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Toward Minimal Data Rate Enforcing Regular
Safety Properties: An Invariance

Entropy Approach
Mahendra Singh Tomar and Majid Zamani , Senior Member, IEEE

Abstract—The study of minimal data rate for control
using some notions of entropy has been so far limited
to classical control tasks such as set invariance, state-
estimation, or stabilization. In this letter, for the first time,
we present a study on sufficient data rates to enforce regu-
lar safety properties over uncertain systems with dynamics
described by set valued maps. Every regular safety prop-
erty has a set of bad prefixes which can be modelled
by a deterministic finite automaton (DFA). The main idea
is to construct a hybrid system by taking the product of
the deterministic finite automata with the given system
and studying the invariance feedback entropy (IFE) of con-
trolled invariant sets of the hybrid system. If there exists
a nonempty controlled invariant set for the hybrid system
satisfying a certain property then there exists a coder-
controller with a data rate not less than the IFE that can
enforce the regular safety property over the original control
system. We demonstrate the effectiveness of our results
by designing a coder-controller enforcing a regular safety
property over a linear control system.

Index Terms—Data rate constrained feedback, entropy,
networked control systems, regular safety properties.

I. INTRODUCTION

ANETWORKED control system has a large number
of devices distributed spatially. Many such devices

exchange information over some digital communication chan-
nel that can only transmit a finite number of bits per unit
of time. For efficient utilization of the channel’s transmission
capacity, each device should use a small number of bits/time
(data rate). The smaller the data rate, the more devices can
share the same channel. This gives rise to the study of smallest
data rate needed in the feedback path that permits the satis-
faction of a given control task. Consider the simple case of
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Fig. 1. Coder-controller feedback loop.

one system together with its associated coder and controller
as shown in Fig. 1. Since only a finite number of bits can be
transmitted at any given time, the exact value of information
collected by sensors cannot be transmitted with complete
accuracy. Therefore, only a finite precision of information is
transmitted and thus there is an inexactness in the information
received at the controller/decoder side. The smaller the number
of bits used, the lower is the precision of information received
at the controller side. For control tasks such as state estimation
or set invariance, it has been shown that the feedback data rate
cannot be smaller than a lower limit which can be identified
in terms of some notions of entropy, see [1], [2].

For linear control systems and specifications such as stabi-
lization, observation, and set invariance, it has been shown that
the minimum data rate above which those specification can be
enforced is given by the unstable eigenvalues of the system
matrix (see e.g., [1], [3], [4]). There is an extensive literature
studying limited feedback data rate for linear control systems,
see e.g., [5] and references therein. Comprehensive reviews of
results on data rate limited control can be found, e.g., in [4],
[6], [7], [8], [9], [10].

The control specifications that we consider in this letter are
called regular safety properties [11]. A safety property is a set
of infinite words over a finite alphabet, such that every infinite
word that violates the safety property has a finite bad prefix.
A safety property is called regular if its set of bad prefixes
constitutes a regular language. This set of bad prefixes can
be described via a deterministic finite automata (DFA) that
involves a set of accepting-states [11]. If an accepting-state is
reached in any finite trace of the DFA, then the safety property
is violated. Verifying a regular safety property for a system
can be reduced to an invariant checking on the product of
the system and a DFA recognizing bad prefixes of the safety
property [11]. By taking the product of the DFA with a given
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control system, one obtains a hybrid control system. Any tra-
jectory of the hybrid system conforms to some trace of the
DFA. If the hybrid system evolves over a hybrid domain that
does not intersect states corresponding to the accepting-states
of the DFA, then closed-loop trajectories satisfy the regular
safety property. Hence, we focus on controlled invariant sets
of the hybrid system that do not intersect the accepting states
of the DFA, and that have non empty intersection with the
initial set of states in the hybrid domain. Any coder-controller
that renders these sets invariant also enforces the regular safety
property over the original control system.

For uncertain control systems, the necessary state
information required by any controller, to make a subset of
the state space invariant, is quantified by invariance feedback
entropy (IFE) [12]. In other words, the IFE characterizes the
smallest asymptotic average data rate, from the coder to the
controller, above which the subset can be made invariant over a
digital noiseless channel. In this letter, we study IFE of hybrid
controlled invariant sets of products of control systems and
their DFAs. If the IFE is finite, then there exists a coder-
controller with a data rate not less than the IFE such that
the regular safety property can be enforced over the original
control system.

