
Machine Learning with Applications 8 (2022) 100300

r
S
a

b

R
E
D
C
N

b

2
c
2
S
d
i
o
t
a
d
c
c
a
d
b
c

Contents lists available at ScienceDirect

Machine Learningwith Applications

journal homepage: www.elsevier.com/locate/mlwa

Prediction of chaotic time series using recurrent neural networks and
eservoir computing techniques: A comparative study
hahrokh Shahi a,∗, Flavio H. Fenton b, Elizabeth M. Cherry a
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America

A R T I C L E I N F O

Keywords:
Recurrent neural networks
eservoir computing
cho state networks
eep learning
haotic time series
onlinear vector autoregression

A B S T R A C T

In recent years, machine-learning techniques, particularly deep learning, have outperformed traditional time-
series forecasting approaches in many contexts, including univariate and multivariate predictions. This study
aims to investigate the capability of (i) gated recurrent neural networks, including long short-term memory
(LSTM) and gated recurrent unit (GRU) networks, (ii) reservoir computing (RC) techniques, such as echo
state networks (ESNs) and hybrid physics-informed ESNs, and (iii) the nonlinear vector autoregression (NVAR)
approach, which has recently been introduced as the next generation RC, for the prediction of chaotic time
series and to compare their performance in terms of accuracy, efficiency, and robustness. We apply the methods
to predict time series obtained from two widely used chaotic benchmarks, the Mackey–Glass and Lorenz-63
models, as well as two other chaotic datasets representing a bursting neuron and the dynamics of the El
Niño Southern Oscillation, and to one experimental dataset representing a time series of cardiac voltage with
complex dynamics. We find that even though gated RNN techniques have been successful in forecasting time
series generally, they can fall short in predicting chaotic time series for the methods, datasets, and ranges of
hyperparameter values considered here. In contrast, for the chaotic datasets studied, we found that reservoir
computing and NVAR techniques are more computationally efficient and offer more promise in long-term
prediction of chaotic time series.
1. Introduction

Time series are important in many real-world applications, such as
iology (Bar-Joseph et al., 2003), finance (Dingli & Fournier, 2017;
Plagianakos & Tzanaki, 2001; Takahashi et al., 2019; Tsay, 2005; Zhao,
009), climate science (Ghil & Vautard, 1991), anomaly detection in
omputer networks (Limthong, 2013) and social networks (Gong et al.,
018), and energy (Billinton et al., 1996; Bunn, 2000; Deihimi &
howkati, 2012). Accordingly, the analysis and prediction of time series
ata are of great importance and have been the focus of much research
n the past few decades. In general, a time series represents a record of
bservations of a dynamical system at specific time intervals. Therefore,
ime series prediction involves determining the future evolution of
dynamical system, which can be especially challenging for chaotic
ynamical systems. The states of such systems can be represented by
haotic time series, which are recognized by the orbital instability
haracteristic, where infinitesimal differences in the initial values bring
bout large differences in the time series behavior. Consequently, pre-
iction of a chaotic time series is only feasible for a relatively short time
efore the appearance of orbital instability. For this reason, forecasting
haotic time series has remained a difficult task for the last few decades.

∗ Corresponding author.
E-mail addresses: shahi@gatech.edu (S. Shahi), ffenton@gatech.edu (F.H. Fenton), echerry30@gatech.edu (E.M. Cherry).

Data-driven approaches, and machine-learning (ML) techniques in
particular, have recently become the main approaches used for time-
series forecasting (Ahmed et al., 2010; Ben Taieb et al., 2012; Chandra
et al., 2021; Chattopadhyay et al., 2020; Cheng et al., 2015; De Gooijer
& Hyndman, 2006; Dubois et al., 2020; Kutz, 2013; Li et al., 2005;
Tealab, 2018). In particular, recurrent neural networks (RNNs) are
the mainstream architecture for analyzing sequential data, owing to
their ability in interpreting temporal dependencies in the input time
series (Chandra et al., 2021; Elman, 1990; Elman & Zipser, 1988;
Schmidhuber, 2015). The recurrent connections in such networks serve
as a notion of memory, allowing them to embed temporal information.
Despite the success of RNNs in modeling short-term temporal data
and non-chaotic dynamical systems, the high computational cost of
back-propagation through time and their vulnerability to the vanishing
or exploding gradient problems have limited their applications. Gated
RNN architectures were introduced to address some of these problems.
More precisely, the memory cell architecture and the gating mechanism
enable these networks to be more selective over the information that
needs be remembered or forgotten, thereby enabling them to learn
long-term dependencies in temporal sequences. Long short-term mem-
ory (LSTM) networks (Hochreiter & Schmidhuber, 1997) and gated
https://doi.org/10.1016/j.mlwa.2022.100300
Received 24 December 2021; Received in revised form 12 March 2022; Accepted 3
Available online 9 April 2022
2666-8270/© 2022 The Authors. Published by Elsevier Ltd. This is an open access
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
April 2022

article under the CC BY-NC-ND license

https://doi.org/10.1016/j.mlwa.2022.100300
http://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2022.100300&domain=pdf
mailto:shahi@gatech.edu
mailto:ffenton@gatech.edu
mailto:echerry30@gatech.edu
https://doi.org/10.1016/j.mlwa.2022.100300
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

i
t
w
r
h
n
c
i
F
e
u
o
M
t
i
e
m
m

t
t
R
l
w
a
2
d
r
i
t
t

h
e
f
a

t
t
m
d
m
s
t
L
s
u
o
e
N

Fig. 1. Architectures of memory cells in gated recurrent neural networks. (a) Long
short-term memory. (b) Gated recurrent unit.

recurrent units (GRUs) (Chung et al., 2014) are among the most widely
used gated RNNs.

An alternative approach to deal with time-series forecasting and
modeling dynamical systems is reservoir computing (RC), a learning
paradigm mostly implemented as echo state networks (ESNs) (Jaeger,
2002; Lukoševičius & Jaeger, 2009; Sun et al., 2020). The RC paradigm
s fundamentally derived from RNN concepts offering a streamlined
raining process, which remains limited to obtaining the output layer
eights, while the rest of the parameter values are set randomly and
emain untrained. Notwithstanding such a major simplification, ESNs
ave successfully been employed for multi-step-ahead prediction of
onlinear time series and modeling chaotic dynamical systems at low
omputational cost (Bianchi et al., 2017; Han et al., 2021), trigger-
ng the development of several network topologies in recent years.
or instance, clustered ESNs (CESNs) (Deng & Zhang, 2006; Junior
t al., 2020), where multiple sub-graphs of sparsely connected hidden
nits form the reservoir, and deep ESNs, where the reservoir consists
f multiple sub-reservoir layers stacked hierarchically (Gallicchio &
icheli, 2017; Gallicchio et al., 2017), are two widely used architec-
ures. Hybrid ESNs (HESNs) are another category of RC techniques
ntroduced in a physics-informed ML framework (Oh, 2020; Willard
t al., 2020), where additional inputs from physics-based mathematical
odels integrate corresponding domain knowledge into data-driven
odels (Doan et al., 2019; Pathak, Hunt, et al., 2018).
The successful application of ESNs, despite their random construc-

ion, in forecasting complex dynamical systems using time-series data
riggered a series of recent research providing an interpretation of how
C techniques function. Recently, Bollt demonstrated how the RC with
inear activation functions and linear readout layer shares similarities
ith the well-studied vector autoregressive (VAR) concept, while using
quadratic readout can be interpreted as nonlinear VAR (NVAR) (Bollt,
021). Later, Gauthier et al. further studied this similarity and intro-
uced the next generation RC, where instead of explicitly generating a
eservoir of randomly connected neurons, an NVAR machine is formed
n which the feature vector consists of time-delayed observations of
he dynamical system and is augmented by nonlinear functions of
hese observations. Accordingly, with this approach there are fewer
2

yperparameters to tune and the intrinsic random nature of ESNs is
ffectively avoided. This approach was employed for one-step-ahead
orecasting of benchmark chaotic time series for both reconstruction
nd cross-prediction tasks (Gauthier et al., 2021).
In this work, we assess the capability of the mainstream gated RNN

echniques; ESN architectures, including the clustered architecture and
he physics-informed hybrid approach; and the NVAR approach for
ulti-step-ahead prediction of nonlinear time series describing chaotic
ynamical systems. In particular, we compare the performance of these
odels for forecasting two frequently used benchmark chaotic time
eries, derived from the Mackey–Glass and Lorenz dynamical systems,
wo additional chaotic times series derived from a bursting Morris–
ecar neuron model and the Vallis El Niño Southern Oscillation (ENSO)
ystem, and one real-world dataset consisting of a time series of irreg-
lar cardiac voltage traces obtained in ex-vivo experiments in terms
f the prediction error and computational efficiency. Moreover, this
xperimental dataset is further used to evaluate the performance of
VAR against traditional RC approaches in more detail.
This paper is structured as follows. Section 2 presents a summary of

the modeling approaches used for forecasting chaotic time series in this
research and provides details about the implementation of each model
and the evaluation metrics employed in this study. These methods are
applied to datasets whose characteristics are described in Section 3. The
results are presented and discussed in Section 4, and Section 5 presents
concluding remarks.

2. Time-series prediction methods

This section presents an overview of the computational methods
used for chaotic time series prediction in this work.

2.1. Gated recurrent neural networks

RNNs are one of the most common approaches for handling tem-
poral data; the recurrent connections in the network provide a native
way to learn the internal dependencies within the time-dependent
data. However, their vulnerability to vanishing and exploding gradients
limits their application to only learning short-term relations in the
observations. Gated RNNs, such as LSTMs, were introduced as a remedy
for such a limitation. The gating mechanism provided by the memory
cell architecture enables them to select which information should be
kept and which forgotten, making them more robust to irrelevant
perturbations. Therefore, gated RNNs can model the temporal depen-
dencies for longer time horizons. Fig. 1a schematically depicts the flow
of information in an LSTM cell in which a hidden state ℎ𝑡 is calculated
using the following equations:

𝑖𝑡 = 𝜎(𝑾𝒊𝑥𝑡 + 𝑼𝒊ℎ𝑡−1 + 𝑏𝑖),

𝑓𝑡 = 𝜎(𝑾𝒇𝑥𝑡 + 𝑼𝒇ℎ𝑡−1 + 𝑏𝑓),

𝑜𝑡 = 𝜎(𝑾𝒐𝑥𝑡 + 𝑼𝒐ℎ𝑡−1 + 𝑏𝑜),

𝑐𝑡 = tanh(𝑾𝒄𝑥𝑡 + 𝑼𝒄ℎ𝑡−1 + 𝑏𝑐),

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡,

ℎ𝑡 = tanh(𝑐𝑡)⊙ 𝑜𝑡,

(1)

where 𝑖𝑡, 𝑜𝑡, and 𝑓𝑡 denote the input, output, and forget gates at time
𝑡; 𝑥𝑡 is the input vector; 𝑾∗ and 𝑼∗ are the weight matrices that along
with the biases 𝑏∗ are the trainable parameters and are adjusted during
the learning process; 𝑐𝑡 denotes the internal memory of the LSTM unit
known as the cell state; and 𝑐𝑡 is the cell input activation vector. In
these equations, each 𝜎 designates a sigmoidal function and ⊙ denotes
Hadamard element-wise multiplication.

