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Abstract

Pulsar radio emission may be generated in pair discharges that fill the pulsar magnetosphere with plasma as an
accelerating electric field is screened by freshly created pairs. In this Letter, we develop a simplified analytic theory
for the screening of the electric field in these pair discharges and use it to estimate total radio luminosity and
spectrum. The discharge has three stages. First, the electric field is screened for the first time and starts to oscillate.
Next, a nonlinear phase occurs. In this phase, the amplitude of the electric field experiences strong damping
because the field dramatically changes the momenta of newly created pairs. This strong damping ceases, and the
system enters a final linear phase, when the electric field can no longer dramatically change pair momenta. Applied
to pulsars, this theory may explain several aspects of radio emission, including the observed luminosity,
Lrad∼ 1028 erg s−1, and the observed spectrum, Sω∼ ω−1.4±1.0.

Unified Astronomy Thesaurus concepts: Pulsars (1306); Neutron stars (1108); Radio pulsars (1353); Plasma
astrophysics (1261); Plasma physics (2089); High energy astrophysics (739)

1. Introduction

Pulsars are rapidly rotating, highly magnetized neutron stars,
most of which exhibit beamed radio emission. Several
characteristics of this emission remain unexplained. Notably,
the pulsar radio luminosity Lrad has a rough magnitude
Lrad∼ 10−7

–10−2 Lsd, with Lsd the spin-down luminosity, but
has negligible dependence on Lsd (Lorimer & Kramer 2004;
Szary et al. 2014). Furthermore, the radio spectrum is
Sω∼ ω−1.4±1.0, with ω the radiation frequency and Sω the
intensity emitted at that frequency (Bates et al. 2013).

Compelling observational evidence suggests that in most
pulsars, radio emission is produced in the polar regions of the
neutron star, where the star’s rotation induces a strong electric
field that extracts electrons from the neutron star surface and
accelerates them to high energies (Sturrock 1971; Ruderman &
Sutherland 1975). These electrons stream along curved
magnetic field lines, radiating gamma-rays that are absorbed
by the pulsar magnetic field, producing electron–positron pairs.
The resulting cascade, which includes additional contributions
from inverse Compton scattering and synchrotron radiation,
leads to the rapid production of a pair plasma in the polar cap
region, which screens out the initial inductive electric
field (Tsai & Erber 1974; Cheng & Ruderman 1977; Levinson
et al. 2005; Timokhin & Harding 2015; Cruz et al. 2021a).
Some process occurring in the pair plasma created in this
discharge is likely to produce the pulsar’s radio emission
(Melrose et al. 2021).

Recently, attention has turned toward the possibility that radio
emission could be directly produced by the oscillating electric
field that is created as the pair discharge screens the initial electric
field (Beloborodov 2008; Timokhin 2010; Timokhin & Arons
2013; Melrose et al. 2020; Philippov et al. 2020). Specifically,

direct numerical simulations (Timokhin 2010; Timokhin &
Arons 2013) of polar cap pair discharges have demonstrated that
pair creation is a nonstationary, repeating process in which the
accelerating electric field is screened by freshly created pair
plasma, which then leaves the polar cap, causing the field to
emerge again. Philippov et al. (2020) showed that if pair creation
is nonuniform across magnetic field lines, as it will be in any
realistic pair cascade, a robust physical mechanism generates
coherent radio emission during the screening process. In this
Letter, we study the highly relativistic, collisionless, and nonlinear
plasma physics governing the evolution of this pair discharge’s
electric field amplitude and show that this plasma physics may
explain the enigmatic pulsar radio luminosity, contribute to the
spectrum, and give insight into other aspects of pulsar physics.
We verify our analytic models with direct kinetic simulations.
In particular, during an initial nonlinear phase of the discharge,

the electric field experiences strong damping that is roughly
exponential. This strong damping ceases when the quiver of
newly injected particles in the electric field is small. The
quantitative statement of the resulting condition on the electric
field amplitude yields an expression roughly consistent with the
observed magnitude of Lrad. After this point, the discharge
experiences a linear phase, which only slightly decreases the
emission amplitude but creates a relationship between the
emission amplitude and frequency that is consistent with the
observed radio spectrum.
This Letter begins in Section 3 by introducing the physical

