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Abstract 
Customization of cardiac action potential models has become increasingly important with the recognition of patient-specific models and 
virtual patient cohorts as valuable predictive tools. Nevertheless, developing customized models by fitting parameters to data poses tech-
nical and methodological challenges: despite noise and variability associated with real-world datasets, traditional optimization methods 
produce a single “best-fit” set of parameter values. Bayesian estimation methods seek distributions of parameter values given the data by 
obtaining samples from the target distribution, but in practice widely known Bayesian algorithms like Markov chain Monte Carlo tend to 
be computationally inefficient and scale poorly with the dimensionality of parameter space. In this paper, we consider two computationally 
efficient Bayesian approaches: the Hamiltonian Monte Carlo (HMC) algorithm and the approximate Bayesian computation sequential 
Monte Carlo (ABC-SMC) algorithm. We find that both methods successfully identify distributions of model parameters for two cardiac 
action potential models using model-derived synthetic data and an experimental dataset from a zebrafish heart. Although both methods 
appear to converge to the same distribution family and are computationally efficient, HMC generally finds narrower marginal distributions, 
while ABC-SMC is less sensitive to the algorithmic settings including the prior distribution.

Keywords  Cardiac action potential · Mitchell-Schaeffer model · Fenton-Karma model · Alternans · Statistical computing

1  Introduction

A broad range of models of cardiac action potentials have 
been developed [1] to describe the heart’s complex electrical 
dynamics across multiple species and regions of the heart. 
These models also vary in complexity and level of detail, 
from simple two-variable models with a few parameters up 
to as many as dozens of variables and hundreds of param-
eters. In most cases, these models are published with a single 
set of parameter values. Nevertheless, there is often a need 
or desire to customize the models by obtaining parameter 
values that can be used to match particular experimental 
recordings [2], to represent individual patients [3], or to cre-
ate virtual cohorts [4].

The challenges of finding parameter values to match spe-
cific input data or properties are well known. Within cardiac 
electrophysiology modeling, many approaches have been 
used, from optimization techniques to heuristic methods. 
Some examples include least squares variations [5], sequen-
tial quadratic programming [6], genetic algorithms [7–9], 
and a hybrid method combining particle swarm optimization 
with a local gradient-based algorithm [10]. More recently, 
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parameterizations have been obtained using Bayesian 
approaches, such as history matching [11], Bayesian active 
learning [12], and a combination of Metropolis-Hastings and 
Gibbs sampling [13].

Nevertheless, models that include a single set of param-
eter values, however well fitted, lack a depth of information 
that can be included when a distribution of parameter values 
is obtained. For example, when multiple datasets are avail-
able, simplification by fitting to the mean may misrepresent 
properties of the data [14]. In addition, models with a single 
set of parameter values neglect that many models are not 
fully identifiable from the necessarily limited input data used 
for fitting [5, 9, 15].

In contrast, Bayesian inference allows fitting a prob-
ability model to a set of data with the result summarized 
by a probability distribution on the parameters of the 
model. The distribution not only provides a description 
of randomness in the observed data, it also can facilitate 
making predictions of unobserved quantities. In addition, 
when working with observed data, the distributions pro-
vide information about the ranges of values that the dif-
ferent model parameters can take. Traditional full Bayes-
ian Markov chain Monte Carlo (MCMC) methods, such 
as Metropolis-Hastings or Gibbs sampling, have limita-
tions, including random walk behavior and poor scal-
ability with the dimensionality of parameter space [16], 
and sensitivity of the desired posterior distribution to the 
full Bayesian specification [17]. Several methods have 
been developed to overcome the computational limita-
tions of traditional Bayesian methods. One approach is 
the use of approximate Bayesian methods [18], where 
the likelihood, which can be expensive to compute, is 
not used, resulting in greater efficiency. An example is 
approximate Bayesian computation sequential Monte 
Carlo (ABC-SMC) [19, 20], which has been applied to 
obtain parameter distributions for the Hodgkin-Huxley 
neural model [15] and for the O’Hara et al. model [21] 
of cardiac cells [22].

One option to calculate the exact, rather than approxi-
mate, distributions without sacrificing efficiency is Ham-
iltonian Monte Carlo (HMC) [16, 23], a full Bayesian 
method that uses the gradient of the target distribution 
to explore the parameter space in a more efficient man-
ner than the methods mentioned above. HMC has been 
used successfully for model calibration in ecology [24] 
and pharmacometry [25], but its utility for cardiac action 
potential models [26] compared to approximate methods 
has not yet been established.

In this work, we use HMC and ABC-SMC to find 
parameter probability distributions for two fairly low-
dimensional cardiac action potential models: the Mitch-
ell-Schaeffer model [27], which has two variables and 
five parameters, and the Fenton-Karma model  [28], 

which has three variables and 13 parameters. We test 
these two Bayesian methods using synthetic data and 
experimental recordings from zebrafish hearts and com-
pare their performance.

2 � Methods

Below we describe the cardiac action potential models 
used for fitting the data, the datasets to be fit, and the 
methods used for Bayesian inference, including details of 
our implementations.

2.1 � Cardiac action potential models

In this work, we seek parameter value distributions for two 
cardiac action potential models: the three-variable Fen-
ton-Karma model and the reduction of this model to two 
variables by Mitchell and Schaeffer. Because the model 
parameters will be referred to frequently, we include the 
model equations in full.

The Mitchell-Schaeffer (MS) model [27] uses two var-
iables, the voltage u and inactivation gating variable h, 
along with inward, outward, and stimulus currents ( Iin , 
Iout , and Istim , respectively) to describe the transmembrane 
currents that give rise to action potentials.

where

The five parameters include a threshold ugate that determines 
the dynamics of the gating variable h; the remaining four 
parameters are time constants that effectively govern the 
durations of the depolarization ( �in ) and repolarization ( �out ) 
phases as well as the closing ( �close ) and opening ( �open ) of 
the gate. Initial values were set to u = 0 and h = 1 for each 
cycle length used. The stimulus current was applied periodi-
cally according to the specified cycle length (CL) for 1ms 
with a magnitude of 0.66.

We also used the Fenton-Karma (FK) model [28], which 
is a phenomenological model that describes cardiac action 
potentials. It includes three state variables (voltage u and 
gating variables v and w) and 13 parameters.

du(t)

dt
=Iin(u, h) + Iout(u) + Istim(t),

dh(t)

dt
=

{ 1−h

𝜏open
, u < ugate

−h

𝜏close
, u > ugate,

Iin = h
u2(1 − u)

�in
,

Iout = −
u

�out
.
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where

The fast inward current Ifi , the slow outward current Iso , 
and the slow inward current Isi represent summary sodium, 
potassium, and calcium transmembrane currents, respec-
tively. The magnitude of the 1ms-long stimulus current was 
0.35. Initial values were set to u = 0 , v = 1 , and w = 1 for 
each cycle length considered.

For both models, the differential equations were solved 
using an adaptive forward Euler scheme, with a timestep 
size of 0.1 ms for the first 4 ms after the beginning of the 
stimulus followed by an increase to 0.5 ms in all cases except 
when fitting the MS model to synthetic data, in which case 
the time step was increased to 0.25 ms.