A similar desire to avoid vanishing and exploding gradient problems
led to the development of GRUs, which share many similarities in
architecture and thus performance with LSTMs. As illustrated in Fig. 1b,
a GRU memory cell can be considered as a simplified version of an
LSTM unit, where the tasks of input and forget gates are handled by

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300
a single gate known as the update gate. This simplification improves
the overall efficiency as fewer parameters are required to be trained,
while the prediction accuracy is minimally affected in most cases and
in some applications improvements are even reported (Bianchi et al.,
2017). The evolution of hidden states in GRUs is given by the following
equations:

𝑧𝑡 = 𝜎(𝑾𝒛𝑥𝑡 + 𝑼𝒛ℎ𝑡−1 + 𝑏𝑧),

𝑟𝑡 = 𝜎(𝑾𝒓𝑥𝑡 + 𝑼𝒓ℎ𝑡−1 + 𝑏𝑟),

ℎ̃𝑡 = tanh(𝑾𝒉𝑥𝑡 + 𝑼𝒉(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ),

ℎ𝑡 = (1 − 𝑧𝑡)⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡,

(2)

where 𝑧𝑡 and 𝑟𝑡 represent update and reset gates and determine which
information should be kept through time and which is irrelevant and
can be forgotten. The candidate state is denoted by ℎ̃𝑡. The weight
matrices 𝑾∗ and 𝑼∗ and the bias vectors 𝑏∗ are adjusted in the training
process, thereby enabling the update and reset gates to select which in-
formation should be passed along to the future, and which information
is irrelevant and thus should be forgotten.

2.2. Echo state networks

ESNs are the most common realizations of the RC approach and
utilize a low-cost training process in which only the weights of the
output layer, known as the readout layer, are adjusted, and the rest
of parameters are initialized randomly and remain untrained. Despite
this considerable simplification, which turn the training problem into
a linear regression task, ESNs provide an effective approach to model
and predict complex dynamics, including chaotic time series. Fig. 2a
illustrates the main components of a typical ESN, which include an
input layer, a hidden layer of randomly connected neurons known as
the reservoir, and a readout layer. The number of input and output
variables specifies the size of the input and output layers, respectively.
In this work, we employ an extension of the standard ESN in which
leaky integrator neurons (Jaeger et al., 2007) are employed as the
hidden units. The evolution of the reservoir state ℎ𝑡 is described by

ℎ𝑡 = (1 − 𝛼)ℎ𝑡−1 + 𝛼 tanh (𝑾 𝒊𝒏𝑥𝑡 +𝑾 ℎ𝑡−1), (3)

where 𝑾 𝒊𝒏 and 𝑾 denote the input weight and reservoir weight
matrices, respectively. The input signal is denoted by 𝑥𝑡 and 𝛼 ∈ [0, 1]
is a constant parameter known as the leaking rate. The output of the
network is obtained by the following equation:

𝑦𝑡 = 𝑓 𝑜𝑢𝑡 (𝑾 𝒐𝒖𝒕 [𝑥𝑡;ℎ𝑡
])

, (4)

where 𝑾 𝒐𝒖𝒕 denotes the readout weights and is obtained by least-
square regression with Tikhonov regularization to prevent overfitting.
The activation function of the output layer is given by 𝑓 𝑜𝑢𝑡 and is chosen
here as a unity function.

Once the readout weights are calculated, the future values of the
time series can then be obtained using a recursive strategy in which
the results of predictions at each time step will be fed to the network
as the input for the next time step (see Fig. 2).

The initial success of RC techniques and ESNs motivated further
research on the structure of ESNs (Carroll & Pecora, 2019) and new
reservoir topologies, such as clustered reservoirs, where the reservoir
consists of a set of sub-reservoirs sparsely connected to each other.
Fig. 2b demonstrates a CESN, where the reservoir is constructed as
three sub-reservoirs. The update equation and training process remain
the same as for the baseline ESN.

The physics-informed version of an ESN, known as a hybrid ESN
(HESN), has been successfully employed in a number of application
domains (Doan et al., 2020; Oh, 2020; Pathak, Wikner, et al., 2018;
Shahi et al., 2021) where domain knowledge is integrated into an ESN
by feeding the network an additional input from a knowledge-based
mathematical model that approximates the behavior of the dynamical

system. Fig. 2c illustrates the schematic architecture of a HESN. In

3

this work, in the case of generated time series, an ‘‘imperfect’’ version
of the mathematical equations is used to generate the knowledge-
based approximation, where the imperfect mathematical equations are
obtained by multiplying one of the original model parameters by (1+𝜖),
where 𝜖 represents a dimensionless unknown error (Pathak, Wikner,
et al., 2018). In the case of experimental time series, a mathematical
model that provides an approximation of the dynamical system is
employed.

2.3. Nonlinear vector autoregressive model

It is demonstrated that a reservoir computer with linear activa-
tion functions whose feature vector also includes weighted sums of
nonlinear functions of the reservoir output values is mathematically
comparable to an NVAR model, which consequently offers a powerful
universal approximator of dynamical systems (Bollt, 2021; Gauthier
et al., 2021). In such an NVAR model, the state matrix is constructed by
concatenating a linear part, including 𝑘 time-delay embeddings of the
𝑑-dimensional input time series, and a nonlinear part, which is gener-
ated by applying a nonlinear functional (in practice, a polynomial) to
the linear part. Therefore, the state vector at step 𝑡 has the following
form:

ℎ𝑡 =
[

ℎ𝑙𝑖𝑛,𝑡;ℎ𝑛𝑜𝑛𝑙𝑖𝑛,𝑡
]

, (5)

where the linear part ℎ𝑙𝑖𝑛,𝑡 includes the input signal at time step 𝑡 and
the 𝑘 − 1 previous time steps spaced by a parameter 𝑠 and is given by

ℎ𝑙𝑖𝑛,𝑡 =
[

𝑥𝑡, 𝑥𝑡−𝑠, 𝑥𝑡−2𝑠,… , 𝑥𝑡−(𝑘−1)𝑠
]𝑇 . (6)

Therefore, 𝑠−1 steps are skipped between each two consecutive entries
of this vector. The nonlinear part of the hidden vector ℎ𝑛𝑜𝑛𝑙𝑖𝑛,𝑡 is
obtained by applying a polynomial functional to the linear part ℎ𝑙𝑖𝑛,𝑡.
For instance, in the case of choosing a quadratic polynomial, the entries
of ℎ𝑛𝑜𝑛𝑙𝑖𝑛,𝑡 include the 𝑘𝑑(𝑘𝑑 + 1)∕2 unique monomials obtained by the
cross product of ℎ𝑙𝑖𝑛,𝑡 with itself and are given by

ℎ𝑛𝑜𝑛𝑙𝑖𝑛,𝑡 =
[

𝑥2𝑡 , 𝑥𝑡𝑥𝑡−𝑠, 𝑥𝑡𝑥𝑡−2𝑠,… , 𝑥2𝑡−(𝑘−1)𝑠
]𝑇

. (7)

Then, the rest of the calculation, including finding the readout weights
𝑾 𝒐𝒖𝒕 and prediction, is identical to what is used for ESNs. Accordingly,
sometimes a bias can also be added to the state vector in Eq. (5),
i.e. ℎ𝑡 =

[

1;ℎ𝑙𝑖𝑛,𝑡;ℎ𝑛𝑜𝑛𝑙𝑖𝑛,𝑡
]

. The output of the NVAR method at time step
𝑡 then is obtained by the following equation:

𝑦𝑡 = 𝑾 𝒐𝒖𝒕 [1;ℎ𝑙𝑖𝑛,𝑡;ℎ𝑛𝑜𝑛𝑙𝑖𝑛,𝑡
]

(8)

Thus, this method circumvents the requirement of constructing an
explicit reservoir of randomly connected neurons, which increases
the randomness and sensitivity of ESNs to the hyperparameter val-
ues and initial parameters. In fact, in comparison to ESN, NVAR has
fewer hyperparameters to tune whose optimal values can be deter-
mined by a grid search or some other optimization technique with less
computational effort.

3. Datasets

To evaluate the performance of these approaches in multi-step
forecasting of chaotic time series, the methods are applied to predict
four chaotic benchmarks and one experimental dataset representing
cardiac voltage time series with highly nonlinear dynamics. Below we
describe these five datasets.

3.1. Mackey-Glass

As the first example, we use a time series obtained by solving the

Mackey–Glass (MG) equation (Mackey & Glass, 1977), which is one

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

u

o
s
t

g
i
m
a
f

Fig. 2. Components of reservoir computing approaches, including (a) the baseline ESN, (b) CESN, and (c) HESN. In these architectures, the input and output signals can be either
nivariate or multivariate time series.
e

f the most commonly studied benchmarks to evaluate chaotic time-
eries forecasting approaches. The following equation describes the MG
ime-delay differential system:
𝑑𝑥
𝑑𝑡

=
𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥𝑐(𝑡 − 𝜏)
− 𝑏𝑥(𝑡), (9)

where 𝑎 = 0.2, 𝑏 = 0.1, and 𝑐 = 10 are constant parameters. The
nonlinearity of the system increases as the time delay parameter 𝜏
increases. The system demonstrates chaotic behavior when 𝜏 ≥ 17. To
enerate the time series used here, 𝜏 is set to 17 and the numerical
ntegration step size is set to 𝛥𝑡 = 0.1 using a fourth-order Runge–Kutta
ethod implemented in MATLAB to solve delay differential equations
t discrete equally spaced times. Then, the data is sampled by 10𝛥𝑡 to
orm a time series with 15,000 data points split into the training set
4

(80%), where the first 1000 steps are considered the pre-training warm-
up period required in RC approaches (Lukoševičius, 2012), and testing
set (20%). Fig. 3a illustrates the generated MG dataset; panel (c) shows
a blowup of the shaded regions in panel (a) within the training data.