We consider uncertain control systems with dynamics
described by set valued maps. First, we show that the IFE of
a given controlled invariant set of the hybrid system is lower
bounded by the IFE of the projection of the hybrid controlled
invariant set onto the original control system. For the case
of discrete time linear control systems (dtLCS), this lower
bound can be expressed in terms of the unstable eigenval-
ues of the systems matrices. Then we present the relationship
between the invariance feedback entropy of the constructed
hybrid system and the smallest feedback data rate enforcing
the regular safety property over the original system. For the
particular case of invariance as a regular safety property, the
minimal data rate for the original system is equal to the invari-
ance feedback entropy of the hybrid system. We also show
that the lower bound is tight for the case of invariance as a
regular safety property. This result can be potentially helpful
to analyze hybrid systems by focussing on parts of the DFA
describing the bad prefixes. Further, we discuss a class of reg-
ular safety properties (identified by the structure of the DFA
describing bad prefixes) such that, for dtLCS, the smallest
required data rate is upper bounded in terms of the unstable
eigenvalues of the system matrix. Finally, we present a two
dimensional linear system and describe a coder-controller that
enforces a given regular safety property and operates at a data
rate equal to the derived upper bound.

II. PRELIMINARIES

A. Notation

We use R and Z to denote sets of real numbers and integers,
respectively. Restriction of such a set is denoted with subscript
annotation, e.g., Z≥0 denotes the non-negative integers. By
[k1; k2] we denote the set of integers {j ∈ Z | k1 ≤ j ≤ k2}.
For a finite set A, we use #A to denote the number of elements
of A. We denote the closed and right half-open intervals in
Z by [a; b] and [a; b), respectively. The restriction of a map
F : A → B to a subset M ⊆ A is denoted by F|M . The notation

F : A ⇒ B denotes a set-valued map, i.e., for a ∈ A, F(a) ⊆ B.
We use BA to denote the set of all functions f :A → B. For
a set B, a sequence α = {α(t)}n

t=0 ∈ B[0;n] and τ ≤ n, the
concatenation of A ⊆ B to a sub-sequence α|[0;τ ] is denoted
by α|[0;τ ]A. For x ∈ R

n and W ⊂ R
n by x+W we denote the

set {x+w | w ∈ W}. We use spec(A) to denote the multiset of
eigenvalues of a matrix A and it is such that if any eigenvalue
has algebraic multiplicity a then it appears a times in spec(A).
A cover of a set Q is a collection of subsets of Q such that
the union of the sets in the collection contains Q. An under-
line, e.g., X, denotes that the quantity belongs to the hybrid
domain.

First we recall the definition of invariance feedback entropy
and the associated terms. Then, we describe deterministic finite
automata (DFA) which are used together with a given control
system to define hybrid systems.

B. Invariance Feedback Entropy

We define a system as a triple

� = (X, U, F),

where X and U are nonempty sets and F : X × U ⇒ X is a
set-valued transition map such that for all xt ∈ X, ut ∈ U we
have xt+1 ∈ F(xt, ut) 	= ∅.

Given a nonempty set Q ⊆ X, a cover A of Q and a
map G : A → U, the tuple (A, G) is called an invari-
ant cover (A, G) of � and Q if A is finite and for all
A ∈ A we have F(A, G(A)) ⊆ Q. Here, F(A, G(A)) refers
to ∪x∈AF(x, G(A)). An invariant cover immediately provides
a coder-controller scheme that keeps the trajectories starting
in the set Q confined within it and operates at a data rate of
log2 #A bits/sec.

For τ ∈ Z>0, let S ⊆ A[0;τ) be a set of sequences in A of
lengths τ . For α ∈ S and t ∈ [0; τ − 1) define

PS(α|[0;t]) := {A ∈ A | α|[0;t]A = α̂|[0;t+1],

for some α̂ ∈ S}, (1)

as the set of immediate successor cover elements A of α|[0;t]
in S and for t = τ − 1

PS(α|[0;t]) :={A ∈ A | A = α̂(0), for some α̂ ∈ S},
as the set of the first elements α̂(0) of the members α̂ of S . A
set S ⊆ A[0;τ) is called (τ, Q)-spanning in (A, G) if PS(α)

with α ∈ S covers Q and for every α ∈ S , t ∈ [0; τ − 1),

F(α(t), G(α(t))) ⊆
⋃

A′∈PS (α|[0;t])
A′. (2)

For every (τ, Q)-spanning set S , we define an expansion
number N(S) as

N(S) := max
α∈S

τ−1∏

t=0

#PS(α|[0;t]).

