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Abstract

Customization of cardiac action potential models has become increasingly important with the recognition of patient-specific models and
virtual patient cohorts as valuable predictive tools. Nevertheless, developing customized models by fitting parameters to data poses tech-
nical and methodological challenges: despite noise and variability associated with real-world datasets, traditional optimization methods
produce a single “best-fit” set of parameter values. Bayesian estimation methods seek distributions of parameter values given the data by
obtaining samples from the target distribution, but in practice widely known Bayesian algorithms like Markov chain Monte Carlo tend to
be computationally inefficient and scale poorly with the dimensionality of parameter space. In this paper, we consider two computationally
efficient Bayesian approaches: the Hamiltonian Monte Carlo (HMC) algorithm and the approximate Bayesian computation sequential
Monte Carlo (ABC-SMC) algorithm. We find that both methods successfully identify distributions of model parameters for two cardiac
action potential models using model-derived synthetic data and an experimental dataset from a zebrafish heart. Although both methods
appear to converge to the same distribution family and are computationally efficient, HMC generally finds narrower marginal distributions,
while ABC-SMC is less sensitive to the algorithmic settings including the prior distribution.
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1 Introduction

A broad range of models of cardiac action potentials have
been developed [1] to describe the heart’s complex electrical
dynamics across multiple species and regions of the heart.
These models also vary in complexity and level of detail,
from simple two-variable models with a few parameters up
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parameterizations have been obtained using Bayesian
approaches, such as history matching [11], Bayesian active
learning [12], and a combination of Metropolis-Hastings and
Gibbs sampling [13].

Nevertheless, models that include a single set of param-
eter values, however well fitted, lack a depth of information
that can be included when a distribution of parameter values
is obtained. For example, when multiple datasets are avail-
able, simplification by fitting to the mean may misrepresent
properties of the data [14]. In addition, models with a single
set of parameter values neglect that many models are not
fully identifiable from the necessarily limited input data used
for fitting [5, 9, 15].

In contrast, Bayesian inference allows fitting a prob-
ability model to a set of data with the result summarized
by a probability distribution on the parameters of the
model. The distribution not only provides a description
of randomness in the observed data, it also can facilitate
making predictions of unobserved quantities. In addition,
when working with observed data, the distributions pro-
vide information about the ranges of values that the dif-
ferent model parameters can take. Traditional full Bayes-
ian Markov chain Monte Carlo (MCMC) methods, such
as Metropolis-Hastings or Gibbs sampling, have limita-
tions, including random walk behavior and poor scal-
ability with the dimensionality of parameter space [16],
and sensitivity of the desired posterior distribution to the
full Bayesian specification [17]. Several methods have
been developed to overcome the computational limita-
tions of traditional Bayesian methods. One approach is
the use of approximate Bayesian methods [18], where
the likelihood, which can be expensive to compute, is
not used, resulting in greater efficiency. An example is
approximate Bayesian computation sequential Monte
Carlo (ABC-SMC) [19, 20], which has been applied to
obtain parameter distributions for the Hodgkin-Huxley
neural model [15] and for the O’Hara et al. model [21]
of cardiac cells [22].

One option to calculate the exact, rather than approxi-
mate, distributions without sacrificing efficiency is Ham-
iltonian Monte Carlo (HMC) [16, 23], a full Bayesian
method that uses the gradient of the target distribution
to explore the parameter space in a more efficient man-
ner than the methods mentioned above. HMC has been
used successfully for model calibration in ecology [24]
and pharmacometry [25], but its utility for cardiac action
potential models [26] compared to approximate methods
has not yet been established.

In this work, we use HMC and ABC-SMC to find
parameter probability distributions for two fairly low-
dimensional cardiac action potential models: the Mitch-
ell-Schaeffer model [27], which has two variables and
five parameters, and the Fenton-Karma model [28],
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which has three variables and 13 parameters. We test
these two Bayesian methods using synthetic data and
experimental recordings from zebrafish hearts and com-
pare their performance.

2 Methods

Below we describe the cardiac action potential models
used for fitting the data, the datasets to be fit, and the
methods used for Bayesian inference, including details of
our implementations.

2.1 Cardiac action potential models

In this work, we seek parameter value distributions for two
cardiac action potential models: the three-variable Fen-
ton-Karma model and the reduction of this model to two
variables by Mitchell and Schaeffer. Because the model
parameters will be referred to frequently, we include the
model equations in full.

The Mitchell-Schaeffer (MS) model [27] uses two var-
iables, the voltage u and inactivation gating variable A,
along with inward, outward, and stimulus currents (/;,,
1,,,and I, , respectively) to describe the transmembrane
currents that give rise to action potentials.

du(t)
dt

1-h
dh(t) _{ — u< Ugate

=L, (u,h)+1,,w)+ I, 1),

Tup;l/x
dt —,u>u

ate’
Telose &

where

21 —
[o=ptd =

in

The five parameters include a threshold u,,,, that determines
the dynamics of the gating variable 4; the remaining four
parameters are time constants that effectively govern the
durations of the depolarization (z;,) and repolarization (z,,,)
phases as well as the closing () and opening (7,,,,) of
the gate. Initial values were set to u = 0 and /4 = 1 for each
cycle length used. The stimulus current was applied periodi-
cally according to the specified cycle length (CL) for Ims
with a magnitude of 0.66.

We also used the Fenton-Karma (FK) model [28], which
is a phenomenological model that describes cardiac action
potentials. It includes three state variables (voltage u and
gating variables v and w) and 13 parameters.
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The fast inward current I, the slow outward current /,,
and the slow inward current /; represent summary sodium,
potassium, and calcium transmembrane currents, respec-
tively. The magnitude of the Ims-long stimulus current was
0.35. Initial values were settou =0, v =1, and w = 1 for
each cycle length considered.

For both models, the differential equations were solved
using an adaptive forward Euler scheme, with a timestep
size of 0.1 ms for the first 4 ms after the beginning of the
stimulus followed by an increase to 0.5 ms in all cases except
when fitting the MS model to synthetic data, in which case
the time step was increased to 0.25 ms.

Because HMC is a gradient-based method, discontinuities
should be avoided. For this reason, the Heaviside functions
in the MS and FK models were replaced by smooth func-
tions when using HMC. For instance, in the case of the MS
model, the equation for the gating variable was modified to

dh(t) 1-nh h
—==—(1-p-—p

dt Topen Telose
where p = %( 1 + tanh(s(u — ugme))). The steepness param-

eter s was set to a large value of 50 for a steep transition
resembling the Heaviside function.

2.2 Datasets

Both synthetic and experimental datasets were used to
test the methods. The datasets include significant changes
in action potential shape and durations as a result of rate
changes, including a bifurcation to alternans (alternating
long and short APs despite a constant CL) at the short-
est CLs. Synthetic data were generated for the MS model
using the default parameter set [27], with values given in
the first column of Table 1. For the FK model, parameter
set 4 from [29] was used; see the first column of Table 2.
These sets of parameters are subsequently referred to as the
true values for each model. Each dataset was derived from
three selected CLs from voltage recordings (MS synthetic:
400, 350, and 310 ms; FK synthetic: 400, 350, and 300 ms;
experimental: 350, 300, and 276 ms). For each chosen CL,
data were generated by applying six stimuli and recording
the action potentials induced by the last two stimuli. To form
the synthetic datasets, these data were recorded at time inter-
vals of 0.5 ms during the first 4 ms in order to adequately
capture the upstroke, and then at intervals of 15 ms during
the remainder of the action potential. For the experimental
datasets, the temporal resolution was 0.4 ms for the first
4 ms, 1 ms for the next 4 ms, and 15 ms for the remainder
of each cycle.