Because HMC is a gradient-based method, discontinuities 
should be avoided. For this reason, the Heaviside functions 
in the MS and FK models were replaced by smooth func-
tions when using HMC. For instance, in the case of the MS 
model, the equation for the gating variable was modified to

where p =
1

2
(1 + tanh(s(u − ugate))) . The steepness param-

eter s was set to a large value of 50 for a steep transition 
resembling the Heaviside function.

du(t)

dt
= − (Ifi + Iso + Isi) + Istim,

dv(t)

dt
=

⎧⎪⎨⎪⎩

−
v

𝜏+
v

, u ≥ uc
1−v

𝜏−
v1

, uc > u ≥ uv,

1−v

𝜏−
v2

, u < uv

dw(t)

dt
=

�
−

w

𝜏+
w

, u ≥ uc
1−w

𝜏−
w

, u < uc

Ifi =

{
−

(1−u)(u−uc)v

𝜏d
, u ≥ uc

0, u < uc

Iso =

{
1

𝜏r
, u ≥ uc

u

𝜏0
, u < uc

Isi = −
w

2𝜏si
(1 + tanh(k(u − usi

c
))).

dh(t)

dt
=

1 − h

�open
(1 − p) −

h

�close
p,

2.2 � Datasets

Both synthetic and experimental datasets were used to 
test the methods. The datasets include significant changes 
in action potential shape and durations as a result of rate 
changes, including a bifurcation to alternans (alternating 
long and short APs despite a constant CL) at the short-
est CLs. Synthetic data were generated for the MS model 
using the default parameter set [27], with values given in 
the first column of Table 1. For the FK model, parameter 
set 4 from [29] was used; see the first column of Table 2. 
These sets of parameters are subsequently referred to as the 
true values for each model. Each dataset was derived from 
three selected CLs from voltage recordings (MS synthetic: 
400, 350, and 310 ms; FK synthetic: 400, 350, and 300 ms; 
experimental: 350, 300, and 276 ms). For each chosen CL, 
data were generated by applying six stimuli and recording 
the action potentials induced by the last two stimuli. To form 
the synthetic datasets, these data were recorded at time inter-
vals of 0.5 ms during the first 4 ms in order to adequately 
capture the upstroke, and then at intervals of 15 ms during 
the remainder of the action potential. For the experimental 
datasets, the temporal resolution was 0.4 ms for the first 
4 ms, 1 ms for the next 4 ms, and 15 ms for the remainder 
of each cycle.

To make the datasets more realistic, Gaussian noise was 
then added with a mean of 0 and standard deviation of 0.03, 
which was smaller than the level of noise typically observed 
in cardiac optical-mapping voltage signals but higher than 
seen in microelectrode recordings.

The experimental dataset consisted of microelectrode 
recordings of voltage from zebrafish hearts obtained pre-
viously [26]; examples of action potentials are shown 
in Fig. 1. The original resolution of the data was 0.1ms . 
To form the dataset, a nonuniform resolution of 0.5ms 
was used for the first 4ms after applying the stimulus fol-
lowed by an increase to 15ms until the next stimulus was 
applied. This approach allowed us to reduce the size of 
the dataset (and correspondingly the computational time) 
while retaining good accuracy during the upstroke. Volt-
age values were normalized to lie in the interval [0,1] 
using the maximum and minimum values in each voltage 
trace used.

Table 1   MS model parameter 
values and intervals: synthetic; 
experimental

Dataset Intervals for initial ABC-
SMC priors

Center values for HMC 
folded normal priors

Initial 
values for 
HMC

�in 0.3 (0.1, 1); (0.1, 1.5) 0.3; 0.98 0.3; 0.3
�out 6 (3, 15); (1, 20) 6; 11.7 6; 6
�open 120 (50, 250); (10, 300) 120; 207 120; 120
�close 150 (100, 200); (10, 300) 150; 197 150; 150
vgate 0.13 (0.1, 0.5); (0.1, 1) 0.13; 0.31 0.13; 0.13
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The experimental recordings included data obtained 
at multiple CLs (see Fig. 1), and synthetic data could be 
obtained for any CL of interest. For both synthetic and exper-
imental datasets, the last two action potentials in a series of 
six obtained while pacing at a fixed CL were fitted to mini-
mize transient behavior. After performing a series of initial 
experiments with different numbers and selections of CLs, 
we chose to use three CLs close to the bifurcation point, one 
at a long CL without alternans and two at shorter CLs within 
the alternans regime. Although the datasets to be fit utilized 
only three CLs, data from additional CLs were used to gener-
ate plots of action potential durations (APDs) as a function of 
CL for comparisons of results at other unfitted CLs.

When generating bifurcation plots, CLs were decreased 
until block was reached, and action potential durations 
(APDs) were measured using a fixed threshold of u = 0.1.

2.3 � Bayesian inference

For a general system x�(t) = f (x, t,�) where the system 
state x = x(t) ∈ ℝ

n depends on time t and � ∈ ℝ
m is a 

vector of parameters, we consider noisy synthetic and 
experimental data of the form yi = x(ti;�) + �i . Here yi is 
the ith observation of the state x(ti;�) at time ti , and �i is an 
independent normally distributed error with mean � = 0 
and standard deviation � . A central idea in Bayesian sta-
tistics is that because the vector of parameters � is fixed 
but unknown, it can be considered a multidimensional ran-
dom variable, with the uncertainty in the parameter values 
described by a probability model. By Bayes’ theorem,

where p(�|y) is the final distribution of the parameters con-
ditioned on the data (also known as the target or posterior 
distribution), p(y|�) is the likelihood of the data given the 
parameters, and p(�) is the prior or initial distribution of 
the parameters.

Although obtaining an analytical form for the final dis-
tribution generally is not possible, we can sample from the 
final distribution using either a full Bayesian method or an 
approximate approach in which the likelihood is not com-
puted. Examples of full Bayesian approaches are Markov 
chain Monte Carlo (MCMC) [30] methods like Metrop-
olis-Hastings, Gibbs sampling, and Hamiltonian Monte 
Carlo. For MCMC methods, the likelihood is given by

p(�|y) ∝ p(y|�)p(�),

Table 2   FK model parameter 
values and intervals: synthetic; 
experimental

Dataset Intervals for initial ABC-SMC priors Center values for HMC 
folded normal priors

Initial 
values for 
HMC

�d 0.407 (0.03, 1); (0.03, 1) 0.407; 0.44 0.407; 0.3
�r 34 (1, 209); (1, 209) 34; 84.29 34; 110
�
0

9 (1, 50); (1, 50) 9; 26.69 9; 20
�si 26.5 (5, 300); (5, 300) 26.5; 283.38 26.5; 280
�+
v

3.33 (1, 100); (1, 100) 3.33; 50.81 3.33; 27
�−
v1

15.6 (1, 300); (1, 300) 15.6; 84.81 15.6; 80
�−
v2

5 (1, 2500); (1, 2500) 5; 591.19 5; 350
�+
w

350 (1, 800); (1, 800) 350; 199.52 350; 200
�−
w

80 (1, 500); (1, 500) 80; 218.63 80; 200
uc 0.15 (0.01, 0.3); (0.01, 0.3) 0.15; 0.15 0.15; 0.2
uv 0.04 (0.001, 0.04); (0.001, 0.04) 0.04; 0.01 0.01; 0.01
usi
c

0.45 (0.1, 1.5); (0.1, 1.5) 0.45; 0.36 0.45; 0.45
k 15 (1, 50); (1, 50) 15; 4.25 15; 5
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Fig. 1   Action potential duration as a function of cycle length for the 
full zebrafish dataset. Insets show action potentials at CLs of 400 and 
275  ms, with alternans present for the shorter CL. Horizontal lines 
correspond to APDs
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where � is the standard deviation distribution of the error, 
which is considered Gaussian centered at 0 with variance 
� , and T is the number of time points. An example of an 
approximate Bayesian computation (ABC) method is rejec-
tion sampling [31].

The objective of MCMC methods is to design a Markov 
chain in such a way that its stationary distribution coin-
cides with that of the target distribution. The Metropolis (or 
Metropolis-Hastings) algorithm builds an adaptive random 
walk that converges to the target distribution. The chain is 
constructed by using a rule that accepts (or rejects) candi-
dates sampled from a known distribution from which it is 
easy to sample along with a transition probability distribu-
tion. For the symmetric proposals used here [32], candidates 
with a higher probability than the most recent member of the 
chain are always accepted; to allow the parameter space to be 
explored, candidates with a lower probability are sometimes 
accepted based on an acceptance criterion (the Metropolis 
ratio) that selects more (less) likely candidates more (less) 
often. After enough iterations, the result is a correlated 
sample of the target distribution. To obtain a non-correlated 
sample, only every k elements of the original sample are 
selected. However, MCMC often is slow to converge and 
scales poorly as the dimensionality of � increases, motivat-
ing the development and use of alternative methods.

