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Everyone puts things off sometimes. How can we combat this tendency to procrastinate? A well-known

technique used by instructors is to break up a large project into more manageable chunks. But how should

this be done best? Here we study the process of chunking using the graph-theoretic model of present bias

introduced by Kleinberg and Oren [2014]. We first analyze how to optimally chunk single edges within a task

graph, given a limited number of chunks. We show that for edges on the shortest path, the optimal chunking

makes initial chunks easy and later chunks progressively harder. For edges not on the shortest path, optimal

chunking is significantly more complex, but we provide an efficient algorithm that chunks the edge optimally.

We then use our optimal edge-chunking algorithm to optimally chunk task graphs. We show that with a linear

number of chunks on each edge, the biased agent’s cost can be exponentially lowered, to within a constant

factor of the true cheapest path. Finally, we extend our model to the case where a task designer must chunk a

graph for multiple types of agents simultaneously. The problem grows significantly more complex with even

two types of agents, but we provide optimal graph chunking algorithms for two types. Our work highlights

the efficacy of chunking as a means to combat present bias.

CCS Concepts: • Theory of computation→ Algorithmic mechanism design; • Applied computing→

Economics; Psychology.
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1 INTRODUCTION

Everyone puts things off sometimes. How can we combat this tendency to procrastinate? A well-
known technique used by instructors is to break up a large project into more manageable chunks.
But how should this be done best? Here we study the process of chunking using the graph-theoretic
model of present bias introduced by Kleinberg and Oren [2014]. One of our main results confirms
the intuition long held by teachers: in many cases, the best way to chunk a single task involves
making the initial subtasks easy and then getting progressively harder. We also provide algorithms
that can best łdistributež chunks across many tasks, which could be applied in an automated to-do
list chunking app.
Present bias is the tendency of agents to overweight costs and rewards experienced in the

current time period, which helps explain many irrational behaviors, from procrastination to task
abandonment. Kleinberg and Oren [2014] had the crucial insight that this diverse behavior could
be captured in a single graph-theoretic model. They represent tasks using a directed, acyclic graph
𝐺 , with designated start 𝑠 and end 𝑡 . A path through this graph corresponds to a plan to complete
the task; each edge represents one step of this plan. The weights on edges represent the costs of
completing that step. While the model is simple, it is deceptively complex to analyze; it has been
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a popular starting point for present bias in the CS community (see, e.g., [Albers and Kraft 2017;
Anagnostopoulos et al. 2020; Fomin et al. 2020; Gravin et al. 2016; Ma et al. 2019; Oren and Soker
2019]).

The goal of an agent is to complete the task while incurring the least cost. An optimal (unbiased)
agent simply computes the shortest path and takes it. A naive present-biased agent with bias
parameter 𝑏 > 1 behaves as follows. At 𝑠 , they compute their perceived cost of each path to 𝑡 by
scaling up the cost of the first edge on each path by 𝑏. Then they take one step along this path, say
to vertex 𝑢, and then recompute their perceived costs, this time by scaling up the costs on the edges
out of 𝑢. Notice that the agent may plan to take some path 𝑃 at 𝑠 , but then deviate from their plan
after one step. This is because they (naively) do not take the future impact of their present bias into
account when planning; see Figure 1 for an example.
We extend the Kleinberg-Oren model by giving a task designer the power to break up an edge

into chunks. The agent completes the chunks one at a time, which reduces the impact of their
present bias. We consider the chunks to be a mental feature ś the designer does not actually check
that the agent completes the task in chunks, but instead suggests a chunking to the agent. Our
model is a good fit for many, but not necessarily all tasks. We now highlight three families of
applications and consider the extent to which our results apply to them.
The first family of applications are personal tasks, such as in the example given by George

Akerlof of repeatedly putting off an errand until the next day [Akerlof 1991]. In these examples, we
believe that chunking can be an effective tool. Breaking even a simple task like łmailing booksž
down into smaller components like łgather the booksž, łpackage the booksž, and łdrive to the post
officež seems like a typical way to convince oneself to do an errand. However, there is no real task
designer here. Further, our results assume a known bias, but agents in our model are not fully
aware that they have present bias. Thus, personal tasks are not the main application we consider
(though our overall takeaway that chunking is valuable still applies to these tasks).

Next we consider educational examples, where students procrastinate on course work (while not
planning with this in mind). Our model applies well here, as the task designer (the instructor) really
does have a vested interest in ensuring that students complete the course, and do so as efficiently
as possible. As mentioned before, we do not model the teacher as actively enforcing the chunks,
for example with grades or deadlines. Our model is better understood as the teacher suggesting
chunks to the students. We discuss further at the end of Section 2.
Finally, another application with great potential is to automatically chunk to-do lists. Consider

an app that automatically takes in a user’s to-do list, which could have multiple dependencies, and
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Fig. 1. Taken from Saraf et al. [2020]. The cheapest path is (𝑠, 𝑥, 𝑡 ) with total cost 6. However, an agent with

bias 𝑏 = 2 will take path (𝑠, 𝑣, 𝑧, 𝑡 ), with cost 21. Importantly, when the agent is deciding which vertex to move

to from 𝑠 , they evaluate the path starting with 𝑥 as having total cost 12, while the path starting with 𝑣 has

total cost 11. This is because they assume they will behave optimally at 𝑣 by taking path (𝑣,𝑦, 𝑡 ). However,

they apply their bias at 𝑣 and deviate to the most expensive path.
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suggests ways to chunk some tasks. To avoid overwhelming the user, the app would not want to
suggest too many chunks. 1

We are not the first to consider ways of alleviating the harm caused by present bias (which can
be quite significantÐas shown by Kleinberg and Oren [2014] and Tang et al. [2017], the ratio of
the optimal agent’s cost to the biased agent’s cost can be exponential in the size of the graph).
Kleinberg and Oren [2014] propose a model where a reward is given after finishing the task, and
where the agent will abandon the task if at any point, they perceive the remaining cost to be higher
than the reward. Unlike an optimal agent, a biased agent may abandon a task partway through;
see Figure 2 for an example. As a result, Kleinberg and Oren give the task designer the power to
arbitrarily delete vertices and edges, which can model deadlines. They then investigate the structure
of minimally motivating subgraphs, the smallest subgraph where the agent completes the task,
for some fixed reward. Follow-up work of Tang et al. [2017] shows that finding any motivating
subgraph is NP-hard. Instead of deleting edges, Albers and Kraft [2019] consider the problem of
spreading a fixed reward onto arbitrary vertices to motivate an agent to complete a task, and find
that this too is NP-hard (with a constrained budget).

𝑠 2 𝑡𝑣 6

Fig. 2. Let (𝑠, 𝑣) represent buying a gym membership and (𝑣, 𝑡 ) represent working out regularly for a month

[Roughgarden 2016]. At 𝑡 , the agent receives a reward of 11 due to health benefits. With bias 𝑏 = 2, the agent

initially believes this task is worth completing, but due to his bias, abandons the task at vertex 𝑣 , after having

already purchased the membership.

These results focus on the problem of convincing an agent to complete a task, rather than
redirecting agents to cheaper paths. Though these goals are related, it’s natural to wonder how we
might sway agents towards more optimal behavior, rather than merely settling for task completion.
In other words, even if agents are willing to complete a task using a needlessly expensive path
(perhaps because of a large reward), we should still consider how to make them behave more
optimally. Kleinberg et al. [2016] partially investigate this question in amodel involving sophisticated
agents, who plan around their present bias. They consider several types of commitment devices ś
tools by which sophisticated agents can constrain their future selves. However, these tools may
require more powerful agents or designers, and don’t necessarily make sense for naive agents. Saraf
et al. [2020] takes a different approach, arguing that task designers can induce optimal behavior
by setting up a competition between biased agents. While they obtain strong results for several
families of graphs, there are also graphs where their competitive model can offer no benefit to
agents.

Finally, Kleinberg and Oren [2014] consider a restricted version of our chunking problem, which
is close to a special case of our model. They focus on the single edge graph (𝑠, 𝑡 ), and derive the
optimal chunking in that setting. When considering general graphs, we obtain a similar result
when chunking edges on the cheapest path; for other edges, the optimal chunking is more complex.
Further, looking at general graphs allows us to ask how a fixed chunking budget should be best
allocated across multiple edges, and, more broadly, how to convince agents to take a different (and
cheaper) path.

The rest of the paper is organized as follows. In Section 2, we present a model for chunking and
explain its simplifying features. In Section 3, we focus on chunking single edges within a graph.

1Interestingly, it seems that Google’s acquisition of the startup Timeful has led to users of Gmail getting various łnudgež

reminders, where the nudges chosen are based in part on research on present bias [J. Kleinberg, private communication,

2022].
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We first describe how chunking an edge (𝑢, 𝑣) can be thought of as lowering the agent’s present
bias towards only that edge. We then explore the structure of optimal edge chunkings, that is,
chunkings that lower the agent’s łselective biasž as much as possible. For edges on the shortest
path, we provide a closed form for the optimal chunking. For other edges, optimal chunkings are
considerably more complex, but we provide an efficient algorithm to compute them. In Section 4,
we provide an algorithm to optimally distribute a fixed number of chunks across multiple edges
within a graph. In Section 5, we provide a tight bound on the cost ratio for biased agents in terms
of the number of chunks alloted to the task designer. Our bound implies that with a linear number
of chunks alloted to each edge, the cost ratio can be reduced to a constant factor. Finally, in Section
6, we consider the problem of chunking a single task graph for two types of agents simultaneously,
where an agent’s type is their bias. As an example, consider an instructor who wants a good
chunking for both rare and frequent procrastinators. We provide algorithms to chunk optimally
under local and global budgets for two types of agents. We also show how to extend our result to
𝑚 types of agents, if we add the (simplifying) constraint that all agents must take the same path
through the graph.

2 CHUNKING MODEL

We first explain the model of present bias in more detail. As mentioned before, we start with a
weighted, directed, acyclic graph 𝐺 that represents a task, with start 𝑠 and end 𝑡 . A present-biased
agent with bias parameter 𝑏 behaves as follows. Let 𝑐(𝑣 → 𝑡 ) represent the cost of the shortest
path from 𝑣 to 𝑡 , and let 𝑐(𝑢, 𝑣) represent the weight of edge (𝑢, 𝑣). From node 𝑢, the agent goes to
vertex argmin𝑣:(𝑢,𝑣)∈𝐸 𝑏𝑐(𝑢, 𝑣) + 𝑐(𝑣 → 𝑡 ). We refer to 𝑏𝑐(𝑢, 𝑣) + 𝑐(𝑣 → 𝑡 ) as the agent’s perceived cost

of starting with edge (𝑢, 𝑣) and then taking the shortest path to 𝑡 . We abbreviate this as the agent’s
perceived cost of starting with (𝑢, 𝑣). At each vertex, they go to the neighbor that minimizes their
perceived cost, continuing until they reach 𝑡 .
We next consider chunking. We distinguish two different settings where chunking helps:

(1) The task designer wants agents to take the cheapest path through the graph, rather than the
more expensive path their bias would lead them to take.

(2) In a model where agents can abandon their path at any time (if the perceived cost is less than
the reward), the task designer wants to prevent such abandonment.

We mainly focus on the first case in this paper, but our analysis easily extends to the abandonment
setting. To investigate different models of chunking, consider the following graph, the 𝑛-fan (in
which a biased agent can take an exponentially more expensive path than optimal [Kleinberg and
Oren 2014]):

0

0 0

𝑐
𝑐2

𝑐3

𝑐𝑛

1
𝑠

𝑣1

𝑣𝑛

𝑣3

· · ·

𝑡

𝑣2

The task designer wants the agent to take the path (𝑠, 𝑡 ) instead of the longer path around the fan
that an agent will take when their bias 𝑏 > 𝑐 . The simplest model of chunking allows them to break
the edge (𝑠, 𝑡 ) into pieces as follows:
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0
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𝑣1

𝑣𝑛

𝑣3

· · ·

𝑡

𝑣2

𝑠1

The designer gets to choose 𝑥 (i.e., they get to choose how much work is done in the first and
second chunk). Note that the intermediate node 𝑠1 doesn’t have any connections, except to 𝑡 . It’s
easy to show that the best choice of 𝑥 is 0, as this means that the agent’s present bias does not
play any role in their decision (all edges out of 𝑠 have 0 cost). From a different perspective, this
model seems to be taking advantage of the łlock-inž effect of 𝑠1 ś once the agent goes there, they
cannot take an alternative path, even though they did not actually do any work to get there. But
our intuition suggests that chunking a very difficult task into a cost 0 łtaskž followed by the same
difficult task should not help much. So, this doesn’t seem to be a good model for chunking. As an
aside, even if we require that 𝑥 is not too small, the obvious solution for the task designer is to
make the first chunk as small as allowed ś there’s not much interesting in this model.2

The more interesting model of chunking that we study breaks the edge (𝑠, 𝑡 ) into pieces as follows:

0

0 0

𝑐
𝑐2

𝑐3

𝑐𝑛

𝑥 1 − 𝑥

0

𝑠

𝑣1

𝑣𝑛

𝑣3

· · ·

𝑡

𝑣2

𝑠1

Here, the node 𝑠1 keeps all the edges to other task nodes that 𝑠 had. This reflects the fact that even
after completing a chunk, an agent may decide to take another path to 𝑡 ś completing a chunk
doesn’t łlockž an agent into a particular path. Of course, they will be less likely to take another
path if they finished a particularly difficult chunk. Thus the model has the necessary tension ś
the designer wants to set 𝑥 high enough so that the agent actually still takes the (𝑠, 𝑠1, 𝑡 ) path, but
not so high that they don’t take edge (𝑠, 𝑠1) in the first place. Put another way, since the agent can
deviate at 𝑠1, the designer wants to ensure that the perceived costs of starting with (𝑠, 𝑠1) and with
(𝑠1, 𝑡 ) are both low. While we have shown only 2-chunk examples, in our general model the task
designer splits an edge into 𝑘 chunks, whose costs sum to the original cost.3

It is worth discussing three simplifying features of our model. First, we assume that tasks can
be arbitrarily split: each edge in the chunking can have any cost, so long as the total cost remains
fixed. A more realistic model might constrain edges to have fixed chunking options. For example,
when chunking an essay, it could be the case that each chunk must consist of some number of

2If we move to the abandonment setting, the task designer is incentivized to do a non-trivial split here; they would want to

balance the perceived costs of starting with edges in their chunking in order to avoid abandonment. However, the model we

investigate induces a similar balancing problem even without abandonment (and extends naturally to the abandonment

setting).
3Note that in our formalization, we remove the original edge for simplicity. However, if we kept the original edge, the

agent would never strictly prefer it, no matter what the chunking. So it’s mathematically equivalent to think of the original

edge still being there. Moreover, this interpretation maps better to our examples, where the task designer does not actually

enforce the chunking.
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paragraphs; essays cannot be chunked more finely. However, we believe that solving our continuous
relaxation will provide reasonable insight into the discrete problem. Our informal argument is
as follows: if the number of potential chunks in the discrete problem is high, then our optimal
solution to the continuous version will be a good approximation. If the number of potential chunks
is low, then solving the discrete problem is easy (there aren’t many possible chunkings). Though
we will not consider the discrete version further, it would be interesting to understand if there are
fundamentally different challenges in that setting.

The second simplifying assumption is that the chunking łoverheadž cost to the agent is zero. In
other words, no matter how many chunks an edge is split into, the total cost of that edge remains
fixed (notably, it does not increase). In reality, there is probably some cost to the agent per chunk.
For instance, the agent might stop working between chunks, and then have some cost associated
with getting back to work. We assume that this łrestartingž cost is very low relative to the other
costs, and thus ignore it. In any case, since each chunk gives the task designer (weakly) more power
in our model, we typically assume that there is some given chunking budget 𝑘 ; if chunking instead
had some fixed overhead, there would exist an optimal 𝑘 , as additional chunks have diminishing
returns but fixed overhead.

Lastly, we specify how agents break ties. If an agent at 𝑢 views multiple neighbors as having the
same perceived cost, the agent will pick the neighbor that is part of a chunked path if exactly one
neighbor is part of a chunked path. Otherwise, they pick the first vertex in some lexicographical
ordering. This tie-breaking behavior is mathematically convenient when constructing the optimal
chunking, as we can simply ensure that the perceived cost starting with each step in the chunking
matches the agent’s otherwise best option. For a more thorough treatment of tie-breaking rules in
the base model of present bias, see [Dementiev et al. 2021].
We also contrast our model with a model of łcheckpointsž. As we mentioned, we consider

chunking to be a purely mental tool to combat present bias. One might consider a stronger model,
where the task designer (e.g., an instructor) can incentivize agents to complete a task in chunks.
For example, the instructor might set an earlier (graded) deadline for the thesis statement of an
essay. We can model this as the task designer having the power to split up the final reward 𝑟 onto
intermediate vertices or edges, in addition to being able to chunk edges. Although we will not
investigate this checkpoint model in this paper, we hope to investigate it in future work. While both
the chunking model and checkpoint model are realistic choices to model classwork, we believe that
the chunking model is a better fit for algorithmically chunking a user’s to-do list; in that setting,
the algorithm cannot enforce the chunks, but merely suggests them to the user.

3 OPTIMAL EDGE-CHUNKING

In this section, we consider how to optimally chunk a single edge. What do we mean by an optimal

chunking? As mentioned earlier, we think of chunking as lowering an agent’s selective bias towards
the chunked edge. In other words, for any chunking, an agent with bias 𝑏 will take the chunked
path from 𝑢 to 𝑣 if and only if an agent with bias 𝑏 ′ < 𝑏 towards edge (𝑢, 𝑣) (and bias 𝑏 otherwise)
will take (𝑢, 𝑣) in the original graph. We say that such a chunking induces a selective bias of 𝑏 ′

towards (𝑢, 𝑣).4 So, by an optimal chunking, we mean one in which the agent’s selective bias is
brought as low as possible (given a fixed bound 𝑘 on the total number of chunks).

