered at a and ¢"
denote the n-th iterate of ¢, with ¢°(a) == a and ¢"t! =
¢ o@" Forevery a €e K, n € Nand € > 0, let p(n,a,ce€)
denote the smallest number of open e-balls required to cover
d)"(Bfl N K). Then the restoration entropy of the system in (2)
on K is!

Hies (¢, K) = nlggo - 61111}) sulg log, p(n, a, €).
—Yae

From [17, Th. 8], one has
Hres(¢a K) < Rf0(¢7 K)a

IWe use Iim to denote the limit superior.
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and Hes(¢, K) = Rio(¢, K) for a forward invariant set K (i.e.,
{¢(0) | x € K} € K).

Let us denote by ¢'(a) the state of the network at time t
which starts from x(0) = a € X. Now we define sets:

X() = {¢'(a) | a € K}, and X> := UL X(r).

The set X*° denotes the set of all reachable states from the
initial states in K over an infinite time horizon. The following
assumptions are made to arrive at an upper bound for the
restoration entropy.

Assumption 1: Maps ¢; : Xi x Uy - X; and h; : X; — Y
are continuously differentiable for any i.

This ensures that the derivatives of ¢; and h; are also contin-
uous. Next we define uniform continuity near a subset which
is used in Assumption 2.

Definition 3: A function f : R” — R? is said to be uni-
formly continuous near a subset X, C R" if for any € > 0,
there exists § > O such that:

If ) —fOOIl <€ VxeXy,Vx eR",

where ||x — x| < 4.

Note that continuous functions are uniformly continuous
near compact sets.

Assumption 2: For any subsystem %;, functions

0di , o 0¢i oh;

— X)), — —(x),
axi( i () o ax,-( i)
are bounded on X*° and uniformly continuous near this set.
Assumption 2 holds when the set X*° is bounded, which is
true for a compact forward invariant set K of initial states.

Now consider the first-order approximation of subsystems
near any trajectory:

zi(t + 1) = Ai(x(0))zi(1) + Bi(x(@)wi(1),
Gi() = Ci(x(1)zi(0). “4)

Here, z;, w;, and ¢; denote the “increments” of x;, u;, and y;,
respectively, and

")),

d¢; 09;
Ai(x) = 8—¢(x;-_P(x)), Bi(x) = i(x;_‘)(x)),
Xi ou;
oh;
i) = 5= (xi),
X;

where x*(x) = (x;, u;) and u; = Z]N:l Viihi(x}).

For the first-order approximation of a subsystem as in (4),
we assume the following dissipation-like inequality [24].

Assumption 3: Consider a subsystem X; as in (1). There
exist n; X n; symmetric matrices P; > 0, Q; > 0 and (m; +
ki) x (m; + k;) symmetric matrices X; with conformal block
partitions )_({A j, 1 € {1,2}, such that the following inequality
is true along all solutions of the interconnected system in (1)
starting in the given compact set K:

[Ai(¥)zi + Bi()wi]” PilAi(¥)z: + Bi(x)w;] < z! Qiz;

Tryil 12
i X' X i
+[V£] I:):(iZl zzz} [z:| i =Ci(x)z, (5

for all z; € R"%, w; € R™ and x € X*°.

The following compositionality assumption relates matri-
ces X; for subsystems, from the above inequality, via the
interconnection matrix> V.

Assumption 4: Assume the following inequality holds:

T
14 comp 14
[,k] x|, <0 (©)
where
-y 11 12 -
X X
Xll X12
XM =1 oy =N =N,
Xi Xi
X3! X3
N
and k=) ;' k.

Inequality (6) is similar to [24, eq. (2.8)] in the context
of compositional verification of stability for interconnected
systems.

Let us now write the first-order approximation of the
network as

zZ(t+ 1) = A@x(1))z(r)
= stack(A; (x(1))z; (1) + Bi(x(1))wi(1))

for all z(r) := stack(z;(¢)) with

N 9

wi = Zl Vi, &= i)z, and Ax) = == (1),
j:
For given n x n symmetric matrices P > 0 and Q > 0, let

Hi(P,Q) :=0.5 Zj}:l:l max{0, log, A;} where A;,j € [1; n], are
the eigenvalues3 of QP~! (or P71Q).

Now we have all the ingredients to present the main result
of this letter.