2.3.1 � Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Metropolis method 
that uses the gradient of the target distribution to form a 
Hamiltonian system by taking the parameters given the data 
as the position variables and adding momentum variables 
q  [16]. In this way, the properties of Hamiltonian dynam-
ics can be used to sample efficiently from the distribution 
of the variables of interest, P(�) = p(�|y) . Hamiltonian 
dynamics have many properties that are crucial in construct-
ing MCMC updates, such as reversibility, invariance, and 
symplecticness [16].

A Hamiltonian function is formed as

where E(�) is a canonical distribution (defined by 
P(�) = exp(−E(�))∕Z ) and K(q) = qTM−1q represents the 
kinetic energy; here Z is a normalizing constant and M is a 
positive definite matrix that rotates and rescales the target 
distribution in the Euclidean space [32]. The joint density 
has the property that PH(�, q) = P(�)P(q) , which makes 
recovery of P(�) straightforward.

p(y��, �) =
T�
i=1

1√
2� �

e
−

1

2

�
yi−u(ti ;�)

�

�2

,

H(�, q) = E(�) + K(q),

The position and momentum variables evolve according 
to differential equations that are solved using the leap-
frog integrator, a finite-difference method specifically 
designed to solve dynamical systems in classical mechan-
ics. To implement HMC, the step size and number of steps 
generally need to be tuned, which typically is a challeng-
ing task. However, the No-U-Turn sampler (NUTS) [33] 
avoids this tuning step by determining the step size and 
number of steps adaptively in each iteration. Since HMC 
is also a Metropolis algorithm, candidates are accepted or 
rejected using the Metropolis ratio, this time to account 
for numerical error in the leapfrog algorithm. More details 
can be found in [16].

HMC utilizing NUTS was implemented in R using 
the statistical platform Stan  [34, 35]. To ensure that 
the Markov chain had time to find the region of inter-
est in parameter space, only data after the first 1000 
iterations were considered to be samples from the true 
posterior; the use of such a burn-in period is standard 
for MCMC methods. The R̂ statistic in Stan was used 
to verify that the chains were converging to the target 
distribution [35–37]. A sample size of 500 was used for 
the posterior distributions; only 100 randomly selected 
members of the posterior sample were used to generate 
the figures below involving action potentials and APDs 
to improve clarity.

Because we found HMC to be quite sensitive to the 
choice of prior distribution, it was necessary to obtain 
somewhat informative priors in order to achieve reliable 
results. For synthetic data using the MS and FK models, 
the priors used were folded normal distributions, which 
prevented the distributions from extending into unphysi-
cal negative values; the model parameters, which included 
time constants, thresholds, and a steepness value, could 
not meaningfully take on negative values. The standard 
deviations were set to 20% of the values of the means. 
Initial values needed for HMC were set as the modes of 
the priors. For experimental data, priors were obtained fol-
lowing a process that involved using ABC-SMC (which is 
described in the following section), which is more accept-
ing of less informative priors, with wide uniform priors 
that contained but were not centered around the values 
used to generate the synthetic data, then using the modes 
of the resulting marginal posterior distributions as the val-
ues the HMC priors are centered around. The initial priors 
used by ABC-SMC were defined on the intervals given 
in the third column of Table 1. The resulting priors used 
for HMC for the MS model with experimental data in the 
results to be shown were folded normals extending 20% 
around the values given in the fourth column of Table 1; 
these values also were used as the initial values for HMC, 
as indicated in the last column.
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For the FK model, the process of obtaining the priors 
was the same as for the MS model, with ABC-SMC used 
with wide uniform priors to generate a more informative 
prior subsequently used by HMC. The initial uniform pri-
ors used by ABC-SMC were defined on the intervals given 
in the third column of Table 2. The priors used for HMC 
with the FK model were folded normals extending 20% 
around the values given in the fourth column of Table 2, 
and the initial values were set to the values in the last 
column of the table.

2.3.2 � Approximate Bayesian computation sequential 
Monte Carlo

When the likelihood p(y|�) is difficult to evaluate or is not 
available, ABC algorithms can be applied. One type of ABC 
algorithm is rejection sampling, in which results generated 
using candidate parameterizations are compared with the 
data by using a distance function and a tolerance; only those 
candidates that produce output sufficiently close to the data 
(within the tolerance) are accepted. The set of accepted can-
didates {�(1),�(2),…�

(N)} is called a population. ABC rejec-
tion’s acceptance rate typically is very low, which makes it 
inefficient.

Using information from the previous population to build 
a sample iteratively can result in higher efficiency. One such 
method is ABC sequential Monte Carlo (ABC-SMC) [19]. 
Sample points from the previous population are weight-sam-
pled and then perturbed using a random walk with a uniform 
or Gaussian kernel until a certain tolerance is reached. More 
information can be found in [19].

The ABC-SMC implementation we used was custom 
written in R and utilized the modifications made to the ABC-
SMC algorithm introduced by [19] and also found in [22], 
including adaptive tolerances and the use of the effective 
sample size for each population. In addition, to improve 
convergence and the exploration of the parameter space, we 
used a decreasing sequence of values for the scale factor for 
perturbing the populations. As suggested in [22], we used a 
probability density function as the distance function to gen-
erate the first population. Later populations were constrained 
to produce output closer to the target data using the sum of 
squared error by choosing a series of smaller tolerances. The 
tolerance reduction could be modified adaptively if found 
to be too restrictive and the algorithm stopped when the 
tolerance reduction was smaller than a specified value; see 
ref. [22] for more detailed information.

The probability density function used as a distance to 
obtain the first population was ��1(�) = exp

−SE(�)∕2(�1�)
2

c�1

 , 

where SE(�) represents the sum of squared error between the 
data to fit and the model solution at each time point. Here 
�1 = 1 is the first tolerance value, � is the standard deviation 

of the error or noise assumed in the data measurements, and 
c�1 is a normalizing constant; while the exact constant is 
unknown, a good approximation can be selected by monitor-
ing the acceptance of candidates [22]. If the value is too 
high, most samples will be rejected and the computational 
time will increase, whereas if the value is too low, most 
samples will be rejected and the result can approach a uni-
form sample regardless of the true distribution. We found 
that a value of 1000 achieved a good balance and thus used 
this value for all cases. The use of a probability density func-
tion can help in avoiding an overestimation of the variance 
in the first population that can occur otherwise. For all sub-
sequent populations, the distance function was simply SE(�) . 
Once the first population was calculated, the value of the 
first tolerance was updated to the sum of squared error 
between the data and the model solution obtained using the 
modes of the distributions for each parameter, and the sub-
sequent tolerance was set to be 3

4
 of the updated first toler-

ance. The value by which the tolerance was reduced for 
subsequent populations was decreased by a factor of 0.5 but 
could be modified if too strict, following ref. [22], and the 
minimum tolerance reduction serving as a stopping criterion 
was set to 1.5625 × 10−3.

The population size chosen for ABC-SMC was 500, 
ensuring a posterior distribution the same size as for HMC. 
As for HMC, a random selection of only 100 population 
members was used to generate the action potential and APD 
figures to improve clarity. For synthetic data using the MS 
and FK models, the priors used were folded normals extend-
ing 20% around the true values. As discussed in the previous 
section, it was necessary to obtain more informative priors 
for use with HMC in conjunction with the experimental data, 
and ABC-SMC was used with an initial uniform prior to 
generate these priors. However, for the results shown below, 
ABC-SMC uses the same priors as those generated for use 
by HMC to allow for a fair comparison.

