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a b s t r a c t

For a closed-loop system with a digital channel between the sensor and controller, invariance entropy
quantifies the smallest average rate of information above which a compact subset Q of the state
set can be made invariant. There exist different versions of invariance entropy for deterministic and
uncertain control systems, which are equivalent in the deterministic case. In this paper, we present
the first numerical approaches to obtain rigorous upper bounds of these quantities. Our approaches
are based on set-valued numerical analysis and graph-theoretic constructions. We combine existing
algorithms from the literature to carry out our computations for several linear and nonlinear examples.
A comparison with the theoretical values of the entropy shows that our bounds are of the same order
of magnitude as the actual values.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In classical control theory, sensors and controllers are usually
connected through point-to-point wiring. In networked control
systems (NCS), sensors and controllers are often spatially dis-
tributed and involve wireless digital communication networks
for data transfer. Compared to classical control systems, NCS
provide many advantages such as reduced wiring, low installation
and maintenance costs, greater system flexibility and ease of
modification. NCS find applications in many areas such as car
automation, intelligent buildings, and transportation networks.
However, the use of communication networks in feedback control
loops makes the analysis and design of NCS much more complex.
In NCS, the use of digital channels for data transfer from sensors
to controllers limits the amount of data that can be transferred
per unit of time. This introduces quantization errors that can
affect the control performance adversely.

The problem of stabilizing or observing a system over a com-
munication channel with a limited bit rate has attracted a lot
of attention in the past two decades. In this context, a classical
result, often called the data-rate theorem, states that the minimal
bit rate or channel capacity above which a linear system can
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be stabilized or observed is given by the log-sum of the unsta-
ble eigenvalues. This result has been proved under various as-
sumptions on the system model, channel model, communication
protocol, and stabilization/estimation objectives. Comprehensive
reviews of results on data-rate-limited control can be found,
e.g., in the surveys [1–3] and the books [4,5].

For nonlinear systems, the smallest bit rate of a channel be-
tween the coder and the controller, to achieve some control task
such as stabilization or invariance, can be characterized in terms
of certain notions of entropy which are defined in terms of the
open-loop system and are independent of the choice of the coder-
controller. In spirit, they are similar to classical entropy notions
used in the theory of dynamical systems to quantify the rate at
which a system generates information, see [6].

In this paper, we first consider deterministic systems and focus
on the notion of invariance entropy (IE) introduced in [7] as a
measure for the smallest average data rate above which a com-
pact controlled invariant subset Q of the state set can be made
invariant. We present the first attempt to compute upper bounds
of IE numerically. Our approach combines different algorithms.
First, we compute a symbolic abstraction of the given control
system over the set Q and the corresponding invariant controller
using the tool SCOTS [8]. This results in a fine box partition of
Q with a set of admissible control inputs assigned to each box
for maintaining invariance of Q . In the second step, we use the
tool dtControl [9] that converts the controller from a look-up
table into a decision tree. Each leaf node of the tree represents a
group of boxes to which the same single control input is assigned.
The set of groups constitute a coarse partition of Q . Finally, in the
third step, an algorithm that was proposed in [10] for estimation
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of topological entropy is adopted. Its output serves as an upper
bound for the IE.

In addition, we also develop a method to approximate the
IE of uncertain control systems, as introduced in [11,12], that
generalizes the IE of deterministic systems. If the IE of a set Q (for
an uncertain system) is finite [11, Sec. 4.2], an upper bound can
be computed using a graph constructed from a finite abstraction
of the system [11, Sec. 6]. However, the number of vertices in the
graph is of the order of 22n , where n is the number of states in
the finite abstraction. In this paper, we present an upper bound
for the IE of uncertain systems that can be computed from a
weighted directed graph constructed from an invariant partition
(a pair of a finite partition of Q and a map that assigns a control
input to every partition element). Our main result characterizes
the entropy of the invariant partition in terms of the weights of
the graph and establishes that it is the same as the maximum
cycle mean of the graph. We should highlight that the number
of vertices in this graph is not larger than n. Our proposed
procedures still suffer from the curse of dimensionality due to the
construction of finite abstractions of control systems. Moreover,
at this point, we are not able to quantify the gap between the
upper bounds and the actual values of the IE.

Brief literature review. The notion of invariance entropy for
deterministic systems is equivalent to topological feedback entropy
that has been introduced earlier in [13]; see [14] for a proof.
Various notions of invariance entropy have been proposed to
tackle different control problems or other classes of systems,
see for instance [15] (exponential stabilization), [16] (invari-
ance in networks of systems), [11] (invariance for uncertain
systems), [17,18] (measure-theoretic versions of invariance en-
tropy) and [19] (stochastic stabilization). An over-approximation
of invariance entropy through a compositional approach, for
networks of uncertain control systems, was discussed in [20]. Also
the problem of state estimation over digital channels has been
studied extensively by several groups of researchers. As it turns
out, the classical notions of entropy used in dynamical systems,
namely measure-theoretic and topological entropy (or variations
of them), can be used to describe the smallest data rate or channel
capacity above which the state of an autonomous dynamical
system can be estimated with an arbitrarily small error, see [21–
25]. Motivated by the observation that estimation schemes based
on topological entropy suffer from a lack of robustness and are
hard to implement, the authors of [26,27] introduce the notion
of restoration entropy which characterizes the minimal data rate
for so-called regular and fine observability. Finally, algorithms for
state estimation over digital channels have been proposed in
several works, particularly in [22,26,28,29].

Related work: In [30], the authors consider linear uncertain
control systems and provide an algorithm to compute an invari-
ant cover, the cardinality of which serves as an upper bound for
the invariance entropy. In contrast, our proposed procedure here
is applicable to nonlinear systems as well.