model and equations used to study the discharge plasma. Then,
Section 4 describes the simulations of the discharge plasma,
which will be used to check the analytical work that forms the
bulk of the paper. Section 5 describes the first screening stage of
the discharge; Section 6 the following stage of nonlinear, strongly
damped oscillations; Section 7 the conditions that lead to the end
of this stage’s strong damping and set the overall emission
amplitude; and Section 8 the following linear stage, which
contributes to the pulsar spectrum. Finally, Section 9 shows how
our model explains observations of pulsar luminosity and may
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also give insight into the spectrum and other aspects of pulsar
behavior.

2. Description of the Model for Discharge Plasma Physics

The discharge occurring in a pulsar polar cap has a complex
and uncertain spatial structure that inhibits analytic study. In
this section, we describe the current understanding of the
realistic polar discharge structure and relate it to the more
simplified plasma physics problem we study in this Letter. This
will lead in Section 3 to the statement of the equations studied
in this paper.

The actual polar cap discharge proceeds through the cyclic
production of clouds of pair plasma (Timokhin 2010; Timokhin
& Arons 2013; Timokhin & Harding 2015; Philippov et al.
2020; Cruz et al. 2021b). In this picture, an initially unshielded
electric field in the pulsar’s polar cap extracts electrons from
the neutron star surface and accelerates them to significant
Lorentz factors,
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with β≡ v/c (v is the particle speed). These primary electrons
radiate gamma-rays, which are eventually absorbed in the pulsar
magnetic field, creating lower-energy electron–positron pairs
with an average Lorentz factor (Timokhin & Harding 2015)

10 10 3l
3 ( )g ~ -

(here, the upper limit is more representative for pairs injected at
earlier cascade stages, which are studied here) and a thermal
spread T∼mc2, with m the electron mass (Arendt &
Eilek 2002; Timokhin & Arons 2013). Though these pairs
are much lower energy than the primary electrons, they move at
essentially the same speed, such that the primary and secondary
pairs form one cloud of plasma moving away from the star. The
secondary pairs interact strongly with the electric field, first
shielding it, and then setting up plasma waves caused by the
overshoot of the shielding process. The primary population is
barely affected by these plasma waves, such that it maintains a
constant γb∼ 107 and its ability to create curvature radiation.
Thus, there is a nearly constant source of new secondary pairs
being added to the oscillations occurring in the pair plasma
cloud, and the oscillations damp in response.

Simulations of the two-dimensional polar cap region
(Philippov et al. 2020) find that the created plasma waves are
superluminal O-mode waves, which consist of an oscillating
electric field with components along the background magnetic
field and perpendicular to it, and an oscillating magnetic field
perpendicular both to the background magnetic field and the
oscillating electric field (Arons & Barnard 1986). In this Letter,
we are concerned with understanding the physics governing the
evolution of the amplitude of these waves.

The physical mechanism responsible for the generation of
these waves works in at least two dimensions, requiring the
nonuniformity of pair creation across magnetic field lines.
However, the electric field driving the waves is the oscillating
parallel electric field, which interacts directly with the pair
plasma through a plasma current. This parallel electric field is

determined by the dynamics of the discharge, i.e., by how the
initial accelerating electric field is screened by injected pairs.
Hence, wave evolution (at least in its initial stages) is
determined by the evolution of the parallel electric field, which
we can consider to be a one-dimensional problem. The waves
observed in Philippov et al. (2020) have small spatial
frequencies k, so to allow analytic progress, we can also
consider only the temporal evolution of the electric field, i.e.,
we can ignore spatial variation along the magnetic field lines in
both the initial electric field and in the particle injection rate.5