To make the datasets more realistic, Gaussian noise was
then added with a mean of 0 and standard deviation of 0.03,
which was smaller than the level of noise typically observed
in cardiac optical-mapping voltage signals but higher than
seen in microelectrode recordings.

The experimental dataset consisted of microelectrode
recordings of voltage from zebrafish hearts obtained pre-
viously [26]; examples of action potentials are shown
in Fig. 1. The original resolution of the data was 0.1ms.
To form the dataset, a nonuniform resolution of 0.5ms
was used for the first 4ms after applying the stimulus fol-
lowed by an increase to 15ms until the next stimulus was
applied. This approach allowed us to reduce the size of
the dataset (and correspondingly the computational time)
while retaining good accuracy during the upstroke. Volt-
age values were normalized to lie in the interval [0,1]
using the maximum and minimum values in each voltage
trace used.

Table 1 MS model parameter

X i Dataset Intervals for initial ABC- Center values for HMC Initial
value§ and intervals: synthetic; SMC priors folded normal priors values for
experimental HMC

Tin 0.3 (0.1, 1); (0.1, 1.5) 0.3; 0.98 0.3;0.3
Tout 6 (3, 15); (1, 20) 6;11.7 6;6

Topen 120 (50, 250); (10, 300) 120; 207 120; 120
Telose 150 (100, 200); (10, 300) 150; 197 150; 150
Voate 0.13 (0.1,0.5); (0.1, 1) 0.13;0.31 0.13;0.13
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Table 2 FK model parameter

. . Dataset Intervals for initial ABC-SMC priors Center values for HMC Initial
value§ and intervals: synthetic; folded normal priors values for
experimental HMC

T, 0.407 (0.03, 1); (0.03, 1) 0.407; 0.44 0.407; 0.3
T, 34 (1, 209); (1, 209) 34; 84.29 34; 110
7 9 (1, 50); (1, 50) 9; 26.69 9; 20
T 26.5 (5, 300); (5, 300) 26.5; 283.38 26.5; 280
Tt 3.33 (1, 100); (1, 100) 3.33;50.81 3.33;27
T, 15.6 (1, 300); (1, 300) 15.6; 84.81 15.6; 80
T 5 (1, 2500); (1, 2500) 5:591.19 5:350
Tt 350 (1, 800); (1, 800) 350; 199.52 350; 200
T, 80 (1, 500); (1, 500) 80; 218.63 80; 200
u, 0.15 (0.01, 0.3); (0.01, 0.3) 0.15;0.15 0.15; 0.2
u, 0.04 (0.001, 0.04); (0.001, 0.04) 0.04; 0.01 0.01; 0.01
ui[ 0.45 (0.1, 1.5); (0.1, 1.5) 0.45; 0.36 0.45; 0.45
k 15 (1, 50); (1, 50) 15;4.25 15,5
. . When generating bifurcation plots, CLs were decreased
250 ., LA until block was reached, and action potential durations
g " . avle (APDs) were measured using a fixed threshold of u = 0.1.
§ 200 ‘g :
g 2.3 Bayesian inference
a
£ 150 .'s (1) =
g o 200 400 600 800 For a general system x'(¢) = f(x,t,0) where the system
8 U Time (ms) state x = x(f) € R" depends on time t and 8 € R” is a
S 100 vector of parameters, we consider noisy synthetic and
< ¢ - o i experimental data of the form y; = x(¢;;0) + €,. Here y; is
hy Time (ms) the i observation of the state x(¢;;0) at time t,, and ¢; is an
300 200 500 independent normally distributed error with mean y =0

Cycle Length (ms)

Fig. 1 Action potential duration as a function of cycle length for the
full zebrafish dataset. Insets show action potentials at CLs of 400 and
275 ms, with alternans present for the shorter CL. Horizontal lines
correspond to APDs

The experimental recordings included data obtained
at multiple CLs (see Fig. 1), and synthetic data could be
obtained for any CL of interest. For both synthetic and exper-
imental datasets, the last two action potentials in a series of
six obtained while pacing at a fixed CL were fitted to mini-
mize transient behavior. After performing a series of initial
experiments with different numbers and selections of CLs,
we chose to use three CLs close to the bifurcation point, one
at along CL without alternans and two at shorter CLs within
the alternans regime. Although the datasets to be fit utilized
only three CLs, data from additional CLs were used to gener-
ate plots of action potential durations (APDs) as a function of
CL for comparisons of results at other unfitted CLs.
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and standard deviation o. A central idea in Bayesian sta-
tistics is that because the vector of parameters 0 is fixed
but unknown, it can be considered a multidimensional ran-
dom variable, with the uncertainty in the parameter values
described by a probability model. By Bayes’ theorem,

pOly) < p(y|0)p(0),

where p(0|y) is the final distribution of the parameters con-
ditioned on the data (also known as the target or posterior
distribution), p(y|0) is the likelihood of the data given the
parameters, and p(0) is the prior or initial distribution of
the parameters.

Although obtaining an analytical form for the final dis-
tribution generally is not possible, we can sample from the
final distribution using either a full Bayesian method or an
approximate approach in which the likelihood is not com-
puted. Examples of full Bayesian approaches are Markov
chain Monte Carlo (MCMC) [30] methods like Metrop-
olis-Hastings, Gibbs sampling, and Hamiltonian Monte
Carlo. For MCMC methods, the likelihood is given by
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where ¢ is the standard deviation distribution of the error,
which is considered Gaussian centered at 0 with variance
o, and T is the number of time points. An example of an
approximate Bayesian computation (ABC) method is rejec-
tion sampling [31].

The objective of MCMC methods is to design a Markov
chain in such a way that its stationary distribution coin-
cides with that of the target distribution. The Metropolis (or
Metropolis-Hastings) algorithm builds an adaptive random
walk that converges to the target distribution. The chain is
constructed by using a rule that accepts (or rejects) candi-
dates sampled from a known distribution from which it is
easy to sample along with a transition probability distribu-
tion. For the symmetric proposals used here [32], candidates
with a higher probability than the most recent member of the
chain are always accepted; to allow the parameter space to be
explored, candidates with a lower probability are sometimes
accepted based on an acceptance criterion (the Metropolis
ratio) that selects more (less) likely candidates more (less)
often. After enough iterations, the result is a correlated
sample of the target distribution. To obtain a non-correlated
sample, only every k elements of the original sample are
selected. However, MCMC often is slow to converge and
scales poorly as the dimensionality of 0 increases, motivat-
ing the development and use of alternative methods.

2.3.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Metropolis method
that uses the gradient of the target distribution to form a
Hamiltonian system by taking the parameters given the data
as the position variables and adding momentum variables
q [16]. In this way, the properties of Hamiltonian dynam-
ics can be used to sample efficiently from the distribution
of the variables of interest, P(6@) = p(6|y). Hamiltonian
dynamics have many properties that are crucial in construct-
ing MCMC updates, such as reversibility, invariance, and
symplecticness [16].
A Hamiltonian function is formed as

H(6,q) = E(6) + K(q),

where E(0) is a canonical distribution (defined by
P(0) = exp(—=E(0))/Z) and K(q) = q"M~'q represents the
kinetic energy; here Z is a normalizing constant and M is a
positive definite matrix that rotates and rescales the target
distribution in the Euclidean space [32]. The joint density
has the property that Py(0,q) = P(6)P(q), which makes
recovery of P(0) straightforward.