Note that a (τ, Q)-spanning set also provides a coder-controller
scheme to enforce invariance of the set Q. This scheme is τ

periodic and requires a data rate (1\τ) log2(N(S)) that can be
lower than log2 #A.
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For a given invariant cover (A, G), we denote by
rinv(τ,A, G, �) the smallest expansion number possible for
any (τ, Q)-spanning set in (A, G), i.e.,

rinv(τ,A, G, �) := min{N(S) | S is

(τ, Q)-spanning in (A, G)}.
Then the entropy of the invariant cover (A, G) is given by

h(A, G) := lim
τ→∞

1

τ
log2 rinv(τ,A, G, �),

where the existence of the limit follows from the subadditivity
of log2 rinv(·,A, G, �) [12]. The invariance feedback entropy
(IFE) of � and Q is defined as

hinv(Q, �) := inf
(A,G)

h(A, G),

where the infimum is taken over all invariant covers (A, G)

of � and Q, using the convention that inf ∅ = ∞.
The data rate theorem in [13] shows that the invariance

feedback entropy tightly lower bounds the data rate amongst
the set of coder-controllers that can make the set Q invariant.

Next, we formally define dtLCS and DFA describing bad
prefixes of some safety property. Then, we introduce the defi-
nition of a hybrid system and its controlled invariant sets called
HCI sets. A nonempty HCI set identifies a set of initial states
such that trajectories of the original control system, starting
from this set, satisfy the regular safety property.

C. Some Definitions

Definition 1 (dtLCS): A discrete-time linear control system
(dtLCS) is a system � = (X, U, F) with X = R

n, U = R
m,

and F given as

∀x∈X∀u∈U F(x, u) = Ax + Bu + W, (3)

where A ∈ R
n×n, B ∈ R

n×m and the disturbance set W ⊂ R
n

is Lebesgue measurable.
Definition 2 (DFA): A deterministic finite automaton is a

tuple A = (Q, q0,�, δ, Acc) where Q is a finite set of states,
q0 ∈ Q is the initial state with q0 /∈ Acc, � is a finite set of
alphabet, δ : Q × � → Q is a transition map, and Acc ⊆ Q
denotes the accepting states.

In this letter we focus on regular safety properties whose
set of bad prefixes can be described by a DFA.

We also consider a labeling function L : X → � that assigns
to every state in X an element of the set of alphabet of the
DFA. The set of alphabet � = {σ1, . . . , σM} together with
the labeling function L provide a partition of the state set
X = ∪M

j=1Xj, where Xj = L−1(σj).
Definition 3 (Hybrid System): Consider a system � =

(X, U, F), a DFA A = (Q, q0,�, Acc), and a labeling func-
tion L : X → �. The product of � and A is a hybrid system
defined as

�p := (X, U, F), (4)

where X := {(q, q′, x) ∈ Q×Q×X | (q, L(x), q′) ∈ δ}, and for
(q, q′, x) ∈ X, the transition map F : X × U ⇒ X is defined as

F
(
(q, q′, x), u

)
:= {(q′, q̂, x′) ∈ X | x′ ∈ F(x, u)}. (5)

We use π to denote the projection of A ⊂ X on X: π(A) :=
{x ∈ X | (q1, q2, x) ∈ A, for some q1, q2 ∈ Q}. Next we

define a set Acc := {(q, q′, x) ∈ X | q′ ∈ Acc} using the set
of accepting states Acc of the DFA. The set Acc is used to
describe the satisfaction of the regular safety property by a
state sequence of the hybrid system �p as formalized below.