Notation: We write N = {1, 2, 3, . . .} for the natural numbers,
Z for the integers and Z+ := N ∪ {0}. By R, we denote the
set of real numbers and define R+ := {r ∈ R : r ≥ 0} and
R>0 := R+ \ {0}. By [a; b] = Z ∩ [a, b] and [a; b) = Z ∩ [a, b),
we denote closed and right-open discrete intervals. We write |A|

for the cardinality of a set A and ρ(R) for the spectral radius
of a square matrix R. The notation Y X is used for the set of all
functions f : X → Y . For τ ∈ Z+, we use X τ to denote X [0;τ ). By
f : X ⇒ Y , we denote a set-valued map from X to Y . A cover A of
set Q is a family of subsets of Q such that ∪A∈AA = Q . A cover A is
called a partition if for all A1, A2 ∈ A, A1, A2 ̸= ∅ and A1 ∩ A2 = ∅.
We write f |M for the restriction of a map f to a subset M ⊆ X .

2. Background on invariance entropy

In this section, we provide the necessary theoretical back-
ground for our proposed numerical methods.

A deterministic discrete-time control system is given by

Σ : xt+1 = f (xt , ut ), (1)

where f : X × U → X , X ⊆ Rn, U ⊆ Rm, is a (not necessarily
continuous) map. The transition map ϕ : Z+ × X × UZ+ → X of
Σ is defined as

ϕ(t, x, ω) :=

{
x if t = 0,

f (ϕ(t − 1, x, ω), ωt−1) if t > 0.

Now, consider a compact set Q ⊆ X which is controlled invariant,
i.e., for each x ∈ Q there is u ∈ U with f (x, u) ∈ Q . For any τ ∈ N,
a set S ⊂ Uτ is called (τ ,Q )-spanning if for each x ∈ Q there is
ω ∈ S with ϕ(t, x, ω) ∈ Q for 0 ≤ t ≤ τ . We write rinv(τ ,Q )
for the minimal cardinality among all (τ ,Q )-spanning sets and
define the invariance entropy (IE) of Q as

hinv(Q ) := lim
τ→∞

1
τ
log2 rinv(τ ,Q ),

if rinv(τ ,Q ) is finite for all τ ; otherwise, hinv(Q ) := ∞. The exis-
tence of the limit follows from the subadditivity of the sequence
(log2 rinv(τ ,Q ))τ∈N, using Fekete’s subadditivity lemma (see [14,
Lem. 2.1] for a proof).

The method we propose to estimate hinv(Q ) is based on an
alternative characterization of this quantity that we will now
describe. A triple (A, τ ,G) is called an invariant partition of Q if
A is a finite partition of Q , τ ∈ N, and G : A → Uτ is a map
satisfying1 ϕ(t, A,G(A)) ⊆ Q for every A ∈ A and 0 ≤ t ≤ τ (note
that ϕ(t, x, ω) only depends on ω|[0;t)). For a given C = (A, τ ,G),
we define

TC : Q → Q , TC (x) := ϕ(τ , x,G(Ax)),

where Ax ∈ A is chosen such that x ∈ Ax. Since A is a partition of
Q , TC is well-defined.

Now, let C = (A, τ ,G) be an invariant partition. For each
N ∈ N, we introduce the set

WN (TC ) := {α ∈ AN
: ∃x ∈ Q

s.t. T i
C (x) ∈ αi, 0 ≤ i < N},

which is constituted by all those N-length sequences of subsets
of Q (i.e. elements of the partition A) such that there exists a
trajectory of TC that follows the sequence.

Next we define

h∗(TC ) := lim
N→∞

1
N

log2 |WN (TC )|.

Again, subadditivity guarantees the existence of the limit. Then,
by [31, Thm. 2.3], the IE satisfies

hinv(Q ) = inf
C=(A,τ ,G)

1
τ
h∗(TC ), (2)

where the infimum is taken over all invariant partitions of Q . In
particular, hinv(Q ) < ∞ if and only if an invariant partition of Q
exists [31, Prop. 2.20, Lem. 2.3].

An uncertain discrete-time control system is given by

Σ : xt+1 ∈ F (xt , ut ), (3)

where X ⊆ Rn, U ⊆ Rm, and F : X × U ⇒ X is a set-valued map
satisfying F (x, u) ̸= ∅ for all (x, u) ∈ X × U .

Consider a compact set Q ⊆ X which is controlled invariant,
i.e., for each x ∈ Q there is u ∈ U with F (x, u) ⊆ Q . We define

1 For a set A ⊂ X , by ϕ(t, A,G(A)) we mean {ϕ(t, x,G(A)) | x ∈ A}.
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the invariance entropy of Q in a quite different manner as in
the deterministic case. However, in the special case when F is
single-valued, i.e., when Σ is deterministic, it coincides with the
previous notion.

A pair (A,G) is called an invariant cover of Q (w.r.t. Σ) if A
is a finite cover of Q and F (A,G(A)) ⊆ Q for all A ∈ A. In the
case when A is a partition, we call (A,G) an invariant partition,
analogously to the deterministic case.2

For τ ∈ N, let J ⊆ A[0;τ ) be a set of sequences in A of length
τ . For α ∈ J and t ∈ [0; τ − 2], define

PJ (α|[0;t]) := {A ∈ A : α|[0;t]A = α̂|[0;t+1]

for some α̂ ∈ J }
(4)

as the set of immediate successor cover elements A of α|[0;t] in
J , and for t = τ − 1, define

PJ (α|[0;t]) = PJ (α) := {A ∈ A : A = α̂(0)
for some α̂ ∈ J },

as the set of the first components of the sequences in J . Although
this set does not depend on α, for consistency reasons, we still
use the same notation as in (4). A set J ⊆ A[0;τ ) is called (τ ,Q )-
spanning in (A,G) if PJ (α) covers Q and for all α ∈ J and
t ∈ [0; τ − 2]

F (α(t),G(α(t))) ⊆

⋃
A′∈PJ (α|[0;t])

A′. (5)

In this case, we associate to J its expansion number

N (J ) := max
α∈J

τ−1∏
t=0

|PJ (α|[0;t])|, (6)

and write r̄inv(τ ,Q , A,G) for the smallest expansion number
among all (τ ,Q )-spanning sets in (A,G), i.e., r̄inv(τ ,Q , A,G) :=

min{N (J ) | J is (τ ,Q )-spanning in (A,G)}. The entropy of an
invariant cover (A,G) is then defined as

h̄(A,G) := lim
τ→∞

1
τ
log2 r̄inv(τ ,Q , A,G).