The knowledge-based time series, which is required to evaluate
the HESN approach, is generated by an imperfect mathematical model
obtained by changing the constant 𝑏 to (1 + 𝜖)𝑏 in Eq. (9), where the
rror parameter 𝜖 is set to 0.1 to demonstrate a noticeable difference
in the time series values (see Fig. 3c).

3.2. Lorenz

The second chaotic time series benchmark is derived from the

1963 Lorenz system (Lorenz, 1963), which is given by the following

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

t
o
s
1
[
s

i
t
s
(

3

(

Fig. 3. The Mackey–Glass time series. (a) Generated time series including unused pre-training data (gray), training data (blue), and testing (prediction) data (black). (b) Zoomed-in
section corresponding to the shaded region in panel (a). (c) Mackey–Glass time series (solid) and the imperfect knowledge-based model (dashed). (d) Zoomed-in section corresponding
to the shaded region in panel (c) demonstrating the difference between the generated time series and the imperfect knowledge-based model. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤

differential equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑥
𝑑𝑡 = 𝑎(𝑦 − 𝑥),
𝑑𝑦
𝑑𝑡 = 𝑥(𝑏 − 𝑧) − 𝑦,
𝑑𝑧
𝑑𝑡 = 𝑥𝑦 − 𝑐𝑧,

(10)

where 𝑎 = 10, 𝑏 = 28, and 𝑐 = 8∕3 are the constant parameters. The
ime series is obtained by integrating the equation numerically using
de45, the fourth-order Runge–Kutta solver in MATLAB, where the
olution is evaluated at times spaced 𝛥𝑡 = 0.01 apart to obtain a set of
0,000 data points. Then, the time series is scaled to lie in the interval
−1, 1] and divided into training and testing datasets using an 80–20
plit. Similar to the MG dataset, the training set includes a 500-step
pre-training period required in RC approaches. Fig. 4a illustrates the
generated time series.

Similar to the MG dataset, the knowledge-based time series is
obtained by replacing the constant 𝑏 with (1+ 𝜖)𝑏. The error parameter
s set to 𝜖 = 0.05, which generates an observable difference in the
ime series values. Fig. 4c shows the difference between the true time
eries (solid) and the imperfect knowledge-based model time series
dashed).

.3. Bursting Morris–Lecar

To obtain a third chaotic dataset, we use a busting Morris–Lecar
BML) model of a neuron as described by Izhikevich (Izhikevich, 2012):
5

𝑑𝑉
𝑑𝑡 = −𝑔𝑙(𝑉 − 𝐸𝑙) − 𝑔𝑘𝑤(𝑉 − 𝐸𝑘) − 𝑔𝐶𝑎𝑚∞(𝑉)(𝑉 − 𝐸𝐶𝑎) − 𝑢,
𝑑𝑤
𝑑𝑡 = 𝜆(𝑉)(𝑤∞(𝑉) −𝑤),
𝑑𝑢
𝑑𝑡 = 𝜇(𝑉0 + 𝑉),

(11)

where

𝑚𝑖𝑛𝑓 (𝑉) = (1 + tanh((𝑉 − 𝑉1)∕𝑉2))∕2,

𝑖𝑛𝑓 (𝑉) = (1 + tanh((𝑉 − 𝑉3)∕𝑉4))∕2,

𝜆(𝑉) = cosh((𝑉 − 𝑉3)∕(2𝑉4))∕3.

Parameter values were selected to achieve chaotic bursting dynamics
as follows: 𝑔𝑙 = 0.5, 𝐸𝑙 = −0.5, 𝑔𝑘 = 2, 𝐸𝑘 = −410, 𝑔𝐶𝑎 = 1.2, 𝐸𝐶𝑎 = 1,
𝜇 = 0.1, 𝑉0 = 0.2, 𝑉1 = −0.01, 𝑉2 = 0.15, 𝑉3 = 0.1, 𝑉4 = 0.05.

The BML time series is generated by solving the differential equa-
tions numerically using the forward Euler method implemented in
MATLAB, where the time step is set to 𝛥𝑡 = 0.01. The data is then
sampled by 10𝛥𝑡 to form a time series with 15,000 data points divided
into training and testing datasets using an 80–20 split, where the first
1000 steps are considered as the pre-training period required in RC
techniques. Fig. 5 illustrates the generated dataset. The BML time series
is then linearly scaled to lie in the interval [−1, 1].

The knowledge-based time series corresponding to the BML model is
obtained by perturbing the constant 𝑔 by a factor of (1+𝜖) in Eq. (11),
𝑘

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

t
f

Fig. 4. The Lorenz system time series. (a) The unused pre-training data is shown in gray, and the training data are in purple, green, and blue colors indicating the 𝑥, 𝑦, and 𝑧
variables, respectively. The testing data is in black. (b) Zoomed-in section corresponding to the shaded region in panel (a). (c) Lorenz system time series (solid) and the imperfect
knowledge-based model (dashed). (d) Zoomed-in section corresponding to the shaded region in panel (c) demonstrating the difference between the generated time series and the
imperfect knowledge-based model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
where the error parameter 𝜖 is set to 0.05 to demonstrate a noticeable
difference in the time series values (see Fig. 5c).

3.4. El Niño-Southern Oscillation

Another example of a chaotic model is the simple three-variable El
Niño-Southern Oscillation (ENSO) model by Vallis (Vallis, 1986). The
model represents the ocean as a box with east and west temperatures
𝑇𝑒 and 𝑇𝑤, respectively, along with a third variable representing the
surface wind (or current) 𝑢 between the two sides. The ENSO model
equations are as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢
𝑑𝑡 = 𝐵

2𝛥𝑥 (𝑇𝑒 − 𝑇𝑤) − 𝐶(𝑢 − 𝑢∗),
𝑑𝑇𝑤
𝑑𝑡 = 𝑢

2𝛥𝑥 (𝑇̄ − 𝑇𝑒) − 𝐴(𝑇𝑤 − 𝑇 ∗),
𝑑𝑇𝑒
𝑑𝑡 = 𝑢

2𝛥𝑥 (𝑇𝑤 − 𝑇̄) − 𝐴(𝑇𝑒 − 𝑇 ∗),

(12)

where 𝐵 describes the rate of flow of current due to the difference in
emperatures, 𝛥𝑥 is half the width of the ocean, 𝐶 denotes the frictional
low resistance, 𝑢∗ is an average current, 𝑇̄ represents the deep ocean
temperature, 𝐴 scales the rate of heat loss, and 𝑇 ∗ functions as an
average temperature the ocean aims to maintain. We set the parameter
values as 𝐵 = 940, 𝛥𝑥 = 7.5, 𝐶 = 3, 𝑢∗ = −14.2, 𝑇̄ = 16, 𝐴 = 1, and
𝑇 ∗ = 28. The model has the same structure as the Lorenz model and
thus it is capable of producing chaotic dynamics for certain parameter
regimes, including the parameter values we chose. In addition, the
6

structural similarity of the ENSO model will allow for an interesting
comparison of results with those from the Lorenz model.

The ENSO time series is constructed by applying a forward Euler
method implemented in MATLAB to solve the corresponding differen-
tial equations (Eq. (12)), where the step size 𝛥𝑡 is set to 5 × 10−4 for
overall 𝑡 = 150. The final time series, including 30000 data points, is
obtained after sampling the data by 10𝛥𝑡. The first 80% of the time
series is assigned to the training dataset, where the first 2000 steps
marked as the pre-training warm-up period. The last 20% of the time
series forms the testing set (see Fig. 6). Note the values of the ENSO
time series are then linearly scaled to be within [−1, 1].

To generate the time series representing the imperfect knowledge-
based model, the constant parameter 𝐶 is perturbed by a factor of (1+𝜖)
in Eq. (12), where the error parameter 𝜖 is set to 0.05. Fig. 6c demon-
strates the knowledge-based ENSO time series (dashed) as opposed to
the true ENSO time series (solid).

3.5. Experimental cardiac voltage recordings

Many real-world dynamical systems can show chaotic behavior,
including the time evolution of the electrical potential of a cardiac
cell (also known as an action potential). To evaluate the capability
of these approaches in forecasting real-world chaotic time series, the
final dataset we considered represents action potentials recorded from
a zebrafish heart as described in Shahi et al. (2021).

For the knowledge-based model, a mathematical model approxi-
mating the voltage dynamics of a cardiac cell can be employed. For

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300
Fig. 5. The bursting Morris–Lecar time series. (a) The unused pre-training data is shown in gray, and the training data are in purple, green, and blue colors indicating the 𝑉 , 𝑤,
and 𝑢 variables, respectively. The testing data is in black. (b) Zoomed-in section corresponding to the shaded region in panel (a). (c) The bursting Morris–Lecar time series (solid)
and the imperfect knowledge-based model (dashed). (d) Zoomed-in section corresponding to the shaded region in panel (c) demonstrating the difference between the generated
time series and the imperfect knowledge-based model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
instance, the two-variable Mitchell–Schaeffer (Mitchell & Schaeffer,
2003) and the three-variable Fenton–Karma (Fenton & Karma, 1998)
models are two knowledge-based model candidates. Here we use the
Corrado–Niederer modification of the Mitchell–Schaeffer model (Cor-
rado & Niederer, 2016) with 𝜏𝑖𝑛 = 0.3 ms, 𝜏𝑜𝑢𝑡 = 6 ms, 𝜏𝑜𝑝𝑒𝑛 = 40 ms,
𝜏𝑐𝑙𝑜𝑠𝑒 = 20 ms, and 𝑣𝑔𝑎𝑡𝑒 = 0.13.

Cardiac cells like those considered here are not natural pacemakers
and thus require exogenous stimulation, typically through the direct
application of current for a brief time (typically 1–2 ms), to elicit
each activation. Thus, information about the pacing stimulus timing
must be introduced as an additional input to the network along with
the cardiac voltage time series (Shahi et al., 2021). Furthermore, the
knowledge-based model also must be stimulated at the same times as
the experimental time series. Because the timing of applied stimuli
can be variable and is not directly available for the experimental
data, a pre-processing step is applied to detect the timestamp at the
beginning of each action potential. Then, the pacing stimulus time
series is generated by assigning a stimulus voltage with magnitude 0.2
and duration 2 ms at the onset of each beat in time. Fig. 7c exhibits
the experimental time series and the corresponding knowledge-based
model. Note that the voltage is rescaled to be between zero and one.