Consider a state sequence ξ
x

= (x(0), . . . , x(k), . . .) of �p
with x(k) = (q1(k), q2(k), x(k)). We say ξ

x
satisfies a regular

safety property As (with a bad prefix DFA A), denoted by
ξ

x
|= As, if q1(0) = q0 and x(k) /∈ Acc for all k ∈ Z≥0.
Note that if ξ

x
|= As, then the corresponding state sequence

(x(0), . . . , x(k), . . .) of � also satisfies the safety property As.
Definition 4 (HCI Set): A set Q ⊆ X\Acc is a hybrid con-

trolled invariant (HCI) set for �p if ∀x ∈ Q, ∃u ∈ U such
that F(x, u) ⊆ Q. By I∗ we denote the maximal HCI set, i.e.,
I∗ ⊇ Q′ if Q′ is an HCI set for �p.

In the next section we show that the invariance feedback
entropy of any hybrid controlled invariant set is lower bounded
by the IFE of the projection of the set onto the original control
system.

III. RELATION BETWEEN ENTROPIES OF � AND �p

The following theorem establishes that any finite average
feedback data rate which can be used to make a hybrid set
controlled invariant is also sufficient to render the projection
of the set invariant.

Theorem 1: Consider a system � = (X, U, F), a regu-
lar safety property As with a bad prefix DFA A, the hybrid
system �p as in (4) and a nonempty compact HCI set Q. The
invariance feedback entropy of �p and Q satisfies

hinv(Q, �p) ≥ hinv(π(Q),�). (6)

Further, let � be a dtLCS, Q̂ := π(Q), and R
n = E1 ⊕ E2,

where E1 is an A invariant subspace of R
n with E1 	= {0},

and ⊕ stands for the direct sum. Let π1 : R
n → E1 be the

projection onto E1 along E2, and μ1(π1(W)) < μ1(π1(Q̂)),
also let n1 denote the dimension of the linear space E1 and μ1
denote the n1-dimensional Lebesgue measure. Then one gets

hinv(Q, �p)

≥ log2

(
| det A|E1 |

μ1(π1(Q̂))

(μ1(π1(Q̂))1/n1 − μ1(π1(W))1/n1)n1

)
. (7)

Proof: If hinv(Q, �p) = ∞, the inequality (6) holds inde-
pendently of the left-hand-side. Subsequently, we assume that
hinv(Q, �p) < ∞. From finiteness of hinv(Q, �p) and [13,
Lemma 3] we know that an invariant cover of �p and Q exists.
We pick ε ∈ R>0 and an invariant cover (A2, G2) of �p and
Q, so that h(A2, G2) ≤ hinv(Q, �p) + ε.

Consider A1 := {π(A) | A ∈ A2}. In [13, Lemma 9], let
M = π , Q1 = π(Q), Q2 = Q, X1 = X = π(X), X2 = X, r =
identity map, U1 = U2 = U, F1 = F, F2 = F, �1 = �, and
�2 = �p. We observe that conditions 1 − 3 in [13, Lemma 9]
hold, while condition 4 holds with the equality. Thus, there
exists a map G∗

1 : A1 → U such that (A1, G∗
1) is an invariant

cover of � and π(Q), and h(A1, G∗
1) ≤ h(A2, G2). By our

choice of (A2, G2), we have h(A2, G2) ≤ hinv(Q, �p) + ε

and by the definition of invariance feedback entropy we have
hinv(π(Q),�) ≤ h(A1, G∗

1). Hence we get hinv(π(Q),�) ≤
hinv(Q, �p) + ε. Since ε is arbitrary, we obtain (6).
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Since Q is compact, its projection π(Q) = Q̂ is also com-
pact. Thus, [13, Th. 7] together with (6) satisfies the inequality
in (7).

In the following section, we describe the coder-controller.
After that we elaborate on the significance of the study of IFE
of the hybrid system �p in the context of the smallest data rate
needed to enforce the regular safety property over the original
system �.

IV. THE CODER-CONTROLLER

We consider the definition of coder-controllers as introduced
in [13, Sec. V.A]. Consider the Fig. 1 with the coder located
at the sensor side. A coder-controller is a triple C = (S, γ, δ)

where S is the coding alphabet, and γ and δ are compati-
ble coder and controller function, respectively. At any time
step t the coder encodes the current state of the system and
transmits a symbol st ∈ S generated by the coder function
γ : ∪t∈Z≥0 X[0;t] → S. The symbol is transmitted over
a discrete noiseless channel to the controller which gener-
ates a control input determined by the controller function
δ : ∪t∈S≥0 S[0;t] → U. Let Zτ denote the set of all possi-
ble symbol sequences of length τ generated in closed loop
by the coder-controller. For any symbol sequence ζ ∈ Zτ , by
Z(ζ ) we denote the set of all possible successor symbols, i.e.,
Z(ζ ) := {s ∈ S | ∃ζ̂ ∈ Zτ+1, ζ̂ = ζ s}. The transmission data
rate of a coder-controller C is defined by

R(C) := lim sup
τ→∞

max
ζ∈Zτ

1

τ

τ−1∑

t=0

log2 #Z(ζ |[0;t)),

as the asymptotic worst-case average number of bits to identify
a successor symbol.