The existence of the limit follows again by subadditivity. The
invariance entropy of Q is now defined as

h̄inv(Q ) := inf
(A,G)

h̄(A,G),

where the infimum is taken over all invariant covers of Q . Al-
though this definition does not seem to have much similarity
with the definition(s) for deterministic systems, h̄inv(Q ) reduces
to hinv(Q ) in the case when F is single-valued, see [12, Thm. 4].

3. Upper bounds: Deterministic case

In this section, we explain how to obtain a computable upper
bound for hinv(Q ), based on (2). Suppose that we have an invariant
partition C = (A, τ ,G) with A = {A1, . . . , Aq} at our disposal. Then
any upper bound on h∗(TC ) will yield an upper bound on hinv(Q ).

Let us first select a refinement B = {B1, . . . , Br} of A, i.e., a
partition of Q such that each B ∈ B is contained in some A ∈ A.
Now we define

WN (B, A) :={α ∈ AN
: ∃β ∈ BNwith TC (βj) ∩ βj+1 ̸= ∅

2 However, for uncertain systems, time steps larger than 1 should be avoided,
so there is no number τ here. Note that for an uncertain system, the image
of any x ∈ X , u ∈ U under the system dynamics F is a set. Under subsequent
applications of control signals, the image may continue to expand and no longer
be contained inside Q . Thus, even if a set is controlled invariant, there may not
exist for every x ∈ Q any control sequence of length larger than 1 that can
ensure that the subsequent states lie within Q .

∀j ∈ [0;N − 2] s.t. βi ⊆ αi ∀i ∈ [0;N − 1]}.

From [10, Sec. 2.2], we have

h(B, A) := lim
N→∞

log2 |WN (B, A)|
N

≥ h∗(TC ).

Moreover, assuming compactness of the partition sets and con-
tinuity of the map, it can be shown that h(B, A) converges to
h∗(TC ) as the maximal diameter of the elements of B tends to zero,
see [10, Thm. 4].3

The paper [10] describes an algorithm for the exact computa-
tion of h(B, A), based on symbolic dynamics. First, we associate a
transition matrix to B via4

Γi,j :=

{
1 if TC (Bi) ∩ Bj ̸= ∅

0 otherwise , i, j = 1, . . . , r. (7)

Then we construct a directed labeled graph G from the transition
matrix Γ . The set of nodes is B and Γi,j = 1 indicates that there
is a directed edge from Bi to Bj. To this edge, we assign the edge
label

L(Bi) := j, where j is such that Bi ⊂ Aj. (8)

Elements of WN (B, A) are thus generated by concatenating labels
along walks of length N on G. To compute h(B, A), a right-resolving
graph5 Ḡ needs to be determined (see [32, §3.3]), such that the
subset of NZ generated by concatenation of edge labels along
walks in the graph is same for both G and Ḡ.6 Each node in the
right-resolving graph Ḡ is some subset of B, while the set of edge
labels is identical for both G and Ḡ; for details on its computation,
see [10]. For any edge in Ḡ, with edge label e, directed from node
n1 ⊂ B to n2 ⊂ B, we have n2 = {Bj ∈ B | Bi ∈ n1, L(Bi) =

e, Γi,j = 1}, i.e., n2 is the set of those elements of B which have an
incoming edge from such members of n1 whose image under the
map L equals e. Let ñ be the number of nodes in Ḡ. An associated
ñ × ñ adjacency matrix R is defined as

Ri,j := # of edges from node i to node j in Ḡ.

If G is strongly connected (i.e., for every pair of nodes u and v,
there exists a directed path from u to v), then by [10, Prop. 7]
we have h(B, A) = log2 ρ(R). In general, we need to determine
the strongly connected components G1, . . . , Gp of G and compute
a right-resolving graph for each component separately, resulting
in adjacency matrices R1, . . . , Rp. Then (see [10, Rem. 9])

hinv(Q ) ≤
1
τ
h(B, A) =

1
τ

max
1≤k≤p

log2 ρ(Rk),

where p is the number of strongly connected components of G
and Rk is the adjacency matrix of the kth strongly connected
component Gk. This leaves us with the problem of constructing
an invariant partition C with low entropy, in order to obtain an
upper bound for hinv(Q ) which is not too conservative. We are
not really able to minimize the entropy, but we can produce
invariant partitions (A, τ ,G) for a given input sequence length τ
with a (potentially) small number of partition elements. Due to
the trivial inequality h∗(TC ) ≤ log2 |A|, this is desirable.

3 Of course, such an assumption can, in general, not be satisfied. We
expect that the result still holds true if only a negligibly small amount of the
exponential orbit complexity of the closed-loop dynamics is concentrated on the
boundaries of the sets Ai . If TC was continuous on Q , this could be formalized by
requiring that these boundaries have measure zero w.r.t. any TC -invariant Borel
probability measure.
4 In the language of symbolic dynamics, the matrix Γ defines a subshift of

finite type over the alphabet {1, . . . , r}.
5 A labeled graph is right-resolving if, for each vertex, all the outgoing edges

have different labels.
6 The subset of NZ generated by concatenating edge labels along all walks

on G forms a sofic shift whose topological entropy equals h(B, A).
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Fig. 1. The partitions A and B for Example 1.

We now explain step by step how we determine an invariant
partition and compute its entropy. The following example is used
to illustrate each step.

Example 1. Consider the linear control system

Σ : xt+1 = Axt +

[
1
1

]
ut , A =

[
2 0
0 1

2

]
,

with xt ∈ R2 and ut ∈ [−1, 1]. For the compact controlled
invariant set Q = [−1, 1] × [−2, 2], see [33, Ex. 21], we intend
to compute an upper bound of hinv(Q ).

Given a discrete-time system Σ as in (1) and a compact
controlled invariant set Q ⊆ X , we proceed according to the
following steps.