The position and momentum variables evolve according
to differential equations that are solved using the leap-
frog integrator, a finite-difference method specifically
designed to solve dynamical systems in classical mechan-
ics. To implement HMC, the step size and number of steps
generally need to be tuned, which typically is a challeng-
ing task. However, the No-U-Turn sampler (NUTS) [33]
avoids this tuning step by determining the step size and
number of steps adaptively in each iteration. Since HMC
is also a Metropolis algorithm, candidates are accepted or
rejected using the Metropolis ratio, this time to account
for numerical error in the leapfrog algorithm. More details
can be found in [16].

HMC utilizing NUTS was implemented in R using
the statistical platform Stan [34, 35]. To ensure that
the Markov chain had time to find the region of inter-
est in parameter space, only data after the first 1000
iterations were considered to be samples from the true
posterior; the use of such a burn-in period is standard
for MCMC methods. The R statistic in Stan was used
to verify that the chains were converging to the target
distribution [35-37]. A sample size of 500 was used for
the posterior distributions; only 100 randomly selected
members of the posterior sample were used to generate
the figures below involving action potentials and APDs
to improve clarity.

Because we found HMC to be quite sensitive to the
choice of prior distribution, it was necessary to obtain
somewhat informative priors in order to achieve reliable
results. For synthetic data using the MS and FK models,
the priors used were folded normal distributions, which
prevented the distributions from extending into unphysi-
cal negative values; the model parameters, which included
time constants, thresholds, and a steepness value, could
not meaningfully take on negative values. The standard
deviations were set to 20% of the values of the means.
Initial values needed for HMC were set as the modes of
the priors. For experimental data, priors were obtained fol-
lowing a process that involved using ABC-SMC (which is
described in the following section), which is more accept-
ing of less informative priors, with wide uniform priors
that contained but were not centered around the values
used to generate the synthetic data, then using the modes
of the resulting marginal posterior distributions as the val-
ues the HMC priors are centered around. The initial priors
used by ABC-SMC were defined on the intervals given
in the third column of Table 1. The resulting priors used
for HMC for the MS model with experimental data in the
results to be shown were folded normals extending 20%
around the values given in the fourth column of Table 1;
these values also were used as the initial values for HMC,
as indicated in the last column.
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For the FK model, the process of obtaining the priors
was the same as for the MS model, with ABC-SMC used
with wide uniform priors to generate a more informative
prior subsequently used by HMC. The initial uniform pri-
ors used by ABC-SMC were defined on the intervals given
in the third column of Table 2. The priors used for HMC
with the FK model were folded normals extending 20%
around the values given in the fourth column of Table 2,
and the initial values were set to the values in the last
column of the table.

2.3.2 Approximate Bayesian computation sequential
Monte Carlo

When the likelihood p(y|0) is difficult to evaluate or is not
available, ABC algorithms can be applied. One type of ABC
algorithm is rejection sampling, in which results generated
using candidate parameterizations are compared with the
data by using a distance function and a tolerance; only those
candidates that produce output sufficiently close to the data
(within the tolerance) are accepted. The set of accepted can-
didates {0V, 0%, ... ™} s called a population. ABC rejec-
tion’s acceptance rate typically is very low, which makes it
inefficient.

Using information from the previous population to build
a sample iteratively can result in higher efficiency. One such
method is ABC sequential Monte Carlo (ABC-SMC) [19].
Sample points from the previous population are weight-sam-
pled and then perturbed using a random walk with a uniform
or Gaussian kernel until a certain tolerance is reached. More
information can be found in [19].

The ABC-SMC implementation we used was custom
written in R and utilized the modifications made to the ABC-
SMC algorithm introduced by [19] and also found in [22],
including adaptive tolerances and the use of the effective
sample size for each population. In addition, to improve
convergence and the exploration of the parameter space, we
used a decreasing sequence of values for the scale factor for
perturbing the populations. As suggested in [22], we used a
probability density function as the distance function to gen-
erate the first population. Later populations were constrained
to produce output closer to the target data using the sum of
squared error by choosing a series of smaller tolerances. The
tolerance reduction could be modified adaptively if found
to be too restrictive and the algorithm stopped when the
tolerance reduction was smaller than a specified value; see
ref. [22] for more detailed information.

The probability density function used as a distance to
obtain the first population was p, () = exp M

€l
where SE(0) represents the sum of squared error between the
data to fit and the model solution at each time point. Here

€, = 1is the first tolerance value, o is the standard deviation
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of the error or noise assumed in the data measurements, and
ce, is a normalizing constant; while the exact constant is
unknown, a good approximation can be selected by monitor-
ing the acceptance of candidates [22]. If the value is too
high, most samples will be rejected and the computational
time will increase, whereas if the value is too low, most
samples will be rejected and the result can approach a uni-
form sample regardless of the true distribution. We found
that a value of 1000 achieved a good balance and thus used
this value for all cases. The use of a probability density func-
tion can help in avoiding an overestimation of the variance
in the first population that can occur otherwise. For all sub-
sequent populations, the distance function was simply SE(6).
Once the first population was calculated, the value of the
first tolerance was updated to the sum of squared error
between the data and the model solution obtained using the
modes of the distributions for each parameter, and the sub-
sequent tolerance was set to be % of the updated first toler-
ance. The value by which the tolerance was reduced for
subsequent populations was decreased by a factor of 0.5 but
could be modified if too strict, following ref. [22], and the
minimum tolerance reduction serving as a stopping criterion
was set to 1.5625 x 1072,

The population size chosen for ABC-SMC was 500,
ensuring a posterior distribution the same size as for HMC.
As for HMC, a random selection of only 100 population
members was used to generate the action potential and APD
figures to improve clarity. For synthetic data using the MS
and FK models, the priors used were folded normals extend-
ing 20% around the true values. As discussed in the previous
section, it was necessary to obtain more informative priors
for use with HMC in conjunction with the experimental data,
and ABC-SMC was used with an initial uniform prior to
generate these priors. However, for the results shown below,
ABC-SMC uses the same priors as those generated for use
by HMC to allow for a fair comparison.

2.3.3 Assessing accuracy

In the absence of known “correct” distributions, we will
assume that HMC, as a full Bayesian method, is more likely
to converge to accurate distributions. Within Stan, HMC by
default is implemented to utilize four chains, which provides
additional checks and accuracy compared to single-chain
results, which we use for comparisons with ABC-SMC in
the interest of fairness. Thus, we chose to use the default
four-chain HMC results from Stan as the “gold standard”
for the distributions. We verified that such cases converged
according to established metrics in Stan (e.g., R values very
close to one were used to verify that the chains were con-
verging to the target distribution), produced no or very few
warnings within Stan (e.g., no or few divergent transitions,
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adequate effective sample size that if too small could indi-
cate unreliable posterior means or variances), and achieved
fits to the data with low error. Except where noted, all other
cases similarly converge according to the same metrics. For
all scenarios considered, the Supplementary Information
includes four-chain results, which in all cases are extremely
similar to the one-chain results. Note that for the four-chain
results, only one chain uses the initial values noted here; the
rest use initial values formed as perturbations from these
values with Gaussian noise using a 10% deviation.