Our results show that as the number of chunks tends to infinity, the selective bias tends to 1 (i.e.,
unbiased behavior). Thus, the number of chunks is a powerful parameter in our model; in the next
section we answer the broader question of how to best chunk is an arbitrary task graph with a
limited chunking budget.

4When it is clear from context, we often leave the edge unspecified.
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3.1 Edges on the shortest path

The problem of optimally chunking is subtly different for edges on the shortest path (where
łshortestž ignores bias) and edges on other paths. We first consider the simpler case of edges on the
shortest path, and start with two chunks.

Lemma 1. To optimally split an edge (𝑢, 𝑣) that is on the shortest path into two chunks, the first chunk

should be a 𝑏−1
2𝑏−1 fraction of the work. With this split, the agent will behave with a selective bias of

𝑏
2−1/𝑏 .

Proof. Suppose we chunk (𝑢, 𝑣) into (𝑢1, 𝑢2, 𝑣). First, note that, because (𝑢, 𝑣) is on the shortest
path in the original graph, no matter how the edge is chunked, the optimal behavior from 𝑢2 will
be to go to 𝑣 ś this can only be cheaper than (𝑢, 𝑣) in the original graph. Thus, the perceived cost of
starting with edge (𝑢1, 𝑢2) while at vertex 𝑢1 is 𝑏𝑐(𝑢1, 𝑢2) + 𝑐(𝑢2, 𝑣) + 𝑐(𝑣 → 𝑡 ), as the agent naively
believes they will behave optimally in the future. This is the only way that we use the fact that
(𝑢, 𝑣) is on the shortest path.

The designer wants to minimize the maximum of the perceived cost of starting with (𝑢1, 𝑢2) and
the perceived cost of starting with (𝑢2, 𝑣), to best ensure that the agent takes the chunked path.
These perceived costs are 𝑏𝑐(𝑢1, 𝑢2) + 𝑐(𝑢2, 𝑣) + 𝑐(𝑣 → 𝑡 ) and 𝑏𝑐(𝑢2, 𝑣) + 𝑐(𝑣 → 𝑡 ) respectively.

Let 𝑥 = 𝑐(𝑢, 𝑣) represent the total amount of work to be chunked, and let 𝑥1 and 𝑥2 represent
𝑐(𝑢1, 𝑢2) and 𝑐(𝑢2, 𝑣) respectively. Note that 𝑥2 = 𝑥 − 𝑥1. We now plug the 𝑥 ’s into the expressions
above to get perceived costs of

𝑏𝑥1 + 𝑥 − 𝑥1 + 𝑐(𝑣 → 𝑡 ) and

𝑏(𝑥 − 𝑥1) + 𝑐(𝑣 → 𝑡 ).

We want to set 𝑥1 to minimize the maximum of the two quantities. That is, we choose 𝑥 so that

argmin
0≤𝑥1≤𝑥

max(𝑏𝑥1 + 𝑥 − 𝑥1 + 𝑐(𝑣 → 𝑡 ), 𝑏(𝑥 − 𝑥1) + 𝑐(𝑣 → 𝑡 ))

= argmin
0≤𝑥1≤𝑥

max(𝑏𝑥1 + 𝑥 − 𝑥1, 𝑏(𝑥 − 𝑥1))

= argmin
0≤𝑥1≤𝑥

max((𝑏 − 1)𝑥1 + 𝑥,−𝑏𝑥1 + 𝑏𝑥).

Both expressions are linear functions of 𝑥1, with the first increasing and the second decreasing.
The minimum of the maximum is thus where they intersect, that is, when

(𝑏 − 1)𝑥1 + 𝑥 = −𝑏𝑥1 + 𝑏𝑥 .

Simple algebra then shows that

𝑥1 =
𝑏 − 1

2𝑏 − 1
𝑥 .

With this value of 𝑥1, the perceived costs starting with (𝑢1, 𝑢2) and with (𝑢2, 𝑣) are identical. The
latter perceived cost is

𝑏(𝑥 − 𝑥1) + 𝑐(𝑣 → 𝑡 ) = 𝑏𝑥 ·
𝑏

2𝑏 − 1
+ 𝑐(𝑣 → 𝑡 )

=
𝑏

2 − 1/𝑏
· 𝑐(𝑢, 𝑣) + 𝑐(𝑣 → 𝑡 ). (since 𝑥 = 𝑐(𝑢, 𝑣))

(It’s easy to verify that the former perceived cost matches.) Thus, the agent with bias 𝑏 takes the

path (𝑢1, 𝑢2, 𝑣) when an agent with bias 𝑏∗ = 𝑏
2−1/𝑏 would have taken (𝑢, 𝑣) in the original graph. □

We now state the following theorem, which extends the above results to 𝑘 chunks. We first state
a more general version which will be helpful in the next section. The proof is in the appendix.
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Theorem 1. Suppose we partition an edge (𝑢, 𝑣) of cost 𝑥 into 𝑘 chunks. Let 𝑢1, . . . , 𝑢𝑘 represent the

vertices in this chunking, and let 𝑐(𝑢𝑖 , 𝑢𝑖+1) = 𝑥𝑖 , where, for 1 ≤ 𝑖 ≤ 𝑘 , the 𝑥𝑖 ’s are defined below.

1 ≤ 𝑖 ≤ 𝑘 : 𝑥𝑖 =
(𝑏 − 1)𝑘−𝑖𝑏𝑖−1

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥 .

With this chunking, the agent has selective bias 1

1−( 𝑏−1𝑏 )
𝑘 . If, with this chunking, the shortest path from

𝑢𝑖 to 𝑡 is through 𝑢𝑖+1 for all 𝑖 > 1, then this chunking is optimal.

The following corollary immediately follows from this theorem.

Corollary 1. For an edge (𝑢, 𝑣) on the shortest path, the chunking given in Theorem 1 is optimal.

Proof. No matter how an edge on the shortest path is chunked, the shortest path from any
chunk to 𝑡 must be through the next chunk, as chunking does not increase the total cost of the
edge. This satisfies the condition in the theorem to get optimality. □

The corollary says that the designer is not best served by evenly splitting the cost between the
edges ś the designer should lower the cost of earlier edges. When they do so, the agent will behave
as if they had selective bias 1

1−( 𝑏−1𝑏 )
𝑘 in the original graph towards edge (𝑢, 𝑣) (while having bias 𝑏

towards all other edges).
For a simple application of this corollary, suppose the agent’s bias is 2. Then, splitting each edge

on the shortest path once (so 𝑘 = 1) causes the agent to behave as if they have bias 4/3 on the
shortest path in the unmodified graph (and they still perceive other edges with bias 2).

3.2 Edges not on the shortest path; a motivating example

We first motivate our results. For edges that are on the shortest path, it’s clear why a designer would
want to chunk them ś they want to convince agents to incur as little cost as possible. However, in
the next section we consider the natural problem where the designer has a fixed chunking budget
𝑘 . In such cases, our earlier results imply that if the agent’s bias is sufficiently high, it may not
be possible to convince them to stick to the shortest path. However, the designer may be able to
lower the agent’s cost by chunking other edges, which are not on the shortest path. Consider the
following graph as an example.

0
76

14 60.1

65
2

𝑤

𝑠 = 𝑢 𝑣 𝑡

𝑧

Suppose that the agent has bias 2. Let 𝑃𝑤, 𝑃𝑣, 𝑃𝑧 represent the paths to 𝑡 through𝑤, 𝑣 , or 𝑧 respectively.
The agent’s bias causes them to take 𝑃𝑧 , the most expensive path. How should we best use a fixed
budget of 3 chunks to lower the agent’s cost? First, note that by Theorem 1, the optimal chunking of
(𝑢,𝑤 ) induces a selective bias of 8/7. Even with this optimal chunking, the agent would still prefer
𝑃𝑧 , as 8/7 · 65 + 2 > 76. So, we cannot lower the agent’s cost by chunking (𝑢,𝑤 ). Will chunking
(𝑢, 𝑣) instead help?

, Vol. 1, No. 1, Article . Publication date: May 2023.



Chunking Tasks for Present-Biased Agents

Note that, for edges not on the shortest path (which we will sometimes abbreviate to łnon
short-path edgesž), we could still apply the chunking from Theorem 1 to get the selective bias
described in that theorem. For (𝑢, 𝑣), Theorem 1 tells us to set 𝑥1 = 2, 𝑥2 = 4, and 𝑥3 = 8, resulting in
the following graph.

0

76

60.1

65

2

2

65

0

4

65

0

8

𝑤

𝑠 = 𝑢1 𝑣 𝑡

𝑧

𝑢2 𝑢3

Under this chunking, the cheapest path from 𝑢1, 𝑢2, or 𝑢3 to 𝑡 all go through 𝑤 . The agent’s
perceived costs of starting with the edges in the chunking are, in order, 71, 75, and 76.1 (so the
agent would take edge (𝑢3, 𝑧) instead of sticking to the chunking). If (𝑢, 𝑣) was a shortest edge in
the original graph (for example, if𝑤 did not exist), then the same chunking would have identical
perceived costs of 76.1 starting with all edges. But when the cheapest path from a chunked vertex
to 𝑡 is through the external vertex 𝑤 , the perceived cost of starting with early edges decreases.
An optimal chunking should thus increase the cost of early edges and decrease the cost of later
edges to result in more balanced perceived costs. In the example above, if we split the costs so that
𝑐(𝑢1, 𝑢2) = 𝑐(𝑢2, 𝑢3) = 3.55 and 𝑐(𝑢3, 𝑣) = 6.9, then the cheapest path from 𝑢1 or 𝑢2 to 𝑡 is through𝑤 ,
while the cheapest path from 𝑢3 to 𝑡 is through 𝑣 . Thus, the perceived costs of starting with the first
edge and the second edge are both 74.1, and the perceived cost of starting with (𝑢3, 𝑣) is 73.9. This
is the optimal chunking of (𝑢, 𝑣), and it improves the agent’s cost by convincing them to take 𝑃𝑣
instead of 𝑃𝑧 . Thus, this example shows that we have good reason to chunk non short-path edges,
and our existing chunking results are insufficient for such edges.

3.3 Optimally chunking for edges not on the shortest path

As the example in the previous section suggests, it’s important to keep track of the shortest path
from chunking vertices to 𝑡 . Note that if the shortest path from 𝑢𝑖 to 𝑡 is through 𝑤 rather than
𝑢𝑖+1, then the shortest path from any 𝑢 𝑗 to 𝑡 , where 𝑗 < 𝑖 , is also through𝑤 .

Thus, for any chunking, define 𝑢𝜏 as the transition vertex: the last vertex where the shortest path
is through𝑤 , where𝑤 is the next vertex on the shortest path from 𝑢 to 𝑡 in the original graph. If
the shortest path always follows the chunking, then define 𝜏 as 0. On the other hand, if the shortest
path is always through external vertices, then 𝜏 = 𝑘 . For a shortest-path edge, all chunkings have
𝜏 = 0 (and thus the optimal chunking is given by Theorem 1). But for non short-path edges, the
optimal chunking may have a higher value of 𝜏 (in the previous example, the optimal chunking
had transition vertex 𝜏 = 2). Though the case where 𝜏 = 0 admits a nice closed form, in general we
provide an algorithm that determines the optimal chunking by trying all possible values of 𝜏 .

We can think of 𝜏 as the smallest value such that, for all neighbors𝑤 of𝑢, we have 𝑐(𝑢,𝑤 )+𝑐(𝑤 →

𝑡 ) ≥ 𝑐(𝑢𝜏+1, 𝑢𝜏+2) + 𝑐(𝑢𝜏+2 → 𝑡 ). We can rewrite this as follows, using the notation of Theorem 1:

𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ) ≥ 𝑐(𝑢𝜏+1, 𝑢𝜏+2) + 𝑐(𝑢𝜏+2 → 𝑡 )

= 𝑥𝜏+1 +
∑𝑘

𝑖=𝜏+2 𝑥𝑘 + 𝑐(𝑣 → 𝑡 )

= 𝑥 −
∑𝜏

𝑖=1 𝑥𝑖 + 𝑐(𝑣 → 𝑡 ).

(1)
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Let 𝛿 = 𝑥 + 𝑐(𝑣 → 𝑡 )− (𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 )) represent the difference between the cost of the cheapest
path from 𝑢 to 𝑡 through 𝑣 and the cost of the cheapest path from 𝑢 through𝑤 in the original graph
(in the previous example, 𝛿 = 74.1 − 67 = 7.1). Then Equation 1 is equivalent to

∑𝜏
𝑖=1 𝑥𝑖 ≥ 𝛿 . For

an edge on the shortest path, 𝛿 is negative, which is why 𝜏 must be equal to 0 for those edges.
Moreover, if 𝛿 ≤ 𝑥 , then it is possible to split the costs among the edges to allow any choice of 𝜏 :
we simply put at least 𝛿 of the cost on the first 𝜏 edges while ensuring that the sum of costs of
the first 𝜏 − 1 edges does not exceed 𝛿 . So, in addition to requiring that

∑𝜏
𝑖=1 𝑥𝑖 ≥ 𝛿 , we also need∑𝜏−1

𝑖=1 𝑥𝑖 < 𝛿 .
Before we get to our main result, we first introduce some more definitions and notation. Let

𝑒𝑖 = (𝑢𝑖 , 𝑢𝑖+1) be the 𝑖th edge of a chunking, and let 𝑝(𝑒𝑖 ) = 𝑏𝑥𝑖 + 𝑐(𝑢𝑖+1 → 𝑡 ) represent the perceived
cost of starting with edge 𝑒𝑖 . Let the bottleneck of a chunking be the highest perceived cost starting
with any edge on that chunking (i.e. max𝑖 𝑝(𝑒𝑖 )). It’s easy to see that the bottleneck of a chunking
determines the selective bias the chunking will induce; any agent who will get past the bottleneck
will complete the entire chunked path. So an optimal chunking is a chunking with the smallest
bottleneck. Finally, let a 𝑘-chunking of an edge be any chunking that splits the edge into 𝑘 chunks.
We now state some useful lemmas; their proofs can be found in the appendix.

Lemma 2. Suppose that 𝐶 is a chunking with bottleneck 𝛽 . If another chunking 𝑂 has bottleneck

𝛽 ′ < 𝛽 and the same transition vertex 𝜏 , then 𝑂 must lower the cost of all edges that are bottlenecks in

𝐶 , and thus raise the cost of the remaining edges.

Though the lemma seems obvious at first glance, it relies crucially on the fact that 𝐶 and 𝑂 have
the same transition vertex 𝜏 . It’s possible for𝑂 to not lower the cost of all edges that are bottlenecks
in 𝐶 but still get a lower bottleneck cost if 𝑂 has a different transition point. But with 𝜏 fixed, the
difference between the perceived costs starting with any edge in𝐶 compared to𝑂 depends only on
the cost the chunkings assign to the edge.

Lemma 3. If a chunking 𝐶 has the same perceived cost starting with any edge in the chunking, then

𝐶 is optimal.

Lemma 3 guides the algorithm, which tries to ensure that the perceived costs starting with
edges in 𝐶 are as close as possible. At a high level, the algorithm enumerates over all values of
𝜏 ∈ {1, . . . , 𝑘}. We start with a chunking where the first 𝜏 edges are assigned cost 𝛿/𝜏 , which ensures
that they all have the same perceived cost 𝛼 . We then use Theorem 1 to distribute the remaining
cost over the last 𝑘 − 𝜏 edges, which also equalizes their perceived cost to some 𝛽 . If 𝛼 ≥ 𝛽 , we
argue that this chunking is optimal for the fixed 𝜏 . Otherwise, we make some local updates to the
chunking, which brings 𝛽 as close to 𝛼 as possible while maintaining the invariant that 𝛽 ≥ 𝛼 . The
full description of this algorithm, Algorithm 1, can be found in the appendix.

Theorem 2. Given any edge (𝑢, 𝑣), we can determine the optimal 𝑘-chunking in𝑂(𝑘) time, assuming

that the shortest paths from 𝑢 → 𝑡 and 𝑣 → 𝑡 have been precomputed.

Proof Sketch. For a fixed 𝜏 , we start by setting 𝑥1 = 𝑥2 = · · · = 𝑥𝜏 = 𝛿/𝜏 , and chunk the
remaining 𝑥 − 𝛿 cost over the remaining 𝑘 − 𝜏 edges according to Theorem 1. Doing so ensures
that 𝑝(𝑒𝑖 ) = 𝛼 for all 𝑖 ≤ 𝜏 and that 𝑝(𝑒𝑖 ) = 𝛽 for all 𝑖 > 𝜏 (𝛼 and 𝛽 are defined in the appendix). If
𝛼 = 𝛽 , by Lemma 3 we’re done. In the case where 𝛼 > 𝛽 , we show that we’re done for this fixed 𝜏 .

The case where 𝛽 > 𝛼 is the bulk of the proof. The key is that 𝑝(𝑒𝜏 ) can be grouped into either

the earlier or later edges. Since 𝛽 > 𝛼 , we carefully increase the cost of the first 𝜏 − 1 edges and
decrease the cost of the later edges to produce the optimal chunking for this value of 𝜏 . □
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4 OPTIMAL CHUNKING IN TASK GRAPHS

In the previous section, we focused on optimally chunking a single edge. One reason why a task
designer might want to do that is to convince agents to take much cheaper paths through the graph,
by chunking the right edges. In this section, we assume that the designer can chunk any edge in
the graph, but can place only a limited number of chunks (their chunking łbudgetž). Which edges
should they chunk to ensure that the present-biased agent takes as cheap a path as possible, and
how should they chunk those edges?
We first answer the latter question. Is lowering the agent’s selective bias towards an edge as

much as possible (i.e., optimally chunking that edge) always the best way to reduce their overall
cost? Though this might seem obviously true, a surprising fact is that a present-biased agent’s cost
is not monotone in their bias; a smaller bias may sometimes increase their total cost [Kleinberg
et al. 2016]. Despite this, when trying to minimize the agent’s cost, the designer should optimally
chunk any edge they want to chunk (e.g., by using Algorithm 1). The only challenge is in finding
which edges to chunk.