Theorem 1: For a network as in (2) and under
Assumptions 1-4, the following holds
N
Reo(p, K) < Y HL(P;, Q). @)

i=1
Proof: The proof is inspired by that of [23, Th. 3.7]. From
Assumption 2, we have that A(x) = %—f(x) is bounded on X*°
and is uniformly continuous near this set.
Let P and Q denote the following positive definite and pos-
itive semidefinite block-diagonal n x n matrices, respectively:

P = diag(Py,...,Py), QO =diag(Q1,...,0n).

We have

A PA()Z
N
= > [Ai(®z + Bix)wi] PiA;i(x)z; + Bi(x)w;]

i=1

2Here V is a block matrix with the (i, JHth block given by the matrix V.
3Note that eigenvalues A; are non-negative since they are the roots of
det(Q — A;P) = 0 and as a result A; = xTQx/(xTPx) for some x # 0.
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CRkpd X1? T
4| X\ X32 | wa
o | | X7 X7 <l
Lav] L x3! X2 L ov
T Tall” [ [a]]
Vi Vi
=ZTQZ+ {N Xcomp IN
&1 &1
L v | v
- T
é‘l v T v §1
_ T . comp .
o el
| SN {N
(6)
<0z Vi ()

In the rest of the
Lemma 2 given in

proof, we leverage Theorem 2 and
the appendix. In Theorem 2, we
have Z?:l log, Ai(x) < Hi(P,Ax)TPA(x)) for all d e
[1;7] and x € X*°. From (8) and Lemma 2, we have
Hi(P,AX)TPA(x)) < H.(P, Q) for every x € X°°. Thus,
by using Theorem 2 with v;(-) := 0 and Ay = 2H (P, Q),
d € [1;n], we get Reo(¢, K) < Hrp(P, Q). Since P and Q
are block diagonal, the set of roots of det(Q — AP) = 0
is the same as {A | det(Q; — AP;) = 0,i € [1;N]}. Thus
H;(P,Q) = vazl Hi (P;, Q;) which completes the proof. W

Next, we describe a distributed optimization approach to
search for P;, Q; and X, in (5) in order to compute the upper
bound in (7).

[1l. DISTRIBUTED OPTIMIZATION

In this section, we describe a distributed optimization
method, based on the alternating direction method of
multipliers (ADMM) algorithm [25], for computation of the
upper bound in (7). If Assumptions 1-4 hold, then our objec-
tive is to find, for each subsystem, matrices P;, Q;, and
X, that satisfy (5) and (6). For this, we alternately solve
local feasibility problems and a global feasibility problem. By
local feasibility problem, we refer to a search for the triple
(Pi, Qi, X;), i € [1; NJ, that satisfy (5). And by global feasi-

bility problem, we refer to a search for matrices X, ..., Xy
that satisfy (6).
Local feasibility problem:
Si ={(Pi, Qi X;) | Pi, Q;, and X; satisfying
the requirements in Assumption 3}. 9

Global feasibility problem:
g={X,,..

Now consider the following indicator functions:

., Xp) | condition (6) is satisfied}. (10)

0, (Pi,0:,X)eS,
Is,(Pi, 0. X)) = {oo’ Fr e
_]0, X, ..., Xy g,
Ig&Xy. ... Xy) = {oo, otherwise.

We introduce auxiliary variables Z; for each subsystem to
formulate an optimization problem

N
min _Z]jﬂs,(Pi, 0i.X) +1g(Z1,....Zy), (1)
=
st. X;—Z;=0, Viel[l;N], (12)
where d = (P1,....Pn,Q1,..., 0N, Xy, .., Xy, Z1,
. ZN).

Often large optimization problems can be converted into
smaller sub-problems by separating the objective function
across decision variables. In our objective function, the first
part ILs, is separable by subsystems. This permits parallel com-
putation of the local problems across subsystems. For this, we
introduce dual variables A;. The variables in the ADMM are
updated as follows:

1) For each i € [1; N], we solve local problems:

2
k+1 k+1 k+1 . k k
Pl,+ ’Qi+ ’)—(i+ = argminp, o, xycS; H)_(i —Z; + A B

2) If )_(ll‘j\,l € @, then the optimal solution is achieved and
the algorithm terminates. Otherwise, we solve the global
problem:

N
2
k+1 . k+1 k
Ziny = argmin iz, yeg E H}—(i —Zi+ A ’ =
i=1

3) Now we update the dual variables:

AT =X —Z Al e (LN,

and continue with the first step until a possible
convergence.