2.3.3 � Assessing accuracy

In the absence of known “correct” distributions, we will 
assume that HMC, as a full Bayesian method, is more likely 
to converge to accurate distributions. Within Stan, HMC by 
default is implemented to utilize four chains, which provides 
additional checks and accuracy compared to single-chain 
results, which we use for comparisons with ABC-SMC in 
the interest of fairness. Thus, we chose to use the default 
four-chain HMC results from Stan as the “gold standard” 
for the distributions. We verified that such cases converged 
according to established metrics in Stan (e.g., R̂ values very 
close to one were used to verify that the chains were con-
verging to the target distribution), produced no or very few 
warnings within Stan (e.g., no or few divergent transitions, 
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adequate effective sample size that if too small could indi-
cate unreliable posterior means or variances), and achieved 
fits to the data with low error. Except where noted, all other 
cases similarly converge according to the same metrics. For 
all scenarios considered, the Supplementary Information 
includes four-chain results, which in all cases are extremely 
similar to the one-chain results. Note that for the four-chain 
results, only one chain uses the initial values noted here; the 
rest use initial values formed as perturbations from these 
values with Gaussian noise using a 10% deviation.

In addition, for the synthetic data, to show that the 
parameters could be recovered, we verified that the mean 
values for the posterior parameter distributions were 
between quantiles 10 and 90. Although with HMC the 
noise parameter can be estimated, ABC-SMC makes no 
assumptions about the error; therefore, we also use the 
coefficient of determination R2 = 1 −

SSres

SStot
 , where SSres is 

the residual sum of squares (the same as SE(�̂) , where the 
argument is the mean of the posterior distribution) and 
SStot is the total sum of squares comparing the data points 
with their average. For linear systems, this measure 
explains how well observed outcomes are replicated by 

the model, based on the proportion of total variation of 
outcomes explained by the model [38]. Because the mod-
els we are fitting are nonlinear, we will not consider the 
metric in that context but instead will use it as a type of 
normalized error metric where the desired value is one. 
To avoid potential confusion with the use of R2 in linear 
regression, we will refer to this normalized error metric 
as a pseudo-R2 value.

3 � Results

Below we present our results using HMC and ABC-SMC to 
obtain distributions of parameters for the MS and FK models 
for the two datasets.

3.1 � Synthetic dataset

First we consider parameter distributions for the MS model. 
Figure 2 shows the marginal distributions of the five MS 
parameters and of the pseudo-R2 normalized error metric 
across the final population for HMC (blue) and ABC-SMC 

Fig. 2   Marginal distributions 
for the MS model parameters 
along with the pseudo-R2 distri-
bution when fitting to synthetic 
data (HMC, blue; ABC-SMC, 
red). The priors used for both 
methods are shown in magenta. 
Horizontal lines indicate the 
support of the non-informative 
uniform prior used initially 
by ABC-SMC to generate the 
informative prior shown in mag-
nenta. Vertical lines represent 
the true values used to gener-
ate the synthetic data. Insets 
show q-q plots for ABC-SMC 
(vertical) vs. HMC (horizontal); 
dashed lines have slope one
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(red); the true values used to generate the original APs are 
shown as black vertical lines for comparison. The distribu-
tions for all parameters are fairly well centered around the 
true values for both methods, but the distributions obtained 
using HMC are narrower than those from ABC-SMC. For 
comparison, the four-chain HMC results for this scenario 
align almost exactly with the one-chain HMC results, as 
shown in Fig. S1, with slight shifts for a few parameters but 
within a very narrow region of parameter space. Note also 
that the shapes of the distributions for HMC and ABC-SMC 
can be quite different; in particular, the distributions from 
ABC-SMC are less symmetric than those from HMC. The 
priors used for both cases, shown in magenta, have similar 
locations but are broader than than the resulting posteri-
ors; the non-informative uniform priors used to generate the 
informative priors in magenta are even broader. Thus, both 
HMC and ABC-SMC resulted in considerable narrowing of 
the distributions.

The pseudo-R2 plots in Fig. 2, which reflect the distribu-
tions across the populations for each method, show values 
that are consistently close to one, above 0.983 for ABC-SMC 
and above 0.99 for HMC, that indicate low error in the data 
fittings. In addition, the final population for HMC has less 
variability in pseudo-R2 than that for ABC-SMC. The insets 
correspond to q-q plots of the distributions obtained using 
ABC-SMC vs. HMC, where the ranges for each axis are 
given by the corresponding x-axis limits. For most param-
eters, the q-q plots suggest that the posteriors come from 
the same distribution family, even though the ABC-SMC 
distributions in general are wider, indicating that ABC-SMC 
likely explores more of the parameter space whereas HMC 
appears to converge to a narrower distribution.

The population members in each case produce action 
potentials that agree well with those of the dataset for all 
three CLs used, as shown for a random selection of 100 of 
the 500 population members in the posterior samples for 
each method in Fig. 3A–C. Figure 3D shows that the popula-
tions obtained from both methods agree well with the data 
at CLs not used during the fitting, including the location of 
the bifurcation to alternans. Some parameterizations from 
the ABC-SMC population can be paced slightly faster than 
the true parameters before block occurs.

In some cases, the marginal distributions in Fig. 2 appear 
somewhat broad, but combinations of parameters may be 
better constrained. Figure S2 shows bivariate scatterplots 
for all possible parameter pairs for the posterior sample 
and indicate that some pairs are correlated and may be well 
constrained when treated together. For example, �in and 
�out appear positively correlated, which is not unexpected 
given that these represent the reciprocals of inward and out-
ward current conductances, respectively, and increases in 
one conductance could be offset by increases in the other. 
Both HMC and ABC-SMC also find negative correlations 

between �in and �open (essentially how quickly the inward cur-
rent turns on and how quickly the gate recovers) and between 
�out and �close (representing how quickly the outward cur-
rent turns on and how quickly the gate closes, and possibly 
between �open and �close (which control the rate of recovery 
of the gating variable at different voltages). HMC also finds 
a clear positive correlation between �open and vgate that is not 
picked up by ABC-SMC, which represents that an increase 
in the time scale for gating variable recovery can be offset by 
a decrease in the excitability threshold. ABC-SMC appears 
to identify a possible weaker positive correlation between �in 
and �close , which suggests that a larger inward current magni-
tude (smaller �in ) can be compensated by faster closing of the 
gate. As shown in Fig. S3, the four-chain HMC parameter 
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Fig. 3   A–C One hundred action potentials from populations of size 
500 using synthetic data for HMC (blue) and ABC-SMC (red) com-
pared with the data points for the MS model. CLs of (A)  400, (B) 
350, and (D) 310  ms are included. D  One hundred representative 
plots of APD as a function of CL for synthetic data with the MS 
model. CLs from 600 ms down to where block occurs are included, 
with HMC results in blue, ABC-SMC results in red, and the true data 
points in black. Note that fitted voltage data are output at the same 
timepoints as the dataset, leading to occasional small plotting artifacts 
when the points are connected by lines, especially at the beginnings 
of action potentials
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correlations agree well with the single-chain HMC results, 
but with greater definition because the four-chain results 
include four times as many samples and thus four times 
as many points in the scatterplots. Overall, although the 
parameter correlations indicate more structure of the multi-
variate posterior within the parameter space, the correlated 
parameters also suggest that identifying the true values of 
the individual parameters within the correlated pairs may be 
difficult from the dataset.