(1) Compute a symbolic invariant controller for the set Q .
Consider the smallest hyperrectangle QX that encloses Q
and assume that QX ⊆ X . We use SCOTS to compute an
invariant controller for Σ with QX as the state set and
ηs, ηi as the grid parameters for the state and input sets,
respectively. A smaller value for ηs results in a finer grid
on the state set, which typically results in a better upper
bound. We denote the set of boxes in the domain of the
computed controller by B = {B1, . . . , Br} and put

Q̄ :=

r⋃
i=1

Bi ⊆ Q .

The set Q̄ is our approximation of Q .

Example 1 (continued). We used SCOTS with the state set QX =

Q and the state and input set grid parameters ηs = [2/3, 4/3]⊤
and ηi = 1. This results in a state set grid with 9 boxes, B =

{B1, . . . , B9} and Q̄ = Q (see Fig. 1).

(2) The controller obtained in the previous step is, in general,
non-deterministic, i.e., different control inputs are assigned to the
same state. In this step, we determinize the obtained controller.
We denote the closed-loop system (Σ with the determinized
controller C) by ΣC . To determinize the controller, we used the

Fig. 2. The graph G for Example 1.

state-of-the-art toolbox dtControl [9], which utilizes the deci-
sion tree learning algorithm. This also provides the required coarse
partition A, of which B is a refinement.

Example 1 (continued). For the example, we used dtControl
with parameters Classifier = ‘cart’ and Determinizer = ‘maxfreq’.
This results in an invariant partition (A, 1,G) for the set Q̄ :=⋃

B∈B B, where A is a partition of Q̄ such that every A ∈ A is a
union of some sets in B and G(A) ∈ U is the control input assigned
to the set A given by dtControl. Fig. 1 shows the obtained
partitions A and B.

(3) For the dynamical system ΣC , we obtain the transition matrix
Γ (defined in (7)) for the boxes in Q̄ .

(4) We obtain the edge labels map L(Bi) as in (8).

Example 1 (continued). For any Bi ∈ B,

L(Bi) =

{ 1 if i = 1 + 3t, 0 ≤ t ≤ 2,
2 if i = 2 + 3t, 0 ≤ t ≤ 2,
3 if i = 3 + 3t, 0 ≤ t ≤ 2.

(5) We construct a directed labeled graph G with B as the set of
nodes. If Γi,j = 1, there is a directed edge from the node Bi to Bj
with label L(Bi).

(6) We determine the strongly connected components of G.

Example 1 (continued). G is strongly connected. Fig. 2 shows the
constructed graph G.

(7) For every strongly connected component Gk of G, we find a
right-resolving graph Ḡk. The directed graph Ḡk is deterministic
in the sense that for every node all the outgoing edges have a
distinct label.

Example 1 (continued). Right-resolving graph of G with nodes
r1 = {Bi : i ∈ {7, 8}}, r2 = {Bi : 4 ≤ i ≤ 6}, r3 = {Bi : i ∈ {2, 3}},
r4 = {Bi : 4 ≤ i ≤ 9}, r5 = {Bi : i ∈ {2, 3, 5, 6}}, r6 = {Bi : 1 ≤ i ≤

6}, and r7 = {Bi : i ∈ {4, 5, 7, 8}}. The constructed right-resolving
graph Ḡ is shown in Fig. 3.

4
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Fig. 3. The right-resolving graph Ḡ for Example 1.

(8) Using Ḡk, we construct an adjacency matrix Rk by Rk
i,j := l,

where l is the number of edges from node i to node j in Ḡk.

Example 1 (continued). From ḠR, we obtain

R =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0
1 1 1 0 0 0 0
0 0 1 0 0 1 0
1 0 0 1 1 0 0
0 0 1 0 0 1 0
0 0 1 0 0 1 1
1 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with ρ(R) = 2.41421 and log2(2.4142) = 1.2716.

4. Upper bounds: Uncertain case

In this section, we explain how to obtain a computable upper
bound for the IE of an uncertain system.

Suppose again that we know an invariant partition (A,G) and
recall that the time step τ is always set to 1 for uncertain systems.
We define a set-valued map T : Q ⇒ Q by T (x) := F (x,G(Ax)),
where x ∈ Ax ∈ A. We also define a weighted directed graph G
with A as its set of nodes. The graph G contains an edge from A
to A′, denoted by eAA′ , if T (A)∩A′

̸= ∅. We define maps D : A ⇒ A
and w : A → R+ by

D(A) := {A′
∈ A : T (A) ∩ A′

̸= ∅},

w(A) := log2 |D(A)|.
(9)

The weight of the edge eAA′ is defined to be w(A). We observe that

T (A) ⊆

⋃
Â∈D(A)

Â. (10)

Given τ ∈ N ∪ {∞}, we let Wτ (G) denote the set of all (node)
paths (Ai)τ−1

i=0 in G of length τ .
Consider a cycle c = (eAiAi+1 )

k
i=1, Ak+1 = A1, in G. The mean

cycle weight of c is defined as

wm(c) :=
1
k

k∑
i=1

w(Ai).

The maximum cycle mean weight is then defined as

w∗

m(G) := max
c

wm(c),

the maximum taken over all cycles in G (the maximum exists
because, due to the finiteness of the graph, it suffices to take the
maximum over finitely many cycles).

Our algorithm is based on the following theorem, which yields
a characterization of the entropy of an invariant partition in terms
of the associated graph G. Note that an invariant partition imme-
diately provides a coder-controller for making the set Q invariant.
Then, the number of bits needed to transfer from the coder/sensor
to the controller is log2(number of successor partition elements).
Since the graph has finite number of edges, the entropy of the
invariant partition is equal to the worst case asymptotic average
bit rate and equal to the maximum cycle mean weight. This is
stated formally in the following theorem.