4. Implementation

All methods were implemented in MATLAB (R2021a) and were run
on the same computer equipped with an Apple M1 processor and 8 GB

of RAM, operating with macOS Big Sur (Version 11.5.2).

7

4.1. Hyperparameter selection

Hyperparameter values used to construct each model play a pivotal
role in the performance of each model. Thus, to have a fair comparison
between the prediction ability of these techniques, finding a good set
of hyperparameters is an inevitable initial step. Here the optimum
hyperparameter values were determined by an extensive grid search,
with the admissible ranges and the size of the hyperparameter grids
informed by initial experiments on a validation set.

In general, gated RNNs, i.e. LSTMs and GRUs, need a large set
of tunable hyperparameters, including the number of hidden layers
and hidden units, the optimization technique to train the network and
the hyperparameters corresponding to the chosen optimization solver,
e.g., learning rate, the learning rate drop factor, maximum number
of epochs, and regularization factor. Therefore, running an exhaustive
search on a wide grid of hyperparameter values is practically infeasible
in most cases. In this work, after an initial round of experiments, some
of these hyperparameters are set while the values of hyperparameters
with more influence on the performance of the networks are optimized
by a grid search. In this regard, we use the Adam optimizer (Kingma
& Ba, 2014) for training the networks with its default configurations
in MATLAB, while the grid search determines the optimum values
of number of layers, the dropout probabilities, initial learning rate,
maximum number of epochs, and regularization factor (see Table 1).

In comparison to the gated RNNs, ESN approaches are more sensi-
tive to hyperparameter values (Lara-Benítez et al., 2021), while they

demand significantly less computational effort for training. Therefore,

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

v
k
i

w
f
p
p
t
t

4

L
f
f
l
d
w
d
l
l
T
d
w

p
r
r
c

Fig. 6. The ENSO time series. (a) The unused pre-training data is shown in gray, and the training data are in purple, green, and blue colors indicating the 𝑢, 𝑇𝑤, and 𝑇𝑒
ariables, respectively. The testing data is in black. (b) Zoomed-in section corresponding to the shaded region in panel (a). (c) The ENSO time series (solid) and the imperfect
nowledge-based model (dashed). (d) Zoomed-in section corresponding to the shaded region in panel (c) demonstrating the difference between the generated time series and the
mperfect knowledge-based model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4

t
r
t
r
m
w
f
t
i

e
c
r
s

E
i
a
w

n
d
d
d

ider intervals and finer grids were chosen for running the grid search
or the ESN techniques. Table 1 presents a summary of the hyper-
arameters and the parameter grid values used to obtain the best
erformance for each technique. Note that the number of hyperparame-
ers required to be tuned in the NVAR approach is considerably smaller
han for the other techniques.

.2. Gated RNN implementations

The LSTM and GRU networks were implemented utilizing the Deep
earning toolbox in MATLAB, where the network architectures are de-
ined as a layerGraph object that consists of an array of network layers
orming a directed acyclic graph structure. First, a sequential input
ayer was required to feed the input time series into the network. Then,
epending on the architecture, one or multiple LSTM or GRU layers
ere required to learn the long-term dependencies in the temporal
ata. Afterward, a fully connected layer connected the last gated RNN
ayer to a regression output layer. To avoid overfitting issues, dropout
ayers with various dropout probability were added to the architecture.
he number of gated layers, dropout layers, and the corresponding
ropout probabilities were hyperparameters and their optimum values
ere determined in the grid search (see Table 1).
Once the network was trained, the recursive approach was em-

loyed to perform a multi-step-ahead prediction, where the predicted
esponse at each time step was provided as input for prediction of the
esponse in the next time step, and the network state was updated

orrespondingly.

8

.3. Echo state network implementations

The implementation of the baseline ESN was based on Jaeger’s
utorial introducing ESNs (Jaeger, 2002) and employing the practical
emarks suggested by Lukoševičius (Lukoševičius, 2012). To generate
he initial reservoir graph in the baseline ESN, the Erdős–Rényi algo-
ithm (Bollobás & Béla, 2001) was used. Then, the reservoir weight
atrix was adjusted to satisfy the echo state property of the net-
ork (Yildiz et al., 2012) to guarantee that the network was state-
orgetting, i.e., the effect of initial conditions should vanish over time
o ensure that the reservoir state asymptotically depends solely on the
nput signal.
The structure of the CESN was very similar to the baseline ESN

xcept for generating the reservoir graph, where the sub-reservoir
lusters were generated first and then were connected to each other
andomly with an inter-cluster connection probability chosen to be
maller than the intra-cluster connection probability.
Constructing the reservoir in the HESN was identical to the baseline

SN and followed the same Erdős–Rényi approach; the difference was
n the input layer, where the sequential input data was augmented with
n additional time series from a knowledge-based model synchronized
ith the original time series (see Fig. 2c).
Note that during the training for the ESNs, the initial states of the

etwork were discarded to ensure that the network dynamics were fully
eveloped and the training was not affected by the initial transient
ynamics. This transient phase is exhibited in gray, as the pre-train
ata, in Figs. 3-7.

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

a
k
i

s
w
c
o
e
w
p

h
n
u
t
t
t
i
a
o
m
T
r
l
g
t
g

Fig. 7. Experimental cardiac voltage time series featuring irregular action potentials. (a) Voltage time series including unused pre-training data (gray), training data (blue),
nd testing data (black). (b) Zoomed-in section corresponding to the shaded region in panel (a). (c) Experimental cardiac action potential time series (solid) and the imperfect
nowledge-based model (dashed)line. (d) Zoomed-in section corresponding to the shaded region in panel (c), where the difference between the generated time series and the
mperfect knowledge-based model can be observed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
i
p
a
c
i

h
t
N

Furthermore, by construction, ESNs may suffer from excessive sen-
itivity to the hyperparameters and the initial values of the parameters,
hich remain untrained; this property is an outcome of the randomized
onstruction of the networks in RC approaches. To minimize the effect
f the random nature of ESNs on the results of our study, the results of
ach method for each network size were averaged over 10 experiments
ith different seed values for the random number generator in MATLAB
rogram.
On account of such sensitivity, finding a set of optimum values for

yperparameters is of great importance for network performance. The
umber of hidden units in the reservoir; the connection probability
sed in the Erdős–Rényi graph generation process, which determines
he sparsity of the reservoir connections; and the spectral radius of
he reservoir graph showed the most influence on the performance of
he network. Other hyperparameters including the leaking rate, the
nput weight scale, and the ridge regression regularization factor were
lso crucial to obtain good prediction results. Moreover, the number
f clusters in CESNs along with parameters of the knowledge-based
odel in the HESNs were additional hyperparameters to be determined.
herefore, in comparison to the gated RNNs, the number of hyperpa-
ameters for ESN approaches was considerably higher (see Table 1),
eading to a more involved search because the size of the grid search
rows exponentially as the parameter ranges grows. Nonetheless, due
o the substantially lower computational costs of ESNs, we obtained the
rid search results in almost the same wall-clock times as for the RNNs.
 a

9

4.4. Nonlinear vector autoregressive implementation

The implementation of the NVAR approach is straightforward and
shares many similarities with ESNs. There are only a few main consid-
erations in implementing NVAR technique.

First, the degree of the polynomial functional to construct the
nonlinear part of the state vectors must be determined; it was shown
that employing a low-order polynomial can lead to high prediction
accuracy (Gauthier et al., 2021). Accordingly, in this work, we used
the simplest case, which is a second-degree polynomial. Therefore, at
each time step, the state vector has 1+𝑘𝑑+𝑘𝑑(𝑘𝑑+1)∕2 entries including
the bias, linear, and nonlinear parts, respectively.

The second consideration is the pre-training period required in
NVAR, which only needs to be 𝑘𝑠 time steps to have all 𝑘-delayed
nput values to form the linear part of the state vector. Therefore, in
ractice, the pre-training period in an NVAR can be less than that of
n equivalent ESN. Nonetheless, to make these two technique more
omparable, in this work, the pre-training periods were chosen to be
dentical in both techniques.
In contrast to the gated RNNs and ESNs, there are no explicit

idden units in NVAR approach. This makes the comparison of NVAR
o the other approaches more challenging. The reason that we include
VAR in this comparative study is that it can perform equally well
s optimized ESNs in some applications (Gauthier et al., 2021). For

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300
Table 1
Hyperparameter values used for the grid search optimization for each prediction method. In the case of gated RNNs, the initial learning rate,
maximum number of epochs, and regularization factor are the effective hyperparameters for training the networks by the Adam optimizer,
while the number of layers determines the architecture of each network for a given number of hidden units. The dropout probability controls
the dropping rate of dropout layers used as a regularization technique preventing overfitting. In RC techniques, i.e., ESN, CESN, and HESN,
the input weight scale (𝜎𝑗

𝑖𝑛) represents the scalar value multiplied by the 𝑗th input time series (1 ≤ 𝑗 ≤ 𝑑) to adjust the magnitude of the
input signal. Therefore, for univariate time series, e.g., the MG dataset, 𝑑 is equal to 1 and the input weight scale is only one scalar, while
for multivariate time series, e.g., the Lorenz dataset, 𝜎𝑖𝑛 consists of three scalar values that need to be tuned. Similarly, the HESN approach
requires an additional set of weight scales for the knowledge-based model input(s), denoted by 𝜎𝑗

𝑘𝑏. The selected spectral radius 𝜌 is used to
scale the reservoir weight matrix in ESNs. The amount of excitation discarded by the leaky integrator neurons is specified by the leaking rate
𝛼. The sparsity of the reservoir graph is controlled by the connection probability 𝑝𝑟, defined as the probability of connection between any two
hidden units in the reservoir. Furthermore, the CESN approach requires an additional hyperparameter 𝑝𝑟𝑐 , which is the inter-cluster probability
indicating the sparsity of the connections between each pair of sub-reservoirs. The regularization parameter 𝜆 determines the ridge regression
regularization factor used to obtain the readout weights. In the NVAR approach, the hyperparameter skip (𝑠) controls the number of steps
skipped between each two entries of delay embedding vectors.
Methods Parameters Values