In addition, for the synthetic data, to show that the
parameters could be recovered, we verified that the mean
values for the posterior parameter distributions were
between quantiles 10 and 90. Although with HMC the
noise parameter can be estimated, ABC-SMC makes no
assumptions about the error; therefore we also use the
coefficient of determination R?> = 1 — ==, where SS,,,

1ot

the residual sum of squares (the same as SE(O) where the
argument is the mean of the posterior distribution) and
SS,, 1s the total sum of squares comparing the data points
with their average. For linear systems, this measure
explains how well observed outcomes are replicated by

Fig.2 Marginal distributions
for the MS model parameters

the model, based on the proportion of total variation of
outcomes explained by the model [38]. Because the mod-
els we are fitting are nonlinear, we will not consider the
metric in that context but instead will use it as a type of
normalized error metric where the desired value is one.
To avoid potential confusion with the use of R? in linear
regression, we will refer to this normalized error metric
as a pseudo-R? value.

3 Results

Below we present our results using HMC and ABC-SMC to
obtain distributions of parameters for the MS and FK models
for the two datasets.

3.1 Synthetic dataset

First we consider parameter distributions for the MS model.
Figure 2 shows the marginal distributions of the five MS
parameters and of the pseudo-R? normalized error metric
across the final population for HMC (blue) and ABC-SMC

Synthetic Data: MS Model

along with the pseudo-R? distri- 1.00+ - 1.001
bution when fitting to synthetic [¢] e
data (HMC, blue; ABC-SMC, > 0.757 2, 2 0.751
red). The priors used for both ‘» ‘®
methods are shown in magenta. GC) 0.501 HMC GC_) 0.50
Horizontal lines indicate the o 0.25- © 0.25-
support of the non-informative ’ ’
uniform prior used initially 0.00+ 0.00 1
by ABC-SMC to generate the 0 '25 0 '50 0.75 1 bo
informative prior shown in mag- ’ - ’
nenta. Vertical lines represent Tin
the true values used to gener- 1.004 1.00
ate the synthetic data. Insets ' : |
show g-¢ plots for ABC-SMC _ i
(vertical) vs. HMC (horizontal); é‘ 0.75 é‘ 0.75
dashed lines have slope one % 0.501 % 0.50-
© 0.25; © 0.251
0.001 , : : : 0.00+: , ; :
50 100 150 200 250 50 100 150 200 250
Topen Tclose
1.001 . 1.00 {Method
5. 0.75- g / 3075-E HUC
D ) SMC
% 0.501 HMC S 0.50
0.00 - ; . . . 0.00+ ; ; ;
0.1 02 03 04 05 0.984  0.988 0992
Vgate pseudo-R
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(red); the true values used to generate the original APs are
shown as black vertical lines for comparison. The distribu-
tions for all parameters are fairly well centered around the
true values for both methods, but the distributions obtained
using HMC are narrower than those from ABC-SMC. For
comparison, the four-chain HMC results for this scenario
align almost exactly with the one-chain HMC results, as
shown in Fig. S1, with slight shifts for a few parameters but
within a very narrow region of parameter space. Note also
that the shapes of the distributions for HMC and ABC-SMC
can be quite different; in particular, the distributions from
ABC-SMC are less symmetric than those from HMC. The
priors used for both cases, shown in magenta, have similar
locations but are broader than than the resulting posteri-
ors; the non-informative uniform priors used to generate the
informative priors in magenta are even broader. Thus, both
HMC and ABC-SMC resulted in considerable narrowing of
the distributions.

The pseudo-R? plots in Fig. 2, which reflect the distribu-
tions across the populations for each method, show values
that are consistently close to one, above 0.983 for ABC-SMC
and above 0.99 for HMC, that indicate low error in the data
fittings. In addition, the final population for HMC has less
variability in pseudo-R? than that for ABC-SMC. The insets
correspond to g-g plots of the distributions obtained using
ABC-SMC vs. HMC, where the ranges for each axis are
given by the corresponding x-axis limits. For most param-
eters, the g-g plots suggest that the posteriors come from
the same distribution family, even though the ABC-SMC
distributions in general are wider, indicating that ABC-SMC
likely explores more of the parameter space whereas HMC
appears to converge to a narrower distribution.

The population members in each case produce action
potentials that agree well with those of the dataset for all
three CLs used, as shown for a random selection of 100 of
the 500 population members in the posterior samples for
each method in Fig. 3A—C. Figure 3D shows that the popula-
tions obtained from both methods agree well with the data
at CLs not used during the fitting, including the location of
the bifurcation to alternans. Some parameterizations from
the ABC-SMC population can be paced slightly faster than
the true parameters before block occurs.

In some cases, the marginal distributions in Fig. 2 appear
somewhat broad, but combinations of parameters may be
better constrained. Figure S2 shows bivariate scatterplots
for all possible parameter pairs for the posterior sample
and indicate that some pairs are correlated and may be well
constrained when treated together. For example, 7;, and
7,,; appear positively correlated, which is not unexpected
given that these represent the reciprocals of inward and out-
ward current conductances, respectively, and increases in
one conductance could be offset by increases in the other.
Both HMC and ABC-SMC also find negative correlations
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Fig.3 A—C One hundred action potentials from populations of size
500 using synthetic data for HMC (blue) and ABC-SMC (red) com-
pared with the data points for the MS model. CLs of (A) 400, (B)
350, and (D) 310 ms are included. D One hundred representative
plots of APD as a function of CL for synthetic data with the MS
model. CLs from 600 ms down to where block occurs are included,
with HMC results in blue, ABC-SMC results in red, and the true data
points in black. Note that fitted voltage data are output at the same
timepoints as the dataset, leading to occasional small plotting artifacts
when the points are connected by lines, especially at the beginnings
of action potentials

between 7, and 7,,,,,, (essentially how quickly the inward cur-
rent turns on and how quickly the gate recovers) and between
7, and 7., (representing how quickly the outward cur-
rent turns on and how quickly the gate closes, and possibly
between 7,,,, and z,,,, (Which control the rate of recovery
of the gating variable at different voltages). HMC also finds
a clear positive correlation between 7,,,,, and v, that is not
picked up by ABC-SMC, which represents that an increase
in the time scale for gating variable recovery can be offset by
a decrease in the excitability threshold. ABC-SMC appears
to identify a possible weaker positive correlation between t;,
and 7., which suggests that a larger inward current magni-
tude (smaller 7;,) can be compensated by faster closing of the

gate. As shown in Fig. S3, the four-chain HMC parameter
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correlations agree well with the single-chain HMC results,
but with greater definition because the four-chain results
include four times as many samples and thus four times
as many points in the scatterplots. Overall, although the
parameter correlations indicate more structure of the multi-
variate posterior within the parameter space, the correlated
parameters also suggest that identifying the true values of
the individual parameters within the correlated pairs may be
difficult from the dataset.