The local problems are solved parallelly by sum-of-squares
(SOS) optimization formulation as described in the follow-
ing paragraphs. If required, these values are then used in the
global problem which can be solved by semi-definite program-
ming. The dual variables are updated using the values obtained
from steps 1 and 2. The procedure repeats until convergence is
achieved. Since the indicator functions in (11) are convex, the
solutions are guaranteed to converge to the optimal ones [26].

We reformulate the condition in (5) as an SOS problem to
search for suitable values of P;, Q;, and X;. For this we make
the following assumption.

Assumption 5: Maps ¢; : X; x U; — X; and h; : X; — ¥
in (1) are polynomial functions of x; and u;.

The SOS formulation is given by the following lemma.

Lemma 1: Let Assumption 5 holds and assume set X°° can
be written in terms of a vector of polynomial inequalities*

4The inequalities are considered element-wise.
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X = {x € R" | b(x) > 0}. Further, assume that for each
subsystem X;, there exists a vector of sum-of-squares polyno-
mial B(x, @), o € R™™" of an appropriate dimension so that
the expression in (13) is a sum-of-squares polynomial. Then
Assumption 3 holds.

Proof: We use E(x) to refer to the matrix appearing between
ol and « in (13). Using ¢ = Ci(X)z; and rearrangement of
terms, the inequality in (5) can be rewritten as E(x) > O for
all x € X*°.

When the expression in (13) is an SOS polynomial, we get
a’ Ex)a — B(x, @)Tb(x) > 0 for all & € R and x € X*°.
Since b(x) > 0 for x € X*° and each term of the vector B(x, )
is an SOS polynomial, we get o E(x)a > 0 for all « € R™i+7
and x € X°°. This leads to E(x) > 0 for all x € X*° which
completes the proof. |

Remark 1: Note that X°° denotes the set of all reachable
states starting from the initial set K over an infinite time
horizon. If K is forward invariant, then we have X*°
K. Computation of X*° is a difficult task and in general
undecidable. However, one can satisfy (13) either with an over-
approximation of X* or for any x € R” (i.e., b(x) = 0) (if
successful) which still implies that Assumption 3 holds.

In the next section, we present a nonlinear and a linear
example, and compute the upper bound in (7) by selecting
appropriate values of P;, Q;, and X; for their subsystems.

IV. CASE STuDY

Example 1: Consider the Hénon system [27] with standard
parameters a = 1.4 and b = 0.3:

1.4 — x3 +0.3x;
X1 ’

¢ (x) =[

where x (x1,x) € R2. The quadrilateral K with the
following vertices is a compact forward invariant set [27]:

g1 = (—1.862,1.96), ¢ = (1.848,0.6267),
g = (1743, -0.6533),  qu = (—1.484, —2.3333).

From [16, Th. 16], we already know an upper bound of the
restoration entropy Hies(¢p, K) < 1.704793.

Now, we consider the system as a network of two scalar
subsystems:

$1(x1, 1) = L4 —x7 +03u,  hi(x) =xi,
h2(x2, up) = uy, ha(x2) = x2,
where u; = 2/2:1 vijhj(x;) and v;; denote the entries of the

matrix V = ! . Using the distributed optimization algo-

1 0
rithm introduced in the previous section, we get P = 26,

Py =37, Q) = 421.9223, 0, = 36.99, XI! =36.9483, XI2 =
0.0356, X3> = —37.029, x}! = 37.015, X}? = —0.0178,
and X3? = —36.9696, satisfying conditions in (5) and (6),
and thus we obtain Hies(¢p, K) < Ziz:l Hi(P;, Qi) = 2.0102,

which is close enough to the known upper bound 1.704793
[16, Th. 16].

Next we describe a linear system and compare the upper
bound computed by our modular approach with the known
exact value of the restoration entropy.

Example 2: Consider a five dimensional linear system
¢(x) = Ax. Let a; denote the (i,j)-th entry of A where
ajr = 2, a; = 0.5 for i € [2;5], ajj = 0 for i > j, and
aj = 1 for i < j. For linear systems, the restoration entropy
coincides with the topological entropy which is equal to the
sum of the logarithm of the absolute value of the unstable
eigenvalues of matrix A [16]. Thus, His(¢p, K) = 1 for any
compact set K C R3.

The system can be seen as a network of five scalar
subsystems

d1(x1, u1) = 2x1 + uy, hy(x1) = x1,

oi(xi, ;) = 0.5x; + u;, hi(x) = x;, iel[2;4],

¢s(xs) = 0.5xs, hs(xs) = xs,
where u; = Z;:l vijhj(xj), i € [1 : 4], and the entries of the
matrix V are given as v;; = 1, for i < j, and v; = 0, for
i>=].