Number of layers {1, 2, 4}
Initial learning rate {0.001, 0.002, 0.005, 0.010, 0.050, 0.100}

LSTM Dropout probability {0.00, 0.05, 0.10, 0.20, 0.50}
Max number of epochs {5, 10, 15, 20, 30, 50, 100}
𝐿2 regularization {10−6 , 10−5 , 10−4 , 10−30}

Number of layers {1, 2, 4}
Initial learning rate {0.001, 0.002, 0.005, 0.010, 0.050, 0.100}

GRU Dropout probability {0.00, 0.05, 0.10, 0.20, 0.50}
Max number of epochs {5, 10, 15, 20, 30, 50, 100}
𝐿2 regularization {10−6 , 10−5 , 10−4 , 10−30}

Input weight scale (𝜎𝑗
𝑖𝑛, 1 ≤ 𝑗 ≤ 𝑑) {0.02, 0.05, 0.10, 0.20, 0.50, 0.80}

Spectral radius (𝜌) {0.80, 0.85, 0.90, 0.99, 1.05, 1.15, 1.25, 1.55}
ESN Leaking rate (𝛼) {0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00}

Regularization (𝜆) {10−7 , 10−6 , 10−5 , 10−4 , 10−3 , 10−2 , 10−1}
Connection probability (𝑝𝑟) {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}

Number of clusters (𝑛𝑐) {2, 3, 4, 5}
Input weight scale (𝜎𝑗

𝑖𝑛, 1 ≤ 𝑗 ≤ 𝑑) {0.02, 0.05, 0.10, 0.20, 0.50, 0.80}
Spectral radius (𝜌) {0.80, 0.85, 0.90, 0.99, 1.05, 1.15, 1.25, 1.55}

CESN Leaking rate (𝛼) {0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00}
Regularization (𝜆) {10−7 , 10−6 , 10−5 , 10−4 , 10−3 , 10−2 , 10−1}
Intra-cluster connection probability (𝑝𝑟) {0.60, 0.7, 0.80, 0.85, 0.90, 0.95, 0.98}
Inter-cluster connection probability (𝑝𝑟𝑐) {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}

Input weight scale (𝜎𝑗
𝑖𝑛, 1 ≤ 𝑗 ≤ 𝑑) {0.02, 0.05, 0.10, 0.20, 0.50, 0.80}

Knowledge based input weight scale (𝜎𝑗
𝑘𝑏, 1 ≤ 𝑗 ≤ 𝑑) {0.02, 0.05, 0.10, 0.20, 0.50, 0.80}

HESN Spectral radius (𝜌) {0.80, 0.85, 0.90, 0.99, 1.05, 1.15, 1.25, 1.55}
Leaking rate (𝛼) {0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00}
Regularization (𝜆) {10−7 , 10−6 , 10−5 , 10−4 , 10−3 , 10−2 , 10−1}
Connection probability (𝑝𝑟) {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}

NVAR Skip (𝑠) {2, 3, 4, 5, 6, 7, 8, 10, 15, 20, 25, 30}
Regularization (𝜆) {10−7 , 10−6 , 10−5 , 10−4 , 10−3 , 10−2 , 10−1}
a more fair comparison, the hyperparameters of NVAR were chosen
such that the size of the state matrix was almost identical for NVAR
and the corresponding ESNs. The number of columns of this matrix
is equal to the training length. Therefore, we chose the same length
of pre-training periods to ensure the number of columns of the state
matrix was the same in both approaches. The number of rows in the
state matrix is equal to the number of entries in the state vector at
each time step (i.e., 1 + |ℎ𝑙𝑖𝑛,𝑡| + |ℎ𝑛𝑜𝑛𝑙𝑖𝑛,𝑡|), which is a function of the
delay (𝑘) and dimension (𝑑); the latter is fixed in each problem. Thus,
for each network size in gated RNNs and ESNs, the number of delays
in NVAR was chosen such that the size of the state matrix was almost
equal to that of the ESN approaches.

Fixing the delay value 𝑘 in each NVAR model left only two tun-
able hyperparameters: the skipping step 𝑠 and the ridge regression
regulation value (see Table 1). Compared to the gated RNN and ESN
approaches, the considerably smaller number of hyperparameters to-
gether with the reduced computational effort required in each run of
training and prediction using NVAR facilitated finding the optimum
values of the hyperparameters in a grid search.

Finally, to conduct a multi-step prediction into the future, the same
recursive approach was also employed in the case of NVAR method,
which means that at each time step, to construct the linear part of
10
the state vector, the prediction of the previous step was introduced as
the new input recursively, and the delayed values were fetched from
the predictions in the previous steps. Then, the nonlinear terms were
computed accordingly.

4.5. Univariate versus multivariate time series

The forecasting approaches for the MG and Lorenz datasets share
many similarities; for instance, in the case of applying ESNs to both
problems, the constructed networks mirror the schematic architectures
shown in Fig. 2. The only main difference is in the number of input and
output variables in each time series. The MG dataset is a univariate
time series where only one variable needs to be predicted over time.
In contrast, the Lorenz dataset is an example of a multivariate time
series in which the input layer must accept three input signals for 𝑥,
𝑦, and 𝑧, respectively, i.e. 𝐱𝐭 = [𝑥(𝑡); 𝑦(𝑡); 𝑧(𝑡)]. The same consideration
is necessary for the BML and ENSO datasets, where the input time
series consist of three input signals. Note that in the HESN approach,
the number of inputs for both univariate and multivariate datasets is
multiplied by a factor of two due to the additional inputs from the
knowledge-based models in each case.

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

p
I
n
f
t
a
A
t
j
(
(
t

Fig. 8. Components of reservoir computing approaches for modeling cardiac action potential time series, including (a) the baseline ESN, (b) CESN, and (c) HESN.
Additional considerations are required to predict cardiac action
otential time series, where the dynamics relies on an external stimulus.
n particular, the pacing stimulus must also be introduced to the
etwork along with the cardiac voltage signals. In this case, although
orecasting the action potentials entails predicting one variable over
ime, the input signal is a multivariate time series consisting of the
ction potentials (voltage signal) and the pacing stimulus time series.
ccordingly, the network architectures are adjusted to accommodate
he additional input from the pacing stimulus time series. This ad-
ustment for the ESNs is portrayed in Fig. 8, where the baseline ESN
Fig. 8a) and CESN (Fig. 8b) are driven with two signals and the HESN
Fig. 8c) is driven with three signals, including one additional input for
he knowledge-based time series.
11
4.6. Evaluation metrics

The prediction accuracy is evaluated using the root mean square
error (RMSE) metric, given by

𝚁𝙼𝚂𝙴 =

√

√

√

√

√

1
𝑛

𝑑
∑

𝑗=1

𝑛
∑

𝑖=1

(

𝑌𝑗𝑖 − 𝑌𝑗𝑖
)2, (13)

where 𝑌𝑗𝑖 and 𝑌𝑗𝑖 are the target and predicted outputs, respectively,
while 𝑑 and 𝑛 denote the number of input dimensions and the length
of the dataset, respectively. Therefore, for the MG and the experimental
cardiac action potential datasets, 𝑑 is equal to 1, and for the other
datasets, 𝑑 is set to 3.

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300
Fig. 9. Mackey–Glass dataset forecasting results obtained by the six methods using a fixed network size of 100 neurons for the gated RNNs and ESN models and a computationally
equivalent delay size for NVAR approach. The reference test data are shown in black and the predictions in color. Absolute errors of the predictions are presented in the bottom
subplot, with color corresponding to each prediction method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
In the case of the cardiac dataset, action potential duration (APD)
provides another meaningful evaluation measure that is used widely
in the field. By definition, an APD is the time interval over which
the voltage during an action potential is continuously larger than a
specified threshold value, which here is chosen as 0.35.

5. Results

5.1. Mackey-Glass dataset

Fig. 9 presents the prediction results of the MG time series by the six
described methods (LSTM, GRU, ESN, CESN, HESN, and NVAR) for a
fixed network size of 100 hidden units in the first five methods and
an equivalent delayed state matrix in NVAR. The results show that
despite the general success of gated RNNs in time-series forecasting
tasks, they are not capable of capturing the dynamics of this chaotic
time series. Both the LSTM and GRU networks show poor results in
the prediction phases. The absolute error diagram at the bottom of
Fig. 9 further demonstrates the poor performance of the gated RNNs.
The best prediction accuracy is obtained by the NVAR approach, where
the prediction values exhibit a perfect match for the entire 2000-step
testing span. This result is significant considering the fact that NVAR
requires considerably less computational effort for constructing and
tuning the model. The ESN approaches are in the middle of the predic-
tion performance spectrum, and all three ESN variants can capture the
dynamics of the chaotic system and predict the future dynamics for a
considerably longer time than the gated RNN approaches. In particular,
the baseline ESN can predict the time series accurately, with the least
overall absolute error for 1400 steps into the future. The prediction
results obtained by the CESN and HESN are accurate for around 200
steps and the discrepancies started after 3 periods, as can be seen in
the absolute error diagram, where the relative error exceeds 10%. As
a result, the prediction error using the baseline ESN is nearly half that
obtained using the other two ESNs for almost all network sizes tested.
12
However, compared to the HESN, the CESN generally provides a better
overall match with less overall absolute error in the predicted values.

Varying the network size demonstrates that increasing the model
complexity by increasing the number of hidden units in the first five
methods and the number of embedded delays in the NVAR approach
has a limited effect on the overall accuracy measured by RMSE. Fig. 10a
shows that the prediction error remains roughly constant in the LSTM,
GRU, and CESN approaches for a range of network sizes; the ESN and
HESN show a noticeable improvement with more hidden units. In the
NVAR case, by increasing the delay, which for purposes of comparison
we are considering as roughly equivalent computationally to increasing
the network size in the other approaches, the accuracy remains almost
constant with very minor improvements. However, the largest ESN
(500 hidden units) shows better accuracy (nearly 8% less prediction
error) compared to the corresponding NVAR model.

According to Fig. 10b, which illustrates the elapsed time for the
combination of training and prediction tasks, the NVAR approach is
the most efficient technique among all methods tested owing to avoid-
ing the explicit construction of the networks. In particular, NVAR is
faster than the ESN and gated RNN techniques by more than one and
two orders of magnitude, respectively. This plot also reveals that the
elapsed time increases with respect to network sizes in all methods
including the NVAR approach, where the model complexity is increased
by adding more embedded delays. This trend is expected because in
each method, by increasing the model complexity, more computational
effort is required for training and prediction.