For the FK model, the results from the two methods show 
more variation. Although the marginal distributions for the 
13 model parameters largely are centered around the true 
values, as shown in Fig. 4, the shapes of the distributions for 
each parameter frequently are visibly different. Most of the 
marginal distributions obtained using ABC-SMC are fairly 
broad, again suggesting broader exploration of parameter 
space, while HMC converges to a narrower distribution. For 
comparison, the four-chain HMC results again align very 
closely with the single-chain results shown here; see Fig. S4. 
For some parameters, including �d , usic  , and �−

w
 , the distri-

butions from HMC are narrow compared to ABC-SMC, 
whereas for others the distributions are similarly broad. 
Nevertheless, in nearly all cases, there is considerable nar-
rowing of the marginals with respect to the priors, shown 
in magenta. The non-informative uniforms used to gener-
ate these priors were even broader and for clarity are not 
shown in Fig. 4, but they are the same as those used for the 
experimental dataset discussed later. The pseudo-R2 values 
also vary much more across the population for HMC than 
for ABC-SMC, although even for ABC-SMC the values are 
generally above 0.975 and thus are close to the desired value 
of one. The q-q inset plots are still close to linear, indicat-
ing that the distributions come from the same family, even 
though they do not always have a slope of one, especially 
for �d , usic  , and �−

w
 , which feature wider ranges of values from 

ABC-SMC compared to HMC. In the case of a few param-
eters like �+

w
 and �0 , the two methods produce distributions 

centered around different values, with the true value located 
between the peaks.

The fitted action potentials reflect the apparent increase 
in variability when using the FK model compared to the MS 
model. Figure 5 shows a subsampling of the final popula-
tions obtained using each method and reflects the greater 
variation with the samples from ABC-SMC. Nevertheless, 
good agreement is obtained across a wide range of CLs, 
even for CLs not close to those used for fitting. In particular, 
the bifurcation to alternans is well characterized for both 
methods.

Bivariate scatterplots for parameter pairs, shown in 
Fig. S5, suggest some correlations across the set of FK 
model parameters, although in general a smaller fraction 
of possible pairings are correlated than for the MS model, 
and HMC and ABC-SMC do not always detect the same 

correlations. Both HMC and ABC-SMC identify strong 
positive correlations between �r and �si , which makes sense 
as these govern the strength of the repolarizing current and 
slow inward (calcium) currents, so that an increase in one 
can compensate for an increase in the other. HMC also 
identifies strong negative correlations between �d and uc 
(increasing the excitability by decreasing �d can be offset by 
increasing the excitation threshold), �si and �+

w
 (increasing 

the APD by decreasing �si can compensate for a slow inward 
current prolonged via increased �+

w
 ), and �r and �+

w
 (speed-

ing up repolarization can be offset by prolonging the slow 
inward current); ABC-SMC detects only the last of these. 
Both HMC (strongly) and ABC-SMC (weakly) detect a posi-
tive correlation between �d and �+

v
 (decreased fast inward 

current via larger �d can be compensated by prolonging the 
same current via slowing its inactivation gate).

Figure S5 suggests additional (weaker) correlations that 
are apparent from only one method. For example, HMC 
detects additional positive correlations between �d and 
usi
c
 and between �si and usi

c
 as well as negative correlations 

between �+
w

 and usi
c
 , between �+

w
 and �−

w
 , and between �+

v
 and 

uc . The scatterplot for ABC-SMC suggests another weak 
correlation between �+

v
 and �−

v1
 that is not detected by HMC.

Note that the HMC parameter correlations obtained using 
four chains and those using one chain agree well, as shown 
in Fig. S6.

3.2 � Experimental data

For the experimental data, the results for the MS model 
show some differences compared to the synthetic data. As 
demonstrated in Fig. 6, the marginal distributions from 
HMC and ABC-SMC are nearly identical for �open ; for �in 
and �out , the distributions appear slightly offset relative to 
each other. For the remaining parameters, �close and ugate , the 
distributions look similar to the results for the synthetic data, 
with a broader range of values included for ABC-SMC. The 
agreement in marginal distribution shapes compared to the 
synthetic data case leads to linear q-q plots with slope values 
of nearly one in all cases, consistent with the distributions 
being from the same families. For comparison, the distribu-
tions obtained using four chains vs. one chain for HMC are 
nearly identical, as shown in Fig. S1. The pseudo-R2 values 
are not as close to one when the data are not derived from 
the model being fit; however, pseudo-R2 remains above 0.65 
for ABC-SMC and above 0.7 for HMC.

Figure 7 shows the fitting to experimental data for 100 
of the 500 population members for two of the three CLs, 
300 ms and 276 ms. Again, good agreement is seen over-
all, but with more variability in AP shapes and durations 
across the population with ABC-SMC. Of particular note, 
the variability seen in the ABC-SMC posterior sample 
includes longer and shorter APs, but the HMC sample is 
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Fig. 4   Marginal distributions 
for the FK model parameters 
along with the pseudo-R2 distri-
bution when fitting to synthetic 
data (HMC, blue; ABC-SMC, 
red). The priors used for both 
methods are shown in magenta. 
The support of the non-informa-
tive uniform prior used initially 
by ABC-SMC is not shown to 
improve figure clarity but is the 
same as that shown in Fig. 8 
for the experimental data case. 
Vertical lines represent the true 
values used to generate the 
synthetic data. Insets show q-q 
plots for ABC-SMC (vertical) 
vs. HMC (horizontal); dashed 
lines have slope one
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biased toward longer APs for the MS model. This trend can 
be observed across a broad range of CLs; HMC generally 
achieves longer APDs than occurred in the experiment. In 
addition, neither method accurately captures the dynamics 
associated with alternans, including the bifurcation point 
and the magnitude of the alternans at the shortest CLs.

Figure S7 depicts bivariate scatterplots for the param-
eter pairs. A positive correlation between �in and �out and 
a negative correlation between �close and �out are indicated 
by both HMC and ABC; both correlations were observed 
for the case of synthetic data as well. In addition to these 
cases, a weak negative correlation between �in and �open , also 
observed for the synthetic data case, is suggested by HMC 
only, and a weak correlation not observed for synthetic data 
is suggested by both HMC and ABC between �in and �close . 

The use of four chains for HMC, with its corresponding 
increase in the number of points in the scatterplots, only 
defines correlations more clearly and does not suggest any 
new correlations; see Fig. S8. Note that no correlations are 
apparent between vgate and any other parameter when fitting 
the experimental dataset.

For the FK model, the marginal distributions of the 
parameters show even more variability, as shown in Fig. 8, 
with wider ranges of values in many cases obtained using 
HMC. Although the distributions have similar peak values 
for some parameters, such as �r and �−

w
 , they appear shifted 

for others, such as �d , �+w , and uv . The q-q plots for these 
shifted cases look less than linear, which may suggest that 
in some cases the distributions may not be from the same 
family. Nevertheless, the distributions obtained using HMC 
are nearly identical regardless of the number of chains used, 
as shown in Fig. S4. In addition, the pseudo-R2 values are 
somewhat closer to one than they were for the MS model 
for the same data. Despite this variability in the values of 
parameters, the fitted action potentials for the FK model 
closely fit the data, as shown in Fig. 7 (right column). Both 
methods show less variability across the sample for the FK 
model than for the MS model. However, there is a tendency 
for the upstroke to be fitted poorly for higher voltage values 
for CLs exhibiting alternans. Despite this fact, the dynamics 
overall, especially during alternans, are much better captured 
by the FK model than by the MS model.

When fitting experimental data with the FK model, 
fewer parameter correlations are apparent than when fit-
ting synthetic data, as shown in Fig. S9. Both HMC and 
ABC-SMC detect a strong negative correlation between �r 
and �+

v
 (increasing the repolarizing slow outward current by 

decreasing �r can be offset by increasing �+
v

 and thus inacti-
vating the fast inward current more slowly). HMC suggests 
another negative correlation, between �d and �−

v2
 (a decrease 

in excitability by increasing �d can be offset by decreasing 
�−
v2

 , which makes it easier to initiate a new action potential by 
accelerating the recovery of the fast inward current inactiva-
tion gate). HMC finds the same correlations regardless of the 
number of chains used (see Fig. S10), and neither correlation 
is apparent when fitting synthetic data. The much smaller 
number of correlations compared to when fitting synthetic 
data may reflect the difficulty the model faces when fitting 
alternans from the zebrafish experiments.