Theorem 1. For an uncertain control system Σ as in (3), a compact
controlled invariant set Q ⊆ X and an invariant partition (A,G), we
have

h̄(A,G) = lim
τ→∞

1
τ

max
α∈W∞(G)

τ−2∑
t=0

w(α(t)) = w∗

m(G). (11)

Remark 1. In [34], the authors show that the logarithm of the
joint spectral radius of a finite set A of rank one matrices equals
the maximum cycle mean in a directed complete graph. The set
of nodes in the graph is A, the number of edges is |A|

2 and the
weight of any edge is defined using the matrices/nodes connected
by the edge. The result of [34] can be used to establish that, for
the case of a non-complete graph, the entropy of an invariant
partition is upper bounded by the maximum cycle mean weight.

The rest of this section is devoted to the proof of the theorem.
We start with two lemmas.

Lemma 1. Wτ (G) is a (τ ,Q )-spanning set in (A,G).

Proof. Since (A,G) is an invariant cover, we have D(A) ̸= ∅

for every A ∈ A. Thus, for every node in G there is at least one
outgoing edge. Hence, for all A ∈ A and τ ∈ N, there is at least
one path of length τ starting from A. It follows that

{α(0) : α ∈ Wτ (G)} = A.

Consider any α ∈ Wτ (G) and t ∈ [0; τ −1]. By the definition of G,
we have an edge from α(t) to every A ∈ D(α(t)). Thus, for every
t ∈ [0; τ − 2] we have

PWτ (G)(α|[0;t]) = D(α(t)). (12)

Using (10), we conclude that Wτ (G) satisfies (5), and hence is a
(τ ,Q )-spanning set in (A,G). □

Lemma 2. For any (τ ,Q )-spanning set J in (A,G), Wτ (G) ⊂ J .

Proof. Let J be a (τ ,Q )-spanning set in (A,G). Then, since A is
a partition, {α(0) : α ∈ J } = A. If α ∈ J and t ∈ [0; τ − 1],
then from (5) it follows that PJ (α|[0;t]) covers F (α(t),G(α(t))) =

T (α(t)). Since A is a partition, D(α(t)) must be contained in every
subset of A that covers T (α(t)), thus PJ (α|[0;t]) ⊇ D(α(t)). Let β ∈

Wτ (G). Then β(0) ∈ A = {α(0) : α ∈ J }, implying β(0) = α(0)
for some α ∈ J . From (12), we have PWτ (G)(β(0)) = D(β(0)).
Similarly to the reasoning above, since A is a partition, D(β(0))
is contained in every subset of A which covers T (β(0)). As J is
(τ ,Q )-spanning, from (5) we know that T (α(0)) is covered by
PJ (α(0)), implying PJ (α(0)) ⊇ D(β(0)). From the definition of

5
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G, we obtain β(1) ∈ D(β(0)), which leads to β(1) ∈ PJ (α(0)).
Thus, there exists an α ∈ J with α|[0;1] = β|[0;1]. Inductively, we
obtain the existence of α ∈ J with α = β , which concludes the
proof. □

We can now prove Theorem 1.

Proof of Theorem 1. From (6) and Lemma 2, we conclude that for
every (τ ,Q )-spanning set J in (A,G), the inequality N (Wτ (G)) ≤

N (J ) holds, implying that

r̄inv(τ ,Q , A,G) = N (Wτ (G)) for all τ ∈ N. (13)

By taking logarithms on both sides of (6) and using (9) and (12),
we obtain

log2 N (Wτ (G)) = max
α∈Wτ (G)

τ−2∑
t=0

w(α(t)) + log2 |A|. (14)

Putting (13) and (14) together, it follows that

h̄(A,G) = lim
τ→∞

1
τ

max
α∈Wτ (G)

τ−2∑
t=0

w(α(t)).

Observing that the elements of Wτ (G) are restrictions of elements
of W∞(G) to [0; τ − 1], the first equality in (11) follows.

For the proof of the second equality in (11), let A =

{A1, . . . , Aq} and consider an arbitrary α ∈ W∞(G). From [35,
Lem. 3], we know that for each τ we can write
τ−2∑
t=0

w(α(t)) =

a∑
t=0

w(β(t)) +

r∑
i=1

liwm(σi),

for some β ∈ W∞(G), a < n − 1 and proper cycles σi of length li
so that τ − 1 = a + 1 +

∑r
i=1 li. It thus follows that

τ−2∑
t=0

w(α(t)) ≤ nmax
Ai∈A

w(Ai) + w∗

m

r∑
i=1

li

≤ n log2 n + τw∗

m,

leading to

lim
τ→∞

1
τ

max
α∈W∞(G)

τ−2∑
t=0

w(α(t)) ≤ w∗

m.

To show the converse inequality, consider an α ∈ W∞(G) that
traces a proper cycle with mean weight equal to the maximum
cycle mean w∗

m. Let l be the length of the cycle and write τ −1 =

rl+ a for any τ > 1, where r ≥ 0 and 0 ≤ a < l are integers. This
implies

1
τ

τ−2∑
t=0

w(α(t)) ≥
lr
τ

w∗

m,

and hence

1
τ

max
α∈W∞(G)

τ−2∑
t=0

w(α(t)) ≥
1
τ

w∗

m(τ − 1 − n).

It now easily follows that h̄(A,G) ≥ w∗
m, which concludes the

proof. □

5. Relationship between the upper bounds

In this section, we prove that in the deterministic case, where
the obtained upper bound of the IE for deterministic systems and
the one for uncertain ones both apply, these bounds are related
by an inequality.

Consider a deterministic system Σ as in (1), a compact con-
trolled invariant set Q ⊆ X , and an invariant partition (A,G) with
A = {A1, . . . , Aq}. Let B = {B1, . . . , Br} be a refinement of A and
construct the weighted directed graph G as described in Section 3.
The sets WN (B, A), the quantity h(B, A) and the transition matrix
Γ are defined as in (7). For simplicity, we assume that G is
strongly connected, in which case we know that

h(B, A) = lim
N→∞

|WN (B, A)|
N

= log2 ρ(R),

where R is the adjacency matrix associated with a right-resolving
graph.

Proposition 1. Given the invariant partition (A,G), for any refine-
ment B of A, it holds that

h̄(A,G) ≥ h(B, A) = log2 ρ(R).