For the FK model, the results from the two methods show
more variation. Although the marginal distributions for the
13 model parameters largely are centered around the true
values, as shown in Fig. 4, the shapes of the distributions for
each parameter frequently are visibly different. Most of the
marginal distributions obtained using ABC-SMC are fairly
broad, again suggesting broader exploration of parameter
space, while HMC converges to a narrower distribution. For
comparison, the four-chain HMC results again align very
closely with the single-chain results shown here; see Fig. S4.
For some parameters, including 7, uf‘ and T, the distri-
butions from HMC are narrow compared to ABC-SMC,
whereas for others the distributions are similarly broad.
Nevertheless, in nearly all cases, there is considerable nar-
rowing of the marginals with respect to the priors, shown
in magenta. The non-informative uniforms used to gener-
ate these priors were even broader and for clarity are not
shown in Fig. 4, but they are the same as those used for the
experimental dataset discussed later. The pseudo-R? values
also vary much more across the population for HMC than
for ABC-SMC, although even for ABC-SMC the values are
generally above 0.975 and thus are close to the desired value
of one. The g-q inset plots are still close to linear, indicat-
ing that the distributions come from the same family, even
though they do not always have a slope of one, especially
for 7, uff ,and T which feature wider ranges of values from
ABC-SMC compared to HMC. In the case of a few param-
eters like T:Vf and 7, the two methods produce distributions
centered around different values, with the true value located
between the peaks.

The fitted action potentials reflect the apparent increase
in variability when using the FK model compared to the MS
model. Figure 5 shows a subsampling of the final popula-
tions obtained using each method and reflects the greater
variation with the samples from ABC-SMC. Nevertheless,
good agreement is obtained across a wide range of CLs,
even for CLs not close to those used for fitting. In particular,
the bifurcation to alternans is well characterized for both
methods.

Bivariate scatterplots for parameter pairs, shown in
Fig. S5, suggest some correlations across the set of FK
model parameters, although in general a smaller fraction
of possible pairings are correlated than for the MS model,
and HMC and ABC-SMC do not always detect the same

correlations. Both HMC and ABC-SMC identify strong
positive correlations between 7, and 7;, which makes sense
as these govern the strength of the repolarizing current and
slow inward (calcium) currents, so that an increase in one
can compensate for an increase in the other. HMC also
identifies strong negative correlations between 7, and u,
(increasing the excitability by decreasing 7, can be offset by
increasing the excitation threshold), z; and 77 (increasing
the APD by decreasing r; can compensate for a slow inward
current prolonged via increased z%), and 7, and 7" (speed-
ing up repolarization can be offset by prolonging the slow
inward current); ABC-SMC detects only the last of these.
Both HMC (strongly) and ABC-SMC (weakly) detect a posi-
tive correlation between 7, and 7 (decreased fast inward
current via larger 7, can be compensated by prolonging the
same current via slowing its inactivation gate).

Figure S5 suggests additional (weaker) correlations that
are apparent from only one method. For example, HMC
detects additional positive correlations between 7, and
u® and between 7,; and 1 as well as negative correlations
between 77 and uf’ , between 7 and 77, and between 7} and
u,. The scatterplot for ABC-SMC suggests another weak
correlation between z;" and 77| that is not detected by HMC.

Note that the HMC parameter correlations obtained using
four chains and those using one chain agree well, as shown
in Fig. S6.

3.2 Experimental data

For the experimental data, the results for the MS model
show some differences compared to the synthetic data. As
demonstrated in Fig. 6, the marginal distributions from
HMC and ABC-SMC are nearly identical for 7,,,,; for 7;,
and 7,,,, the distributions appear slightly offset relative to
each other. For the remaining parameters, 7., and u,,,, the
distributions look similar to the results for the synthetic data,
with a broader range of values included for ABC-SMC. The
agreement in marginal distribution shapes compared to the
synthetic data case leads to linear g-g plots with slope values
of nearly one in all cases, consistent with the distributions
being from the same families. For comparison, the distribu-
tions obtained using four chains vs. one chain for HMC are
nearly identical, as shown in Fig. S1. The pseudo-R? values
are not as close to one when the data are not derived from
the model being fit; however, pseudo-R? remains above 0.65
for ABC-SMC and above 0.7 for HMC.

Figure 7 shows the fitting to experimental data for 100
of the 500 population members for two of the three CLs,
300 ms and 276 ms. Again, good agreement is seen over-
all, but with more variability in AP shapes and durations
across the population with ABC-SMC. Of particular note,
the variability seen in the ABC-SMC posterior sample
includes longer and shorter APs, but the HMC sample is
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Fig.4 Marginal distributions
for the FK model parameters
along with the pseudo-R? distri-
bution when fitting to synthetic
data (HMC, blue; ABC-SMC,
red). The priors used for both
methods are shown in magenta.
The support of the non-informa-
tive uniform prior used initially
by ABC-SMC is not shown to
improve figure clarity but is the
same as that shown in Fig. 8
for the experimental data case.
Vertical lines represent the true
values used to generate the
synthetic data. Insets show g-¢
plots for ABC-SMC (vertical)
vs. HMC (horizontal); dashed
lines have slope one
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Synthetic Data: FK Model

A. 400 ms
o 1.0 |
g |
£ 0.5
g 09 | ! |
001 * Jeat ' |
0 200 400 600 800
Time (ms)
B. 350 ms
1.2
S 0.81
8
5 0.4 | I
0.04 I .
0 200 400 600 800
Time (ms)
C. 300 ms
1.2 -
308
S 04f |
g 0.4 | +
0.0{ * ; .
0 200 400 600 800
Time (ms)
D. Bifurcation plots
250 .
£ 200 —
a 150 /
< 100
300 400 500 600
CL (ms)

Fig.5 A—C One hundred action potentials from populations of size
500 using synthetic data for HMC (blue) and ABC-SMC (red) com-
pared with the data points for the FK model. CLs of (A) 400, (B) 350,
and (C) 300 ms are included. D One hundred representative plots of
APD as a function of CL for synthetic data with the FK model. CLs
from 600ms down to where block occurs are included, with HMC
results in blue, ABC-SMC results in red, and the true data points in
black

biased toward longer APs for the MS model. This trend can
be observed across a broad range of CLs; HMC generally
achieves longer APDs than occurred in the experiment. In
addition, neither method accurately captures the dynamics
associated with alternans, including the bifurcation point
and the magnitude of the alternans at the shortest CLs.
Figure S7 depicts bivariate scatterplots for the param-
eter pairs. A positive correlation between 7;, and 7, and
a negative correlation between 7, and 7, are indicated
by both HMC and ABC; both correlations were observed
for the case of synthetic data as well. In addition to these
cases, a weak negative correlation between 7, and 7,,,,,,,, also
observed for the synthetic data case, is suggested by HMC
only, and a weak correlation not observed for synthetic data

is suggested by both HMC and ABC between t;, and 7,

close*

The use of four chains for HMC, with its corresponding
increase in the number of points in the scatterplots, only
defines correlations more clearly and does not suggest any
new correlations; see Fig. S8. Note that no correlations are
apparent between v, and any other parameter when fitting
the experimental dataset.

For the FK model, the marginal distributions of the
parameters show even more variability, as shown in Fig. 8,
with wider ranges of values in many cases obtained using
HMC. Although the distributions have similar peak values
for some parameters, such as 7, and 7, they appear shifted
for others, such as 7,, 77, and u,. The g-q plots for these
shifted cases look less than linear, which may suggest that
in some cases the distributions may not be from the same
family. Nevertheless, the distributions obtained using HMC
are nearly identical regardless of the number of chains used,
as shown in Fig. S4. In addition, the pseudo-R? values are
somewhat closer to one than they were for the MS model
for the same data. Despite this variability in the values of
parameters, the fitted action potentials for the FK model
closely fit the data, as shown in Fig. 7 (right column). Both
methods show less variability across the sample for the FK
model than for the MS model. However, there is a tendency
for the upstroke to be fitted poorly for higher voltage values
for CLs exhibiting alternans. Despite this fact, the dynamics
overall, especially during alternans, are much better captured
by the FK model than by the MS model.