3.3 � Consistency and robustness

Both HMC and ABC-SMC are dependent on randomiza-
tion within their algorithms; as a result, it is possible that 
results could be different every time either algorithm is 
executed if the algorithm is not appropriately sampling 
the posterior. To assess whether the results are robust 
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Fig. 5   A–C One hundred  action potentials from populations of size 
500 using synthetic data for HMC (blue) and ABC-SMC (red) com-
pared with the data points for the FK model. CLs of (A) 400, (B) 350, 
and (C) 300 ms are included. D One hundred representative plots of 
APD as a function of CL for synthetic data with the FK model. CLs 
from 600ms down to where block occurs are included, with HMC 
results in blue, ABC-SMC results in red, and the true data points in 
black

85Medical & Biological Engineering & Computing (2023) 61:75–95



1 3

Fig. 6   Marginal distributions 
for the MS model parameters 
along with the pseudo-R2 
distribution when fitting to 
experimental data (HMC, blue; 
ABC-SMC, red). The priors 
used for both methods are 
shown in magenta. Horizontal 
lines indicate the support of the 
non-informative uniform prior 
used initially by ABC-SMC to 
generate the informative prior 
shown in magenta. Insets show 
q-q plots for ABC-SMC (verti-
cal) vs. HMC (experimental); 
dashed lines have slope one
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Fig. 7   Fit action potentials and bifurcation plots for the MS model 
(left) and the FK model (right) using HMC (blue) and ABC-SMC 
(red) for experimental data (shown in black). Top two rows show 
action potentials for CLs of 300 and 276  ms from a sample of 100 
randomly selected population members. Bottom row shows APD as 

a function of CL for the same sample. Note that fitted voltage data 
are output at the same timepoints as the dataset, leading to occasional 
small plotting artifacts when the points are connected by lines, espe-
cially at the beginnings of action potentials
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Fig. 8   Marginal distributions for 
the FK model parameters along 
with the pseudo-R2 distribution 
when fitting to experimental 
data (HMC, blue; ABC-SMC, 
red). The priors used for both 
methods are shown in magenta. 
Horizontal lines indicate the 
support of the non-informative 
uniform prior used initially 
by ABC-SMC to generate the 
informative prior shown in mag-
nenta. Insets show q-q plots for 
ABC-SMC (vertical) vs. HMC 
(horizontal); dashed lines have 
slope one
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to different randomizations, we ran each algorithm ten 
times for each dataset and for each model. Figure 9 sum-
marizes the resulting distributions for the MS model for 
both the synthetic (left) and experimental (right) data. In 
both cases, the distributions obtained are fairly consist-
ent for each method. For the synthetic data, the marginal 
distributions are unimodal and centered near the correct 
values. However, the marginal distributions for all time 
constants are wider for ABC-SMC than for HMC; for 
vgate , the distribution widths are similar for both meth-
ods. For the experimental data, there is even greater 
consistency across the ten runs for each method along 
with more similarity of the posterior distributions for 
the two methods. The distributions generally are wider 
with ABC-SMC, but the difference in widths is less pro-
nounced than with the synthetic data. Some differences 
in the locations of the peaks for s �in and �out are evident, 
as discussed earlier when using experimental data for the 
MS model in Fig. 6.

For the FK model, more variation occurs for both 
datasets. As shown in Fig. 10, across the ten runs, the 
posteriors obtained using HMC when fit to synthetic 
data are fairly consistent, but ABC-SMC can yield dis-
tributions with more variation in shape and location. For 
example, the the peak location for the distributions of �r , 

�si , and �+
w

 obtained using ABC-SMC vary substantially. 
For other parameters, such as �−

w
 and usi

c
 , the results for 

HMC and ABC-SMC have similar peak locations, but 
much broader distributions for ABC-SMC. With experi-
mental data, even greater variability across the ten dis-
tributions obtained using ABC-SMC is evident, with 
noticeable peak shifts for nearly all parameters. HMC 
produces more consistent results, indicating that this 
method samples the posterior appropriately and thus is 
less sensitive to randomization effects.

As a final measure of robustness, Fig. 11 shows the 
distribution of R2 across the posterior sample for each of 
the ten runs using each method for the two models and 
the two datasets. In all scenarios, there is more variabil-
ity in the pseudo-R2 value across the posterior sample for 
ABC-SMC than for HMC, which consistently achieves 
narrow distributions. In the case of synthetic data and 
the ABC-SMC algorithm, the distributions are wider for 
the FK model fit than for the MS model; the FK model 
also has lower and more variable pseudo-R2 values. HMC 
achieves pseudo-R2 values closer to one for both mod-
els. In comparison with the results for synthetic data, 
the pseudo-R2 values for the experimental data are lower 
and the distributions are wider for all cases, but with 
ABC-SMC distributions are wider than those of HMC 
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Fig. 9   Superimposed marginal distributions for the MS model param-
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Fig. 10   Superimposed marginal distributions for the FK model parameters when fitting to (A) synthetic and (B) experimental data (HMC, blue; 
ABC-SMC, red) from 10 runs of each algorithm (HMC, blue; ABC-SMC, red). For synthetic data, the vertical lines represent the true values
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for both models. In contrast to the synthetic data case, 
however, the values of pseudo-R2 are closer to one for the 
FK model than for the MS model, a result that suggests, 
consistent with the results shown in Fig. 7 that the FK 
model is better able to fit the experimental data than the 
MS model.

3.4 � Effect of dataset time resolution

The time resolution of the datasets used for fitting was down-
sampled from the available resolution. A physiological rea-
son for the downsampling is that the different time scales 
of the action potential cause a uniform time resolution to 
deemphasize the upstroke [39], which is crucial to resolve 
for capturing behavior. The significant downsampling we 
perform thus results in a more balanced dataset by increasing 
the contribution of the upstroke. In addition, the experimen-
tal data recording was obtained using a resolution finer than 
is typical, and we wanted to ensure that good results could 
be obtained at more reasonable resolutions. Nevertheless, 
the downsampling eliminates information that potentially 
could improve the fittings obtained.

To study the effect of time resolution on the distribu-
tions and fittings obtained using HMC, we compared our 
results with those obtained using finer resolution with the 
MS model. With synthetic data, the resolution used was 
0.4 ms for the first 4 ms and 5 ms for the remainder of each 
cycle (compared to 0.5 ms for the first 4 ms, then increased 
to 15 ms; see Section 2.2); the same priors and initial values 
were selected as before and are given in Table 1. Despite this 
increase in data resolution, which slightly increased com-
putational time, little difference can be seen in either the 

marginal distributions, shown in Fig. S11, or in the action 
potential fittings and APDs over a wide range of CLs, shown 
in Fig. S12. A decrease in variability can be seen in the 
bivariate scatterplots of parameter pairs in Fig. S13, which 
show essentially the same correlations as the lower reso-
lution set but with greater clarity (and possibly a negative 
correlation between �in and vgate).

When fitting the MS model to experimental data, increas-
ing the dataset resolution again retained good fittings to the 
action potentials and similar distributions. In this case, the 
coarser resolution, as discussed in Section 2.2, was 0.4 ms 
for the first 4 ms, 1 ms for the next 4 ms, and 15 ms for the 
rest of each cycle; the finer resolution was the same except 
that after the first 8 ms the resolution was 5 ms). Priors 
and initial values were the same as those used earlier and 
are given in Table 1. Figure S14 shows the distributions, 
which are well-shaped and much narrower than the priors, 
very similar to the distributions in Fig. 6. Good fittings are 
obtained for the action potentials and APD across differ-
ent CLs, as shown in Fig. S15. As with the synthetic data, 
the bivariate scatterplots, depicted in Fig. S16, show similar 
correlations but less variability; in this case, a possible new 
positive correlation between �open and vgate appears.