Proof. We use the notation Wτ (A) to refer to the set Wτ (B, A),
which is defined in Section 3, for the case when B = A, i.e.,
Wτ (A) := {α ∈ Aτ

: TC (αi)∩αi+1 ̸= ∅ ∀i ∈ [0; τ−2]}. Constructing
the graph G associated with A as in Section 4, leads to

Wτ (G) = Wτ (A) for all τ ∈ N.

From [12, Lem. 2] and (13), we obtain

|Wτ (A)| = |Wτ (G)| ≤ N (Wτ (G)) = r̄inv(τ ,Q , A,G). (15)

Then (15) yields

h(A) := lim
τ→∞

log2 |Wτ (A)|
τ

≤ h̄(A,G).

It is clear that h(B, A) ≤ h(A). Hence,

log2 ρ(R) = h(B, A) ≤ h(A) ≤ h̄(A,G).

This concludes the proof. □

6. Examples

In this section, we illustrate the effectiveness of our results on
some case studies.

6.1. A linear discrete-time system

Consider the following linear control system obtained from a
similarity transformation applied to the system in Example 1:

xk+1 = Axk +

[
0.9463
1.051

]
uk, A =

[
2 0.0784

0.0784 0.5041

]
,

with xk ∈ R2 and uk ∈ U = [−1, 1]. Consider the set Q given by
the inequality⎡⎢⎣ 0.0261 −0.4993

0.9986 0.0523
−0.0261 0.4993
−0.9986 −0.0523

⎤⎥⎦ x ≤

⎡⎢⎣ 1
1
1
1

⎤⎥⎦ , x ∈ R2,

which is compact and controlled invariant.
To compute an upper bound on the IE of Q , we put QX :=

[−1.2, 1.2] × [−2.1, 2.1], ηs := [0.04, 0.08]⊤ and ηi := 0.2. For
these parameters, Table 1 lists the values of h(B, A) for different
selections of the coarse partition A. For the same values of ηs and
ηi, the obtained value for the bound in Theorem 1 is w∗

m(G) =

2.5849 (with computation time 0.048 s). For dtControl param-
eters Classifier = ‘logreg’ and Determinizer = ‘maxfreq’, Table 2
shows the variation of the upper bound h(B, A)/τ with increasing
control sequence length τ .

6
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Table 1
Entropy estimates for Example 6.1 with different choices of the determinization
options in dtControl. Here, hinv(Q ) = 1.003.
Classifier Determinizer |A| h(B, A) Time

cart maxfreq 10 1.2133 10 s
logreg maxfreq 9 1.1802 10 s
linsvm maxfreq 10 1.2133 10 s
cart minnorm 135 1.7848 9 s
logreg minnorm 111 1.8015 11 s
linsvm minnorm 143 1.8300 10 s

Table 2
Entropy estimates for Example 6.1 with control
sequences of length τ . Here, hinv(Q ) = 1.003.
τ h(B, A)/τ Time

1 1.1802 9.6 s
2 1.0688 16.7 s
3 1.0588 1 min 11 s

6.2. A scalar continuous-time nonlinear control system

Consider the following scalar continuous-time control system
discussed in [31, Ex. 7.2]:

Σ : ẋ = (−2b sin x cos x − sin2 x + cos2 x) + u cos2 x,

where u ∈ [−ρ, ρ], b > 0 and 0 < ρ < b2 + 1 =: a. The
equation describes the projectivized linearization of a controlled
damped mathematical pendulum at the unstable position, where
the control acts as a reset force. The following set is controlled
invariant:

Q =
[
arctan(−b −

√
a + ρ), arctan(−b −

√
a − ρ)

]
.

In fact, Q is the closure of a maximal set of complete approximate
controllability. With Ts ∈ R>0 as the sampling time, we first
obtain a discrete-time system as in (1). Theory suggests that the
following formula holds, see7 [31, Ex. 7.2]:

hinv(Q ) =
2

ln 2
√
a − ρ.

Discretizing the given system with sampling time Ts results in a
discrete-time system ΣTs that satisfies

hinv(Q ; ΣTs ) ≥ Ts · hinv(Q ) =
2Ts

ln 2
√
a − ρ.

The inequality is due to the fact that continuous-time open-loop
control functions are lost due to the sampling (since only the
piecewise constant control functions, constant on each interval of
the form [kTs, (k + 1)Ts), k ∈ Z+, are preserved under sampling).
Since Q can be made invariant by constant control inputs only,
Q is also a controlled invariant set of ΣTs . Tables 3 and 4 list
the values of h(B, A)/Ts for different choices of the sampling time
with the parameters (ρ = 1, b = 1, ηs = 10−6, ηi = 0.2ρ)
and (ρ = 50, b = 10, ηs = 10−6, ηi = 0.2ρ), respectively. In
both tables, the dtControl parameters are Classifier = ‘cart’ and
Determinizer = ‘maxfreq’. Table 5 shows the values of h(B, A)/Ts
for different selections of the coarse partition A with the param-
eters Ts = 0.01, ηs = 10−6, ηi = 0.2ρ, ρ = 1, b = 1. For
the same selection of parameters as in Table 3 with Ts = 0.01,
Table 6 presents the variation of the upper bound h(B, A)/(τTs)
with increasing length τ of the control sequences.

7 The factor ln(2) appears due to the choice of the base-2 logarithm instead
of the natural logarithm, which is typically used for continuous-time systems.