When fitting experimental data with the FK model,
fewer parameter correlations are apparent than when fit-
ting synthetic data, as shown in Fig. S9. Both HMC and
ABC-SMC detect a strong negative correlation between z,
and 7" (increasing the repolarizing slow outward current by
decreasing 7, can be offset by increasing 7" and thus inacti-
vating the fast inward current more slowly). HMC suggests
another negative correlation, between 7, and T, (a decrease
in excitability by increasing 7, can be offset by decreasing
7 ,» Which makes it easier to initiate a new action potential by
accelerating the recovery of the fast inward current inactiva-
tion gate). HMC finds the same correlations regardless of the
number of chains used (see Fig. S10), and neither correlation
is apparent when fitting synthetic data. The much smaller
number of correlations compared to when fitting synthetic
data may reflect the difficulty the model faces when fitting
alternans from the zebrafish experiments.

3.3 Consistency and robustness

Both HMC and ABC-SMC are dependent on randomiza-
tion within their algorithms; as a result, it is possible that
results could be different every time either algorithm is
executed if the algorithm is not appropriately sampling
the posterior. To assess whether the results are robust
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for the MS model parameters
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Fig. 7 Fit action potentials and bifurcation plots for the MS model a function of CL for the same sample. Note that fitted voltage data
(left) and the FK model (right) using HMC (blue) and ABC-SMC are output at the same timepoints as the dataset, leading to occasional
(red) for experimental data (shown in black). Top two rows show small plotting artifacts when the points are connected by lines, espe-
action potentials for CLs of 300 and 276 ms from a sample of 100 cially at the beginnings of action potentials

randomly selected population members. Bottom row shows APD as
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Fig.9 Superimposed marginal distributions for the MS model param-
eters when fitting to (left) synthetic and (right) experimental data
(HMC, blue; ABC-SMC, red) from 10 runs of each algorithm (HMC,

to different randomizations, we ran each algorithm ten
times for each dataset and for each model. Figure 9 sum-
marizes the resulting distributions for the MS model for
both the synthetic (left) and experimental (right) data. In
both cases, the distributions obtained are fairly consist-
ent for each method. For the synthetic data, the marginal
distributions are unimodal and centered near the correct
values. However, the marginal distributions for all time
constants are wider for ABC-SMC than for HMC; for
Veare» the distribution widths are similar for both meth-
ods. For the experimental data, there is even greater
consistency across the ten runs for each method along
with more similarity of the posterior distributions for
the two methods. The distributions generally are wider
with ABC-SMC, but the difference in widths is less pro-
nounced than with the synthetic data. Some differences
in the locations of the peaks for st;, and 7, are evident,
as discussed earlier when using experimental data for the
MS model in Fig. 6.

For the FK model, more variation occurs for both
datasets. As shown in Fig. 10, across the ten runs, the
posteriors obtained using HMC when fit to synthetic
data are fairly consistent, but ABC-SMC can yield dis-
tributions with more variation in shape and location. For
example, the the peak location for the distributions of 7,,
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blue; ABC-SMC, red). Vertical lines represent the true values used to
generate the synthetic data

7, and 7 obtained using ABC-SMC vary substantially.
For other parameters, such as T, and u', the results for
HMC and ABC-SMC have similar peak locations, but
much broader distributions for ABC-SMC. With experi-
mental data, even greater variability across the ten dis-
tributions obtained using ABC-SMC is evident, with
noticeable peak shifts for nearly all parameters. HMC
produces more consistent results, indicating that this
method samples the posterior appropriately and thus is
less sensitive to randomization effects.

As a final measure of robustness, Fig. 11 shows the
distribution of R? across the posterior sample for each of
the ten runs using each method for the two models and
the two datasets. In all scenarios, there is more variabil-
ity in the pseudo-R? value across the posterior sample for
ABC-SMC than for HMC, which consistently achieves
narrow distributions. In the case of synthetic data and
the ABC-SMC algorithm, the distributions are wider for
the FK model fit than for the MS model; the FK model
also has lower and more variable pseudo-R? values. HMC
achieves pseudo-R? values closer to one for both mod-
els. In comparison with the results for synthetic data,
the pseudo-R? values for the experimental data are lower
and the distributions are wider for all cases, but with
ABC-SMC distributions are wider than those of HMC
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Fig. 10 Superimposed marginal distributions for the FK model parameters when fitting to (A) synthetic and (B) experimental data (HMC, blue;
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Fig. 11 Superimposed distributions of pseudo-R?> from 10 runs of
each algorithm (HMC, blue; ABC-SMC, red) for the MS (upper) and
FK (lower) models and for synthetic (left) and experimental (right)
data

for both models. In contrast to the synthetic data case,
however, the values of pseudo—R2 are closer to one for the
FK model than for the MS model, a result that suggests,
consistent with the results shown in Fig. 7 that the FK
model is better able to fit the experimental data than the
MS model.

3.4 Effect of dataset time resolution

The time resolution of the datasets used for fitting was down-
sampled from the available resolution. A physiological rea-
son for the downsampling is that the different time scales
of the action potential cause a uniform time resolution to
deemphasize the upstroke [39], which is crucial to resolve
for capturing behavior. The significant downsampling we
perform thus results in a more balanced dataset by increasing
the contribution of the upstroke. In addition, the experimen-
tal data recording was obtained using a resolution finer than
is typical, and we wanted to ensure that good results could
be obtained at more reasonable resolutions. Nevertheless,
the downsampling eliminates information that potentially
could improve the fittings obtained.

To study the effect of time resolution on the distribu-
tions and fittings obtained using HMC, we compared our
results with those obtained using finer resolution with the
MS model. With synthetic data, the resolution used was
0.4 ms for the first 4 ms and 5 ms for the remainder of each
cycle (compared to 0.5 ms for the first 4 ms, then increased
to 15 ms; see Section 2.2); the same priors and initial values
were selected as before and are given in Table 1. Despite this
increase in data resolution, which slightly increased com-
putational time, little difference can be seen in either the
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marginal distributions, shown in Fig. S11, or in the action
potential fittings and APDs over a wide range of CLs, shown
in Fig. S12. A decrease in variability can be seen in the
bivariate scatterplots of parameter pairs in Fig. S13, which
show essentially the same correlations as the lower reso-
lution set but with greater clarity (and possibly a negative
correlation between 7, and v,,,).

When fitting the MS model to experimental data, increas-
ing the dataset resolution again retained good fittings to the
action potentials and similar distributions. In this case, the
coarser resolution, as discussed in Section 2.2, was 0.4 ms
for the first 4 ms, 1 ms for the next 4 ms, and 15 ms for the
rest of each cycle; the finer resolution was the same except
that after the first 8 ms the resolution was 5 ms). Priors
and initial values were the same as those used earlier and
are given in Table 1. Figure S14 shows the distributions,
which are well-shaped and much narrower than the priors,
very similar to the distributions in Fig. 6. Good fittings are
obtained for the action potentials and APD across differ-
ent CLs, as shown in Fig. S15. As with the synthetic data,
the bivariate scatterplots, depicted in Fig. S16, show similar
correlations but less variability; in this case, a possible new
positive correlation between 7, and v,,,, appears.

pen gate

3.5 Effect of prior selection for HMC

As mentioned in Section 2.3.1, HMC appeared to be sensi-
tive to the choice of prior, a finding that motivated our use
of ABC-SMC to develop an appropriate informative prior.
Although using priors derived from ABC-SMC seems to help
HMC obtain good results under a variety of conditions, these
priors tend to be relatively narrow, and it would be ideal for
HMC to work effectively with different types of priors. In
this section, we show the effects of choosing different types
of priors on the performance of HMC for several scenarios.