Thus, in this Letter, we model the discharge plasma physics
with a one-dimensional setup in which an initially strong
electric field lies parallel to a magnetic field. Low-energy pairs
with γl are added to this system uniformly in space at a chosen
rate, representing the pairs created in the actual plasma cloud
(which, unlike our simplified one-dimensional setup, has
curved magnetic fields) by the higher-energy pairs. In response,
the electric field is shielded and begins to oscillate with spatial
frequency k= 0 (higher-k modes are not initially seeded
because, unlike in Philippov et al. 2020, the setup does not
have spatial structure).
The physics governing the evolution of this oscillating

electric field is expected to be roughly equivalent to the physics
governing the low-k O-mode oscillations observed in Philippov
et al. (2020) and presumably also present in actual pulsar polar
caps. (Indeed, as we discuss in Section 7, simulations of such
an initially k= 0 setup eventually fragment into higher-k modes
similar to those seen in two-dimensional systems.) However, a
k= 0 setup is more tractable analytically and still gives
significant insight into the physics of low-k electromagnetic
modes controlled by their parallel dynamics.

3. Statement of Studied Equations and Key Quantities

In this section, we present the specific equations that we use
to understand polar cap physics through the picture introduced
previously.
The pulsar polar cap region can be represented by a uniform

straight magnetic field Bå and a uniform parallel initial electric
field E0, corresponding to the magnetic field in the pulsar polar
region and the unshielded electric field created there by the
pulsar’s rotation. These fields initially exist in a vacuum. For an
aligned rotator, the electric field E has initial strength
(Deutsch 1955; Goldreich & Julian 1969)

E t E
R

c
B0 , 40

pc( ) ( )= º = -
W



with t the time, Ω the pulsar angular velocity, c the speed of
light, and Rpc the polar cap radius, defined by

R R
R

c
, 5pc ( )=

W




where Rå is the neutron star radius, Rå≈ 1.2× 106 cm.
In an actual pulsar, the initial electric field E0 extracts

electrons from the neutron star into the polar cap vacuum and
accelerates them to significant Lorentz factors (1), seeding a
continual cascade of lower-energy pairs of average Lorentz
factors (3). The high Lorentz factor γb strongly suppresses the
interaction of the high-energy population with any plasma
waves, so we ignore this population. Instead, we consider how

5 We address some effects of a spatially nonuniform initial electric field in
direct numerical simulations.
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Equation (4) evolves as lower-energy pairs at γl are added to
the initial vacuum. The lower-energy population will damp the
electric field; the coupled evolution of the electric field and the
lower-energy pair population can be described by the
relativistic Vlasov–Maxwell equations.

Specifically, the evolution of the electric field is governed by
Ampère’s law, which for a curl-free magnetic field reads

E j4 0, 6t ( )p¶ + =

with j the plasma current. The plasma consists of two species
s=+ , −: electrons (with charge q−=−e) and positrons (with
charge q+=+e). Both have mass m. Furthermore, we define

u 7( )gbº

as the particle momentum, equal to its component along the
magnetic field.6 The electrons and positrons are each described
by their corresponding distributions,

f u t, , 8s ( ) ( )

so that the plasma current in Equation (6) is given by

j c q f u t du, , 9
s

s s ( ) ( )òå b=
-¥

¥

which couples Ampère’s law to the Vlasov equation.
The evolution of f u t,s ( ) is given by the Vlasov equation

with a source term representing the injection of lower-energy
pairs:

f
q E t

mc
f

u u

2
, 10t s

s
u s

l( ) ( ) ( )¶ + ¶ =
-

Here, ul is the mean momentum of the newly injected lower-
energy pairs,

u , 11l l l ( )g bº

with βl the value of β corresponding to γl. The form of 
characterizes the thermal spread of the newly injected pairs
about their mean injection momentum; its integral gives the
rate of increase of species density ns due to the addition of new
pairs, i.e., n u u du2t s l[ ( ) ]ò¶ = -

-¥

¥
 . For our analytical

arguments, we will take a simplified source model with all pairs
injected at one velocity, i.e.,

f
q E t

mc
f

S u u

2
, 12t s

s
u s

l( ) ( ) ( )d
¶ + ¶ =

-

with S/2 giving the rate per species of pair creation. (The effect
of thermal spread is considered in Appendix C.) For simplicity,
we assume this rate to be constant in time.