To see why this is true, first note that chunking an edge (𝑢, 𝑣) will not change its overall cost,
and thus will not impact the agent’s decisions unless they are at 𝑢. Second, it’s easy to see that
chunking cannot increase one’s selective bias, as no edge in the chunking can have more cost than
the original edge cost. Thus, any chunking of edge (𝑢, 𝑣) serves to convince the agent to take (𝑢, 𝑣).
And the best way to accomplish that is to minimize the agent’s perceived cost starting with that
chunked edge, which is exactly what an optimal edge-chunking does.

4.1 Local Constraints

We consider two types of constraints on the designer. We call the first a local constraint; in this case
the designer can break any set of edges into up to 𝑘 chunks, for some parameter 𝑘 . If we think of
edges as representing relatively large subtasks, then this just says that any relatively large subtask
can be split into up to 𝑘 smaller subtasks. We call the second a global constraint: in this case, the
designer gets a budget of 𝑘 chunks, and can use no more than 𝑘 chunks altogether.

In this section we consider local constraints. A naive approach would be to just optimally chunk
every edge into 𝑘 chunks, using our earlier results. But this wouldn’t necessarily give the best
overall chunking for the graph. Why not? The intuition is that we want the agent’s perceived cost
of the path that the designer actually wants the agent to use to be low. We are better served by not

chunking edges away from this path, so that the agent is not tempted to deviate. So at a high level,
the algorithm first figures out the cheapest feasible path for the agent (given 𝑘), and then uses the
optimal edge-chunking algorithm to actually chunk this path.

Theorem 3. Given any task graph 𝐺 = (𝑉 , 𝐸) and a local constraint 𝑘 , we can optimally chunk𝐺

with at most |𝐸 | applications of Algorithm 1, for a total runtime of 𝑂(|𝐸 |𝑘 + |𝑉 |).

Proof. First, we can use well-known algorithms to find the costs of the shortest path from any
node to 𝑡 in time 𝑂(|𝐸 |+|𝑉 |), since 𝐺 is a directed, acyclic graph [Cormen et al. 2009]. Given a
vertex 𝑢, let𝑤 = argmin𝑣:(𝑢,𝑣)∈𝐸 𝑏𝑐(𝑢, 𝑣) +𝑐(𝑣 → 𝑡 ) be the vertex that the present-biased agent would

go to without any chunking. Further, let 𝛼𝑢 = 𝑝(𝑢,𝑤 ) be the perceived cost of starting with edge
(𝑢,𝑤 ). Let 𝑣 ̸= 𝑤 be an arbitrary out-neighbor of 𝑢 (i.e., a vertex 𝑣 such that there is an edge (𝑢, 𝑣)).
Algorithm 1 gives us the lowest possible bottleneck cost of a 𝑘-chunking of (𝑢, 𝑣); denote this as
𝛽𝑢,𝑣 . If 𝛽𝑢,𝑣 ≤ 𝛼𝑢 , the agent can be made to take (𝑢, 𝑣). If not, then they won’t take (𝑢, 𝑣) under any
𝑘-chunking.

The algorithm is straightforward. At every vertex 𝑢, determine 𝛼𝑢 as well as 𝛽𝑢,𝑣 for all out-
neighbors 𝑣 of 𝑢. If 𝛽𝑢,𝑣 > 𝛼𝑢 , remove edge (𝑢, 𝑣) from the graph. Call the resulting graph𝐺 ′. Then,
simply compute the shortest path in 𝐺 ′, and chunk every edge on that path with Algorithm 1.
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There will always be an 𝑠-𝑡 path in𝐺 ′, as the edges the agents would take without chunking can
never be removed. By construction, the path in 𝐺 ′ that we chunk is one that the agent will take in
𝐺 after chunking. Finally, there can be no cheaper path, as we remove only edges that the agent
cannot be convinced to take. □

We briefly discuss a different perspective on the algorithm above, which will be useful when
comparing to the results of the next section. We can think of the algorithm as a dynamic program
with the following recurrence:

𝑐𝑜𝑠𝑡[𝑢] = min
𝑣:(𝑢,𝑣)∈𝐸,𝛽𝑢,𝑣 ≤𝛼𝑢

𝑐(𝑢, 𝑣) + 𝑐𝑜𝑠𝑡[𝑣].

Here, 𝑐𝑜𝑠𝑡[𝑢] is the cost of the cheapest 𝑢 to 𝑡 path we can convince the agent to take, and the base
case is simply 𝑐𝑜𝑠𝑡[𝑡] = 0. This recurrence is exactly the recurrence that a shortest-path algorithm
solves, except for the condition that 𝛽𝑢,𝑣 ≤ 𝛼𝑢 . Thus, the first part of the algorithm simply removes
edges that do not satisfy this condition, and then the solution to the shortest path problem will
solve the above recurrence.

4.2 Global Chunking Budget

In this section we consider global constraints; the designer must consider where to best allocate
chunks to have the most impact. As before, we can use the optimal edge-chunking algorithm to
solve this problem; only marginally more computation is required.

Theorem 4. Given any task graph 𝐺 = (𝑉 , 𝐸) and a global constraint 𝑘 , we can determine the

optimal chunking configuration with at most 𝑂(|𝐸 |log𝑘) applications of Algorithm 1, for a total

runtime of 𝑂(|𝐸 |𝑘 log𝑘 + |𝑉 |).

Proof. As before, we first compute the cost of the shortest path from any node to 𝑡 in time
𝑂(|𝑉 |+|𝐸 |). For a local budget, we sorted edges into feasible and infeasible edges, where an edge
was feasible if we could convince the agent to take it with at most 𝑘 chunks. Here, we instead
determine the minimum number of chunks that’s necessary for an agent to take each edge (if the
number is at most 𝑘). Since the optimal bottleneck cost is decreasing in the number of chunks 𝑘 ,
we can simply use binary search to find this minimum number.

In more detail, let 𝑢 be an arbitrary vertex and define 𝛼𝑢 as above. For any out-neighbor 𝑣 of 𝑢, let
𝛽𝑙𝑢,𝑣 be the lowest possible bottleneck cost of any 𝑙-chunking of (𝑢, 𝑣). Let 𝑙𝑢,𝑣 be the smallest 𝑙 ≤ 𝑘

such that 𝛽𝑙𝑢,𝑣 ≤ 𝛼𝑢 . If no such 𝑙 exists, then 𝑙𝑢,𝑣 = ∞. 𝑙𝑢,𝑣 can be computed in 𝑂(log𝑘) applications

of Algorithm 1 with binary search, since 𝛽𝑙𝑢,𝑣 is decreasing in 𝑙 .
Now let 𝑐𝑜𝑠𝑡[𝑢, 𝑖] denote the cost of the cheapest path from 𝑢 to 𝑡 that we can convince the agent

to take with at most 𝑖 chunks. The base case is simply 𝑐𝑜𝑠𝑡[𝑡, 𝑖] = 0 for all 0 ≤ 𝑖 ≤ 𝑘 . The recurrence
is as follows.

𝑐𝑜𝑠𝑡[𝑢, 𝑖] = min
𝑣:(𝑢,𝑣)∈𝐸,𝑙𝑢,𝑣 ≤𝑖

𝑐(𝑢, 𝑣) + 𝑐𝑜𝑠𝑡[𝑣, 𝑖 − 𝑙𝑢,𝑣].

The final solution is 𝑐𝑜𝑠𝑡[𝑠, 𝑘]. The correctness of this recurrence follows from the fact that 𝑙𝑢,𝑣 is
the smallest number of chunks needed to convince the agent to take edge (𝑢, 𝑣). For the runtime,
note that it takes𝑂(𝐸𝑘 log𝑘) to compute 𝑙𝑢,𝑣 for all (𝑢, 𝑣) ∈ 𝐸. For the recurrence, the min considers
|𝐸 | possibilities for each value of 𝑖 ∈ {0, . . . , 𝑘}, for a total runtime of 𝑂(|𝐸 |𝑘). Finally, to actually
compute the recurrence, we can simply proceed backwards through some topological ordering of
the graph. □
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5 OPTIMIZING THE COST RATIO

Define the cost ratio of a present-biased agent to be 𝐶𝑏 (𝑠 → 𝑡 )/𝑐(𝑠 → 𝑡 ), where 𝐶𝑏 (𝑠 → 𝑡 ) is the
cost that a present-biased agent with bias parameter 𝑏 incurs in the graph, and 𝑐(𝑠 → 𝑡 ) is the
shortest path cost. The goal of this section is to understand how the cost ratio of the present-biased
agent decreases as the task designer places more chunks in the graph. Put another way, in the
previous section we provided algorithms that optimally chunked task graphs, given a fixed chunking
budget 𝑘 . Here, we prove performance guarantees on those algorithms, where the algorithm’s
łperformancež is measured in how much it reduces the cost of the agent’s path.

Existing results have characterized the worst-case cost ratio over all task graphs.

Theorem 5 (Adapted from Tang et al. [2017]). The cost ratio for an agent with present bias 𝑏 is

at most 𝑏𝑛 , over all task graphs. The 𝑛-fan (see Figure 3) can get arbitrarily close to this cost ratio as 𝑐

approaches 𝑏 from below.

We want to characterize the worst-case cost ratio after chunking. More precisely, we consider
the following question. Let 𝐺 be arbitrary, and let 𝐺 ′ denote an optimal 𝑘-chunking of𝐺 . What is
the worst-case cost ratio for 𝐺 ′? We start by considering local constraints; thus, 𝐺 ′ is the result of
breaking an arbitrary number of edges in 𝐺 into at most 𝑘 chunks. Let 𝑏min be the selective bias
guaranteed by Theorem 1. That is, let:

𝑏min =
1

1 −
(
𝑏−1
𝑏

)𝑘 .
Theorem 6. If 𝐺 ′ is an optimal chunking of 𝐺 with local constraint 𝑘 , then the cost ratio for an

agent with present bias 𝑏 in 𝐺 ′ is at most 𝑏𝑛min.

Proof. We simply chunk every edge into 𝑘 chunks using the chunking given in Theorem 1,
which results in the agent viewing every edge with a selective bias of 𝑏min. Call the resulting graph
𝐺 ′′. By the definition of selective bias, for every edge (𝑢, 𝑣) ∈ 𝐺 , an agent with bias 𝑏min would go
from 𝑢 to 𝑣 if and only if the agent with bias 𝑏 would traverse the chunking (𝑢1, 𝑢2, . . . , 𝑢𝑘 , 𝑣) in 𝐺 .
Since this holds for every edge, the agent will incur exactly the same cost as an agent with bias
𝑏min would incur in 𝐺 . So by Theorem 5, they incur cost at most 𝑏𝑛min in 𝐺

′′, with bias 𝑏.
The theorem follows from the fact that𝐺 ′ is an optimal chunking of𝐺 , so the agent will only do

better there as compared to 𝐺 ′′. □

Corollary 2. Given a local constraint 𝑘 = 𝑂(𝑛), the optimal chunking𝐺 ′ of𝐺 has constant cost ratio.

Proof. The proof involves only arithmetic after applying Theorem 6. Details can be found in
the appendix. □

The corollary shows that we can get an exponential reduction in the agent’s worst-case cost with
only a linear number of chunks on every edge, demonstrating the power of chunking. However,
from a different perspective, the bound in Theorem 6 seems weak. We showed earlier that it’s never
necessary to chunk two edges leading out of the same vertex, but here we chunk all edges. Further,
we chunk every edge with Theorem 1, despite that chunking not being optimal for non short-path
edges. Despite these concerns, the bound in the theorem is tight, as demonstrated by chunking the
𝑛-fan.

Lemma 4. If 𝐺 is an 𝑛-fan with 𝑐 < 𝑏min and 𝐺
′ is an optimal chunking of 𝐺 given local constraint

𝑘 , then the cost ratio for an agent with present bias 𝑏 is 𝑐𝑛 in 𝐺 ′.
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Fig. 3. This graph is the 𝑛-fan. If 𝑐 < 𝑏, the agent will prefer edge (𝑣𝑖 , 𝑣𝑖+1) to (𝑣𝑖 , 𝑡 ) for all 𝑖 . Thus, the agent

goes all the way around the fan, and incurs cost 𝑐𝑛 .

Proof. Let𝐺 ′ be constructed by chunking every edge in the 𝑛-fan via Theorem 1 (we can ignore
the 0 cost edges, as chunking a 0 cost edge has no impact on the agent’s decisions). In𝐺 ′, the agent
acts as if they had bias 𝑏min in 𝐺 . And such an agent would incur cost 𝑐𝑛 by going all the way
around the fan, since 𝑐 < 𝑏min. It remains to show that 𝐺 ′ is an optimal chunking of 𝐺 .

In fact, we show the stronger claim that any chunking of 𝐺 with a local budget of 𝑘 is (weakly)
optimal, as no such chunking can cause the agent to take a cheaper path. To see this, suppose there
is a chunking 𝐺∗ of 𝐺 such the agent goes from 𝑣𝑖 to 𝑡 , for 𝑖 < 𝑛 (this is the only way they could
take a cheaper path). Then,𝐺∗’s chunking of edge (𝑣𝑖 , 𝑡 )must have lower bottleneck cost than in𝐺 ′.
We claim that this is impossible, because Theorem 1 will give the optimal chunking for edge (𝑣𝑖 , 𝑡 ).
To see this, notice that the shortest path from 𝑣𝑖 to 𝑡 is through edge (𝑣𝑖 , 𝑡 ), which is exactly when
Theorem 1’s chunking is optimal. As a result, no 𝐺∗ exists, and so 𝐺 ′ is an optimal chunking. □

We have provided a tight characterization for the worst-case cost ratio in terms of the number
of chunks given a local constraint. We conjecture that a similar result extends to global constraints.
Let 𝑘 be the global chunking budget. Clearly, we could get an upper bound on the worst-case cost
ratio similar to that of Theorem 6 by evenly splitting the chunks so that each edge satisfies a local
constraint of 𝑘/𝑚, where𝑚 = |𝐸 |. We conjecture that this would also be an asymptotically tight
bound, as it seems that the optimal chunking in the 𝑛-fan would need to spread chunks evenly
among half the edges (i.e., the edges (𝑣𝑖 , 𝑡 )).

6 OPTIMAL CHUNKING FOR MULTIPLE AGENTS

We now consider the problem of chunking a task graph for two types of agent, where an agent’s
type is their bias. For example, an instructor might reasonably expect some students to procrastinate
rarely and others to procrastinate frequently. Yet the instructor cannot chunk the task separately
for different students (indeed, they may well not know a given student’s type). How should they
chunk the task while balancing the cost that both types of students incur? We answer this question
in two settings. We first show how to optimally chunk the graph for two types of agents, 𝐴1 and
𝐴2 with 𝑏1 < 𝑏2. Second, we show how to optimally chunk the graph for𝑚 types of agents, with
the additional constraint that all agents take the same path. Allowing agents to take different paths
gives the designer more power but also makes the problem significantly more complex to analyze;
removing this possibility allows us to design for𝑚 types, rather than 2.
Note that in the case of a single agent, there is an obvious way to define the łoptimalž way

to chunk an edge ś it’s the one that agent perceives as cheapest. This definition is also useful
for chunking the task graph optimally, as it tells us which edges we can persuade the agent to
take. With two agents, it’s unclear what it would mean to łoptimallyž chunk an edge. An intuitive
definition would be that the optimal chunking for an edge minimizes the average perceived cost of
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the two agents. But that is wholly unhelpful for graph chunking, as it doesn’t tell us which edges
we can persuade either agent to take. So, we instead consider two related problems: convincing
agents to take the same path, and convincing agents to split up. Solving these two problems will
allow us to chunk the task graph while minimizing the sum of the agents’ costs.

6.1 Splitting Agents onto Separate Paths

In this section, we want to find the chunking 𝐶∗ of (𝑢, 𝑣) such that 𝐴1 takes 𝐶
∗ and 𝐴2 finds 𝐶

∗

łmaximally unappealingž: formally, 𝐶∗ has the maximum perceived cost for 𝐴2 over all chunkings
𝐴1 would take. We can use such a chunking to split up two agents who are both at the same vertex.
We start by defining some terms. Let 𝑝(𝑒;𝑏𝑖 ) represent the perceived cost of edge 𝑒 for the agent

with bias 𝑏𝑖 . Here, agent 𝐴1 has bias 𝑏1, and agent 𝐴2 has bias 𝑏2, where 𝑏1 < 𝑏2. Then, let 𝛼
(𝑖)
𝑢

represent 𝐴𝑖 ’s perceived cost of their best option at 𝑢 (without chunking). So, 𝛼
(𝑖)
𝑢 = 𝑝(𝑢,𝑤𝑖 ;𝑏𝑖 ),

where𝑤𝑖 = argmin𝑣:(𝑢,𝑣)∈𝐸 𝑏𝑖𝑐(𝑢,𝑤𝑖 ) + 𝑐(𝑤𝑖 → 𝑡 ).
We now describe the algorithm that solves this problem, Algorithm 2, at a high level; a full

description can be found in the appendix. Algorithm 2 first computes 𝐶∗1 , the optimal chunking

of (𝑢, 𝑣) for 𝐴1.
5 Then, the algorithm iterates over all choices of 𝑒𝑖 and raises 𝑝(𝑒𝑖 ;𝑏2) as much as

possible while ensuring that 𝐴1 still takes the chunking. It does so by łsiphoningž cost from other
edges in the chunking onto 𝑒𝑖 . It repeats this process for all choices of 𝑒𝑖 . This siphoning has three
phases.
In the first phase, we siphon from 𝑥𝑖−1, . . . , 𝑥1 to 𝑥𝑖 .