Figure S17 shows an example of HMC fitting the FK
model to synthetic data for the broad uniform prior used
successfully with ABC-SMC (see Table S2). For nearly
all parameters, the marginal distributions are far from the
true values. The action potentials obtained are misshapen,
with the plateau missed and a bump during repolarization,
as shown in Fig. S18. Stan provided a number of warnings
to indicate poor performance: R values were as large as
1.49, 495 divergent transitions occurred after the warm-up
period (nearly the size of the posterior sample, which was
500), and the effective sample size was below 30 for all
parameters, indicating that the posterior means and vari-
ances may be unreliable. When fitting experimental data,
the true values are unknown. However, there is still ample
evidence of unreliable distributions and poor fittings. Fig-
ures S19 and S20 show the results of HMC fitting the MS
model to experimental data using a broad uniform prior (see
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Table S1). Although less dramatic than the previous exam-
ple, some of the distributions are poorly shaped and far from
the distributions obtained with more informative priors (see
Fig. 2), and the action potentials generally are too long. In
addition, Stan provided similar metrics indicating unreli-
ability, including R values as large as 1.07, 439 divergent
transitions after the warm-up period (again, nearly the size
of the posterior sample), and the effective sample size was
below 50 for all parameters, suggesting that the posterior
means and variances may not be reliable.

However, it is possible to find different priors that are effec-
tive for HMC. For example, Fig. S21 shows marginal distribu-
tions obtained using gamma distributions (Gamma 1 param-
eters and initial values in Table S1). In this case, the only
warning Stan gives is that the posterior variance may be unre-
liable, but the effective sample size is still almost always at
least half the posterior sample size, and other metrics includ-
ing R are consistent with convergence. The action potentials
from the posterior sample, shown in Fig. S22 are gener-
ally good fits to the data. Another example of good results
obtained using gamma priors, this time fitting the experimen-
tal dataset using the FK model (parameters in Table S2), is
shown in Figs. S23 and S24. The posterior distributions and
action potentials are well-shaped, and Stan gives no warnings.

However, not all gamma distributions lead to good
results. Figure S25 shows the marginal distributions that
arise from another gamma prior derived from a fitting to
the FK model obtained by hand (Gamma 2 parameters and
initial values in Table S2. The distributions are extremely
narrow and strangely shaped, although the action potentials,
shown in Fig. S26, look fairly good. Nevertheless, Stan gives
many warnings that the results may not be reliable, includ-
ing R values over 2, effective sample sizes below 10, and
500 problematic transitions. Overall, although HMC may
not require priors to be as informative as those used for the
results shown in Sections 3.1 and 3.2, it still tends to perform
poorly with priors that are substantially different from the
true posteriors.

4 Discussion

In this section, we compare results obtained for the different
models, datasets, and Bayesian methods. We also describe
some limitations of this study.

4.1 Influence of dataset and model choices

In all cases, the distributions found using HMC tended
to be consistent, with more variability in the resulting

distributions occurring with ABC-SMC, which suggests that
ABC-SMC may not always sample the posterior appropri-
ately. For synthetic data, HMC often, but not always, gave
rise to narrower distributions than ABC-SMC, whereas for
experimental data, HMC’s distributions sometimes were
wider in such a way as to cover more of the variability of
the ABC-SMC distributions.

With regard to models, we found clear differences in
results for the two models considered. With synthetic data,
for both methods, the peaks of the parameter distributions
for the MS model usually coincided, with minimal shift-
ing between the methods (despite variations in distribu-
tion widths). At the same time, the MS model showed a
high incidence of correlations between pairs of param-
eters, especially with synthetic data (see Figs. S2 and S7).
Given the model structure, this is not unexpected. The
timescales of the main phases of the action potential are
governed largely by particular time constants: 7;, during
the upstroke, 7, during the plateau, 7z, during early
repolarization, and 7,,,, during late repolarization and
rest. Many of the pairs of correlated parameters are time
constants governing consecutive action potential phases.
Because they scale inward and outward currents affecting
the voltage, 7,, and 7, also typically were correlated. The
excitation threshold v, in the synthetic data case showed
some correlation with the time constants associated with
the transition from unexcited to excited states: 7,,,, and,
to a lesser extent, 7;,. Overall, the MS model was able to
obtain good fits in most cases, with less variability, but
with more parameter correlations and some limitations in
matching the action potential shapes from the zebrafish
voltage recordings.

In contrast, for the FK model, greater variability arose,
especially for the experimental data. We note that some of
the parameters with greatest variability, such as 7} and uff
for synthetic data along with r:,, T and T, for experimen-
tal data, corresponded to parameters with more variability
in a previous study fitting model parameters using a genetic
algorithm [9]. Physiologically, 7 helps set the maximum
APD, so the limited number of CLs used for fitting may
not constrain this value as well as others. Similarly, T, and
7, help to set the minimum diastolic interval and the slope
of the APD restitution curve, respectively, and also may
require additional data to be set properly, especially for the
experimental setting where the model may not accurately
describe the data and thus may not be able to fit all possible
scenarios with low error throughout the action potentials.
The increased variability and lack of observed bivariate
correlations suggest that the FK model may be more dif-
ficult to fit, although its greater flexibility also extends its
capability to produce different action potential properties
like restitution compared to the MS model.

@ Springer



92

Medical & Biological Engineering & Computing (2023) 61:75-95

The experimental data scenario also showed fewer FK
parameter correlations compared to the synthetic case;
see Figs. S5 and S9. For the experimental case, only
one strong correlation was visible, between parameters
strongly affecting action potential duration (z,, which sets
the strength of the slow outward current while the voltage
is above threshold, and T‘T, which essentially governs the
duration of the fast inward current). With synthetic data,
many additional correlations were observed, which most
likely reflects the fact that the FK model is better able to
fit data it generates, even in the presence of noise, than
experimental data that are not described perfectly by the
model. Some of these correlations, such as between the
excitabilty 7, and the excitation threshold u,, as well as
between the strength of the slow inward current governed
by 7; and the time course of the slow inward current’s gat-
ing variable set by 7", have been observed previously and
visualized in the parameter fitness landscape [9].

4.2 Bayesian method considerations

Many aspects of our results across the two methods were
fairly consistent. In particular, the g-g plots of the ABC-
SMC vs. HMC samples do not support the idea that the
posteriors obtained with the two algorithms come from dif-
ferent families of distributions. Nevertheless, each of the
two methods considered has advantages and disadvantages.
HMC performs exact inference and explores parameter space
more efficiently than traditional methods like Metropolis-
Hastings. Furthermore, HMC was consistent when running
the programs multiple times, giving posteriors centered
around the same value, for synthetic or experimental data.
However, it can be difficult to use HMC because of the need
to choose initial points and a prior distribution. Inappropri-
ate selections for either initial points or the prior can affect
convergence and lead to unreliable results, but finding good
choices can be time-consuming.