Table 3
Entropy estimates for Example 6.2 with ρ = 1, b = 1 and different
choices of the sampling time Ts . Here, hinv(Q ) = 2.8854.
Ts |A| h(B, A)/Ts Time

0.8 11 4.0207 21.23 h
0.5 6 4.0847 2.98 h
0.1 2 4.744 3.33 min
0.01 2 5.1994 55 s
0.001 2 24.7 60 s

Table 4
Entropy estimates for Example 6.2 with ρ = 50, b = 10 and
different choices of the sampling time Ts . Here, hinv(Q ) = 20.6058.
Ts |A| h(B, A)/Ts Time

0.11 15 28.5012 1.9 h
0.1 11 29.1723 1.35 h
0.01 2 34.4707 13 s
0.001 2 55.5067 12 s
0.0001 2 1.5635e+03 31 s

Table 5
Entropy estimates for Example 6.2 with different choices of dtControl
parameters. Here, hinv(Q ) = 2.8854.
Classifier Determinizer |A| h(B, A)/Ts Time

cart maxfreq 2 5.1994 55 s
logreg maxfreq 2 5.1994 65 s
linsvm maxfreq 2 5.1994 61 s
cart minnorm 11 6.4475 57 s
logreg minnorm 11 6.4475 74 s

Table 6
Upper bound h(B, A)/(τTs) for Example 6.2 with
control sequences of length τ , Classifier = ‘cart’,
and Determinizer = ‘maxfreq’ in dtControl.
Here, hinv(Q ) = 2.8854.
τ h(B, A)/(τTs) Time

1 5.1994 57 s
2 5.0036 7.5 min
3 4.9547 1.91 h
4 4.9266 27.27 h

6.3. A 2d uniformly hyperbolic set

Consider the map

f (x, y) := (5 − 0.3y − x2, x), f : R2
→ R2,

from the Hénon family, one of the most-studied families of dy-
namical systems that exhibit chaotic behavior. We extend f to a
control system with additive control:

Σ :

[
xt+1
yt+1

]
=

[
5 − 0.3yt − x2t + ut

xt + vt

]
with max{|ut |, |vt |} ≤ ε. It is known that f has a non-attracting
uniformly hyperbolic set Λ, which is a topological horseshoe. This
set is contained in the square centered at the origin with side
length [36, Thm. 4.2]

r := 1.3 +

√
(1.3)2 + 20 ≈ 5.9573.

If the size ε of the control range is chosen small enough, the set
Λ is ‘‘blown up’’ to a compact controlled invariant set Q ε with
nonempty interior which is not much larger than Λ, see [37,
Sec. 6]. Moreover, the theory suggests that as ε ↓ 0, hinv(Q ε)
converges to the negative topological pressure of f |Λ w.r.t. the
negative unstable log-determinant on Λ; see [38] for definitions.
A numerical estimate for this quantity, obtained in [39, Table 2]
via Ulam’s method, is 0.696.

7
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Fig. 4. The set Q for Section 6.3.

Table 7
Entropy estimates for Example 6.3 with different selections of dtControl
options. Here, hinv(Q ) ≈ 0.696.
Classifier Determinizer |A| h(B, A) Time

cart maxfreq 573 2.3884 0.95 min
linsvm maxfreq 567 2.3956 1.82 min
logreg maxfreq 454 2.3994 1.4 min
cart minnorm 1921 2.9342 1 min
logreg minnorm 1533 2.9215 2 min
linsvm minnorm 1923 2.9376 2.15 min

We select Q̃ = [−r/2, r/2]2. For ε = 0.08, using SCOTS with
parameter values ηs = [0.009, 0.009]⊤ and ηi = [0.01, 0.01]⊤,
through iteration, we obtain an all-time controlled invariant set
Q ⊂ Q̃ . In the iteration, we begin with the set Q̃ and, as the
first step, we compute an invariant controller for the system Σ .
Let Q1 be the domain of the obtained controller. Consider the
time-reversed system

Σ−
:

[
xt+1
yt+1

]
=

[
yt − vt

1
0.3 (5 − y2t + ut − xt )

]
.

In the second step, we compute an invariant controller for Σ− in
the set Q1, and denote the controller domain by Q2. In the third
step, we compute an invariant controller for Σ , but in the set Q2,
and denote the controller domain by Q3. The steps are repeated
until Qi = Qi+1 =: Q . In this way, we hope to approximate Q ε .

Fig. 4 shows the set Q . For the parameter values ε = 0.08,
ηs = [0.009, 0.009]⊤, ηi = [0.01, 0.01]⊤, Table 7 lists the values
of h(B, A) for different choices of the coarse partition A. For the
same values of ε, ηs and ηi, the obtained value for the bound in
Theorem 1 is w∗

m(G) = 3.5646 (with computation time 2.51 s).

6.4. An uncertain linear system

We consider an uncertain linear control system

Σ : xt+1 ∈

[
2 1

−0.4 0.5

]
xt +

[
1
1

]
ut + W

with xt ∈ R2, ut ∈ U := [−1, 1], and the disturbance set
W := [−0.1, 0.1]2. For a set Q ⊆ [−1, 1] × [−2, 2], we compute
an upper and a lower bound of h̄inv(Q ). We used SCOTS to obtain

Table 8
Entropy estimates for Example 6.4, with ηi = 0.05.
ηs w∗

m Time(sec)

0.03 6.4594 1.112
0.06 5 0.129
0.09 4.2811 0.051
0.1 4.3923 0.033
0.2 3.3219 0.027

an invariant controller for the state set [−1, 1] × [−2, 2] with
[0.2, 0.2]⊤ and 0.05 as the state and input set grid parameters,
respectively. The set Q is taken to be the domain of the obtained
controller that consists of 109 state grid cells each of size 0.2×0.2.
Fig. 5 shows the set Q .

Computation of the lower bound: We utilize [12, Thm. 7] to
compute a lower bound. From [12, Rem. 2], we know that the
lower bound in [12, Thm. 7] is invariant under coordinate trans-
formations. After a similarity transformation which diagonalizes
the dynamical matrix, we have

zt+1 =

[
1.6531 0

0 0.8469

]
zt + V−1

[
1
1

]
+ V−1W ,

where V =

[
0.9448 −0.6552

−0.3277 0.7555

]
. For i = 1, 2, let πi denote

the canonical projection to the ith coordinate. Then, π1V−1Q =

[−2.1207, 2.1207], π2V−1Q = [−3.4, 3.4], π1V−1W =

[−0.2827, 0.2827] and π2V−1W = [−0.2550, 0.2550]. By [12,
Thm. 7], one obtains

0.9316 ≤ h̄inv(Q ).