6 In the second phase, we siphon from

𝑥𝑖+1, . . . , 𝑥𝑘 to 𝑥𝑖 . These phases are very straightforward, and terminate when 𝑝(𝑒𝑖 ;𝑏1) = 𝛼
(1)
𝑢 , where

𝛼
(1)
𝑢 is the perceived cost of the best alternative to (𝑢, 𝑣) from 𝐴1’s perspective. In the third phase,

we decrease 𝑥>𝑖 and increase 𝑥≤𝑖 ; because 𝑏1 < 𝑏2, doing this results in increasing 𝑝(𝑒𝑖 ;𝑏2) without
increasing 𝑝(𝑒𝑖 ;𝑏1).
Call the resulting chunking 𝐶𝑖 . Note that 𝐴1 will surely take 𝐶𝑖 : 𝐴1 took the original chunking,

and all edges which were increased (potentially all 𝑒≤𝑖 ) were not increased beyond 𝛼
(1)
𝑢 . We first

prove the following conditions of the algorithm.

Lemma 5. Let 𝐶𝑖 = (𝑒1, . . . , 𝑒𝑘 ) be the chunking produced by iteration 𝑖 of Algorithm 2. Then:

(a)
∑

𝑗 ̸=𝑖 𝑥 𝑗 > 0 =⇒ 𝑝(𝑒𝑖 ;𝑏1) = 𝛼
(1)
𝑢

(b)
∑

𝑗>𝑖 𝑥 𝑗 > 0 =⇒ ∀𝑗 ≤ 𝑖, 𝑝(𝑒 𝑗 ;𝑏1) = 𝛼
(1)
𝑢

Proof. For (a), if any 𝑥 𝑗 > 0, then the algorithm terminated early in phase 1 or phase 2, which

implies that 𝑝(𝑒𝑖 ;𝑏1) = 𝛼
(1)
𝑢 . For (b), if more could be siphoned from 𝑥>𝑖 , then the algorithm would

siphon more in phase 3, unless no edges in 𝑒<𝑖 can be increased further. □

The following theorem says that𝐴2 finds edge 𝑒𝑖 in𝐶𝑖 maximally unappealing over all chunkings
𝐴1 would take; the proof is in the appendix.

Theorem 7. If 𝐶𝑖 is the output of the 𝑖th iteration of Algorithm 2 and 𝐶 ′ is another chunking such

that 𝑝(𝑒 ′𝑖 ;𝑏2) > 𝑝(𝑒𝑖 ;𝑏2), then 𝐴1 will not take 𝐶
′.

The theorem can be applied to show that our algorithm is correct. Let 𝐶∗ be the chunking with
the maximum perceived cost from 𝐴2’s perspective that 𝐴1 will still take. Let 𝑖

∗ be the bottleneck
of 𝐶∗ for 𝐴2. Then, the contrapositive of the theorem shows that our algorithm will find 𝐶∗ (or a
chunking with equivalent 𝐴2-perceived cost) when 𝑖 = 𝑖∗.

5The algorithm does not rely on starting with an optimal chunking; any chunking that 𝐴1 takes would work.
6To ease exposition, we can think of łsiphoningž as a continuous process where one cost is decreased as another increases.

In practice, how much to siphon can be computed in𝑂(1) time; see the appendix for details.
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Unfortunately, this problem is not symmetric with respect to 𝐴1 and 𝐴2. In other words, we
still must solve the problem of chunking an edge such that 𝐴2 takes it but 𝐴1 finds it maximally
unappealing. The only modification we need to make is to phase 3, where we instead increase

𝑥>𝑖 and decrease 𝑥≤𝑖 , which will increase 𝑝(𝑒𝑖 ;𝑏1) without increasing 𝑝(𝑒𝑖 ;𝑏2). More details can be
found in the appendix.

6.2 Keeping Agents on the Same Path

In this section, we consider the problem of chunking a single edge (𝑢, 𝑣) so that all agents take the
chunking. This problem can solved greedily, even if we have𝑚 types of agents. This algorithm will

Algorithm 3: Greedily chunk edge (𝑢, 𝑣) into 𝑘 chunks for𝑚 agents

for 𝑖 = 𝑘 to 1 do

maximize 𝑥𝑖 such that 𝑝(𝑒𝑖 ;𝑏 𝑗 ) ≤ 𝛼
(𝑗 )
𝑢 for all 𝑗 ∈ [𝑚]

if 𝑥𝑖 < 0 then
return ⊥

if
∑
𝑖 𝑥𝑖 ≥ 𝑥 then
lower 𝑥𝑖 so that

∑
𝑖 𝑥𝑖 = 𝑥

return chunking 𝐶

return ⊥ //
∑
𝑖 𝑥𝑖 < 𝑥

produce a chunking that the agents will all take, iff such a chunking exists. We use the following
lemma, which is proven in the appendix. To introduce the lemma, we define a partial chunking
as a chunking that does not assign all the cost of the original edge. Algorithm 3 can be viewed as
building partial chunkings into a complete chunking.

Lemma 6. Let𝐶 and𝐶 ′ be two (possibly partial) chunkings of the same edge. Suppose that
∑𝑘

𝑖=𝑙
𝑥 ′𝑖 >∑𝑘

𝑖=𝑙
𝑥𝑖 . Then, there exists an 𝑖 ∈ [𝑙, 𝑘] such that for all 𝑏 > 1, 𝑝(𝑒 ′𝑖 ;𝑏) > 𝑝(𝑒𝑖 ;𝑏).

The lemma says that if a chunking 𝐶 ′ assigns more cost to the last 𝑘 − 𝑙 edges than 𝐶 ′, then one
of those last 𝑘 − 𝑙 edges must have a higher perceived cost (for any present-biased agent). We now
prove that the algorithm is correct.

Theorem 8. Algorithm 3 runs in time 𝑂(𝑚𝑘). Further:

(a) If Algorithm 3 returns a chunking 𝐶 , then all agents will take 𝐶 .

(b) If Algorithm 3 returns ⊥, then no chunking exists that all agents would take.

Proof. Statement (a) is obvious; if a chunking is returned, then it must be the case that 𝑝(𝑒𝑖 ;𝑏1) ≤

𝛼
(𝑗 )
𝑢 for all 𝑖 and for all 𝑗 . Thus, every chunk is more appealing than every agent’s best outside

option, and so all agents take 𝐶 . The runtime is also obvious: inside the loop, the only work being

done is computing the maximum 𝑥𝑖 such that 𝑝(𝑒𝑖 ;𝑏 𝑗 ) ≤ 𝛼
(𝑗
𝑢 ), for all 𝑗 ∈ [𝑚].

We prove statement (b) by looking at two cases. For the first case, suppose the algorithm returns

⊥ at iteration 𝑖 . This means that when 𝑥𝑖 = 0, 𝑝(𝑒𝑖 ;𝑏 𝑗 ) > 𝛼
(𝑗 )
𝑢 for some agent 𝑗 . However, note

that if 𝑥𝑖 = 0, then 𝑝(𝑒𝑖 ;𝑏 𝑗 ) = min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),
∑

𝑙>𝑖 𝑥𝑙 + 𝑐(𝑣 → 𝑡 )), where
∑

𝑙>𝑖 𝑥𝑙 ≤ 𝑥 (or
the algorithm would have terminated at 𝑖 + 1). Over all chunkings, the smallest perceived cost
of the first edge is achieved when no weight is placed on it. Let 𝑒min

1 be the first edge in such a

chunking. Then, 𝑝(𝑒min
1 ;𝑏 𝑗 ) = min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝑥 + 𝑐(𝑣 → 𝑡 )). Since 𝑥 ≥

∑
𝑗>𝑖 𝑥 𝑗 , we know

that 𝑝(𝑒min
1 ;𝑏 𝑗 ) ≥ 𝑝(𝑒𝑖 ;𝑏 𝑗 ) > 𝛼

(𝑗 )
𝑢 . Thus, in any other chunking, the agent 𝑗 would deviate at the

first chunk.
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In the second case, suppose the algorithm returns ⊥ at the end. This means that, for all 𝑖 ,

𝑝(𝑒𝑖 ;𝑏 𝑗 ) = 𝛼
(𝑗 )
𝑢 for some agent 𝑗 and

∑
𝑖 𝑥𝑖 < 𝑥 . In other words, the chunking 𝐶 that the algorithm

produces is a partial chunking, and a complete chunking must assign more cost. However, Lemma 6
says that if any chunking 𝐶 ′ assigns more cost, then there would be some edge 𝑒 ′ of 𝐶 ′ which all
agents would perceive as more expensive. So, some agent would abandon their path at 𝑒 ′. Thus,
there is no complete chunking that all agents would take. □

6.3 Optimal Graph Chunking for Multiple Agents

We now revisit the problem of optimal graph chunking, with a local or global chunking budget, 𝑘 .

6.3.1 Two Types. We first assume we have a local chunking budget of 𝑘 chunks per edge, and
try to minimize the sum of the two agents’ (real) costs.7 We first reformulate our solution to
the single agent case to introduce the idea of łpersuadablež edges. In that case, we used the
recurrence 𝑐𝑜𝑠𝑡[𝑢] to represent the minimum cost of any 𝑢 → 𝑡 path that we could persuade
the agent to take. We computed the recurrence via 𝑐𝑜𝑠𝑡[𝑢] = min𝑣∈P(𝑢) 𝑐(𝑢, 𝑣) + 𝑐𝑜𝑠𝑡[𝑣], where
P(𝑢) = {𝑣 : (𝑢, 𝑣) ∈ 𝐸, 𝛽𝑢,𝑣 ≤ 𝛼𝑢} represents the set of vertices we can persuade the agent to take
from 𝑢.

We can define a very similar recurrence for two agents. Say that two paths 𝑃 and 𝑄 are (𝐴1, 𝐴2)-
compatible if we can chunk (some of) the edges along 𝑃 and𝑄 such that 𝐴1 takes 𝑃 and 𝐴2 takes𝑄 .
Let 𝑐𝑜𝑠𝑡[𝑢,𝑦] represent the minimum sum of the costs of any 𝑢 → 𝑡 path 𝑃 and a 𝑦 → 𝑡 path 𝑄

such that (𝑃,𝑄) are (𝐴1, 𝐴2)-compatible. Further, let P(𝑢,𝑦) be the set of all edges (𝑣, 𝑧) such that
(𝑢, 𝑣) and (𝑦, 𝑧) can be łcompatibly-chunkedž. This means that, if (𝑢, 𝑣) = (𝑦, 𝑧), then there exists a
chunking of (𝑢, 𝑣) that both agents take. Otherwise, there exist chunkings 𝐶1,𝐶2 of (𝑢, 𝑣) and (𝑦, 𝑧)

such that 𝐴1 takes 𝐶1 and 𝐴2 takes 𝐶2. If 𝑢 ̸= 𝑦 (i.e., the agents start at different vertices), then
P(𝑢,𝑦) can be easily computed via the algorithms in Section 4. And P(𝑢,𝑢) can be computed via
the algorithms in Section 6.1 and 6.2.

With these functions, the recurrence can be broken into three cases. The first case is when 𝐴2 is
about to go to the vertex,𝑢, that𝐴1 is currently at. In this case, we need to ensure that our chunking
of (𝑢, 𝑣) for 𝐴1 doesn’t cause issues for 𝐴2. This case can be represented as:

𝐶1(𝑢, 𝑣,𝑦) =

{
𝑐(𝑦,𝑢) + 𝑐𝑜𝑠𝑡[𝑢,𝑢] if (𝑣,𝑢) ∈ P(𝑢,𝑦)

∞ otherwise.

The second case is similar, but with the agents flipped.

𝐶2(𝑢,𝑦, 𝑧) =

{
𝑐(𝑢,𝑦) + 𝑐𝑜𝑠𝑡[𝑦,𝑦] if (𝑦, 𝑧) ∈ P(𝑢,𝑦)

∞ otherwise.

Finally, if neither of the previous cases occur, the cost is:

𝐶3(𝑢, 𝑣,𝑦, 𝑧) = 𝑐(𝑢, 𝑣) + 𝑐(𝑦, 𝑧) + 𝑐𝑜𝑠𝑡[𝑣, 𝑧].

Putting it all together, the recurrence is:

𝑐𝑜𝑠𝑡[𝑢,𝑦] = min
(𝑣,𝑧)∈P(𝑢,𝑦)

min(𝐶1(𝑢, 𝑣,𝑦),𝐶2(𝑢,𝑦, 𝑧),𝐶3(𝑢, 𝑣,𝑦, 𝑧)).

We first prove the correctness of this recurrence.

Lemma 7. The recurrence for 𝑐𝑜𝑠𝑡[𝑢,𝑦] above is the cost of the cheapest paths 𝑃 : 𝑢 → 𝑡 and

𝑄 : 𝑦 → 𝑡 such that 𝑃 and 𝑄 are (𝐴1, 𝐴2)-compatible.

7It’s trivial to modify the recurrence to instead minimize the maximum of the two types’ costs, a weighted average (useful if

one type is much more common), or many other such functions.
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Proof. Assume that 𝑐𝑜𝑠𝑡[𝑣, 𝑧] have been correctly computed for all 𝑣 (resp. 𝑧) that are out-
neighbors of 𝑢 (resp. 𝑦). We know that 𝑢 ̸= 𝑣 and 𝑦 ̸= 𝑧, because there are no self-loops in a DAG.
We now proceed by cases.

Case 1: 𝑢 = 𝑦. First, note that 𝑣 ̸= 𝑢, 𝑧 ̸= 𝑢 for all (𝑣, 𝑧) ∈ P(𝑢,𝑢). So, we will only be in the first
case of the min. In this case, 𝑃 (𝑢,𝑦) = 𝑃 (𝑢,𝑢) will return all (𝑣, 𝑧) such that there exist chunkings 𝐶1

of (𝑢, 𝑣) and𝐶2 of (𝑢, 𝑧) such that 𝐴1 takes𝐶1 and 𝐴2 takes𝐶2, if both are at 𝑢. Further, if 𝑣 = 𝑧, then
𝐶1 = 𝐶2 (i.e., (𝑢, 𝑣) is chunked such that both agents take it). Recall that 𝑐𝑜𝑠𝑡[𝑣, 𝑧] is the cheapest cost
of (𝐴1, 𝐴2) compatible paths 𝑃 ′ : 𝑣 → 𝑡 and 𝑄 ′ : 𝑧 → 𝑡 . Since 𝐴1 going from 𝑢 → 𝑣 is compatible
with 𝐴2 going from 𝑢 → 𝑧, we get that the paths 𝑃 : (𝑢, 𝑣) ∪ 𝑃 ′ and 𝑄 : (𝑢, 𝑧) ∪ 𝑄 ′ are (𝐴1, 𝐴2)

compatible.

Case 2: 𝑢 ̸= 𝑦. When 𝑢 ̸= 𝑦, all three cases of the min are possible. Since 𝑃 (𝑢,𝑦) describes all
possible ways to chunk for 𝐴1 at 𝑢 and 𝐴2 at 𝑦, the min will be correct as long as all three cases
lead to (𝐴1, 𝐴2)-compatible paths, so that’s what we’ll prove.
In the first case, assume that 𝑣 ̸= 𝑦,𝑢 ̸= 𝑧. From the correctness of 𝑐𝑜𝑠𝑡[𝑣, 𝑧], and the fact that

(𝑢, 𝑣) and (𝑦, 𝑧) share no endpoints, it immediately follows that the 𝑢 → 𝑡 and 𝑦 → 𝑡 paths are
(𝐴1, 𝐴2)-compatible.

In the second case, assume that 𝑣 = 𝑦 (this implies that 𝑧 ̸= 𝑢, as otherwise 𝑢 and 𝑦 form a cycle).
In other words, 𝐴1 will go from 𝑢 to 𝑦 and meet 𝐴2 there. Thus, we simply add the edge (𝑢,𝑦) to
𝐴1’s path and continue the traversal with both agents at 𝑦. So by the correctness of 𝑐𝑜𝑠𝑡[𝑦,𝑦], it
follows that the 𝑢 → 𝑡 and 𝑦 → 𝑡 paths are (𝐴1, 𝐴2)-compatible.

The third case, where 𝑧 = 𝑢, is symmetric to the second case, but with the agents swapped. □

Suppose that there is a local budget of 𝑘 chunks per edge.

Theorem 9. Given any task graph 𝐺 = (𝑉 , 𝐸) and a local constraint 𝑘 , we can optimally chunk𝐺

for two types of agents in time 𝑂(|𝐸 |2𝑘2 + |𝑉 |).

Proof Sketch. The runtime of the algorithm is dominated by determining when it’s possible to
split the agents onto separate paths. All together, this will take𝑂(|𝐸 |2) applications of the algorithm
in Section 6.1, for a total runtime of 𝑂(|𝐸 |2𝑘2). The algorithm first computes P(𝑢,𝑦) for all 𝑢,𝑦 ∈ 𝑉 ,
and then computes the 𝑐𝑜𝑠𝑡 recurrence. More details can be found in the appendix. □

Finally, suppose there is a global budget of 𝑘 chunks.

Theorem 10. Given any task graph 𝐺 = (𝑉 , 𝐸) and a global constraint 𝑘 , we can optimally chunk

𝐺 for two types of agents in time 𝑂(|𝐸 |2𝑘3 log𝑘 + |𝑉 |).