5.2. Lorenz dataset

The results of applying the six described methods to the Lorenz
dataset using the same fixed network size are presented in Fig. 11. The
LSTM and GRU models can accurately predict for only a short period of
time (around 50 time steps) and the prediction results quickly deviate
from the true values, whereas the ESNs can capture the dynamics of

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300
Fig. 10. Comparison of RMSE (top) and computational time (bottom) for each method and network size tested for the Mackey–Glass dataset.
Fig. 11. Lorenz system dataset forecasting results obtained by the six methods using a fixed network size of 100 neurons for the gated RNNs and ESN models and an equivalent
delay size for the NVAR approach. The reference test data are shown in black and the predictions in color. Absolute errors of the predictions are presented in the bottom subplot,
with color corresponding to each prediction method. Note that the reported error is the mean absolute error over the three input time series. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
the system and provide accurate forecasting for more than 400 time
steps. Although the prediction accuracy is roughly the same across all
three ESNs for the entire test set, the prediction errors illustrate that
the CESN achieved slightly better performance. Nonetheless, similar to
the MG dataset, the best overall performance measured by the RMSE
metric is obtained by the NVAR approach, which demonstrates that this
technique can successfully forecast multivariate time series for multiple
steps into the future. The last panel in Fig. 11 shows the mean absolute
error of the predicted values obtained by each method. This plot reveals
that even though the overall prediction error obtained by NVAR is the
minimum across all applied techniques, the prediction obtained by ESN
approaches are more accurate at the beginning of the prediction before
discrepancies start to appear later.

Increasing the network size for the ESNs can slightly improve their
performance in predicting the Lorenz time series, as shown in Fig. 12. In
13
contrast, the LSTM and GRU models do not display this trend; for some
intermediate network sizes, the models performed poorly even for the
first few time steps. As opposed to the gated RNNs and ESNs, increasing
the embedded delays in the NVAR approach significantly improved
the prediction accuracy of the model. Accordingly, the discrepancies
that currently can be seen in the NVAR prediction results in Fig. 12
do not persist with higher delay values. We study this more using the
experimental dataset, as discussed in the next section.

The lower plot in Fig. 12 shows that the NVAR approach is the
most efficient with the smallest overall computational times. All three
ESN techniques show similar computational times for various reservoir
sizes. Although the ESN computational times are larger than for the
NVAR approach, they still remain within a factor of 2–5 times more
than the corresponding NVAR models. However, the LSTM and GRU
models are more than 3 orders of magnitude slower than the NVAR

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

5

n
G
c
v
o
p
e

Fig. 12. Comparison of RMSE (top) and computational time (bottom) for each method and network size tested for the Lorenz system dataset.
Fig. 13. Morris–Lecar dataset forecasting results obtained by the six methods using a fixed network size of 100 neurons for the gated RNNs and ESN models and an equivalent
delay size for the NVAR approach. The reference test data are shown in black and the predictions in color. Absolute errors of the predictions are presented in the bottom subplot,
with color corresponding to each prediction method. Note that the reported error is the mean absolute error over the three input time series. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
a
L
t

i
d
d
E
a
l
n
r

and ESN models in most cases. Another expected trend was the in-
crease in computational times when increasing the model size, which
is demonstrated in Fig. 12.

.3. Bursting Morris–Lecar dataset

Fig. 13 shows the results of using the BML dataset of bursting
eural activity with the six different prediction methods. The LSTM and
RU approaches have little if any predictive power and quickly predict
onstant values. In contrast, NVAR is a particularly good choice with
ery low error throughout the entire prediction time. The performance
f the various ESN approaches fails to match the accuracy of NVAR but
rovides good predictions for more than half of the prediction time,
specially for the ESN and CESN methods. The bottom panel indicates
 E

14
bsolute error over time, with the highest values associated with the
STM and GRU approaches; over time, the error grows appreciably for
he ESN methods as well.
For the BML dataset, prediction accuracy as measured by RMSE

s relatively insensitive to the network size (or number of embedded
elays, for NVAR), as shown in the top panel of Fig. 14 Because of the
ecrease in prediction quality for the second half of the time series, the
SN approaches have RMSE values almost as high as those of the LSTM
nd GRU methods. For NVAR, increasing the embedded delays may
ead to a decrease in accuracy. For all methods, the computational time
eeded increases with the network size. The LSTM and GRU methods
equire the most time, nearly two orders of magnitude more than the
SN methods, which require similar times. NVAR is the most efficient,

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300
Fig. 14. Comparison of RMSE (top) and computational time (bottom) for each method and network size tested for the Morris–Lecar dataset.
Fig. 15. ENSO dataset forecasting results obtained by the six methods using a fixed network size of 100 neurons for the gated RNNs and ESN models and an equivalent delay
size for the NVAR approach. The reference test data are shown in black and the predictions in color. Absolute errors of the predictions are presented in the bottom subplot, with
color corresponding to each prediction method. Note that the reported error is the mean absolute error over the three input time series. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
but the ESN methods remain competitive in terms of computational
requirements.
5.4. El Niño-Southern Oscillation Dataset

In Fig. 15, the results of predicting the ENSO dataset can be seen for
the different methods. The LSTM method performs particularly poorly,
with only a single oscillation before remaining at a constant value. GRU
does better but essentially misses all the large-amplitude oscillations in
the middle of the testing data and also does not predict the amplitudes
and phases of the smaller oscillations consistently. The baseline ESN
predicts accurately for more than half of the test data but fails to predict
the later large-amplitude oscillations and predicts the last portion of
the dataset with proper amplitude but incorrect phase. The HESN
method performs similarly, except that the last portion of the dataset
has less severe discrepancies in phase and slightly higher amplitude
discrepancies. Very good performance is obtained by the CESN method,
15
with almost no difference from the testing data, narrowly beating out
NVAR, which includes some slight discrepancies. In the bottom panel
of Fig. 15, the absolute error measurements over time confirm the poor
predictions using LSTM and GRU throughout the time series and the
consistently small errors achieved only for CESN and NVAR.

Fig. 16 compares the performance for the ENSO dataset across
different network sizes. RMSE values for the LSTM and GRU meth-
ods do not vary meaningfully with network size; however, the ESN
methods show a general downward trend in RMSE as the network
size is increased, although the effect is not monotonic. For NVAR,
RMSE decreases with the number of embedded delays. Note that despite
the similarities between the ENSO and Lorenz models, there are some
differences in performance for the corresponding datasets, particularly
with improvements for ENSO by the CESN, baseline ESN, and even GRU
approaches. Both datasets experience similarly poor performance by the
LSTM and good performance by NVAR.

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300
Fig. 16. Comparison of RMSE (top) and computational time (bottom) for each method and network size tested for the ENSO dataset.
Fig. 17. Experimental dataset forecasting results obtained by the six methods using a fixed network size of 100 neurons for the gated RNNs and ESN models and an equivalent
delay size for NVAR approach. The reference test data are shown in black and the predictions in color. Absolute errors of the predictions are presented in the bottom subplot,
with color corresponding to each prediction method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
As for computational efficiency, all methods show a trend toward
increasing time required for increasing network sizes with the ENSO
dataset, as shown in the lower panel of Fig. 16. The LSTM and GRU
methods require similar times, which are 2–3 orders of magnitude
longer than required for the ESN and NVAR approaches. The NVAR
method requires the least time, but the ESN methods remain competi-
tive.
5.5. Experimental cardiac voltage dataset

For the experimental dataset, the gated RNNs and the ESN models
can reconstruct the main features of the voltage time series, with the
exception of the GRU, as shown in Fig. 17. However, in contrast to the
other two datasets, the NVAR model shows the maximum prediction
error and very poor prediction results. According to the absolute error
values, the results obtained by the HESN appear closest in reconstruct-
ing the full voltage trace. Similar behavior can be seen in the APD plots,
16
where the best predictions are obtained by the CESN and HESN models;
see Fig. 18. The gated RNNs and the baseline ESN not only have high
error but show little of the observed variation in APD. This shortcoming
gets worse in the case of NVAR, where the predicted APD values show
the poorest agreement with the target values.

As with the other two datasets, the same experiment was repeated
with various model complexities to study the influence of network size
(or the embedded delays for the NVAR approach) on the prediction
abilities of the applied methods and the corresponding computational
times (Fig. 19). The variation in the computational times is almost
identical to the previous cases, where by increasing the model com-
plexities, the computational time increases. In contrast to the other two
datasets, where the NVAR technique was significantly faster than ESNs,
for this dataset, the ESNs and NVAR approach exhibit the same range
of efficiency except the baseline ESN, where the elapsed time is almost
half of the NVAR model in most cases. Nevertheless, the ESNs and the

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

N
t

r
o
m
m
a
p
m
s
s
t

Fig. 18. Experimental dataset APD forecasting results obtained by the six methods using a fixed network size of 100 neurons for the gated RNNs and ESN models and an equivalent
delay size for NVAR approach. The reference APD values are shown in black and the predicted values in color. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 19. Comparison of RMSE (top) and computational time (bottom) for each method and network size tested for the experimental dataset.
t
p
n
o
i
c

VAR model are considerably faster than the LSTM and GRU by more
han two orders of magnitude.
Fig. 19a indicates that the prediction accuracy of each ESN model

emains almost constant for all network sizes, whereas the RMSE values
btained by the ESN and CESN are almost equal and roughly two times
ore than the HESN, but are still 50% less than for the gated RNN
ethods. The most interesting trend can be observed for the NVAR
pproach, where increasing the delay values significantly reduces the
rediction errors as measured by RMSE. This finding suggests that it
ight be possible to improve meaningfully upon the results demon-
trated in Fig. 17 by increasing the number of embedded delays and
teps skipped between each two consecutive delays. More specifically,
he NVAR results presented in Fig. 17 are obtained using only 7 delays
(𝑘 = 7) to have the same number of rows in the corresponding state
matrix as for the ESN with 100 hidden units, to improve the fairness of
the comparative study. However, the error obtained by 16 embedded
 c

17
delays (same matrix size as the ESN with 500 neurons) is less than 30%
of the case with 7 delays.