3.5 � Effect of prior selection for HMC

As mentioned in Section 2.3.1, HMC appeared to be sensi-
tive to the choice of prior, a finding that motivated our use 
of ABC-SMC to develop an appropriate informative prior. 
Although using priors derived from ABC-SMC seems to help 
HMC obtain good results under a variety of conditions, these 
priors tend to be relatively narrow, and it would be ideal for 
HMC to work effectively with different types of priors. In 
this section, we show the effects of choosing different types 
of priors on the performance of HMC for several scenarios.

Figure S17 shows an example of HMC fitting the FK 
model to synthetic data for the broad uniform prior used 
successfully with ABC-SMC (see Table S2). For nearly 
all parameters, the marginal distributions are far from the 
true values. The action potentials obtained are misshapen, 
with the plateau missed and a bump during repolarization, 
as shown in Fig. S18. Stan provided a number of warnings 
to indicate poor performance: R̂ values were as large as 
1.49, 495 divergent transitions occurred after the warm-up 
period (nearly the size of the posterior sample, which was 
500), and the effective sample size was below 30 for all 
parameters, indicating that the posterior means and vari-
ances may be unreliable. When fitting experimental data, 
the true values are unknown. However, there is still ample 
evidence of unreliable distributions and poor fittings. Fig-
ures S19 and S20 show the results of HMC fitting the MS 
model to experimental data using a broad uniform prior (see 

Fig. 11   Superimposed distributions of pseudo-R2 from 10 runs of 
each algorithm (HMC, blue; ABC-SMC, red) for the MS (upper) and 
FK (lower) models and for synthetic (left) and experimental (right) 
data

90 Medical & Biological Engineering & Computing (2023) 61:75–95



1 3

Table S1). Although less dramatic than the previous exam-
ple, some of the distributions are poorly shaped and far from 
the distributions obtained with more informative priors (see 
Fig. 2), and the action potentials generally are too long. In 
addition, Stan provided similar metrics indicating unreli-
ability, including R̂ values as large as 1.07, 439 divergent 
transitions after the warm-up period (again, nearly the size 
of the posterior sample), and the effective sample size was 
below 50 for all parameters, suggesting that the posterior 
means and variances may not be reliable.

However, it is possible to find different priors that are effec-
tive for HMC. For example, Fig. S21 shows marginal distribu-
tions obtained using gamma distributions (Gamma 1 param-
eters and initial values in Table S1). In this case, the only 
warning Stan gives is that the posterior variance may be unre-
liable, but the effective sample size is still almost always at 
least half the posterior sample size, and other metrics includ-
ing R̂ are consistent with convergence. The action potentials 
from the posterior sample, shown in Fig. S22 are gener-
ally good fits to the data. Another example of good results 
obtained using gamma priors, this time fitting the experimen-
tal dataset using the FK model (parameters in Table S2), is 
shown in Figs. S23 and S24. The posterior distributions and 
action potentials are well-shaped, and Stan gives no warnings.

However, not all gamma distributions lead to good 
results. Figure S25 shows the marginal distributions that 
arise from another gamma prior derived from a fitting to 
the FK model obtained by hand (Gamma 2 parameters and 
initial values in Table S2. The distributions are extremely 
narrow and strangely shaped, although the action potentials, 
shown in Fig. S26, look fairly good. Nevertheless, Stan gives 
many warnings that the results may not be reliable, includ-
ing R̂ values over 2, effective sample sizes below 10, and 
500 problematic transitions. Overall, although HMC may 
not require priors to be as informative as those used for the 
results shown in Sections 3.1 and 3.2, it still tends to perform 
poorly with priors that are substantially different from the 
true posteriors.

4 � Discussion

In this section, we compare results obtained for the different 
models, datasets, and Bayesian methods. We also describe 
some limitations of this study.

4.1 � Influence of dataset and model choices

In all cases, the distributions found using HMC tended 
to be consistent, with more variability in the resulting 

distributions occurring with ABC-SMC, which suggests that 
ABC-SMC may not always sample the posterior appropri-
ately. For synthetic data, HMC often, but not always, gave 
rise to narrower distributions than ABC-SMC, whereas for 
experimental data, HMC’s distributions sometimes were 
wider in such a way as to cover more of the variability of 
the ABC-SMC distributions.

With regard to models, we found clear differences in 
results for the two models considered. With synthetic data, 
for both methods, the peaks of the parameter distributions 
for the MS model usually coincided, with minimal shift-
ing between the methods (despite variations in distribu-
tion widths). At the same time, the MS model showed a 
high incidence of correlations between pairs of param-
eters, especially with synthetic data (see Figs. S2 and S7). 
Given the model structure, this is not unexpected. The 
timescales of the main phases of the action potential are 
governed largely by particular time constants: �in during 
the upstroke, �close during the plateau, �out during early 
repolarization, and �open during late repolarization and 
rest. Many of the pairs of correlated parameters are time 
constants governing consecutive action potential phases. 
Because they scale inward and outward currents affecting 
the voltage, �in and �out also typically were correlated. The 
excitation threshold vgate in the synthetic data case showed 
some correlation with the time constants associated with 
the transition from unexcited to excited states: �open and, 
to a lesser extent, �in . Overall, the MS model was able to 
obtain good fits in most cases, with less variability, but 
with more parameter correlations and some limitations in 
matching the action potential shapes from the zebrafish 
voltage recordings.

In contrast, for the FK model, greater variability arose, 
especially for the experimental data. We note that some of 
the parameters with greatest variability, such as �+

w
 and usi

c
 

for synthetic data along with �+
w

 , �−
v1

 , and �−
v2

 for experimen-
tal data, corresponded to parameters with more variability 
in a previous study fitting model parameters using a genetic 
algorithm [9]. Physiologically, �+

w
 helps set the maximum 

APD, so the limited number of CLs used for fitting may 
not constrain this value as well as others. Similarly, �−

v1
 and 

�−
v2

 help to set the minimum diastolic interval and the slope 
of the APD restitution curve, respectively, and also may 
require additional data to be set properly, especially for the 
experimental setting where the model may not accurately 
describe the data and thus may not be able to fit all possible 
scenarios with low error throughout the action potentials. 
The increased variability and lack of observed bivariate 
correlations suggest that the FK model may be more dif-
ficult to fit, although its greater flexibility also extends its 
capability to produce different action potential properties 
like restitution compared to the MS model.
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The experimental data scenario also showed fewer FK 
parameter correlations compared to the synthetic case; 
see Figs.  S5 and  S9. For the experimental case, only 
one strong correlation was visible, between parameters 
strongly affecting action potential duration ( �r , which sets 
the strength of the slow outward current while the voltage 
is above threshold, and �+

v
 , which essentially governs the 

duration of the fast inward current). With synthetic data, 
many additional correlations were observed, which most 
likely reflects the fact that the FK model is better able to 
fit data it generates, even in the presence of noise, than 
experimental data that are not described perfectly by the 
model. Some of these correlations, such as between the 
excitabilty �d and the excitation threshold uc , as well as 
between the strength of the slow inward current governed 
by �si and the time course of the slow inward current’s gat-
ing variable set by �+

w
 , have been observed previously and 

visualized in the parameter fitness landscape [9].

4.2 � Bayesian method considerations

Many aspects of our results across the two methods were 
fairly consistent. In particular, the q-q plots of the ABC-
SMC vs. HMC samples do not support the idea that the 
posteriors obtained with the two algorithms come from dif-
ferent families of distributions. Nevertheless, each of the 
two methods considered has advantages and disadvantages. 
HMC performs exact inference and explores parameter space 
more efficiently than traditional methods like Metropolis-
Hastings. Furthermore, HMC was consistent when running 
the programs multiple times, giving posteriors centered 
around the same value, for synthetic or experimental data. 
However, it can be difficult to use HMC because of the need 
to choose initial points and a prior distribution. Inappropri-
ate selections for either initial points or the prior can affect 
convergence and lead to unreliable results, but finding good 
choices can be time-consuming.