Proof Sketch. Like in the single-agent global budget case, we first modify the function P to P ′,
where P ′(𝑢,𝑦) returns the set of (𝑣, 𝑧, 𝑖) such that 𝑖 is the minimum number of chunks to compatibly
chunk (𝑢, 𝑣) and (𝑦, 𝑧) (where 𝑖 = ∞ if no chunking is possible). The bottleneck is in computing the
minimum number of chunks to split the agents from one vertex to two separate vertices. □

6.3.2 𝑚 Types of Agents Taking the Same Path. Assume that there are𝑚 types of agents but only
chunkings where all𝑚 types take the same path are allowed. This easily reduces to the single agent
case (found in Section 4), but we simply use Algorithm 3 to determine what edges we can persuade
the group of agents to take. More detail can be found in the appendix; here, we simply state the
main theorems.

Theorem 11. Given any task graph 𝐺 = (𝑉 , 𝐸) and a local constraint 𝑘 , we can find the optimal

single-path chunking of 𝐺 for𝑚 types of agents with at most |𝐸 | applications of Algorithm 3, for a

total runtime of 𝑂(|𝐸 |𝑚𝑘 + |𝑉 |).
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Theorem 12. Given any task graph 𝐺 = (𝑉 , 𝐸) and a global constraint 𝑘 , we can find the optimal

single-path chunking of 𝐺 for𝑚 types of agents with at most |𝐸 |log𝑘 applications of Algorithm 3, for

a total runtime of 𝑂(|𝐸 |𝑚𝑘 log𝑘 + |𝑉 |).

7 CONCLUSION

We have supplemented a graph-theoretic model of present bias with a model of chunking, giving
task designers the ability to chunk edges in order to reduce the impact of present bias. We found
that the best way to chunk an edge is relatively straightforward for edges on the shortest path,
but significantly more complicated for edges off the shortest path. We then used our optimal
edge-chunking algorithm to optimally chunk task graphs. We provided tight theoretical guarantees
on how much we can reduce an agent’s cost ratio as a function of the number of chunks we place
in the graph. Finally, we showed how to optimally chunk task graphs for two types of agents
simultaneously. Overall, our work highlights the efficacy of chunking as a means to defeat the
harms agents incur due to their present bias.
Our work raises several open questions. We highlight two interesting future directions. First,

we saw that the problem grew significantly more complicated when designing for two types of
agents. Can we extend our results to an arbitrary number of types? More generally, suppose the
task designer was uncertain about the agents’ present-bias and captured this uncertainty with a
distribution over 𝑏. Our work can be seen as solving this problem when the support of this bias
distribution is two. But can we chunk in the case where 𝑏 is continuously distributed?
Second, as explained before, our model is best understood as the task designer suggesting a

chunking to agents, rather than enforcing this chunking. In some situations, such as classroom
settings, the task designer may want to place intermediate checkpoints to guarantee that agents
make regular progress on the task. How should these checkpoints be modeled, and how much can
they lower agents’ costs compared to chunking?
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A OPTIMAL EDGE CHUNKING PROOFS

Theorem 1. Suppose we partition an edge (𝑢, 𝑣) of cost 𝑥 into 𝑘 chunks. Let 𝑢1, . . . , 𝑢𝑘 represent the

vertices in this chunking, and let 𝑐(𝑢𝑖 , 𝑢𝑖+1) = 𝑥𝑖 , where, for 1 ≤ 𝑖 ≤ 𝑘 , the 𝑥𝑖 ’s are defined below.

1 ≤ 𝑖 ≤ 𝑘 : 𝑥𝑖 =
(𝑏 − 1)𝑘−𝑖𝑏𝑖−1

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥 .

With this chunking, the agent has selective bias 1

1−( 𝑏−1𝑏 )
𝑘 . If, with this chunking, the shortest path from

𝑢𝑖 to 𝑡 is through 𝑢𝑖+1 for all 𝑖 > 1, then this chunking is optimal.

Proof. Lemma 1 proves the case where 𝑘 = 2. Suppose that the theorem holds for 𝑘 − 1 chunks;
we prove it for 𝑘 chunks. For now, we assume that the shortest path from 𝑢𝑖 to 𝑢 is 𝑢𝑖+1 for all 𝑖 > 1.
At the end, we’ll consider when this is not true. Say we put cost 𝑥1 on the first edge. Then, we
apply the inductive hypothesis to the other 𝑘 − 1 edges, now with a task of cost 𝑥 − 𝑥1. The costs
𝑥2, . . . , 𝑥𝑘 are thus:

𝑥𝑖 =
(𝑏 − 1)𝑘−𝑖−1𝑏𝑖−2

𝑏𝑘−1 − (𝑏 − 1)𝑘−1
(𝑥 − 𝑥1).

Because the shortest path through 𝑢𝑖 is 𝑢𝑖+1 for all 𝑖 > 2 as well, we know from the inductive
hypothesis that this chunking is optimal (given that 𝑥1 is on the first edge). Further, the perceived
costs of starting with those edges are all

1

1 −
(
𝑏−1
𝑏

)𝑘−1 (𝑥 − 𝑥1) + 𝑐(𝑣 → 𝑡 ).

We want to minimize the maximum of the perceived cost of starting with edge (𝑢1, 𝑢2) and all the
other edges. As before, we can do so by setting the perceived costs equal, as one side is decreasing
in 𝑥1 while the other is increasing in 𝑥1. Because the shortest path from 𝑢𝑖 is through 𝑢𝑖+1 for
𝑖 > 1, the perceived cost of starting with (𝑢1, 𝑢2) is 𝑏𝑥1 + 𝑐(𝑢2 → 𝑡 ) = 𝑏𝑥1 + 𝑥2 + 𝑐(𝑢3 → 𝑡 ) = · · · =

𝑏𝑥1 +
∑𝑘

𝑖=2 𝑥𝑖 + 𝑐(𝑣 → 𝑡 ) = 𝑏𝑥1 + 𝑥 − 𝑥1 + 𝑐(𝑣 → 𝑡 ) = (𝑏 − 1)𝑥1 + 𝑥 + 𝑐(𝑣 → 𝑡 ).

(𝑏 − 1)𝑥1 + 𝑥 + 𝑐(𝑣 → 𝑡 ) =
1

1 −
(
𝑏−1
𝑏

)𝑘−1 (𝑥 − 𝑥1) + 𝑐(𝑣 → 𝑡 )

(𝑏 − 1)𝑥1 + 𝑥 =
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1
(𝑥 − 𝑥1)(

𝑏 − 1 +
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

)
𝑥1 =

(
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1
− 1

)
𝑥

(𝑏 − 1)(𝑏𝑘−1 − (𝑏 − 1)𝑘−1) + 𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1
𝑥1 =

𝑏𝑘−1 − 𝑏𝑘−1 + (𝑏 − 1)𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1
𝑥
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(𝑏𝑘 − 𝑏𝑘−1 − (𝑏 − 1)𝑘 + 𝑏𝑘−1)𝑥1 = (𝑏 − 1)𝑘−1𝑥

𝑥1 =
(𝑏 − 1)𝑘−1

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥 .

Thus, 𝑥1 matches the chunking in the theorem. We now verify that the perceived cost matches:

(𝑏 − 1)𝑥1 + 𝑥 + 𝑐(𝑣 → 𝑡 ) = (𝑏 − 1) ·
(𝑏 − 1)𝑘−1

𝑏𝑘 − (𝑏 − 1)𝑘
· 𝑥 + 𝑥 + 𝑐(𝑣 → 𝑡 )

=

(
(𝑏 − 1)𝑘

𝑏𝑘 − (𝑏 − 1)𝑘
+ 1

)
𝑥 + 𝑐(𝑣 → 𝑡 )

=
(𝑏 − 1)𝑘 + 𝑏𝑘 − (𝑏 − 1)𝑘

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥 + 𝑐(𝑣 → 𝑡 )

=
𝑏𝑘

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥 + 𝑐(𝑣 → 𝑡 )

=
1

1 −
(
𝑏−1
𝑏

)𝑘 𝑥 + 𝑐(𝑣 → 𝑡 ).

A similar calculation will show that all the perceived costs are the same:

1

1 −
(
𝑏−1
𝑏

)𝑘−1 (𝑥 − 𝑥1) + 𝑐(𝑣 → 𝑡 )

=
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
𝑥 −

(𝑏 − 1)𝑘−1

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥

)
+ 𝑐(𝑣 → 𝑡 )

=
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
1 −

(𝑏 − 1)𝑘−1

𝑏𝑘 − (𝑏 − 1)𝑘

)
𝑥 + 𝑐(𝑣 → 𝑡 )

=
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
𝑏𝑘 − (𝑏 − 1)𝑘 − (𝑏 − 1)𝑘−1

𝑏𝑘 − (𝑏 − 1)𝑘

)
𝑥 + 𝑐(𝑣 → 𝑡 )

=
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
𝑏𝑘 − (𝑏 − 1)𝑘−1(𝑏 − 1 + 1)

𝑏𝑘 − (𝑏 − 1)𝑘

)
𝑥 + 𝑐(𝑣 → 𝑡 )

=
𝑏𝑘−1

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
𝑏(𝑏𝑘−1 − (𝑏 − 1)𝑘−1)

𝑏𝑘 − (𝑏 − 1)𝑘

)
𝑥 + 𝑐(𝑣 → 𝑡 )

=
𝑏𝑘

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥 + 𝑐(𝑣 → 𝑡 )

=
1

1 −
(
𝑏−1
𝑏

)𝑘 𝑥 + 𝑐(𝑣 → 𝑡 ).

Finally, we can plug the value of 𝑥1 into the formula for 𝑥𝑖 :

𝑥𝑖 =
(𝑏 − 1)𝑘−𝑖𝑏𝑖−2

𝑏𝑘−1 − (𝑏 − 1)𝑘−1
(𝑥 − 𝑥1)

=
(𝑏 − 1)𝑘−𝑖𝑏𝑖−2

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
𝑥 −

(𝑏 − 1)𝑘−1

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥

)

=
(𝑏 − 1)𝑘−𝑖𝑏𝑖−2

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
1 −

(𝑏 − 1)𝑘−1

𝑏𝑘 − (𝑏 − 1)𝑘

)
𝑥
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=
(𝑏 − 1)𝑘−𝑖𝑏𝑖−2

𝑏𝑘−1 − (𝑏 − 1)𝑘−1

(
𝑏(𝑏𝑘−1 − (𝑏 − 1)𝑘−1)

𝑏𝑘 − (𝑏 − 1)𝑘

)
𝑥 (see previous derivation)

=
(𝑏 − 1)𝑘−𝑖𝑏𝑖−1

𝑏𝑘 − (𝑏 − 1)𝑘
𝑥 .

Thus, we’ve shown all components of the inductive statement. To summarize, under the assumption
that the shortest path from 𝑢𝑖 is through 𝑢𝑖+1 for all 𝑖 > 1, we’ve shown that the chunking in the
theorem is optimal and produces the correct selective bias.
When the shortest path from 𝑢𝑖 to 𝑡 is through some external vertex 𝑤 instead of 𝑢𝑖+1, we’ve

overestimated the perceived cost at some edges. In our calculations, we assumed that all edges
would have perceived cost 𝑏𝑥𝑖 +

∑
𝑗>𝑖 𝑥 𝑗 + 𝑐(𝑣 → 𝑡 ), but actually some edges would have a lower

perceived cost of 𝑝(𝑒𝑖 ) = 𝑏𝑥𝑖 + 𝑐(𝑤 → 𝑡 ). However, the final edge (𝑢𝑘 , 𝑣) would still have perceived
cost 𝑏𝑥𝑘 + 𝑐(𝑣 → 𝑡 ), as we assumed in the theorem, and thus the perceived cost of that edge in the
chunking would be 1

1−( 𝑏−1𝑏 )
𝑘 𝑥 + 𝑐(𝑣 → 𝑡 ). So, though optimality can no longer be guaranteed, the

chunking in the theorem produces the expected selective bias regardless of whether the edge is on
the shortest path. □

As a brief sanity check, we show that the 𝑥𝑖 ’s defined in the theorem actually sum to 𝑥 .

Proposition 1.

∀𝑘 ≥ 1,
𝑘∑
𝑖=1

(𝑏 − 1)𝑘−𝑖𝑏𝑖−1 = 𝑏𝑘 − (𝑏 − 1)𝑘 .

Proof. When 𝑘 = 1, the left side is (𝑏 − 1)0𝑏0 = 1, while the right side is 𝑏1 − (𝑏 − 1)1 = 1. Suppose
that the statement holds for 𝑘 . Then:

𝑘+1∑
𝑖=1

(𝑏 − 1)𝑘+1−𝑖𝑏𝑖−1 = 𝑏𝑘 +
𝑘∑
𝑖=1

(𝑏 − 1)𝑘+1−𝑖𝑏𝑖−1

= 𝑏𝑘 + (𝑏 − 1)
𝑘∑
𝑖=1

(𝑏 − 1)𝑘−𝑖𝑏𝑖−1

= 𝑏𝑘 + (𝑏 − 1)(𝑏𝑘 − (𝑏 − 1)𝑘 ) by the inductive hypothesis

= 𝑏𝑘 + 𝑏𝑘+1 − 𝑏𝑘 − (𝑏 − 1)𝑘+1

= 𝑏𝑘+1 − (𝑏 − 1)𝑘+1.

□

Lemma 2. Suppose that 𝐶 is a chunking with bottleneck 𝛽 . If another chunking 𝑂 has bottleneck

𝛽 ′ < 𝛽 and the same transition vertex 𝜏 , then 𝑂 must lower the cost of all edges that are bottlenecks in

𝐶 , and thus raise the cost of the remaining edges.

Proof. Let 𝐶 have bottleneck 𝛽 and 𝑂 have bottleneck 𝛽 ′, where both chunkings have the same
transition vertex 𝜏 . Let 𝐽 = { 𝑗 : 𝑝(𝑒𝐶𝑗 ) < 𝛽} and 𝐼 = {𝑖 : 𝑝(𝑒𝐶𝑖 ) = 𝛽} partition the indices. We will

show that
∑

𝑗 ∈𝐽 𝑥
𝑂
𝑗 >

∑
𝑗 ∈𝐽 𝑥

𝐶
𝑗 and that 𝑥𝑂𝑖 < 𝑥𝐶𝑖 for all 𝑖 ∈ 𝐼 .

Since 𝑂 has a lower bottleneck, it must be the case that 𝑝(𝑒𝑂
𝑘
) < 𝛽 for all 𝑘 . This implies that

for all 𝑖 ∈ 𝐼 , we get that 𝑝(𝑒𝑂𝑖 ) < 𝑝(𝑒𝐶𝑖 ) (since 𝑝(𝑒
𝐶
𝑖 ) = 𝛽). Note that 𝑐(𝑢𝑂𝑖 → 𝑡 ) = 𝑐(𝑢𝐶𝑖 → 𝑡 ), as

both chunkings have the same transition vertex 𝜏 . Since 𝑝(𝑒𝑂𝑖 ) = 𝑏𝑥𝑂𝑖 + 𝑐(𝑢𝑂𝑖 → 𝑡 ) and 𝑝(𝑒𝐶𝑖 ) =

𝑏𝑥𝐶𝑖 + 𝑐(𝑢𝐶𝑖 → 𝑡 ), the fact that 𝑝(𝑒𝑂𝑖 ) < 𝑝(𝑒𝐶𝑖 ) implies that 𝑥𝑂𝑖 < 𝑥𝐶𝑖 .

Clearly if 𝑥𝑂𝑖 < 𝑥𝐶𝑖 for all 𝑖 ∈ 𝐼 , then
∑

𝑗 ∈𝐽 𝑥
𝑂
𝑗 >

∑
𝑗 ∈𝐽 𝑥

𝐶
𝑗 , as 𝐼 and 𝐽 partition the indices, and

both chunkings must sum to 𝑥 . □

, Vol. 1, No. 1, Article . Publication date: May 2023.



Chunking Tasks for Present-Biased Agents

Lemma 3. If a chunking 𝐶 has the same perceived cost starting with any edge in the chunking, then

𝐶 is optimal.

Proof. Let 𝐶 have bottleneck 𝛽 and transition vertex 𝜏 , and let 𝑂 have bottleneck 𝛽 ′ < 𝛽 (and

an arbitrary transition vertex). We prove that
∑𝑗

𝑖=1 𝑥
𝐶
𝑖 >

∑𝑗
𝑖=1 𝑥

𝑂
𝑖 for all 𝑗 by induction. With this

proven, we get our desired contradiction with
∑𝑘

𝑖=1 𝑥
𝐶
𝑖 = 𝑥 >

∑𝑘
𝑖=1 𝑥

𝑂
𝑖 , which means that 𝑂 does

not assign all the cost.
For the base case of 𝑗 = 1, note that 𝑝(𝑒𝐶1 ) > 𝑝(𝑒𝑂1 ) (because the bottleneck is lower). Expanding

the perceived cost equations:

𝑝(𝑒𝐶1 ) > 𝑝(𝑒𝑂1 )

𝑏𝑥𝐶1 + 𝑐(𝑢𝐶2 → 𝑡 ) > 𝑏𝑥𝑂1 + 𝑐(𝑢𝑂2 → 𝑡 )

𝑏𝑥𝐶1 + min 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝑥 − 𝑥𝐶1 + 𝑐(𝑣 → 𝑡 ) > 𝑏𝑥𝑂1 + min 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝑥 − 𝑥𝑂1 + 𝑐(𝑣 → 𝑡 ).

If 𝑥𝑂1 = 𝑥𝐶1 + 𝜀 for any positive 𝜀, the first term would go up by 𝑏𝜀 and the min would decrease by at
most 𝜀 (if the both mins were the second term). Because 𝑏 > 1, this would never satisfy the above
equation, and so 𝑥𝐶1 > 𝑥𝑂1 .
The inductive case is essentially analogous to the base case. The perceived cost equation for

arbitrary 𝑗 expands to:

𝑏𝑥𝐶1 + min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝑥 −
𝑗−1∑
𝑖=1

𝑥𝐶𝑖 − 𝑥
𝐶
𝑗 + 𝑐(𝑣 → 𝑡 ))

> 𝑏𝑥𝑂1 + min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝑥 −
𝑗−1∑
𝑖=1

𝑥𝑂𝑖 − 𝑥
𝑂
𝑗 + 𝑐(𝑣 → 𝑡 )).