Using the distributed optimization algorithm introduced in
the previous section, we get Py = 0.01, P, =1, P3 =6, P4 =
32, 01 = 0.0432, 0, = 0.7584, O3 = 5.9853, Q4 = 28.2875,

X' = 0.0773, X1 = 0.0093, X;> = —0.00145, X}! =
1.5495, X}? = 0.1785, X3 = —0.3203, Xi! = 12.8680,
X2 = 0.0261, X3* = -3.1976, X}' = 13377530.7867,

X2 = —7.9311, X2* = —20.2875, X} = —132323.8913,
X1? = 0, and X2 = —20251359.1959, and thus we obtain
Hres(¢, K) < 3 iy HL(Pi, Qi) = 1.0550. Here, H.(Ps, Os5) =
0 for Ps = p and Qs = 0.5%p for any 0 < p € R. One can
readily see that our computed upper bound is very close to the
exact restoration entropy which is 1. |

To demonstrate the advantage of the proposed modular
approach here, we used the proposed algorithm in [22] for
which the code is publicly available in Example 2. In the
proposed algorithm in [22], the user needs to provide the num-
ber of grid points along each dimension. The grid points are
used to tackle the involved nonlinear nonconvex maximization
problem. By choosing a large number of grid points, one is
expected to get sound results. Table I compares the upper esti-
mates and the computation times from our approach with the
algorithm proposed in [22]. The number of grid points along
each dimension for columns [22](A), [22](B), and [22](C) are
10, 50, and 60, respectively, while the number of iterations
for all of them is 15. The computations were performed on an
Apple M1 with 8 cores and 16 GB RAM.

V. CONCLUSION

We provided a modular approach to compute upper bounds
of the restoration entropies for large-scale networks by looking

[ —Bix)TPBi(x) + X!
o T Tyv21
—A(x)TP;Bi(x) + C;(x)T X3

— Bi(x)TPA;(x) + X1 Ci(x)
— A0TPAIRX) + Qi + Ci(x)TX?2Ci(x)

}a — B(x, ) h(x), Vo eR™  (13)
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TABLE |
COMPARISON WITH THE ALGORITHM IN [22] FOR EXAMPLE 2

Our approach | [22](A) | [22](B) | [22](C)
Time 0.8448 s 2.07 s 1.23 hr | 2.93 hr
Estimate | 1.0550 1.0076 | 1.0076 | 1.0076

at them as interconnections of smaller subsystems. In par-
ticular, we formulated a distributed optimization problem
composed of local problems and a global problem. The
local problems are solved separately for subsystems. We also
described an SOS formulation to solve the local problems
provided that the subsystem dynamics are of polynomial struc-
ture. The results from the local problems are then checked for
the satisfaction of a compositionality criterion in the global
problem. Finally, we applied the described approach on two
case studies and compared the obtained estimates with the
known values in the literature. Table I demonstrate the advan-
tage of the modular approach over the proposed algorithm
in [22]. As part of future work, we intend to formulate
local feasibility problems in a way that will also minimize
Hy(P;, Q;) in order to arrive at the best possible upper bound
given the proposed modular approach.

APPENDIX

Theorem 2: [16, Th. 12] For system in (2), let
Assumption 2 holds and let there exist continuous and
bounded on X*° functions v; : R” — R, constants Ay > 0,
d € [1; n], and an n x n symmetric matrix P > 0 such that

d
va(@() = va(x) + Y logy 2i(x) < Ag, Vx € X,

i=1

where A;(x) > A;j+1(x) > 0 are the roots of det(A(x)TPA(x) —
AP) = 0 repeated in accordance with their algebraic multiplic-
ities. Then Ry (¢, K) < 0.5max{A1, ..., A,}.

Lemma 2: For the symmetric matrices P > 0, Q2 > Q1 >0
we have Hy (P, Q) > HL(P, Q).

Proof: Note that both det(Q — AP) = 0 and
det(P~Y2QP~1/2 — xI) = 0 have identical roots. Since,
0> > 0; and P12 g symmetric, we have P’1/2Q2P’1/2 >
P~12Q1P~1/2 Then by Weyl’s inequality [28, Th. 4.3.1], we
obtain Hy (P, Q7)) > Hr(P, Q). [ |
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