Computation of the upper bound: We construct an invariant
partition (A,G) of Q by selecting the set of grid cells in the domain
of the controller obtained from SCOTS as the cover A. Let C : A ⇒
U denote the controller from SCOTS. For A ∈ A, C(A) is the list of
control inputs in the controller assigned to cell A such that each
of the control inputs in the list ensures invariance of the states
in A w.r.t. the set Q . For each A ∈ A, we define G(A) := u ∈ C(A),
where u is chosen such that F (A, u) has nonempty intersection
with a minimum number of elements of A. If there are multiple
such control values, then one of them is selected randomly. Using
(A,G) and the transition function F of the system, we construct a
weighted directed graph G as described in Section 4. We used the
LEMON library to compute the maximum cycle mean weight for
the graph G and obtained w∗

m(G) = 3.3219 with computation time
0.027 s Thus, h̄inv(Q ) ≤ 3.3219.

Discussion on the selection of partition: A better upper
bound is expected when the number of outgoing edges, for every
node in the graph, is made smaller. As a heuristic, gradually
smaller values of the state grid parameter ηs can be tried. But very
small ηs that make the width of the grid cells smaller than that of
the disturbance set should be avoided, because in this case, the
number of outgoing edges for any cell will begin to rise. This can
also be observed in Table 8.

Remark 2. Please see the extended version of the paper [40,
Sec. 7] for details on LEMON library, dtControl, pseudocode
representation of the procedures for the computation of upper
bounds and the complexity of the involved steps. The code is
publicly accessible at https://github.com/mahendrasinghtomar/
Invariance_Entropy_upper_bounds.

Remark 3. To reduce the underlying computational complexity
for the uncertain cases, one can leverage the proposed com-
positionality results in [20]. Particularly, one can compute an
over-approximation of the invariance entropy for a large-scale
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Fig. 5. The set Q in Section 6.4 which is defined as the domain of the invariant
controller computed from SCOTS.

Fig. 6. Symbolic model for Example 1. Here edge labels refer to the indices of
control inputs; u1 = −1, u2 = 0, and u3 = 1. The node OF is overflow and it
denotes that the state may have gone outside the set Q .

interconnected system in a divide and conquer manner by com-
puting over-approximations of entropies for subsystems individ-
ually using the method proposed here and then composing them
to compute an over-approximation of the entropy for the overall
system. In this case, the complexity breaks down to the level of
subsystems.

In the next section we briefly describe the computation pro-
cedure for invariance controllers as implemented inside the tool
SCOTS. Further, we elaborate on the design and operation of
coder-controllers based on invariant partitions.

7. Controllers for invariance

The invariant partitions utilized in this work are derived from
controllers for invariance computed via SCOTS. Given a system

Σ1 and a set of discretization parameters, SCOTS first puts rect-
angular grids on both the state and the control input sets. For
every pair of cells in the state and the input grid, an over-
approximation of the reachable set is computed which is then
utilized to build a discrete abstraction (a.k.a. symbolic model)
Σ2 which is related via feedback refinement relation [41] to Σ1;
see [41] for more details. The grid cells from the state set serve
as the nodes while the grid cells from the input set serve as
the edge labels in the symbolic model. The outgoing edges for
any node are determined by the nonempty intersection of the
over-approximations of reachable sets with the state grid. For
Example 1, the symbolic model constructed in SCOTS is shown
in Fig. 6. Next a maximal fixed-point problem is solved for the
symbolic model to obtain a controller for invariance. Since Σ1 and
Σ2 are related under feedback refinement relation, the controller
designed for the symbolic model is applicable for the original
system through the set membership relation; see [8,41,42] for
more details.

The obtained controller is a set-valued map that assigns to
each state of the invariant set Q a set of control values. The
deterministic version (i.e., single control value assigned to each
state) of this controller is an invariant partition. As noted above
Theorem 1, an invariant partition (A,G) immediately provides a
coder-controller scheme to render Q invariant. Now, we briefly
describe the operation of such a static coder-controller [12, Sec-
tion VI.B]. At any time t , the coder identifies the partition element
At that contains the current state and sends ⌈log2 |A|⌉ bits infor-
mation to the controller. This number of bits is sufficient enough
for the controller to identify the state containing partition At out
of |A| possibilities; and it then applies the control input G(At )
to the plant ensuring that the successor state lies within the set
Q . The average data rate for such a coder-controller is ⌈log2 |A|⌉

bits/sec.
Note that an alternative coder-controller scheme, in which

instead of ⌈log2 |A|⌉ bits only log2(number of successor partition
elements) is transferred for all time t ∈ Z+ except at t = 0, can
help to reduce the average bit requirement. For this, given an in-
variant partition, we can construct a directed graph G as described
in Section 4 but with edge weights w(A) = ⌈log2 |D(At−1)|⌉
instead of (9). We assume this graph is known to both the coder
and the controller. At time t = 0, the coder sends ⌈log2 |A|⌉

bits so that the controller can identify the partition element A0
containing the current state x0. While at all other times t > 0,
the coder transmits ⌈log2 |D(At−1)|⌉ bits to identify the partition
element At ∈ D(At−1) which contains the state xt ; here D(At−1) is
defined in (9). The average data rate for such a coder-controller
equals the maximum cycle mean of the graph G, and it is not
larger than ⌈log2 |A|⌉.

8. Conclusion and future work

All the computations in this work were performed on a com-
puter with an Intel Core i5-8250U processor and 8 GB RAM.
The ‘time’ listed in all the tables are the computation times for
estimating the entropy.

Our first contribution is the combination of three different al-
gorithms designed for different purposes to numerically compute
an upper bound of the invariance entropy of deterministic control
systems. The second contribution is a procedure to numerically
compute an upper bound for the invariance entropy of uncertain
control systems. We also describe the relationship between the
two upper bounds and thus the need for the second bound.
Finally, we illustrate the effectiveness of the proposed procedures
on four examples. Open questions for future work include the
selection of entropy-minimizing partitions and the computation
of lower bounds of IE for uncertain nonlinear systems.
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