The inductive hypothesis tells us that
∑𝑗−1

𝑖=1 𝑥
𝐶
𝑖 >

∑𝑗−1
𝑖=1 𝑥

𝑂
𝑖 , so these terms do not change the

argument. The only way that the inequality can be satisfied is if 𝑥𝐶𝑗 < 𝑥𝑂𝑗 . Otherwise, if 𝑥
𝑂
1 = 𝑥𝐶1 + 𝜀

for any positive 𝜀, the first term would go up by 𝑏𝜀 and the min would decrease by at most 𝜀 (since
the sum is greater on the left hand side). So by induction, we get the desired result. □

Theorem 2. Given any edge (𝑢, 𝑣), we can determine the optimal 𝑘-chunking in𝑂(𝑘) time, assuming

that the shortest paths from 𝑢 → 𝑡 and 𝑣 → 𝑡 have been precomputed.

Proof. Let 𝑤 denote the node following 𝑢 on the shortest path from 𝑢 to 𝑡 . If 𝑣 = 𝑤 , we can
simply apply Theorem 1 to immediately get the best partition. So assume 𝑣 ̸= 𝑤 . This means that
𝛿 > 0.

We first focus on the difficult case where 𝛿 ≤ 𝑥 ; the case where 𝛿 > 𝑥 will be covered at the
end. As mentioned earlier, this means that we can satisfy any value of 𝜏 , by placing at least 𝛿 cost
on the first 𝜏 edges while ensuring that the total cost of the first 𝜏 − 1 edges is less than 𝛿 . The
case where 𝜏 = 𝑘 is an edge case that will be handled at the end. So suppose that 𝜏 ∈ {1, . . . , 𝑘 − 1}.
We explain how to optimally chunk (𝑢, 𝑣) for this fixed value of 𝜏 ; in other words, we produce the
optimal chunking over all chunkings that satisfy

∑𝜏
𝑖=1 𝑥𝑖 ≥ 𝛿 and

∑𝜏−1
𝑖=1 𝑥𝑖 ≤ 𝛿 .

We start by setting 𝑥1 = 𝑥2 = · · · = 𝑥𝜏 = 𝛿/𝜏 . Then for all 𝑖 < 𝜏 , 𝑝(𝑒𝑖 ) = 𝑏𝑥𝑖 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ) =
𝑏𝛿
𝜏
+ 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ). Further:

𝑝(𝑒𝜏 ) = 𝑏𝑥𝜏 + 𝑐(𝑢𝜏+1 → 𝑡 )

= 𝑏𝑥𝜏 +
∑𝑘

𝑖=𝜏+1 𝑥𝑖 + 𝑐(𝑣 → 𝑡 )(shortest path from 𝑢𝜏+1 follows the chunking)
= 𝑏𝑥𝜏 + 𝑥 −

∑𝜏
𝑖=1 𝑥𝑖 + 𝑐(𝑣 → 𝑡 )

= 𝑏 · 𝛿
𝜏
− 𝜏 · 𝛿

𝜏
+ 𝑥 + 𝑐(𝑣 → 𝑡 ) (substituing 𝑥𝑖 = 𝛿/𝜏 for 𝑖 ≤ 𝜏)

= 𝑏𝛿
𝜏
+ 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ) (since 𝛿 = 𝑥 + 𝑐(𝑣 → 𝑡 ) − 𝑐(𝑢,𝑤 ) − 𝑐(𝑤 → 𝑡 )).
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Let 𝛼 = 𝑏𝛿
𝜏
+ 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ). Then 𝑝(𝑒𝑖 ) = 𝛼 for all 𝑖 ≤ 𝜏 .

Now we can chunk the remaining 𝑥 − 𝛿 cost over the remaining 𝑘 − 𝜏 edges according to
Theorem 1, which gives them perceived costs:

𝑥 − 𝛿

1 −
(
𝑏−1
𝑏

)𝑘−𝜏 + 𝑐(𝑣 → 𝑡 )
def
= 𝛽.

From Lemma 3, we know that if 𝛼 = 𝛽 , we have the optimal chunking (for any transition vertex
𝜏 , not just the current 𝜏). In that case, we stop the algorithm and return this chunking. Otherwise,
there are two cases:
Case 1: 𝛼 > 𝛽 . In this case, we claim that our chunking is optimal among all chunkings with

transition vertex 𝜏 . Notice that our chunking has bottleneck 𝛼 . By Lemma 2, if another chunking,
𝑂 with the same 𝜏 has bottleneck lower than 𝛼 , it must assign lower cost to all of the first 𝜏 edges.
But this means that

∑𝜏
𝑖=1 𝑥

𝑂
𝑖 < 𝛿 , which means the transition vertex would be later than 𝜏 . Thus, if

𝛼 > 𝛽 , our chunking is optimal (for this 𝜏).
Case 2: 𝛽 > 𝛼 . The key to this case is that the perceived cost of starting with 𝑒𝜏 can be understood

in two ways, which allows us to group it into either the earlier or later set of edges. This isn’t the
case for any other edge, and using this fact will allow us to modify our original chunking to lower
𝛽 . More specifically, the original chunking ensures that the perceived cost of starting with 𝑒𝜏 is
equal to all previous edges; the first modification we do in this case is to set the perceived cost of
starting with 𝑒𝜏 equal to all later edges instead.
We start by leaving 𝑥𝑖 fixed at 𝛿/𝜏 for all 𝑖 < 𝜏 , but then chunking the remaining 𝑥 − 𝛿 · 𝜏−1

𝜏

work over the remaining 𝑘 − 1 + 1 edges according to Theorem 1, which modifies 𝑥𝜏 . Because this
assignment equalizes the perceived cost of starting with 𝑒𝜏 with that of later edges, it must have
increased 𝑥𝜏 to be higher than 𝛿/𝜏 ; by similar reasoning, all 𝑥𝑖 where 𝑖 > 𝜏 must have decreased.
Thus, this chunking has 𝑝(𝑒𝑖 ) = 𝛽 ′ for all 𝑖 ≥ 𝜏 , where 𝛽 ′ < 𝛽 . Further, since the perceived cost of
starting with 𝑒𝜏 was 𝛼 , and 𝑥𝜏 increased, the new perceived cost of starting with 𝑒𝜏 , 𝛽

′ must still be
higher than 𝛼 .
We now increase 𝑥1, . . . , 𝑥𝜏−1 to raise 𝛼 and lower 𝛽 ′. We do so by setting 𝑥𝑖 to a placeholder

𝑦 for all 𝑖 < 𝜏 and then solving for the optimal 𝑦. Note setting all these values equal is (weakly)
dominant, because the perceived costs of starting with these edges are all 𝑏𝑥𝑖 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ).
Thus, if another chunking had 𝑥𝑖 ̸= 𝑥 𝑗 , where 𝑖, 𝑗 < 𝜏 , then setting 𝑥𝑖 and 𝑥 𝑗 equal to their average
would only decrease max𝑖<𝜏 𝑝(𝑒𝑖 ). This would either reduce the bottleneck (if the bottleneck is
before 𝜏) or keep it the same. So we can set them all equal to 𝑦 without loss of generality.

With this, 𝑝(𝑒𝑖 ) for 𝑖 < 𝜏 is 𝑏𝑦 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ). We then use Theorem 1 to optimally split the
remaining 𝑥 − 𝑦(𝜏 − 1) work over the remaining 𝑘 − 𝜏 + 1 edges. With that, for all 𝑖 ≥ 𝜏 , we get

𝑝(𝑒𝑖 ) =
𝑥 − 𝑦(𝜏 − 1)

1 −
(
𝑏−1
𝑏

)𝑘+1−𝜏 + 𝑐(𝑣 → 𝑡 ).

We now set the two perceived costs equal and solve for the best 𝑦:

𝑥 − 𝑦(𝜏 − 1)

1 −
(
𝑏−1
𝑏

)𝑘−𝜏+1 + 𝑐(𝑣 → 𝑡 ) = 𝑏𝑦 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), so

𝑦
©­­«

𝜏 − 1

1 −
(
𝑏−1
𝑏

)𝑘−𝜏+1 + 𝑏
ª®®¬
=

𝑥

1 −
(
𝑏−1
𝑏

)𝑘−𝜏+1 + 𝑐(𝑣 → 𝑡 ) − 𝑐(𝑤 → 𝑡 ) − 𝑐(𝑢,𝑤 ).
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To ease notation, let 𝑧𝜏 = 1 −
(
𝑏−1
𝑏

)𝑘−𝜏+1
. We can then simplify as follows:

𝑦

(
𝜏 − 1 + 𝑧𝜏𝑏

𝑧𝜏

)
=

𝑥

𝑧𝜏
+ 𝑐(𝑣 → 𝑡 ) − 𝑐(𝑢,𝑤 ) − 𝑐(𝑤 → 𝑡 ), so

𝑦 =
𝑥 + 𝑧𝜏 (𝑐(𝑣 → 𝑡 ) − 𝑐(𝑤 → 𝑡 ) − 𝑐(𝑢,𝑤 ))

𝜏 − 1 + 𝑧𝜏𝑏

=
𝛿𝑧𝜏 + (1 − 𝑧𝜏 )𝑥

𝜏 − 1 + 𝑧𝜏𝑏

def
= 𝑦∗ .

For our final chunking, 𝐶∗, we set 𝑥𝑖 = min(𝑦∗, 𝛿
𝜏−1 ) for 𝑖 < 𝜏 , and split the remaining work over

the latter edges via Theorem 1. Under this chunking, let 𝛼∗ = 𝑝(𝑒𝑖 ) for 𝑖 < 𝜏 and let 𝛽∗ = 𝑝(𝑒𝑖 ) for
𝑖 ≥ 𝜏 . We claim the following.

Claim 1. 𝛼∗, 𝛽∗ > 𝛼

The intuition for this is that the chunking 𝐶∗ increases the cost of early edges, while decreasing
the cost of later edges. But we still ensure that the later edges have perceived cost at least as great
as the early edges.

Proof. Note that with 𝑦 = 𝛿/𝑙 , we got that 𝛼 < 𝛽 ′. Further, with 𝑦 = 𝑦∗, the perceived costs
starting with any edge would be equal, by definition of 𝑦∗. Thus, we know that 𝑦∗ > 𝛿/𝑙 . It follows

that min(𝑦∗, 𝛿
𝑙−1 ) > 𝛿/𝑙 , and thus 𝛼∗ > 𝛼 .

Note that if 𝑦 = 𝑦∗, then 𝛽∗ = 𝛼∗ > 𝛼 , since choosing edge costs so that the perceived costs of
starting with all edge in the chunking are equal means that the costs on the early edges increase.

Further, 𝛽∗ is decreasing in 𝑦. Since 𝑦 = min(𝑦∗, 𝛿
𝑙−1 ) ≤ 𝑦∗, this implies that 𝛽∗ > 𝛼 . □

We now show that 𝐶∗ has transition vertex 𝜏 . By construction, we have that
∑

𝑖<𝜏 𝑥𝑖 ≤ 𝛿 . Let
𝑖 ≤ 𝜏 be arbitrary. When 𝑥𝑖 was 𝛿/𝜏 in the original chunking, we had that 𝑝(𝑒𝑖 ) was 𝛼 . By Claim 1,
we know that 𝑝(𝑒𝑖 ) > 𝛼 , which means that 𝑥𝑖 > 𝛿/𝜏 (since perceived costs are strictly increasing in
the actual cost). Thus,

∑
𝑖≤𝜏 𝑥𝑖 ≥ 𝛿 .

We claim that 𝐶∗ is optimal (for the fixed transition vertex). First, note that if 𝑦∗ ≤ 𝛿
𝜏−1 and thus

𝑥𝑖 = 𝑦∗ for all 𝑖 < 𝜏 , then 𝛼∗ = 𝛽∗ and the chunking is optimal (over all transition vertices) by

Lemma 3. Otherwise, suppose that 𝑦∗ > 𝛿
𝜏−1 and so 𝑥𝑖 = 𝑦 = 𝛿

𝜏−1 for all 𝑖 < 𝜏 . Since 𝑦 < 𝑦∗, and 𝛼∗

is increasing in 𝑦, we know that 𝛽∗ > 𝛼∗. So the bottleneck of 𝐶∗ is 𝛽∗ in this case; by Lemma 2,
any better chunking 𝑂 with the same transition vertex must have

∑
𝑖<𝜏 𝑥

𝑂
𝑖 >

∑
𝑖<𝜏 𝑥

𝐶∗

𝑖 = 𝛿 . Thus,
𝑂 would have an earlier transition vertex, which is a contradiction.

Lastly, we discuss the runtime of the algorithm. In our analysis, for a fixed 𝜏 , we must compare
the 𝛼 and 𝛽 values in two chunkings ś the initial one where 𝑥𝑖 = 𝛿/𝑡 for all 𝑖 ≤ 𝜏 , and the modified
one where 𝑥𝑖 = 𝑦 for all 𝑖 < 𝜏 . Since we have closed-form equations for the 𝛼 and 𝛽 values in each
chunking, we do not need to construct them for each 𝜏 . We simply keep track of which value of
𝜏 produces the smallest perceived cost, and whether the best chunking for that 𝜏 was the initial
chunking or the modified one. We can thus do only constant work for each 𝜏 , resulting in a runtime
of 𝑂(𝑘). See Algorithm 1 for details.
Finally, we prove the remaining two edges cases.
The first is when 𝜏 = 𝑘 . In this case, the first chunking would set all costs equal to 𝛿/𝑘 , which

would not cover the full cost of the original edge. However, this case is also very simple, as all
edges have the same perceived cost of 𝑏𝑥𝑖 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ) when 𝜏 = 𝑘 . So, this case proceeds

as follows. First, we set all 𝑥𝑖 = 𝑥/𝑘 . If 𝑥/𝑘 < 𝛿
𝑘−1 , this would satisfy the constraint that 𝜏 = 𝑘 , and

since all edges would have the same perceived cost, this would be optimal. Otherwise, we would
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set 𝑥𝑖 =
𝛿

𝑘−1 for all 𝑖 < 𝑘 and 𝑥𝑘 = 𝑥 − 𝛿 , which would be optimal for 𝜏 = 𝑘 , as this would be as close
as we could get to uniform costs.
Finally, we consider the case where 𝛿 > 𝑥 . We established earlier that the shortest path will

switch from the chunking to the𝑤 vertices if at least 𝛿 work has been completed on the chunking.
Since 𝛿 > 𝑥 , this can’t happen, and so no matter how we chunk, the shortest path from any 𝑢<𝑘 is
through𝑤 . This means that 𝑝(𝑒𝑖 ) = 𝑏𝑥𝑖 +𝑐(𝑢,𝑤 )+𝑐(𝑤 → 𝑡 ) for all 𝑖 < 𝑘 . Note that 𝑒𝑘 = (𝑢𝑘 , 𝑣); so, this
final edge locks the agent into going to 𝑣 . Thus, 𝑝(𝑒𝑘 ) = 𝑏𝑥𝑘 + 𝑐(𝑣 → 𝑡 ) = 𝑏(𝑥 −

∑
𝑖<𝑘 𝑥𝑖 ) + 𝑐(𝑣 → 𝑡 ).

To optimally chunk, we set all 𝑥𝑖 = 𝑦 for 𝑖 < 𝑘 and then set the perceived cost of starting with the
final edge equal to this to find the optimal 𝑦.

𝑏𝑦 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ) = 𝑏(𝑥 − (𝑘 − 1)𝑦) + 𝑐(𝑣 → 𝑡 )

𝑏𝑦𝑘 = 𝑏𝑥 + 𝑐(𝑣 → 𝑡 ) − 𝑐(𝑢,𝑤 ) − 𝑐(𝑤 → 𝑡 ) = 𝛿 + (𝑏 − 1)𝑥

𝑦 =
𝛿 + (𝑏 − 1)𝑥

𝑏𝑘

def
= 𝑦∗ .

We now simply set𝑦 = min
(
𝑦∗, 𝑥

𝑘−1

)
. If𝑦∗ ≤ 𝑥

𝑘−1 , then all perceived costs are equal, so this chunking
is optimal by Lemma 3. If 𝑦∗ > 𝑥

𝑘−1 , then the perceived cost of starting with the final edge is still
higher, but the actual cost of that edge cannot be reduced below 0. Note that the case where𝑦∗ > 𝑥

𝑘−1
(and 𝛿 > 𝑥 ) is the only case where the optimal chunking might put a cost of 0 on any edge. □

B COST RATIO COROLLARY

Corollary 2. Given a local constraint 𝑘 = 𝑂(𝑛), the optimal chunking𝐺 ′ of𝐺 has constant cost ratio.

Proof. Let 𝑐 be a constant. By Theorem 6, we will get a cost ratio of𝑂(𝑐) if 𝑏min ≤ 𝑐1/𝑛 . We thus
solve for the following equation for 𝑘 :

1

1 −
(
𝑏−1
𝑏

)𝑘 = 𝑐1/𝑛

1

𝑐1/𝑛
= 1 −

(
𝑏 − 1

𝑏

)𝑘
(
𝑏 − 1

𝑏

)𝑘
= 1 −

1

𝑐1/𝑛(
𝑏 − 1

𝑏

)𝑘
=
𝑐1/𝑛 − 1

𝑐1/𝑛

𝑘 =
log

(
𝑐1/𝑛−1
𝑐1/𝑛

)
log

(
𝑏−1
𝑏

)

=
log

(
𝑐1/𝑛

𝑐1/𝑛−1

)
log

(
𝑏

𝑏−1

) .