In contrast, although we show results only for the same 
priors used for HMC, ABC-SMC could produce good results 
with a variety of different priors, including uniform, gamma, 
and folded normal distributions. Even with relatively non-
informative priors such as wide uniforms, ABC-SMC was 
able to find a useful approximation to the posterior in all 
cases we tried, for synthetic or experimental data. How-
ever, the lower bound for the pseudo-R2 distribution when 
fitting experimental data was smaller using wide uniform 
priors than folded normal distributions (MS: not lower than 
0.48 vs. 0.65; FK: not lower than 0.67 vs. 0.79). While we 
expect that this result occurs because the uniforms are less 
informative than the folded normal distributions, more study 
would be needed to make a fair comparison. In addition to 
imposing less stringent requirements for the priors, we have 
found that ABC-SMC could find an approximate population 

fit even if the population size was small (e.g., 100; results 
not shown). Furthermore, we demonstrated that HMC per-
formed well and consistently for different temporal resolu-
tions of the dataset, although higher resolutions require more 
computational time.

We also note that the lower consistency of the ABC-
SMC results might suggest that the ABC-SMC results 
could be improved with a larger sample size. However, 
when we have tested output from larger samples, con-
sistency was not meaningfully improved (results not 
shown). Instead, we believe that the variability is more 
inherent to the difference in how the ABC-SMC method 
works: it is an approximation and may not always sam-
ple the posterior properly. One possible way to achieve 
greater consistency may be by adjusting and tightening 
the ABC-SMC tolerances, but it is difficult to optimize 
the tolerance schedule; choosing tolerances that are too 
small can lead to nearly all candidate solutions being 
rejected, which considerably slows the algorithm and in 
some cases may compromise convergence.

In terms of computational efficiency of the two methods 
for our main findings in Sections 3.1 and 3.2, using experi-
mental data with ABC-SMC generally took around 5 min 
and more than twice as long for synthetic data when fitting 
the MS model. For the FK model, ABC-SMC took only 
slightly longer to fit experimental data, around 6 min, and 
about 1.5 times longer than that to fit synthetic data. For 
HMC, the experimental data could be fit to the MS model 
much more quickly, in about 3.5 min, with the fitting to syn-
thetic data taking about eight times longer. However, when 
fitting synthetic data, HMC took around 12 min to fit the MS 
model but around 4 h to fit the FK model. A possible expla-
nation for the long times required for HMC to fit synthetic 
data may be that the likelihood is very flat for some regions 
of parameter space, limiting choices for acceptable candi-
date parameterizations. Another possible reason that HMC 
is much faster for fitting experimental data may be the nature 
and extent of noise and variability in the dataset. Indeed, 
HMC is unable to obtain appropriate fittings for datasets 
with no or very low noise, which, along with the magnitude 
of noise in the experimental data, influenced our selection of 
the noise level in creating the synthetic datasets considered.

Overall, we found that ABC-SMC was able to obtain use-
ful approximations to the posterior under a broader range of 
conditions, whereas HMC imposed more constraints for rea-
sonable performance. However, even ABC-SMC saw benefit 
from the use of an informative prior. Because ABC-SMC 
does not need initial points and accepts wide priors from 
several different types of distributions, it can be used to find 
feasible priors for HMC, and the initial points for HMC can 
be selected as the modes of the distributions obtained with 
the first ABC-SMC pass. It is true that comparing HMC 
results using a prior derived from ABC-SMC to ABC-SMC 
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using the same prior philosophically seems like using the 
same data twice for the latter case; however, we can think of 
ABC-SMC in that case as getting some help from the maxi-
mum likelihood estimate, and in practice we likely would 
only use such an approach for ABC-SMC when compar-
ing directly with another method like HMC. Our hybrid 
approach, which was used to obtain the results shown here, 
can be useful to sidestep the difficulties of working with 
HMC, especially its sensitivity to the selection of priors, 
while taking advantage of its ability to generate a population 
that closely fits the data with limited variability and of its 
performance of exact inference as a full Bayesian method.

4.3 � Limitations

In this study, we considered only a limited number of datasets. In par-
ticular, we chose data from three CLs, with one at a longer CL and two 
at shorter CLs within the alternans regime. It may be possible to optimize 
the selection of CLs beyond what was chosen. In addition, it is possible 
that performance may change for noisier data or for data with different 
dynamics that may not be well captured by the model being fit.

Similarly, we only considered two models, and it is 
possible that performance could differ for a different 
selection of models. We also note that we have used a 
single approximate Bayesian method and that a different 
choice may result in different findings. In addition, we 
chose to restrict parameter values to be positive using 
priors with positive support (folded normals), but param-
eter transforms [40] could be a useful alternative. We 
also considered only bivariate correlations across param-
eters, although higher-dimensional correlations may be 
present. Different algorithmic choices, such as the use of 
a different distance function, may be worth considering, 
although some preliminary trials with an absolute value-
based distance did not appreciably change the results.

Within the models, we used a simple square-pulse stimu-
lus. Use of a biphasic stimulus [9] could help prevent selec-
tion of large values for the excitability parameters (e.g., �in 
for the MS model and �d for the FK model) that would not 
allow propagation in tissue and thus may be unphysiological.

The tolerance reduction approach used for ABC-SMC, 
while adaptive, nevertheless was fixed in advance, follow-
ing ref. [22]. It would be interesting to try a more sophis-
ticated way to select the tolerances to improve efficiency 
and to facilitate working with different datasets.

We also note that to make the comparison between ABC-
SMC and HMC fair, we chose to use one chain for HMC in 
Stan, but we found the results were consistent when using the 
default number of chains, which was four. In addition, other 
Bayesian methods could be considered, such as Metropolis-
Hastings with an adaptive covariance scheme to help the 
multivariate normal proposal distribution evolve towards the 
covariance of the accepted samples in the chain so far [41].

5 � Conclusion

In this manuscript, we have used two Bayesian methods, HMC 
and ABC-SMC, to find populations of cardiac action potential 
model parameters consistent with data used for fitting. We have 
shown that the methods can work effectively with both synthetic 
data derived from the models used and for an experimental data-
set taken from a zebrafish heart. In nearly all cases, both meth-
ods find well-shaped marginal distributions with clear peaks for 
each model parameter for both the MS model, which has five 
parameters, and the FK model, which has 13. We also have shown 
through the use of q-q plots that the posterior distribution sam-
ples obtained by the two methods do not give any strong indica-
tion of being from different distribution families; in other words, 
both methods appear to converge to the same type of distribution. 
In the case of synthetic data, where the true parameters used to 
generate the dataset are known, those true values in general are 
well contained within the posterior distributions found, and across 
multiple runs of the algorithms the true values coincide well with 
the distribution peaks.

Given that both methods achieve similar results with no clear 
computational advantage, other considerations may motivate the 
choice of method. ABC-SMC is generally easier to work with, as 
it accepts different kinds of prior distributions, and those distribu-
tions may be broad, and it often finds useful approximations of 
the true posteriors. While HMC requires more effort to find an 
acceptable prior (and indeed, we suggest that ABC-SMC may be 
useful in this task), it performs exact inference, such that when it 
converges, it finds the true posterior.

In the future, it may be useful to optimize the data used 
for fitting to better constrain certain parameter values. For 
example, in the FK model, the parameter �−

v1
 helps to set the 

minimum diastolic interval; datasets that do not represent 
that information may have difficulty adequately constraining 
that parameter and related parameters like uv . We also expect 
Bayesian methods such as these will be useful for ongoing 
efforts including efficient creation of model populations [42] 
and virtual patient cohorts [4] as well as addressing noniden-
tifiability of model parameters [15, 43–45] and uncertainty 
quantification [14, 46].
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