From the data rate theorem [13], we have

hinv(Q, �) = inf
C∈Ĉ(Q)

R(C),

where Ĉ(Q) is the set of all such coder-controllers that can
make a nonempty set Q ⊆ X invariant for system �.

Significance of invariance feedback entropy of the hybrid
system: Consider the maximal hybrid controlled invariant set
I∗ and an HCI set Q ⊆ I∗. Let X0 := {(q, q′, x) ∈ X | q = q0}
denote the initial set of states in the hybrid domain and let
I∗

0 := I∗ ∩ X0. Since I∗ is an HCI set, for all x = π(x), x ∈ I∗
0,

there exists a set of control sequences ω ∈ U[0;∞) that enforces
the regular safety property on the system �. Note that the
regular safety property is enforceable only for the states in
the set π(I∗

0).
By Q

0
:= Q ∩ X0 we denote the subset of Q included in

the initial set of states in the hybrid domain. Let C̃(π(Q
0
)) be

the set of all such coder-controllers that can enforce the given
regular safety property for the set of initial states π(Q

0
) for

the system �. Further, let

Rm(π(Q
0
)) := inf

C∈C̃(π(Q
0
))

R(C) (8)

denote the smallest data rate amongst the coder-controllers in
C̃(π(Q

0
)). We observe that Rm(π(Q

0
)) ≤ Rm(π(I∗

0)) because
π(Q

0
) ⊆ π(I∗

0).
Any coder-controller that renders the trajectories starting

from Q
0

invariant in Q also enforces the regular safety property

Fig. 2. Bad prefix DFA for invariance as a particular case of reg-
ular safety property. Here the labelling function is: L(Q) = s and
L(X\Q) = υ.

over the system � for the set of initial states π(Q
0
). Therefore,

we have

Rm(π(Q
0
)) ≤ hinv(Q, �p), (9)

i.e., the invariance feedback entropy of the HCI set Q for the
hybrid system gives a value of the data rate which is sufficient
to enforce the regular safety property for the set of initial states
π(Q

0
) of the system �.

Remark 1: Consider the case Q = Q
0
. For any hybrid state

x0 = (q0, q′, x) ∈ Q
0

and any u ∈ U, if the next state x1 ∈
F(x0, u) is inside Q

0
then from the definition of F in (5) we get

q′ = q0. Thus, Q = Q
0

⊆ {(q0, q0, x) ∈ X0}. This implies that
enforcing the regular safety property is equivalent to enforcing
invariance of Q. Therefore

Rm(π(Q
0
)) = hinv(Q, �p).

The condition I∗ = I∗
0 holds for invariance as the particular

case of regular safety property as discussed further in the next
section.

V. INVARIANTS AS REGULAR SAFETY PROPERTY

The following theorem shows that the lower bound in (6)
is tight for invariance.

Theorem 2: Consider a system � = (X, U, F), a subset Q
of X, a labeling function L : X → {s, υ}, L(Q) = s, L(X\Q) =
υ and invariance as a regular safety property with the bad
prefix DFA A = (Q, q0,�, δ, Acc) as shown in Fig. 2. Here
Q = {q0, q1}, � = {s, v}, and Acc = {q1}. For any nonempty
HCI set Q the following relation holds

hinv(Q, �p) = hinv(π(Q),�). (10)

Further, if � is a dtLCS as in (3) with W = {0} and the set
π(Q) is compact then we have

hinv(Q, �p) = H(A),

where

H(A) =
∑

|λ| > 1,

λ ∈ spec(A)

log2|λ|. (11)