Since 𝑏 is a constant, log
(

𝑏
𝑏−1

)
is constant, and 𝑘 is thus dominated by the numerator. Similarly,

𝑐1/𝑛 < 𝑐 , and thus we are interested in the asymptotic behavior of log
(

1
𝑐1/𝑛−1

)
. The series expansion

as 𝑛 →∞ is 𝑛
log𝑐 −

1
2 +

log𝑐
12𝑛 +𝑂( 1

𝑛2 ) = 𝑂(𝑛). □
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C NON-SHORT PATH EDGE CHUNKING ALGORITHM

Algorithm 1: Optimally chunk any edge. Uses Chunk-Shortest-Edge(𝑘, 𝑥 ) as a subroutine, which returns

the optimal 𝑘-chunking of a shortest edge of cost 𝑥 , which is given by Theorem 1.

Input: A DAG 𝐺 , edge (𝑢, 𝑣) in 𝐺 , bias factor 𝑏 and chunking parameter 𝑘

Output: The optimal chunking for edge (𝑢, 𝑣) and the associated bottleneck cost

𝑥 ← 𝑐(𝑢, 𝑣),𝑤 ← next node in shortest 𝑢 → 𝑡 path

if 𝑤 = 𝑣 then // edge case for when (𝑢, 𝑣) is on the shortest path

return Chunk-Shortest-Edge(𝑘, 𝑥 ), 1

1−
(
𝑏−1
𝑏

)𝑘 𝑥 + 𝑐(𝑣 → 𝑡 )

𝛿 ← 𝑥 + 𝑐(𝑣 → 𝑡 ) − 𝑐(𝑢,𝑤 ) − 𝑐(𝑤 → 𝑡 )

if 𝛿 > 𝑥 then

𝑦∗ ←
𝛿+(𝑏−1)𝑥

𝑏𝑘
𝐶 ← 𝑥1, . . . , 𝑥𝑘−1 ↦→ max(𝑦∗, 𝑥

𝑘−1
) and 𝑥𝑘 ↦→ 𝑥 − (𝑘 − 1)max(𝑦∗, 𝑥

𝑘−1
)

𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 ← 𝑏max(𝑦∗, 𝑥
𝑘−1

) + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 )

return 𝐶,𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 ←∞, 𝜏∗ ← 0, 𝑜𝑝𝑡_𝑐ℎ𝑢𝑛𝑘_𝑡𝑦𝑝𝑒 ← 0

for 𝜏 = 1 to 𝑘 − 1 do

𝛼0 ←
𝑏𝛿
𝜏 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝛽0 ←

𝑥−𝛿

1−
(
𝑏−1
𝑏

)𝑘−𝜏 + 𝑐(𝑣 → 𝑡 )

if 𝛼0 = 𝛽0 then
𝐶 ← 𝑥1, . . . , 𝑥𝜏 ↦→ 𝛿/𝜏 and 𝑥𝜏+1, . . . , 𝑥𝑘 ↦→ Chunk-Shortest-Edge(𝑘 − 𝜏, 𝑥 − 𝛿)

return 𝐶, 𝛼0
else if 𝛼0 > 𝛽0 then

if 𝛼0 < 𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 then
𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 ← 𝛼0, 𝜏

∗ ← 𝜏, 𝑜𝑝𝑡_𝑐ℎ𝑢𝑛𝑘_𝑡𝑦𝑝𝑒 ← 0

else

if 𝜏 = 1 then // edge case for 𝜏 = 1

return Chunk-Shortest-Edge(𝑘, 𝑥 ), 1

1−
(
𝑏−1
𝑏

)𝑘 𝑥 + 𝑐(𝑣 → 𝑡 )

𝑧𝜏 ← 1 −
(
𝑏−1
𝑏

)𝑘−𝜏+1
, 𝑦∗ ←

𝛿𝑧𝜏+(1−𝑧𝜏 )𝑥
𝜏−1+𝑧𝜏𝑏

if 𝛿
𝜏−1 > 𝑦∗ then
𝐶 ← 𝑥1, . . . , 𝑥𝜏−1 ↦→ 𝑦∗ and 𝑥𝜏 , . . . , 𝑥𝑘 ↦→ Chunk-Shortest-Edge(𝑘 − 𝜏 + 1, 𝑥 − (𝜏 − 1)𝑦)

return 𝐶,𝑏𝑦∗ + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 )

else

𝛽 ← 𝑥−𝛿
𝑧𝜏

+ 𝑐(𝑣 → 𝑡 )

if 𝛽 < 𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 then
𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 ← 𝛽 , 𝜏∗ ← 𝜏, 𝑜𝑝𝑡_𝑐ℎ𝑢𝑛𝑘_𝑡𝑦𝑝𝑒 ← 1

if 𝑥
𝑘
≤ 𝛿

𝑘−1
then

𝐶 ← 𝑥1, . . . , 𝑥𝑘 ↦→ 𝑥/𝑘 ,𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 ← 𝑏𝑥
𝑘

+ 𝑐(𝑢,𝑤 ) + 𝑑(𝑤 )

return 𝐶,𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
else

𝛼 ← 𝑏𝛿
𝑘−1

+ 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝛽 ← 𝑏(𝑥 − 𝛿) + 𝑐(𝑣 → 𝑡 )

if min(𝛼, 𝛽) ≤ 𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 then

𝐶 ← 𝑥1, . . . , 𝑥𝑘−1 ↦→
𝛿

𝑘−1
and 𝑥𝑘 ↦→ 𝑥 − 𝛿 ,𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 ← min(𝛼, 𝛽)

return 𝐶,𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
if 𝑜𝑝𝑡_𝑐ℎ𝑢𝑛𝑘_𝑡𝑦𝑝𝑒 = 0 then

𝐶 ← 𝑥1, . . . , 𝑥𝜏∗ ↦→ 𝛿/𝜏∗ and 𝑥𝜏∗+1, . . . , 𝑥𝑘 ↦→ Chunk-Shortest-Edge(𝑘 − 𝜏∗, 𝑥 − 𝛿)

else

𝐶 ← 𝑥1, . . . , 𝑥𝜏∗−1 ↦→
𝛿

𝜏∗−1 and 𝑥𝜏∗ , . . . , 𝑥𝑘 ↦→ Chunk-Shortest-Edge(𝑘 − 𝜏∗ + 1, 𝑥 − 𝛿)

return 𝐶,𝑚𝑖𝑛_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
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D SPLITTING AGENTS ONTO SEPARATE PATHS

We first provide a full description of Algorithm 2. We now prove that this algorithm is correct via

Algorithm 2: Chunk (𝑢, 𝑣) such that 𝐴1 takes the chunking and 𝐴2 doesn’t, if possible.

maxBottleneck← 0, 𝐶∗ ← ∅

for 𝑖 = 1 to 𝑘 do
𝐶𝑖 = (𝑥1, . . . , 𝑥𝑘 )← optimal chunking of (𝑢, 𝑣) for 𝐴1

for 𝑗 = 𝑖 − 1 to 1 do

if 𝑝(𝑒𝑖 ;𝑏1) < 𝛼
(1)
𝑢 then

𝛿 = min(𝑥 𝑗 , (𝑝(𝑒𝑖 ;𝑏1) − 𝛼
(1)
𝑢 )/𝑏1)

𝑥 𝑗 ← 𝑥 𝑗 − 𝛿

𝑥𝑖 ← 𝑥𝑖 + 𝛿
for 𝑗 = 𝑖 + 1 to 𝑘 do

if 𝑝(𝑒𝑖 ;𝑏1) < 𝛼
(1)
𝑢 then

𝛾𝑤 ← 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ), 𝛾𝑥 ←
∑
𝑙>𝑖 𝑥𝑙 + 𝑐(𝑣 → 𝑡 )

if 𝛾𝑥 ≤ 𝛾𝑤 then

𝛿 = min(𝑥 𝑗 , (𝑝(𝑒𝑖 ;𝑏1) − 𝛼
(1)
𝑢 )/(𝑏1 − 1))

else if 𝑝(𝑒𝑖 ;𝑏1) − 𝛼
(1)
𝑢 ≤ 𝑏1(𝛾𝑥 − 𝛾𝑤 ) then

𝛿 = min(𝑥 𝑗 , (𝑝(𝑒𝑖 ;𝑏1) − 𝛼
(1)
𝑢 )/(𝑏1 − 1))

else
𝛿 ′ = 𝛾𝑥 − 𝛾𝑤
𝑥 𝑗 ← 𝑥 𝑗 − 𝛿

′

𝑥𝑖 ← 𝑥𝑖 + 𝛿
′

𝛿 = min(𝑥 𝑗 , (𝑝(𝑒𝑖 ;𝑏1) − 𝛼
(1)
𝑢 )/(𝑏1 − 1))

𝑥 𝑗 ← 𝑥 𝑗 − 𝛿

𝑥𝑖 ← 𝑥𝑖 + 𝛿

𝜆 ←
∑𝑖−1

𝑗=1 𝑝(𝑒 𝑗 ;𝑏1) − 𝛼
(1)
𝑢

𝛿∗ ← min(𝜆/(𝑏1 − 1),
∑

𝑗>𝑖 𝑥 𝑗/𝑏1
decrease 𝑥>𝑖 by 𝑏1𝛿

∗

𝑥𝑖 ← 𝑥𝑖 + 𝛿
∗

𝑗 ← 𝑖 − 1

while 𝛿∗ > 0 do
𝛿 ← min(𝑥 𝑗 , 𝛿

∗)

𝑥 𝑗 ← 𝑥 𝑗 −min(𝑥 𝑗 , 𝛿)

𝛿∗ ← 𝛿∗ − 𝛿

𝑗 ← 𝑗 − 1
bottleneck← max𝑗 𝑝(𝑒 𝑗 ;𝑏2)

if bottleneck > maxBottleneck then
maxBottleneck← bottleneck

𝐶∗ ← 𝐶
return 𝐶∗

the following theorem.

Theorem 7. If 𝐶𝑖 is the output of the 𝑖th iteration of Algorithm 2 and 𝐶 ′ is another chunking such

that 𝑝(𝑒 ′𝑖 ;𝑏2) > 𝑝(𝑒𝑖 ;𝑏2), then 𝐴1 will not take 𝐶
′.

Proof. First, suppose that
∑

𝑗 ̸=𝑖 𝑥 𝑗 = 0, that is, all of the weight is on 𝑒𝑖 in 𝐶𝑖 . It’s obvious that
𝑝(𝑒 ′𝑖 ;𝑏2) ≤ 𝑝(𝑒𝑖 ;𝑏2), as the perceived cost of any chunk cannot exceed 𝑏𝑐(𝑢, 𝑣) + 𝑐(𝑣 → 𝑡 ), and 𝐶𝑖

achieves this cost on 𝑒𝑖 . It follows that
∑

𝑗 ̸=𝑖 𝑥 𝑗 > 0, which implies that 𝑝(𝑒𝑖 ;𝑏1) = 𝛼
(1)
𝑢 by Lemma 5(a).

We now consider two cases.
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Case 1: 𝑥 ′𝑖 > 𝑥𝑖 . Suppose that
∑

𝑗>𝑖 𝑥 𝑗 = 0. We must have 𝑥 ′𝑗 ≥ 𝑥 𝑗 ,for all 𝑗 ≥ 𝑖 , as costs must be

non-negative. Thus, 𝑝(𝑒 ′𝑖 ;𝑏1) > 𝑝(𝑒𝑖 ;𝑏1), and 𝐴1 will deviate from 𝐶 ′ at edge 𝑖 .

So, suppose instead that
∑

𝑗>𝑖 𝑥 𝑗 > 0. By Lemma 5(b), we have that ∀𝑗 ≤ 𝑖, 𝑝(𝑒 𝑗 ;𝑏1) = 𝛼
(1)
𝑢 . A

similar now argument applies: if
∑

𝑗>𝑖 𝑥
′
𝑗 <

∑
𝑗>𝑖 𝑥 𝑗 , then more weight must be put on 𝑥≤𝑖 , and it’s

clear that doing so would cause 𝐴1 to deviate before or at edge 𝑖 (concretely, 𝐴1 would deviate at
the first edge with higher weight). But if

∑
𝑗>𝑖 𝑥

′
𝑗 ≥

∑
𝑗>𝑖 𝑥 𝑗 , then 𝑝(𝑒 ′𝑖 ;𝑏1) > 𝑝(𝑒𝑖 ;𝑏1), and 𝐴1 will

deviate from 𝐶 ′ at edge 𝑖 . Either way, 𝐴1 will not take the chunking 𝐶
′.

Case 2: 𝑥 ′𝑖 ≤ 𝑥𝑖 . Recall that we can write 𝑝(𝑒𝑖 ;𝑏2) as 𝑏2𝑥𝑖 + 𝑐(𝑢𝑖+1 → 𝑡 ), where 𝑐(𝑢𝑖+1 → 𝑡 ), the
cost of the cheapest path from 𝑢𝑖+1 to 𝑡 , is min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),

∑
𝑗>𝑖 𝑥 𝑗 + 𝑐(𝑣 → 𝑡 )).

𝑝(𝑒 ′𝑖 ;𝑏2) > 𝑝(𝑒𝑖 ;𝑏2)

⇐⇒ 𝑏2𝑥
′
𝑖 + 𝑐(𝑢

′
𝑖+1 → 𝑡 ) > 𝑏2𝑥𝑖 + 𝑐(𝑢𝑖+1 → 𝑡 )

⇐⇒ 𝑐(𝑢 ′𝑖+1 → 𝑡 ) − 𝑐(𝑢𝑖+1 → 𝑡 ) > 𝑏2(𝑥𝑖 − 𝑥
′
𝑖 )

=⇒ 𝑐(𝑢 ′𝑖+1 → 𝑡 ) − 𝑐(𝑢𝑖+1 → 𝑡 ) > 𝑏1(𝑥𝑖 − 𝑥
′
𝑖 ) (since 𝑏2 > 𝑏1 and 𝑥𝑖 − 𝑥

′
𝑖 ≥ 0)

⇐⇒ 𝑏1𝑥
′
𝑖 + 𝑐(𝑢

′
𝑖+1 → 𝑡 ) > 𝑏1𝑥𝑖 + 𝑐(𝑢𝑖+1 → 𝑡 )

⇐⇒ 𝑝(𝑒 ′𝑖 ;𝑏1) > 𝑝(𝑒𝑖 ;𝑏1).

Since 𝑝(𝑒𝑖 ;𝑏1) = 𝛼
(1)
𝑢 , 𝐴1 won’t take 𝐶

′ (they will deviate at 𝑒 ′𝑖 ). □

We now describe the flipped version of this problem, where we chunk (𝑢, 𝑣) so that 𝐴2 takes it
but𝐴1 finds it maximally unappealing. The flipped algorithm has the same phase 1 and 2 as before.8

Phase 3 is modified to:

3. Let 𝜆 be the total amount of cost that could be added to 𝑥>𝑖 while ensuring that 𝑝(𝑒 𝑗 ;𝑏1) ≤ 𝛼
(1)
𝑢

for all 𝑗 > 𝑖 . Let 𝛿 = min(𝜆/𝑏2,
∑

𝑗<𝑖 𝑥 𝑗/(𝑏2 − 1), 𝑥𝑖 ). Decrease 𝑥𝑖 by 𝛿 , decrease the cumulative
cost of 𝑥<𝑖 by (𝑏2 − 1)𝛿 , and increase the cumulative cost of 𝑥>𝑖 by 𝑏2𝛿 .

We also modify part (b) of the lemma.

Lemma 8. Let 𝐶 = (𝑒1, . . . , 𝑒𝑘 ) be the chunking produced by the algorithm above. Then:

(a)
∑

𝑗 ̸=𝑖 𝑥 𝑗 > 0 =⇒ 𝑝(𝑒𝑖 ;𝑏2) = 𝛼
(2)
𝑢

(b)
∑

𝑗<𝑖 𝑥 𝑗 > 0 and 𝑥𝑖 > 0 =⇒ ∀𝑗 > 𝑖, 𝑝(𝑒 𝑗 ;𝑏2) = 𝛼
(2)
𝑢

Proof. The proof of (a) is identical to before. For (b), as before, if more could be siphoned from∑
𝑗<𝑖 𝑥 𝑗 and 𝑥𝑖 , the algorithm would, unless no edges in 𝑒>𝑖 can be increased further. □

Theorem 13. Let 𝐶 be the output of the algorithm above. Let 𝐶 ′ be another chunking such that

𝑝(𝑒 ′𝑖 ;𝑏1) > 𝑝(𝑒𝑖 ;𝑏1). Then, 𝐴2 will not take 𝐶
′.

Proof. First, suppose that
∑

𝑗 ̸=𝑖 𝑥 𝑗 = 0, i.e., all of the weight is on 𝑒𝑖 in 𝐶 . Then, it’s obvious that
𝑝(𝑒 ′𝑖 ;𝑏1) ≤ 𝑝(𝑒𝑖 ;𝑏1), as the perceived cost of any chunk cannot exceed 𝑏𝑐(𝑢, 𝑣) + 𝑐(𝑣 → 𝑡 ), and 𝐶
achieves this cost on 𝑒𝑖 .

So, we know that
∑

𝑗 ̸=𝑖 𝑥 𝑗 > 0, which implies that 𝑝(𝑒𝑖 ;𝑏1) = 𝛼
(1)
𝑢 by Lemma 8(a). We now consider

two cases.

8We omit the full pseudocode for the modified algorithm, as it’s easy to modify the third phase of Algorithm 2.
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Case 1:
∑

𝑗>𝑖 𝑥
′
𝑗 ≤

∑
𝑗>𝑖 𝑥 𝑗 . Recall that 𝑐(𝑢𝑖+1 → 𝑡 ) = min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),

∑
𝑗>𝑖 𝑥 𝑗 + 𝑐(𝑣 → 𝑡 )).

Thus,
∑

𝑗>𝑖 𝑥
′
𝑗 ≤

∑
𝑗>𝑖 𝑥 𝑗 implies that 𝑐(𝑢𝑖+1 → 𝑡 ) ≥ 𝑐(𝑢 ′𝑖+1 → 𝑡 ).