Next, we apply a set of normalizations to Equations (6), (9),
and (12). Let us define t0 as the time it takes to change a pair’s
momentum by an amount Δu= 1 in the initial electric field,
i.e.,

t
mc

E e
, 130

0∣ ∣
( )º

with E0∣ ∣ the absolute value of the initial electric field. Then, we
normalize time to this value,

t
t

t
, 14

0
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fs to the density injected in that time,
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and E to its initial strength,
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E

E
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(Later, when we wish to refer to the amplitude of an oscillating

electric field, we will use Ê .) Then, Equation (12) reduces to

f
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e
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and Equation (6) to
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where Equation (9) becomes
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Here, we have defined a parameter of key importance in
determining the discharge dynamics:

E
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which relates the energy in the initial pulsar electric field to the
rest-mass energy in the pairs injected during the time interval
t0. To find the appropriate value of this parameter to describe a
pulsar, we introduce the Goldreich–Julian density (Goldreich &
Julian 1969), n B ce2GJ ( ) ( )pº W  , and state that

S
n
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with λ the multiplicity. Then, the value of ξ in a pulsar with
magnetic field Bå, multiplicity λ, and period P is
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a large value.
To analyze the nonlinear and linear stages of the electric field

oscillations, it will be useful to combine Equations (17), (18),
and (19) to obtain another relationship for the electric field.
Noting that the current, represented by the second term in
Equation (18), receives no contribution from particles newly
injected at ul, we can trivially use Equation (17), without
reference to the source term, to find the exact, nonlinear
relationship,

E t E t 0, 23t
2 2ˆ ˆ (ˆ) ˆ (ˆ) ( )ˆ w¶ + =

where

t
n n1 1

; 242
3 3

ˆ (ˆ) ˆ ˆ ( )w
x g x g
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+

-

-

6 In the strong pulsar magnetic field, any perpendicular momentum is rapidly
radiated away, meaning that it is appropriate to consider only parallel
momentum.
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ŵ is the normalized relativistic plasma frequency characterizing
k= 0 oscillations (which may be nonlinear or linear).7 The
normalized density nsˆ is defined by

duf n t 25s s
ˆ ˆ ˆ ( )ò º =

-¥

¥

and the expected values 1 3gá ñ+, 1 3gá ñ- by

du
f n

1
. 26s s
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3 3

ˆ ˆ ( )ò g g
º

-¥

¥

In deriving Equation (23), we have used the relation

d
du

27
3

( )b
g

=

and integrated by parts. The rest of the paper will consider the
solutions to Equations (17), (18), and (23), which describe the
damping of the electric field in the polar cap by the newly
injected pairs and thus determine the radio emission character-
istics. We emphasize that the relationships in this section are
derived without linearization. They describe the oscillation of
the plasma throughout all stages of the discharge, including the
earliest stages, when the pair production rate is faster than the
frequency ŵ.

4. Direct Numerical Simulations

The goal of the paper is the analytical study of the equations
introduced previously, leading to relationships that can be used
to characterize the radio emission produced in a pulsar polar
cap discharge. To confirm these relationships, we compare
them to kinetic particle-in-cell simulations with TRISTAN-MP
v2 (Spitkovsky 2005; Hakobyan & Spitkovsky 2020).

We initialize a one-dimensional box with a uniform electric
field and no plasma. At each subsequent time step, pair plasma
of momentum ul= 10 (at the lower end of the range described
by Equation (3)) and small temperature T= 0.1 mc2 (the effect
of higher temperatures is considered in Appendix C) is injected
into the box. The initial electric field amplitude and injection
rate determine the value of ξ; as expected, the appropriately
normalized simulation results depend only on the value of ξ
and not on the electric field amplitude or source rate separately.
(For convenience, after an initial test, only the electric field
strength was varied to vary ξ.) We run a set of simulations with
values of ξ ranging from ξ= 2.8× 106 to ξ= 4.4× 107.

After two time steps, there are 10 skin depths in the
simulation box, with each resolved by 700 cells. The
simulation is continued, with density increasing and
1 3

,gá ñ+ - evolving, until the discharge is well past the
transition to linearity; in all runs, the skin depth is resolved
by at least 35 cells at the end of the simulation.