These observations suggest that although the NVAR model relies on
fewer hyperparameters and needs less tuning effort, more embedded
delays and consequently more computational effort may be required to
obtain a proper prediction accuracy. To examine this hypothesis, the
NVAR technique was applied to the same experimental dataset with
more delay values. Fig. 20 illustrates the prediction results obtained
by NVAR with 𝑘 = {20, 30} and 𝑠 = {5, 10} and shows that increasing
he number of embedded delays yields better prediction results. In
articular, by choosing 𝑘 = 30 and 𝑠 = 10, the predicted values are
early identical to those in the test dataset. The same result can be
bserved in the APD diagrams exhibited in Fig. 21, where agreement
s improved and even those cases with discernible error display similar
hanges in APD. As a comparison of the matrix sizes and the required

omputational effort, to accommodate the bias, linear and nonlinear

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

(

b

p
r

Fig. 20. Experimental dataset action potential forecasting results obtained by the NVAR method using larger values for delays and skipped steps showing the reference test data
black) and the prediction results (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 21. Experimental dataset APD forecasting results obtained by the NVAR method using larger values for delays and skipped steps. The reference APD values are shown in
lack and the predicted values in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
arts of the state vectors, the corresponding state matrix includes 1891
ows, which is roughly equal to a state matrix of an ESN with 944
hidden units for the same dataset. However, the NVAR approach is still
faster and provides a more accurate prediction as measured by RMSE.

6. Conclusion

In this paper, six different ML time-series forecasting approaches,
including two gated RNN techniques, three variants of ESNs, and
the NVAR approach, were tested to predict five chaotic time series,
including the Mackey–Glass, Lorenz-63, bursting Morris–Lecar, Vallis
ENSO, and experimental cardiac action potential time series. Although
we considered relatively large but still limited numbers of datasets
and methods, we found that the LSTM and GRU approaches, despite
their high computational costs and in contrast to the ESN and NVAR
methods, were incapable of forecasting the Mackey–Glass, Lorenz, and
bursting Morris–Lecar time series more than a few steps into the future,
and that increasing the network size did not significantly improve their
performance. For the ENSO model, the GRU method could predict
18
somewhat longer, but it did not compare favorably with the ESN and
NVAR approaches.

Three variants of ESNs were employed including the baseline ESN,
the clustered ESN (CESN), and the hybrid physics-informed ESN (HESN).
For the five datasets we used in this work, only one (ENSO) showed
improvement by using a more complicated ESN architecture such as
the clustered reservoir. In all the other cases, the baseline ESN demon-
strated similar or better performance compared to CESN. In contrast,
whereas the HESN provided the same level of prediction accuracy for
the four synthetic time series, within the tested network sizes, it was
the most successful approach for forecasting the experimental dataset,
where it delivered more accurate predictions as measured by RMSE.
Thus, incorporating the domain knowledge of a dynamical system if
available may improve the prediction ability of the ESN technique and
may help with obtaining good predictions using smaller network sizes.

For the tested network sizes and datasets, the best prediction perfor-
mance in the case of the Mackey–Glass, Lorenz, and bursting Morris–
Lecar datasets was obtained by the NVAR method, which was re-
cently introduced as the next generation of RC techniques and has

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

C

C

C

C

D

D

D

D

D

D

D

E

E

F

G

G

G

G

G

H

H

I

J

J

J

been demonstrated to be as successful as optimized ESNs. For the
ENSO dataset, NVAR’s prediction accuracy was only slightly lower than
that of the most accurate method, CESN. A noticeable advantage of
the NVAR technique over conventional ESNs is avoiding the explicit
construction of randomly connected neurons and circumventing the
intrinsic randomness that increases the sensitivity of the network to the
hyperparameter values and initial parameters that remain untrained.
Moreover, the number of hyperparameters is much smaller than for
ESNs, which makes NVAR easier to tune. Such advantages may initially
suggest that the amount of data required to train the NVAR model
could be less than that needed for the conventional ESNs. However,
our experiments showed in the case of the experimental cardiac voltage
dataset, better performance was only obtained by embedding more
delays and at the cost of more computational time and effort. Never-
theless, in general, this approach shows promise for efficient prediction
of chaotic time series. To the best of our knowledge, this work is one of
the first applications of this newly introduced technique to real-world
experimental time series. Further studies in this area may reveal more
of the potential of this approach. For instance, in this work, we used a
quadratic polynomial functional to construct the nonlinear portion of
the state vectors at each time step; however, other nonlinear functions
such as higher-order polynomials could also be employed and studied.

It should also be noted that our conclusions are based on a limited
number of datasets and employed methods. Moreover, in each case, the
optimum hyperparameters were obtained in a finite grid search process.
Accordingly, it is possible that the same approaches could provide dif-
ferent results when applied to other datasets or when hyperparameters
are determined using more extensive grids or different optimization
techniques.

CRediT authorship contribution statement

Shahrokh Shahi: Conceptualization, Methodology, Software, Visu-
alization, Writing – original draft. Flavio H. Fenton: Resources, Data
curation, Supervision, Investigation, Funding acquisition. Elizabeth M.
Cherry: Conceptualization, Methodology, Writing – review & editing,
Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This study was supported by NSF, United States of America grants
CMMI-2011280 and CMMI-1762553. We thank Conner J. Herndon for
assistance in providing the experimental dataset.

References

Ahmed, N., Atiya, A., El Gayar, N., & El-Shishiny, H. (2010). An empirical comparison
of machine learning models for time series forecasting. Econometric Reviews, 29(5),
594–621. http://dx.doi.org/10.1080/07474938.2010.481556.

Bar-Joseph, Z., Gerber, G. K., Gifford, D. K., Jaakkola, T. S., & Simon, I. (2003). Contin-
uous representations of time-series gene expression data. Journal of Computational
Biology, 10(3–4), 341–356.

Ben Taieb, S., Bontempi, G., Atiya, A., & Sorjamaa, A. (2012). A review and comparison
of strategies for multi-step ahead time series forecasting based on the NN5
forecasting competition. Expert Systems with Applications, 39(8), 7067–7083. http:
//dx.doi.org/10.1016/j.eswa.2012.01.039.

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., & Jenssen, R. (2017). Other
recurrent neural networks models. In Recurrent neural networks for short-term load
forecasting (pp. 31–39). Springer.

Billinton, R., Chen, H., & Ghajar, R. (1996). Time-series models for reliability evalu-
ation of power systems including wind energy. Microelectronics Reliability, 36(9),
1253–1261.
Bollobás, B., & Béla, B. (2001). Random graphs, no. 73. Cambridge University Press.

19
Bollt, E. (2021). On explaining the surprising success of reservoir computing forecaster
of chaos? The universal machine learning dynamical system with contrast to VAR
and DMD. Chaos. An Interdisciplinary Journal of Nonlinear Science, 31(1), Article
013108.

Bunn, D. W. (2000). Forecasting loads and prices in competitive power markets.
Proceedings of the IEEE, 88(2), 163–169.

Carroll, T. L., & Pecora, L. M. (2019). Network structure effects in reservoir computers.
Chaos. An Interdisciplinary Journal of Nonlinear Science, 29(8), Article 083130.
http://dx.doi.org/10.1063/1.5097686.

handra, R., Goyal, S., & Gupta, R. (2021). Evaluation of deep learning models
for multi-step ahead time series prediction. IEEE Access, 9, 83105–83123. http:
//dx.doi.org/10.1109/ACCESS.2021.3085085.

hattopadhyay, A., Hassanzadeh, P., & Subramanian, D. (2020). Data-driven predictions
of a multiscale lorenz 96 chaotic system using machine-learning methods: reser-
voir computing, artificial neural network, and long short-term memory network.
Nonlinear Processes in Geophysics, 27(3), 373–389.

heng, C., Sa-Ngasoongsong, A., Beyca, O., Le, T., Yang, H., Kong, Z., & Bukkapat-
nam, S. (2015). Time series forecasting for nonlinear and non-stationary processes:
A review and comparative study. IIE Transactions (Institute of Industrial Engineers),
47(10), 1053–1071. http://dx.doi.org/10.1080/0740817X.2014.999180.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

orrado, C., & Niederer, S. A. (2016). A two-variable model robust to pacemaker
behaviour for the dynamics of the cardiac action potential. Mathematical Biosciences,
281, 46–54. http://dx.doi.org/10.1016/j.mbs.2016.08.010.

e Gooijer, J., & Hyndman, R. (2006). 25 Years of time series forecasting. International
Journal of Forecasting, 22(3), 443–473. http://dx.doi.org/10.1016/j.ijforecast.2006.
01.001.

eihimi, A., & Showkati, H. (2012). Application of echo state networks in short-term
electric load forecasting. Energy, 39(1), 327–340.

eng, Z., & Zhang, Y. (2006). Complex systems modeling using scale-free highly-
clustered echo state network. In The 2006 IEEE international joint conference on
neural network proceedings (pp. 3128–3135). IEEE.

ingli, A., & Fournier, K. S. (2017). Financial time series forecasting–a deep learning
approach. International Journal of Machine Learning and Computing, 7(5), 118–122.

oan, N. A. K., Polifke, W., & Magri, L. (2019). Physics-informed echo state networks
for chaotic systems forecasting. In International conference on computational science
(pp. 192–198). Springer.

oan, N. A. K., Polifke, W., & Magri, L. (2020). Physics-informed echo state networks.
Journal of Computer Science, 47, Article 101237.

ubois, P., Gomez, T., Planckaert, L., & Perret, L. (2020). Data-driven predictions of
the lorenz system. Physica D: Nonlinear Phenomena, 408, Article 132495.

lman, J. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. http:
//dx.doi.org/10.1016/0364-0213(90)90002-E.

lman, J., & Zipser, D. (1988). Learning the hidden structure of speech. Journal of
the Acoustical Society of America, 83(4), 1615–1626. http://dx.doi.org/10.1121/1.
395916.

enton, F., & Karma, A. (1998). Vortex dynamics in three-dimensional continuous
myocardium with fiber rotation: Filament instability and fibrillation. Chaos. An
Interdisciplinary Journal of Nonlinear Science, 8(1), 20–47.

allicchio, C., & Micheli, A. (2017). Deep echo state network (deepesn): A brief survey.
arXiv preprint arXiv:1712.04323.

allicchio, C., Micheli, A., & Pedrelli, L. (2017). Deep reservoir computing: A critical
experimental analysis. Neurocomputing, 268, 87–99.