𝑝(𝑒 ′𝑖 ;𝑏1) > 𝑝(𝑒𝑖 ;𝑏1)

⇐⇒ 𝑏1𝑥
′
𝑖 + 𝑐(𝑢

′
𝑖+1 → 𝑡 ) > 𝑏1𝑥𝑖 + 𝑐(𝑢𝑖+1 → 𝑡 )

⇐⇒ 𝑏1(𝑥
′
𝑖 − 𝑥𝑖 ) > 𝑐(𝑢𝑖+1 → 𝑡 ) − 𝑐(𝑢 ′𝑖+1 → 𝑡 )

=⇒ 𝑏2(𝑥
′
𝑖 − 𝑥𝑖 ) > 𝑐(𝑢𝑖+1 → 𝑡 ) − 𝑐(𝑢 ′𝑖+1 → 𝑡 )

(since 𝑏2 > 𝑏1 and 𝑐(𝑢𝑖+1 → 𝑡 ) − 𝑐(𝑢 ′𝑖+1 → 𝑡 ) ≥ 0)

⇐⇒ 𝑏2𝑥
′
𝑖 + 𝑐(𝑢

′
𝑖+1 → 𝑡 ) > 𝑏2𝑥𝑖 + 𝑐(𝑢𝑖+1 → 𝑡 )

⇐⇒ 𝑝(𝑒 ′𝑖 ;𝑏2) > 𝑝(𝑒𝑖 ;𝑏2).

Since 𝑝(𝑒𝑖 ;𝑏2) = 𝛼
(2)
𝑢 , 𝐴2 won’t take 𝐶

′.

Case 2:
∑

𝑗>𝑖 𝑥
′
𝑗 >

∑
𝑗>𝑖 𝑥 𝑗 . Suppose, for the sake of contradiction, that

∑
𝑗<𝑖 𝑥 𝑗 = 0. Then,∑

𝑗≥𝑖 𝑥 𝑗 = 𝑥 , i.e., all the weight is on edges 𝑒≥𝑖 . Now, 𝑝(𝑒
′
𝑖 ;𝑏1) > 𝑝(𝑒𝑖 ;𝑏1) requires either that 𝑥

′
𝑖 > 𝑥𝑖 ,

or that 𝐶 ′ assigns more cost to edges 𝑒≥𝑖 than 𝐶 . The latter is impossible because 𝐶 assigns all
the weight to edges 𝑒≥𝑖 , and thus 𝑥 ′𝑖 > 𝑥𝑖 . This implies that

∑
𝑗>𝑖 𝑥

′
𝑗 <

∑
𝑗>𝑖 𝑥 𝑗 , which gives us a

contradiction.
So it follows that

∑
𝑗<𝑖 𝑥 𝑗 > 0. We now consider two cases. First, suppose that 𝑥𝑖 > 0. We apply

Lemma 8(b), which says that ∀𝑗 > 𝑖, 𝑝(𝑒 𝑗 ;𝑏2) = 𝛼
(2)
𝑢 . Since

∑
𝑗>𝑖 𝑥

′
𝑗 >

∑
𝑗>𝑖 𝑥 𝑗 , by Lemma 6 there

must be some edge 𝑒 ′𝑗 such that 𝑝(𝑒 ′𝑗 ;𝑏2) > 𝑝(𝑒 𝑗 ;𝑏2) = 𝛼
(2)
𝑢 , and thus 𝐴2 deviates from 𝐶 ′.

Second, suppose that 𝑥𝑖 = 0. 𝑥 ′𝑖 ≥ 𝑥𝑖 . This combined with the fact that
∑

𝑗>𝑖 𝑥
′
𝑗 >

∑
𝑗>𝑖 𝑥 𝑗 implies

that 𝑝(𝑒 ′𝑖 ;𝑏2) > 𝑝(𝑒𝑖 ;𝑏2) = 𝛼
(2)
𝑢 , and thus 𝐴2 doesn’t take 𝐶

′. □

E KEEPING AGENTS ON THE SAME PATH

Lemma 6. Let𝐶 and𝐶 ′ be two (possibly partial) chunkings of the same edge. Suppose that
∑𝑘

𝑖=𝑙
𝑥 ′𝑖 >∑𝑘

𝑖=𝑙
𝑥𝑖 . Then, there exists an 𝑖 ∈ [𝑙, 𝑘] such that for all 𝑏 > 1, 𝑝(𝑒 ′𝑖 ;𝑏) > 𝑝(𝑒𝑖 ;𝑏).

Proof. We prove the contrapositive. That is, suppose that, for all 𝑖 ∈ [𝑙, 𝑘], there exists some 𝑏𝑖
such that 𝑝(𝑒𝑖 ;𝑏𝑖 ) ≥ 𝑝(𝑒 ′𝑖 ;𝑏𝑖 ). We show that

∑𝑘
𝑖=𝑗 𝑥𝑖 ≥

∑𝑘
𝑖=𝑗 𝑥

′
𝑖 by induction from 𝑗 = 𝑘 to 𝑙 .

For the base case, suppose that 𝑗 = 𝑘 . Note that 𝑝(𝑒𝑘 ;𝑏𝑘 ) ≥ 𝑝(𝑒 ′
𝑘
;𝑏𝑘 ) if and only if 𝑏𝑘𝑥𝑘 + 𝑐(𝑣 →

𝑡 ) ≥ 𝑏𝑘𝑥
′
𝑘
+ 𝑐(𝑣 → 𝑡 ), which implies that 𝑥𝑘 ≥ 𝑥 ′

𝑘
, as desired. For the inductive case, assume that∑𝑘

𝑖> 𝑗 𝑥𝑖 ≥
∑𝑘

𝑖> 𝑗 𝑥
′
𝑖 . First, we expand 𝑝(𝑒 𝑗 ;𝑏 𝑗 ) ≥ 𝑝(𝑒 ′𝑗 ;𝑏 𝑗 ):

𝑏𝑥 𝑗 + min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),
𝑘∑
𝑖> 𝑗

𝑥𝑖 + 𝑐(𝑣 → 𝑡 )) ≥ 𝑏𝑥 ′𝑗 + min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),
𝑘∑
𝑖> 𝑗

𝑥 ′𝑖 + 𝑐(𝑣 → 𝑡 )).

(2)

We now proceed by cases.

Case 1. Suppose that min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),
∑𝑘

𝑖> 𝑗 𝑥
′
𝑖 + 𝑐(𝑣 → 𝑡 )) = 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ). Since∑𝑘

𝑖> 𝑗 𝑥
′
𝑖 +𝑐(𝑣 → 𝑡 ) ≤

∑𝑘
𝑖> 𝑗 𝑥𝑖 +𝑐(𝑣 → 𝑡 ) by the inductive hypothesis, we also know thatmin(𝑐(𝑢,𝑤 )+

𝑐(𝑤 → 𝑡 ),
∑𝑘

𝑖> 𝑗 𝑥𝑖 + 𝑐(𝑣 → 𝑡 )) = 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ). Thus, Equation 2 holds if and only if:

𝑏𝑥 𝑗 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ) ≥ 𝑏𝑥 ′𝑗 + 𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 )

⇐⇒ 𝑏𝑥 𝑗 ≥ 𝑏𝑥 ′𝑗

⇐⇒ 𝑥 𝑗 ≥ 𝑥 ′𝑗 .
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Combining this with the inductive hypothesis yields
∑

𝑖≥ 𝑗 𝑥𝑖 ≥
∑

𝑖≥ 𝑗 𝑥
′
𝑖 , as desired.

Case 2. Suppose that min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),
∑𝑘

𝑖> 𝑗 𝑥
′
𝑖 + 𝑐(𝑣 → 𝑡 )) =

∑𝑘
𝑖> 𝑗 𝑥

′
𝑖 + 𝑐(𝑣 → 𝑡 ). Clearly

min(𝑐(𝑢,𝑤 ) + 𝑐(𝑤 → 𝑡 ),
∑𝑘

𝑖> 𝑗 𝑥𝑖 + 𝑐(𝑣 → 𝑡 )) ≤
∑𝑘

𝑖> 𝑗 𝑥𝑖 + 𝑐(𝑣 → 𝑡 ). Thus, Equation 2 implies:

𝑏𝑥 𝑗 +
∑
𝑖> 𝑗

𝑥𝑖 + 𝑐(𝑣 → 𝑡 ) ≥ 𝑏𝑥 ′𝑗 +
∑
𝑖> 𝑗

𝑥 ′𝑖 + 𝑐(𝑣 → 𝑡 )

⇐⇒ 𝑏𝑥 𝑗 + 𝑏
∑
𝑖> 𝑗

𝑥𝑖 ≥ 𝑏𝑥 ′𝑗 +
∑
𝑖> 𝑗

𝑥 ′𝑖 + (𝑏 − 1)
∑
𝑖> 𝑗

𝑥𝑖 (adding (𝑏 − 1)
∑

𝑖> 𝑗 𝑥𝑖 to both sides)

=⇒ 𝑏𝑥 𝑗 + 𝑏
∑
𝑖> 𝑗

𝑥𝑖 ≥ 𝑏𝑥 ′𝑗 + 𝑏
∑
𝑖> 𝑗

𝑥 ′𝑖 (since
∑

𝑖> 𝑗 𝑥𝑖 ≥
∑

𝑖> 𝑗 𝑥
′
𝑖 by the IH)

⇐⇒
∑
𝑖≥ 𝑗

𝑥𝑖 ≥
∑
𝑖≥ 𝑗

𝑥 ′𝑖 .

The last line proves the inductive step, and thus completes the proof. □

F GRAPH-CHUNKING THEOREMS FOR MULTIPLE AGENTS

Theorem 9. Given any task graph 𝐺 = (𝑉 , 𝐸) and a local constraint 𝑘 , we can optimally chunk𝐺

for two types of agents in time 𝑂(|𝐸 |2𝑘2 + |𝑉 |).

Proof. The main computational bottleneck is computing P(𝑢,𝑦) for all 𝑢,𝑦 ∈ 𝑉 . For 𝑢 ̸= 𝑦, this
is very simple: we can chunk edges for each agent independently when they aren’t at the same
node. Doing so requires 2|𝐸 | applications of Algorithm 1 (|𝐸 | applications for each agent), for a
runtime of 𝑂(2|𝐸 |𝑘). For P(𝑢,𝑢), consider all (𝑣, 𝑧) ∈ 𝑁 (𝑢) × 𝑁 (𝑢). There are a total of |𝐸 |2 such
pairs over all choices of 𝑢. When 𝑣 ̸= 𝑧, we apply Algorithm 2 (to (𝑢, 𝑣) and (𝑢, 𝑧)), and when 𝑣 = 𝑧,
we apply Algorithm 3. Algorithm 2 runs in𝑂(𝑘2) time and Algorithm 3 runs in𝑂(𝑘) time (for𝑚 = 2

agents). Thus, the total runtime to compute P is 𝑂(2|𝐸 |2𝑘2 + |𝐸 |𝑘 + 2|𝐸 |𝑘) = 𝑂(|𝐸 |2𝑘2).
Once we have P, we need to compute the cost recurrence. For each element in P, we compute

the min over the three constant time functions 𝐶1,𝐶2, and 𝐶3, for a total time of 𝑂(|P |) = 𝑂(|𝐸 |2),
since P ⊆ 𝐸 × 𝐸. Thus, the cost recurrence takes 𝑂(|𝐸 |2) time to compute, which means that the
total runtime is dominated by computing P.

For correctness, P is correct by Theorem 13, Theorem 7, and Theorem 8. Given the correctness
of P, the cost recurrence is correct by Lemma 7. □

Theorem 10. Given any task graph 𝐺 = (𝑉 , 𝐸) and a global constraint 𝑘 , we can optimally chunk

𝐺 for two types of agents in time 𝑂(|𝐸 |2𝑘3 log𝑘 + |𝑉 |).

Proof. We slightly modify the definition of P ′(𝑢,𝑦) to be the set of (𝑣, 𝑧, 𝑖) such that 𝑖 is the
minimum number of chunks needed for (𝑢, 𝑣) and (𝑣, 𝑧) to be compatibly chunked. With this, we
can modify the cost recurrence in the obvious way. The individual cases become:

𝐶1(𝑢, 𝑣,𝑦, 𝑖) =

{
𝑐(𝑦,𝑢) + 𝑐𝑜𝑠𝑡[𝑢,𝑢, 𝑖] if (𝑣,𝑢) ∈ P ′(𝑢,𝑦)

∞ otherwise

𝐶2(𝑢,𝑦, 𝑧, 𝑖) =

{
𝑐(𝑢,𝑦) + 𝑐𝑜𝑠𝑡[𝑦,𝑦, 𝑖] if (𝑦, 𝑧) ∈ P ′(𝑢,𝑦)

∞ otherwise

𝐶3(𝑢, 𝑣,𝑦, 𝑧, 𝑖) = 𝑐(𝑢, 𝑣) + 𝑐(𝑦, 𝑧) + 𝑐𝑜𝑠𝑡[𝑣, 𝑧, 𝑖].

And the recurrence becomes:

𝑐𝑜𝑠𝑡[𝑢,𝑦, 𝑖] = min
(𝑣,𝑧,𝑙 )∈P′(𝑢,𝑦):𝑙≤𝑖

min(𝐶1(𝑢, 𝑣,𝑦, 𝑖 − 𝑙 ),𝐶2(𝑢,𝑦, 𝑧, 𝑖 − 𝑙 ),𝐶3(𝑢, 𝑣,𝑦, 𝑧, 𝑖 − 𝑙 )).
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Computing this recurrence will take time 𝑂(|𝐸 |2𝑘), but this will not be the bottleneck. The cor-
rectness of this recurrence follows simply from the correctness of P ′. It remains to show how to
compute this new P ′.
For P ′(𝑢,𝑦) where 𝑢 ̸= 𝑦, it is easy to return the minimum number of chunks needed to chunk

the edges; we already solved this problem with binary search in the single-agent global budget
case (Theorem 4). This takes 𝑂(2|𝐸 |log𝑘) time for all 𝑢 ̸= 𝑦. Now suppose 𝑢 = 𝑦. If 𝑣 = 𝑧, and we’re
thus trying to keep agents on the same path, we can also use binary search with Algorithm 3 to
find the minimum number of chunks to get both agents to stick to the path. This takes 𝑂(|𝐸 |log𝑘)

time in total.
The bottleneck is computing the minimum number of chunks to get 𝐴1 to take (𝑢, 𝑣) and 𝐴2 to

take (𝑢, 𝑧). We can visualize the problem as searching through a two dimensional binary array,
where 𝑎𝑟𝑟 [𝑖, 𝑗] = 1 iff we can get a compatible chunking where 𝐴1 takes an 𝑖-chunking of (𝑢, 𝑣)
and 𝐴2 takes a 𝑗-chunking of (𝑢, 𝑧). Luckily, the array is row-wise and column-wise sorted; that
is, we can always simulate an 𝑖-chunking with an (𝑖 + 1)-chunking (e.g., set the first chunk to 0),
so if 𝐴1 can take an 𝑖-chunking of (𝑢, 𝑣) and 𝐴2 can take a 𝑗-chunking of (𝑢, 𝑧), then it’s true that
𝐴1 can take an (𝑖 + 1)-chunking of (𝑢, 𝑣) and 𝐴2 can take a 𝑗-chunking of (𝑢, 𝑧). Our goal is to find
min𝑖, 𝑗 :𝑎𝑟𝑟 [𝑖, 𝑗]=1 𝑖 + 𝑗 . In the worst case, the matrix has dimensions 𝑘 × 𝑘 .9

One solution is to run binary search on each column of the matrix; this involves looking at
𝑂(𝑘 log𝑘) entries of the matrix. The minimum indices will clearly be found this way, as the
minimum point will be the lowest 1 entry in some column. Evaluating each entry requires us
to run Algorithm 2, which runs in 𝑂(𝑘2). Thus, the total runtime over all edges in the graph is
𝑂(|𝐸 |2𝑘3 log𝑘). This brings the total computation cost to 𝑂(|𝐸 |2𝑘3 log𝑘 + |𝑉 |). The correctness of
P ′ follows obviously from the correctness of Algorithm 1, Algorithm 2, and Algorithm 3. □

Theorem 11. Given any task graph 𝐺 = (𝑉 , 𝐸) and a local constraint 𝑘 , we can find the optimal

single-path chunking of 𝐺 for𝑚 types of agents with at most |𝐸 | applications of Algorithm 3, for a

total runtime of 𝑂(|𝐸 |𝑚𝑘 + |𝑉 |).

Proof. We simply use Algorithm 3 to determine which edges can be chunked such that all agents
will take the chunking. Keep only those edges in the graph, and run a shortest-path algorithm.
This is exactly analogous to Theorem 3, except that the runtime increases by a factor of𝑚 because
Algorithm 3 runs in 𝑂(𝑚𝑘) time. □

Theorem 12. Given any task graph 𝐺 = (𝑉 , 𝐸) and a global constraint 𝑘 , we can find the optimal

single-path chunking of 𝐺 for𝑚 types of agents with at most |𝐸 |log𝑘 applications of Algorithm 3, for

a total runtime of 𝑂(|𝐸 |𝑚𝑘 log𝑘 + |𝑉 |).

Proof. This is exactly the same as the proof of Theorem 4, except that we use binary search
to find the minimum number of chunks 𝑙𝑒 such that all agents take the optimal 𝑙𝑒 chunking
of edge 𝑒 . Thus, we run Algorithm 3 log𝑘 times for each edge, resulting in a total runtime of
𝑂(|𝐸 |𝑚𝑘 log𝑘 + |𝑉 |). □

9Technically, we care only about the lower triangle (i.e., entries 𝑎𝑟𝑟 [𝑖, 𝑗] where 𝑖 + 𝑗 ≤ 𝑘), but this doesn’t affect the

asymptotic runtime.
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