In contrast, although we show results only for the same
priors used for HMC, ABC-SMC could produce good results
with a variety of different priors, including uniform, gamma,
and folded normal distributions. Even with relatively non-
informative priors such as wide uniforms, ABC-SMC was
able to find a useful approximation to the posterior in all
cases we tried, for synthetic or experimental data. How-
ever, the lower bound for the pseudo-R? distribution when
fitting experimental data was smaller using wide uniform
priors than folded normal distributions (MS: not lower than
0.48 vs. 0.65; FK: not lower than 0.67 vs. 0.79). While we
expect that this result occurs because the uniforms are less
informative than the folded normal distributions, more study
would be needed to make a fair comparison. In addition to
imposing less stringent requirements for the priors, we have
found that ABC-SMC could find an approximate population
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fit even if the population size was small (e.g., 100; results
not shown). Furthermore, we demonstrated that HMC per-
formed well and consistently for different temporal resolu-
tions of the dataset, although higher resolutions require more
computational time.

We also note that the lower consistency of the ABC-
SMC results might suggest that the ABC-SMC results
could be improved with a larger sample size. However,
when we have tested output from larger samples, con-
sistency was not meaningfully improved (results not
shown). Instead, we believe that the variability is more
inherent to the difference in how the ABC-SMC method
works: it is an approximation and may not always sam-
ple the posterior properly. One possible way to achieve
greater consistency may be by adjusting and tightening
the ABC-SMC tolerances, but it is difficult to optimize
the tolerance schedule; choosing tolerances that are too
small can lead to nearly all candidate solutions being
rejected, which considerably slows the algorithm and in
some cases may compromise convergence.

In terms of computational efficiency of the two methods
for our main findings in Sections 3.1 and 3.2, using experi-
mental data with ABC-SMC generally took around 5 min
and more than twice as long for synthetic data when fitting
the MS model. For the FK model, ABC-SMC took only
slightly longer to fit experimental data, around 6 min, and
about 1.5 times longer than that to fit synthetic data. For
HMC, the experimental data could be fit to the MS model
much more quickly, in about 3.5 min, with the fitting to syn-
thetic data taking about eight times longer. However, when
fitting synthetic data, HMC took around 12 min to fit the MS
model but around 4 h to fit the FK model. A possible expla-
nation for the long times required for HMC to fit synthetic
data may be that the likelihood is very flat for some regions
of parameter space, limiting choices for acceptable candi-
date parameterizations. Another possible reason that HMC
is much faster for fitting experimental data may be the nature
and extent of noise and variability in the dataset. Indeed,
HMC is unable to obtain appropriate fittings for datasets
with no or very low noise, which, along with the magnitude
of noise in the experimental data, influenced our selection of
the noise level in creating the synthetic datasets considered.

Overall, we found that ABC-SMC was able to obtain use-
ful approximations to the posterior under a broader range of
conditions, whereas HMC imposed more constraints for rea-
sonable performance. However, even ABC-SMC saw benefit
from the use of an informative prior. Because ABC-SMC
does not need initial points and accepts wide priors from
several different types of distributions, it can be used to find
feasible priors for HMC, and the initial points for HMC can
be selected as the modes of the distributions obtained with
the first ABC-SMC pass. It is true that comparing HMC
results using a prior derived from ABC-SMC to ABC-SMC
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using the same prior philosophically seems like using the
same data twice for the latter case; however, we can think of
ABC-SMC in that case as getting some help from the maxi-
mum likelihood estimate, and in practice we likely would
only use such an approach for ABC-SMC when compar-
ing directly with another method like HMC. Our hybrid
approach, which was used to obtain the results shown here,
can be useful to sidestep the difficulties of working with
HMC, especially its sensitivity to the selection of priors,
while taking advantage of its ability to generate a population
that closely fits the data with limited variability and of its
performance of exact inference as a full Bayesian method.

4.3 Limitations

In this study, we considered only a limited number of datasets. In par-
ticular, we chose data from three CLs, with one at a longer CL and two
atshorter CLs within the alternans regime. It may be possible to optimize
the selection of CLs beyond what was chosen. In addition, it is possible
that performance may change for noisier data or for data with different
dynamics that may not be well captured by the model being fit.

Similarly, we only considered two models, and it is
possible that performance could differ for a different
selection of models. We also note that we have used a
single approximate Bayesian method and that a different
choice may result in different findings. In addition, we
chose to restrict parameter values to be positive using
priors with positive support (folded normals), but param-
eter transforms [40] could be a useful alternative. We
also considered only bivariate correlations across param-
eters, although higher-dimensional correlations may be
present. Different algorithmic choices, such as the use of
a different distance function, may be worth considering,
although some preliminary trials with an absolute value-
based distance did not appreciably change the results.

Within the models, we used a simple square-pulse stimu-
lus. Use of a biphasic stimulus [9] could help prevent selec-
tion of large values for the excitability parameters (e.g., 7;,
for the MS model and 7, for the FK model) that would not
allow propagation in tissue and thus may be unphysiological.

The tolerance reduction approach used for ABC-SMC,
while adaptive, nevertheless was fixed in advance, follow-
ing ref. [22]. It would be interesting to try a more sophis-
ticated way to select the tolerances to improve efficiency
and to facilitate working with different datasets.

We also note that to make the comparison between ABC-
SMC and HMC fair, we chose to use one chain for HMC in
Stan, but we found the results were consistent when using the
default number of chains, which was four. In addition, other
Bayesian methods could be considered, such as Metropolis-
Hastings with an adaptive covariance scheme to help the
multivariate normal proposal distribution evolve towards the
covariance of the accepted samples in the chain so far [41].

5 Conclusion

In this manuscript, we have used two Bayesian methods, HMC
and ABC-SMC, to find populations of cardiac action potential
model parameters consistent with data used for fitting. We have
shown that the methods can work effectively with both synthetic
data derived from the models used and for an experimental data-
set taken from a zebrafish heart. In nearly all cases, both meth-
ods find well-shaped marginal distributions with clear peaks for
each model parameter for both the MS model, which has five
parameters, and the FK model, which has 13. We also have shown
through the use of g-g plots that the posterior distribution sam-
ples obtained by the two methods do not give any strong indica-
tion of being from different distribution families; in other words,
both methods appear to converge to the same type of distribution.
In the case of synthetic data, where the true parameters used to
generate the dataset are known, those true values in general are
well contained within the posterior distributions found, and across
multiple runs of the algorithms the true values coincide well with
the distribution peaks.

Given that both methods achieve similar results with no clear
computational advantage, other considerations may motivate the
choice of method. ABC-SMC is generally easier to work with, as
it accepts different kinds of prior distributions, and those distribu-
tions may be broad, and it often finds useful approximations of
the true posteriors. While HMC requires more effort to find an
acceptable prior (and indeed, we suggest that ABC-SMC may be
useful in this task), it performs exact inference, such that when it
converges, it finds the true posterior.

In the future, it may be useful to optimize the data used
for fitting to better constrain certain parameter values. For
example, in the FK model, the parameter 7, helps to set the
minimum diastolic interval; datasets that do not represent
that information may have difficulty adequately constraining
that parameter and related parameters like u,. We also expect
Bayesian methods such as these will be useful for ongoing
efforts including efficient creation of model populations [42]
and virtual patient cohorts [4] as well as addressing noniden-
tifiability of model parameters [15, 43—45] and uncertainty
quantification [14, 46].
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