5. Screening of Initial Electric Field

As pair creation begins in an unshielded electric field, the
first event that occurs is the screening of the initial electric field,
a process that has been considered previously in Levinson et al.
(2005) and Cruz et al. (2021b). In this section, we examine the
physics of this stage, leading to an expression for screening

time, Equation (30), which agrees with previous results in the
literature, and a new expression for the pair distribution
function, Equation (31).
The strong electric field initially present in the polar cap

rapidly accelerates the first newly injected lower-energy pairs
to large speeds, such that β→ 1 and in Equation (18) ĵ , defined
in Equation (19), approaches

j f u t du
t2

,
2

, 28ˆ ˆ ( ˆ)
ˆ

( )òx x
= =
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¥

+

where in the second equality we have applied the definition in
Equation (25). Integration of Equation (18) in time then gives

E t
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The initial electric field is fully screened when E 0ˆ = , which
occurs at time

t . 30screen
1 2ˆ ( )x=

As the electric field screens, particles are accelerated.
Solving Equation (17) using Equation (29) shows the electron
distribution function during the screening period is given by

f u t
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where the parameter u u t,lsourceˆ ( )t - is defined by the cubic
equation

u u t t
1

3
. 32l source

3
source
3(ˆ ˆ ) (ˆ ˆ ) ( )t

x
t- = - - -

The positron distribution function has the same form, but consists
of negative values of u− ul. We plot the analytic electron
distribution function at the time of screening tscreenˆ with the
distribution function from a direct numerical simulation in
Figure 1, finding good agreement. The largest disagreement with

Figure 1. Electron distribution function at tscreenˆ for ξ = 2.8 × 106 from the
analytic solution, Equation (36), and from the simulation.

7 We note that for the case of a plasma where the electron and positron
distributions are the same, this expression becomes, with normalization
removed, e n m8 12 2 3( )w p g= á ñ+ , an expression helpful in obtaining
Equation (60).
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our analytic prediction occurs at low u− ul, which corresponds to
particles injected just before tscreenˆ , when the electric field is weak
and Equation (28) begins to break down. The maximum u
obtained by the secondary pairs during the discharge is given by
the maximum u at which Equation (36) has support at tscreenˆ , i.e.,
u u 2 3l x- = .

At the time of screening, the electric field reaches zero, but
the velocities obtained by the electrons and positrons continue
to separate them, reestablishing an electric field in the plasma
and beginning the oscillations capable of creating radio
emission, which we study next, beginning in the next section
with the study of the first, large oscillations.

6. Nonlinear Stage

The initial oscillations in the plasma following screening are,
for large values of ξ, highly nonlinear and occur in a medium
that changes quickly in comparison to the speed of the
oscillation. As these oscillations proceed, they are damped by
the continual creation of pairs, which are spun up into the wave
oscillation, removing energy from the wave electric field. This
section examines wave damping during this period.

The electric field amplitude in this stage evolves according to
Equation (23), which was derived without making any
assumption of linearity. The behavior of the electric field is
thus specified by the behavior of the frequency 2ŵ , defined in
Equation (24). Consideration of Equation (24) shows that 2ŵ
depends on density nsˆ , which grows linearly as new pairs are
added to the system, and on the values of 1 s

3gá ñ , which evolve
both due to the addition of new pairs at u= ul to the system and
due to the large displacements in particle momentum that occur
in response to a nonlinear wave.

This evolution of 2ŵ can be seen in the results of a
simulation of the nonlinear stage, shown in the first panel of
Figure 2. Here, 2ŵ has large spikes, which represent times
when the second derivative of the electric field increases and
decreases dramatically in a short period of time. These spikes
are caused by particles added at times when the electric field
goes through zero. These newly added pairs are not initially
accelerated, so they contribute to a build up of a large number
of particles near u= ul. Slightly later, one sign of pairs
participating in this build up is dragged by the electric field
through u= 0, where the built-up pairs contribute to a dramatic
spike in 1 3gá ñ. Afterwards, as the particles are accelerated to
high u in the opposite direction, 2ŵ decreases rapidly as pairs
are accelerated to high γ. Crucially, the peak of the spike
occurs slightly after the zero of the electric field.