authier, D. J., Bollt, E., Griffith, A., & Barbosa, W. A. S. (2021). Next generation
reservoir computing. Nature Communications, 12(1), 5564. http://dx.doi.org/10.
1038/s41467-021-25801-2.

hil, M., & Vautard, R. (1991). Interdecadal oscillations and the warming trend in
global temperature time series. Nature, 350(6316), 324–327.

ong, Q., Chen, Y., He, X., Zhuang, Z., Wang, T., Huang, H., Wang, X., & Fu, X.
(2018). DeepScan: Exploiting deep learning for malicious account detection in
location-based social networks. IEEE Communications Magazine, 56(11), 21–27.

an, Z., Zhao, J., Leung, H., Ma, K. F., & Wang, W. (2021). A review of deep
learning models for time series prediction. IEEE Sensors Journal, 21(6), 7833–7848.
http://dx.doi.org/10.1109/JSEN.2019.2923982.

ochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780.

zhikevich, E. M. (2012). Neural excitability, spiking and burstin. International
Journal of Bifurcation and Chaos, 10(6), 1171–1266. http://dx.doi.org/10.1142/
S0218127400000840, URL https://www.worldscientific.com/doi/epdf/10.1142/
S0218127400000840.

aeger, H. (2002). Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the" Echo State Network" approach, vol. 5. GMD-Forschungszentrum
Informationstechnik Bonn.

aeger, H., Lukoševičius, M., Popovici, D., & Siewert, U. (2007). Optimization and
applications of echo state networks with leaky- integrator neurons. Neural Networks,
20(3), 335–352. http://dx.doi.org/10.1016/j.neunet.200A7.04.016.

unior, L. O., Stelzer, F., & Zhao, L. (2020). Clustered echo state networks for signal
observation and frequency filtering. In Anais do VIII symposium on knowledge
discovery, mining and learning (pp. 25–32). SBC.

http://dx.doi.org/10.1080/07474938.2010.481556
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb2
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb2
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb2
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb2
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb2
http://dx.doi.org/10.1016/j.eswa.2012.01.039
http://dx.doi.org/10.1016/j.eswa.2012.01.039
http://dx.doi.org/10.1016/j.eswa.2012.01.039
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb4
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb4
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb4
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb4
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb4
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb5
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb5
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb5
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb5
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb5
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb6
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb7
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb7
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb7
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb7
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb7
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb7
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb7
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb8
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb8
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb8
http://dx.doi.org/10.1063/1.5097686
http://dx.doi.org/10.1109/ACCESS.2021.3085085
http://dx.doi.org/10.1109/ACCESS.2021.3085085
http://dx.doi.org/10.1109/ACCESS.2021.3085085
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb11
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb11
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb11
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb11
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb11
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb11
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb11
http://dx.doi.org/10.1080/0740817X.2014.999180
http://arxiv.org/abs/1412.3555
http://dx.doi.org/10.1016/j.mbs.2016.08.010
http://dx.doi.org/10.1016/j.ijforecast.2006.01.001
http://dx.doi.org/10.1016/j.ijforecast.2006.01.001
http://dx.doi.org/10.1016/j.ijforecast.2006.01.001
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb16
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb16
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb16
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb17
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb17
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb17
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb17
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb17
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb18
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb18
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb18
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb19
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb19
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb19
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb19
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb19
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb20
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb20
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb20
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb21
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb21
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb21
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1121/1.395916
http://dx.doi.org/10.1121/1.395916
http://dx.doi.org/10.1121/1.395916
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb24
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb24
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb24
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb24
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb24
http://arxiv.org/abs/1712.04323
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb26
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb26
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb26
http://dx.doi.org/10.1038/s41467-021-25801-2
http://dx.doi.org/10.1038/s41467-021-25801-2
http://dx.doi.org/10.1038/s41467-021-25801-2
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb28
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb28
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb28
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb29
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb29
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb29
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb29
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb29
http://dx.doi.org/10.1109/JSEN.2019.2923982
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb31
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb31
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb31
http://dx.doi.org/10.1142/S0218127400000840
http://dx.doi.org/10.1142/S0218127400000840
http://dx.doi.org/10.1142/S0218127400000840
https://www.worldscientific.com/doi/epdf/10.1142/S0218127400000840
https://www.worldscientific.com/doi/epdf/10.1142/S0218127400000840
https://www.worldscientific.com/doi/epdf/10.1142/S0218127400000840
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb33
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb33
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb33
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb33
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb33
http://dx.doi.org/10.1016/j.neunet.200A7.04.016
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb35
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb35
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb35
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb35
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb35

S. Shahi, F.H. Fenton and E.M. Cherry Machine Learning with Applications 8 (2022) 100300

L

O

P

S

T

T

T
V

W

Y

Z

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kutz, J. N. (2013). Data-driven modeling & scientific computation: Methods for complex
systems & big data. Oxford University Press.

Lara-Benítez, P., Carranza-García, M., & Riquelme, J. C. (2021). An experimental
review on deep learning architectures for time series forecasting. arXiv preprint
arXiv:2103.12057.

Li, G., Song, H., & Witt, S. (2005). Recent developments in econometric modeling and
forecasting. Journal of Travel Research, 44(1), 82–99. http://dx.doi.org/10.1177/
0047287505276594.

Limthong, K. (2013). Real-time computer network anomaly detection using machine
learning techniques. Journal of Advances in Computer Networks, 1(1), 126–133.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences,
20(2), 130–141.

Lukoševičius, M. (2012). A practical guide to applying echo state networks. In Neural
networks: Tricks of the trade (pp. 659–686). Springer.

ukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3), 127–149.

Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control
systems. Science, 197(4300), 287–289.

Mitchell, C. C., & Schaeffer, D. G. (2003). A two-current model for the dynamics of
cardiac membrane. Bulletin of Mathematical Biology, 65(5), 767–793. http://dx.doi.
org/10.1016/S0092-8240(03)00041-7.

h, D. K. (2020). Toward the fully physics-informed echo state network–an ode
approximator based on recurrent artificial neurons. arXiv preprint arXiv:2011.
06769.

athak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-free prediction of
large spatiotemporally chaotic systems from data: A reservoir computing approach.
Physical Review Letters, 120(2), Article 024102.
20
Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B. R., Girvan, M., & Ott, E. (2018).
Hybrid forecasting of chaotic processes: Using machine learning in conjunction
with a knowledge-based model. Chaos, 28(4), Article 041101. http://dx.doi.org/
10.1063/1.5028373.

Plagianakos, V., & Tzanaki, E. (2001). Chaotic analysis of seismic time series and short
term forecasting using neural networks. In IJCNN’01. International joint conference
on neural networks. Proceedings (Cat. No. 01CH37222), vol. 3 (pp. 1598–1602). IEEE.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117. http://dx.doi.org/10.1016/j.neunet.2014.09.003.

Shahi, S., Marcotte, C. D., Herndon, C. J., Fenton, F. H., Shiferaw, Y., & Cherry, E.
M. (2021). Long-time prediction of arrhythmic cardiac action potentials using
recurrent neural networks and reservoir computing. Frontiers in Physiology, 12,
http://dx.doi.org/10.3389/fphys.2021.734178.

un, C., Song, M., Hong, S., & Li, H. (2020). A review of designs and applications of
echo state networks. arXiv preprint arXiv:2012.02974.

akahashi, S., Chen, Y., & Tanaka-Ishii, K. (2019). Modeling financial time-series with
generative adversarial networks. Physica A: Statistical Mechanics and its Applications,
527, Article 121261.

ealab, A. (2018). Time series forecasting using artificial neural networks method-
ologies: A systematic review. Future Computing and Informatics Journal, 3(2),
334–340.

say, R. S. (2005). Analysis of financial time series, vol. 543. John wiley & sons.
allis, G. K. (1986). El Niño: A chaotic dynamical system? Science, 232(4747), 243–245,
URL https://www.jstor.org/stable/1696890.

illard, J., Jia, X., Xu, S., Steinbach, M., & Kumar, V. (2020). Integrating physics-based
modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919.

ildiz, I. B., Jaeger, H., & Kiebel, S. J. (2012). Re-visiting the echo state property.
Neural Networks, 35, 1–9.

hao, H. (2009). A chaotic time series prediction based on neural network: Evidence
from the shanghai composite index in china. In 2009 International conference on test
and measurement, vol. 2 (pp. 382–385). IEEE.

http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb37
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb37
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb37
http://arxiv.org/abs/2103.12057
http://dx.doi.org/10.1177/0047287505276594
http://dx.doi.org/10.1177/0047287505276594
http://dx.doi.org/10.1177/0047287505276594
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb40
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb40
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb40
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb41
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb41
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb41
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb42
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb42
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb42
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb43
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb43
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb43
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb44
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb44
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb44
http://dx.doi.org/10.1016/S0092-8240(03)00041-7
http://dx.doi.org/10.1016/S0092-8240(03)00041-7
http://dx.doi.org/10.1016/S0092-8240(03)00041-7
http://arxiv.org/abs/2011.06769
http://arxiv.org/abs/2011.06769
http://arxiv.org/abs/2011.06769
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb47
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb47
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb47
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb47
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb47
http://dx.doi.org/10.1063/1.5028373
http://dx.doi.org/10.1063/1.5028373
http://dx.doi.org/10.1063/1.5028373
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb49
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb49
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb49
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb49
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb49
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.3389/fphys.2021.734178
http://arxiv.org/abs/2012.02974
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb53
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb53
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb53
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb53
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb53
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb54
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb54
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb54
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb54
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb54
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb55
https://www.jstor.org/stable/1696890
http://arxiv.org/abs/2003.04919
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb58
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb58
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb58
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb59
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb59
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb59
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb59
http://refhub.elsevier.com/S2666-8270(22)00027-5/sb59

	Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study
	Introduction
	Time-series prediction methods
	Gated recurrent neural networks
	Echo state networks
	Nonlinear vector autoregressive model

	Datasets
	Mackey-Glass
	Lorenz
	Bursting Morris–Lecar
	El Nino-Southern Oscillation
	Experimental cardiac voltage recordings

	Implementation
	Hyperparameter selection
	Gated RNN implementations
	Echo state network implementations
	Nonlinear vector autoregressive implementation
	Univariate versus multivariate time series
	Evaluation metrics

	Results
	Mackey-Glass dataset
	Lorenz dataset
	Bursting Morris–Lecar dataset
	El Nino-Southern Oscillation Dataset
	Experimental cardiac voltage dataset

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