Proof: The set X can be partitioned into 3 subsets: X =
{(q0, q0, m) | m ∈ Q} ∪ {(q0, q1, p) | p ∈ X\Q} ∪ {(q1, q1, p) |
p ∈ X}. Let the maximal hybrid controlled invariant set be
I∗ ⊆ {(q0, q0, m) | m ∈ Q}. Now consider an HCI set
Q ⊆ I∗. From the controlled invariance of the set Q for �p,
we get the controlled invariance of π(Q) for �. We assume
hinv(π(Q),�) to be finite and then from [13, Lemma 3] one
gets the existence of an invariant cover of (�, π(Q)). For
ε > 0, consider an invariant cover (A, G) of (�, π(Q)) such
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that h(A, G) ≤ hinv(π(Q),�)+ ε. Let A := {{q0}× {q0}×A |
A ∈ A} and for A ∈ A let G(A) := G(π(A)). Since
Q = {q0} × {q0} × π(Q), one gets that A covers Q. Now
we show that (A, G) is an invariant cover of (�p, Q). For
A ∈ A, from (5) we have F(A, G(A)) = {(q0, q, x′) ∈ X |
x′ ∈ F(π(A), G(π(A)))} and from (A, G) being an invariant
cover we have F(π(A), G(π(A))) ⊆ π(Q). Since L(π(Q)) = s
and δ(q0, s) = q0, for every (q0, q, x) ∈ F(A, G(A)) we get
q = q0. Thus F(A, G(A)) ⊆ Q and (A, G) is an invariant cover
of (�p, Q).

Consider a (τ, π(Q))-spanning set S in (A, G) of � such
that it has the smallest expansion number, i.e., N (S) =
rinv(τ,A, G, �). Define a set S ⊆ A[0;τ) as S := {α ∈
A[0;τ) | ∃α ∈ S s.t. α(t) = {q0} × {q0} × α(t)∀t ∈ [0; τ)}.
We show that S is (τ, Q)-spanning in (A, G) for �p. Since
Q = {q0} × {q0} × π(Q) and {α(0) | α ∈ S} covers π(Q), we
obtain that {α(0) | α ∈ S} covers Q.

To show (2), observe that for all α ∈ S and t ∈
[0; τ − 2], we have F(α(t), G(α(t))) ⊆ π(Q) and, hence,
L(F(α(t), G(α(t)))) = L(π(Q)) = s and δ(q0, L(x)) = q0 for
every x ∈ F(α(t), G(α(t))). Now consider α ∈ S and α ∈ S
such that α(t) = {q0} × {q0} × α(t) for all t ∈ [0; τ). Then

F(α(t), G(α(t))) = F(α(t), G(α(t)))

= {(q0, δ(q0, L(x)), x) ∈ X | x ∈ F(α(t), G(α(t)))}
= {(q0, q0, x) ∈ X | x ∈ F(α(t), G(α(t)))}
(2)⊆ {(q0, q0, x) ∈ X | x ∈ ∪A∈PS (α|[0;t])A)}
= ∪A∈PS (α|[0;t])A.

Thus, S is a (τ, Q)-spanning set in (A, G) for �p. Note that
#PS(α|[0;t]) = #PS(α|[0;t]) for all t ∈ [0; τ − 1]. Therefore,

N (S) = N (S)

rinv(τ,A, G, �p) ≤ N (S) = rinv(τ,A, G, �)

h(A, G) ≤ h(A, G) ≤ hinv(π(Q),�) + ε

hinv(Q, �p) ≤ hinv(π(Q),�) + ε.

Since ε is arbitrary, we get

hinv(Q, �p) ≤ hinv(π(Q),�).

This together with (6) gives hinv(Q, �p) = hinv(π(Q),�).
For the case of � being a dtLCS with W = {0} and the
set π(Q) being compact and controlled invariant, from the
result on invariance entropy for deterministic systems (see [4,
Th. 3.1]), we have hinv(π(Q),�) = H(A).

Corollary 1: Consider a system � = (X, U, F) and a bad
prefix DFA A = (Q, q0,�, δ, Acc). Then for any HCI set Q
of the form Q = {(q, q, x) ∈ X} with a given q ∈ Q\Acc, the
equality in (10) holds.

Proof: The proof is similar to that of Theorem 2 with q0
replaced by q.

Next we consider the bad prefix DFA shown in Fig. 3. For
regular safety properties of this particular structure, we show
that the smallest required feedback data rate for a dtLCS is
upper bounded in terms of the unstable eigenvalues.