In Equation (23), a frequency described by this shifted spikes
structure corresponds to efficient damping of the electric field.
Let us first consider an elementary demonstration of this effect;
later, we will build a more involved model of the damping for
the specific case of the polar discharge.

Define time t Thˆ ˆ= as a point of zero-crossing for Ê that
occurs at the end of the half-period h of the oscillation. We
endeavor to determine how a spiked frequency such as that
observed in our simulation will change the derivative and
amplitude of Ê between period h= k and h= k+ 1. Let us
consider a simplified form of 2ŵ containing only delta function
spikes, offset by an amount Ξ from t Tkˆ ˆ= :

t T . 33k
2ˆ (ˆ ˆ ) ( )w d= - - X

Plugging this expression into Equation (23) and integrating the
resulting equation over a small region t T ,kˆ ˆ [ ]k k- Î - , where
κ> Ξ, gives

E T E T E T . 34t k t k kˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ ) ( )ˆ ˆk k¶ + - ¶ - = - + X

This equation represents a decrease in the magnitude of Et
ˆˆ¶

between successive half-periods h= k and h= k+ 1 of an
electric field oscillation, causing the maximum amplitude of the
electric field in the later half-period to be smaller, constituting
damping of the electric field. The physical mechanism for this
damping is the extraction of energy from the electric field to
decelerate pairs in a way that causes a spike in the frequency.
This mechanism is at play in the nonlinear stage of the polar

cap discharge. To obtain more specific results, we now build a
more involved model; this model includes a study of the
specific evolution of f̂-, yielding a more specific form for 2ŵ
than Equation (33) and, via Equation (23), a functional form for
electric field damping, which we will present in Equation (48).
The treatment is imprecise due to the nonlinear physics
involved.
To develop a model for f̂-, let us call the amplitude of the

electric field during the half-period h E ;h
ˆ also, we consider the

change in electric field amplitude and in ŵ away from the zeros
in Ê to be negligible. The electric field is approximately
sinusoidal,8 so that in the half-period h Equation (17) becomes

f E t f u ucos . 35t h u l
ˆ [ ˆ ( ˆ ˆ)] ˆ ( ) ( )ˆ w d¶ + ¶ = -- -

Solving Equation (35) gives

f f u u t f u E t, sin . 36l h,new ,old
ˆ ˆ ( ˆ) ˆ [ ˆ ˆ ( ˆ ˆ)] ( )w w= - + -- - -

Here, f ,old-̂ , corresponding to the homogeneous solution of
Equation (35), represents the evolution of particles already
present at the beginning of the half-period h of the oscillation.
The term f u t,,new

ˆ ( ˆ)- gives the evolution of newly added
particles and is given, in a half-period in which electrons are
decelerated, by

f u u t

u u u t

E

g u u t g u u t
u t u u

u u

,
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, ,
, 0

0, 0,
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where

g u u t
u u

E
t, 1 sin , 38l

l

h

( ˆ) ( ) ˆ
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( ˆ ˆ) ( )w
w- = +
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E
t, 1 sin , 39l
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and

u t
E t Esin

0. 40h
h h(ˆ)

ˆ ( ˆ ˆ) ˆ

ˆ
( )w

w
º

- 

8 Note that sawtooth-shaped electric field oscillations, observed in Levinson
et al. (2005), do not occur in a kinetic treatment. We consider this point further
in Appendix A.
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The second panel of Figure 2 shows a comparison between
Equation (37) and the distribution function at the second zero-
crossing in the simulation illustrated in the first panel of
Figure 2, indicating rough agreement. For convenience, the

phase space in the simulation at this time is presented in the
third panel of Figure 2.
Let us consider how this distribution function changes the