For the DFA, the set of alphabet � is {ai | 0 ≤ i ≤ N}∪{bi |
0 ≤ i ≤ N − 1} ∪ {c} with ai 	= c, bi 	= c and ai 	= bi. Each
σ ∈ � denotes a subset of X and � is a partition of X with

Fig. 3. Bad prefix DFA for a regular safety property. Here ¬(ai ∨ bi )
denotes the set Rn\(ai ∪ bi ).

compact ai’s and bi’s. The labelling function L : X → � is
given as L(x) = σ if x ∈ σ . For a hybrid state set X, let Xi,i and
Xi,i+1 denote the subsets of X that do not involve the accepting
state qN+1, i.e., Xi,i := {(qi, qi, x) | x ∈ ai},∀i ∈ [0; N], and
Xi,i+1 := {(qi, qi+1, x) | x ∈ bi}, ∀i ∈ [0; N − 1].

Consider an HCI set Q and its subset Q
0

:= {(q, q′, x) ∈
Q | q = q0}. Let J be the largest subset of [0; N] such that
for all k ∈ J , we have Xk,k ∩ Q 	= ∅. By Qm

k,k
, we denote the

maximal HCI subset of Xk,k ∩ Q.
For the proof of the next result, we need the following

lemma [4, Proposition 1.11].
Lemma 1: For a dtLCS � with W = {0}, if Q is a controlled

invariant set, then also cl(Q) is controlled invariant.
Proposition 1: Consider a system � = (X, U, F), where F

is single-valued and for which the regular safety property, cor-
responding to the bad prefix DFA in Figure 3, can be enforced.
Let Q be an HCI set. Then

hinv(Q, �p) ≤ max
k∈J

hinv(π(Qm
k,k

),�).

For a dtLCS � with W = {0}, we have Rm(π(Q
0
)) ≤ H(A),

where Rm(π(Q
0
)) and H(A) are defined in (8) and (11),

respectively. Further if I∗ ⊆ X0,0, then we have Rm(π(I∗
0)) =

H(A).
Proof: Let k̂ = maxJ . Then we have Qm

k̂,k̂
= Xk̂,k̂ ∩ Q.

Observe that since Q is controlled invariant, for all x ∈ Xk̂,k̂∩Q
there exists u ∈ U such that F(x, u) ∈ Q. Now by the structure
of X and k̂ being the largest member of J , we get F(x, u) ∈
Xk̂,k̂ ∩ Q, i.e., Xk̂,k̂ ∩ Q is also an HCI set.

If k̂ = 0, then Q ⊆ X0,0 and thus from Corollary 1 we have
hinv(Q, �p) = hinv(π(Q),�).

Now we consider k̂ > 0. For k ∈ J , k < k̂, by the structure
of X we know that for every x ∈ ((Xk,k ∩ Q)\Qm

k,k
) one has

F(x, u) ∈ Xk,k+1 for all u ∈ U. Also by the structure of X and
for every x ∈ Xk,k+1, one has F(x, u) ∈ (Xk+1,k+1 ∪ Xk+1,k+2)

for all u ∈ U. Thus we know that no trajectory stays in
((Xk,k ∩ Q)\Qm

k,k
) or Xk,k+1 for more than one time instant.

Therefore, these sets do not play any role in the invariance
feedback entropy which involves a long horizon average of
base 2 logarithm of the number of possible successors as iden-
tified by PS(·) which is defined in (1). This together with
[14, Proposition 1] result in

hinv(Q, �p) ≤ max
k∈J

hinv(Q
m
k,k

, �p).

This can be rewritten using Corollary 1 as

hinv(Q, �p) ≤ max
k∈J

hinv(π(Qm
k,k

),�).
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Fig. 4. For the case study, the subfigures (1) and (2) show the DFA and
the directed graph, respectively.

Now we consider � to be a dtLCS with W = {0}. Then from
Lemma 1 and for all k ∈ J , the subsets Qm

k,k
are closed and,

thus, compact. Therefore, we obtain hinv(π(Qm
k,k

),�) = H(A)

for all k ∈ J and from (9) one gets Rm(π(Q
0
)) ≤ H(A).

If I∗ ⊆ X0,0, then I∗ = I∗
0 and thus from Remark 1

and Corollary 1, we have Rm(π(I∗
0)) = hinv(I∗, �p) =

hinv(π(I∗),�) = H(A).

VI. CASE STUDY

Consider a dtLCS

�:xt+1 ∈ F(xt, ut) = Axt + ut + W, A =
[

1.5 0
0 0.5

]
,

with xt ∈ X = R
2, ut ∈ U = [−1, 1]2 and W = [−0.1, 0.1]2.

Also consider the bad prefix DFA as shown in Fig. 4 with a0 =
[−0.25, 0.25] × [5.5, 5.75], b0 = [−0.5, 0.5] × [2.25, 3.25]
and b1 = a2 = [−1, 1] × [−2, 2]. The aforementioned safety
property requires that all state sequences initiating in region
a0, should either stay in a0 or reach and stay in region a2 = b1
after spending a single step in region b0. Also state sequences
starting in b0 should enter in a2 = b1 in the next step and
stay therein afterwards. We observe that the safety property
is enforceable for the set of initial states a0 ∪ b0. The hybrid
system has an HCI set Q = X0,0∪X0,1∪X1,2∪X2,2 with Qm

0,0
=

∅ and Qm
2,2

= X2,2. From Proposition 1, we have Rm(a0∪b0) ≤
hinv(π(Qm

2,2
),�), and from [14, Th. 1] and [13, Th. 9] we have

hinv(π(Qm
2,2

),�) ≤ 1. Now we describe a coder-controller that
enforces the regular safety property and operates at an average
data rate = 1. We define sets d1 = [0, 1] × [−2, 2], d2 = [−
1, 0]×[−2, 2], and E = R

2\(a2∪b0∪a0). The coding alphabet
is S = {a0, b0, d1, d2, E}. For any state sequence {xk}t

k=0, t ≥
0, the coder function is γ ({xk}t

k=0) = σ where σ ∈ S is such
that xt ∈ σ . For any symbol sequence {sk}t

k=0, the controller
function is δ({sk}t

k=0) = G(st) where the map G:S → U is
given by G(a0) = u0 = [0; 0], G(b0) = u0, G(d1) = u1 =
[−0.9; 0.7], G(d2) = u2 = [0.9; 0.7], and G(E) = u0. Now we
construct a directed graph, with {a0, b0, d1, d2} as the set of
nodes, that captures all trajectories generated under the control
input map G : S → U, i.e., for every trajectory {xt}∞t=0, x0 ∈
R

2\E with controls ut = G(st), st � xt, there exists a path
{st}∞t=0 (here st denotes a node) in the graph such that xt ∈
st for all t ≥ 0. The graph is shown in Fig. 4(2). For any
node s the label for all its outgoing edges is G(s) and the
set of successor nodes is {ŝ ∈ S\E | (As + BG(s)) ∩ ŝ 	= ∅}.
From Fig. 4(2), we observe that after a finite amount of time
the system state will trace the strongly connected component
(SCC) constituted by nodes d1 and d2. Once the state arrives
in the SCC, the coder transmits 1 bit at every time step so that

the controller can identify the set that contains the current state
out of the two possibilities of d1 and d2. Thus, the asymptotic
average data rate of the coder-controller is 1 bit/unit-step.

VII. CONCLUSION

In this letter we described sufficient data rate to enforce a
regular safety property over a limited (finite) data rate channel.
The study involves construction of a hybrid system by taking
a product of the given system with the bad prefix DFA of the
regular safety property. For the hybrid system, the maximal
controlled invariant set I∗, that doesn’t include any accept-
ing states of the DFA, is of special interest. This set allows
enforcing the regular safety property by a coder-controller that
is designed to make the set invariant. The invariance feedback
entropy of I∗ and the hybrid system provides us with a data
rate which is sufficient enough to enforce the regular safety
property over the original system. As the first main result, we
showed that the IFE of an HCI set is lower bounded by the
IFE of the projection of the set on to the original system. Our
second result establishes that this lower bound is tight for the
case of invariance as a special case of regular safety property.
Finally we also described a particular DFA structure such that,
for a linear deterministic control system, the sum of the log-
arithm of the unstable eigenvalues is a sufficient data rate to
enforce the property over a limited data rate channel.

A potential future direction is to study the gap between
the described sufficient data rate and the minimal allowable
data rate for any regular safety property. Another interesting
direction is to study whether this analysis can be extended to
omega regular properties [11].
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