electric field between the half-period h= k and h= k+ 1; then,

Figure 2. Quantities relevant to the nonlinear phase, all for a simulation with ξ = 2.8 × 106: (a) The early evolution of 2ŵ and Ê . The peaks in 2ŵ occur later than the
zeros of Ê . (b) Comparison of f̂- at the second zero-crossing with the analytic model for f ,new-̂ in Equation (37). The value of f̂- at negative u is larger than that of
f ,new-̂ in part because f̂- includes electrons already present at the time of screening, which are part of f ,old-̂ , that have backwashed to negative u. (c) Phase space at the
second zero-crossing, with every 500th particle marked. (d) An exponential decay fit, E t e t0.0016ˆ (ˆ) ˆ= - . The simulated Ê diverges from the fit near the transition to
linearity, discussed in Section 7. (e) The value of f̂+ near the end of the nonlinear period, t 5130ˆ = , showing several bounces stacked on top of each other. (f) Fit of
the decay constant in E t e a t tscreenˆ (ˆ) (ˆ ˆ )= - - as found in the simulation and predicted by the fit presented in Equation (49).
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we will spread this change across a whole half-period to obtain
a continuous expression for the damping.

Consideration of Equation (36) reveals that the frequency,
Equation (24), represented in our elementary demonstration by
Equation (33), is better represented near the transition between
the half-period h= k and h= k+ 1 by

t g t A
t T

t

1
. 41k

b

2
⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ˆ (ˆ) (ˆ)

ˆ ˆ
ˆ

( )w
x

d= +
- - X

(Recall that Tk̂ occurs at the end of half-period k.) Here, g
reflects the slow change in the frequency due to the evolving
nature of f ,old-̂ from one half-period to the next as the particles

in each f ,new-̂ enter the old particles in the next half-period.
This evolution includes a linear-in-time addition of density to
the discharge and a slow increase in the overall value of 1 3gá ñ.
The second term models the spikes in 1 3gá ñ caused by f ,new-̂ ,

which have characteristic height A and width tb̂. In Appendix B,
we roughly estimate the scaling of these quantities with ξ:

A 420.2 ( )x~

and

t . 43b
0.3ˆ ( )x~

Most damping is due to the delta function in Equation (41)
via the physics described in our elementary demonstration. As
in Equation (34), we integrate over a small region t Tkˆ ˆ- Î

,[ ]k k- to state (ignoring factors of order unity)

E T E T E T . 44t k t k k
0.5ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ ) ( )ˆ ˆk k x¶ + - ¶ - = - + X-

The left side of the previous expression can be restated in terms
of the frequency and the change in electric field amplitude:

E T E T E E . 45t k t k k k1ˆ ( ˆ ) ˆ ( ˆ ) ˆ ˆ ˆ ˆ ( )ˆ ˆk k w w¶ + - ¶ - = -+

(Recall that Ek 1
ˆ + represents the wave amplitude in the next

half-period of the oscillation.) Then, by representing the total
change in amplitude as a rate multiplied by a time, we also state

E E
E

t
t , 46k k

h

h
h1

⎡

⎣
⎢

⎤

⎦
⎥ˆ ˆ ˆ ˆ ˆ

ˆ
ˆ

ˆ ( )w w w- =
D
D

D+

with Eh
ˆD representing the change in electric field amplitude

from one half-period to the next, and tĥD the length of a half-
period. In Equation (46), we can make the replacement

E t dE dth h
ˆ ˆ ˆ ˆD D  , with dE dtˆ ˆ representing a continuous

change in the amplitude of the electric field oscillations;
furthermore, we note that t 1ĥ ŵD ~ (again ignoring order
unity factors). The continuous analog of Equation (44), that is,
an expression that spreads the localized damping caused by a
spiked frequency across time, is then

dE

dt
E . 470.5

ˆ
ˆ

ˆ ( )x= - -

The evolution of the electric field amplitude during the
nonlinear phase is then described by

E t e , 48t0.5ˆ (ˆ) ( )( ) ˆ= x- -

where the initial electric field amplitude is E 1ˆ = . The initial
period of electric field evolution during the polar cap discharge

is thus marked by strong, exponential damping of the
amplitude of the electric field oscillations. This is caused by
particles added during zero-crossings of the electric field
having their momenta reversed and accelerated to high values
in the opposite direction, sapping energy from the electric field.
This damping grows weaker with higher values of ξ, which
correspond to weaker pair damping.
To verify this model, we use our set of simulations with

several values of ξ to fit an exponential decay E t e atˆ (ˆ) ˆ= - to
the peaks of the first three peaks of the electric field amplitude.
An example of this fit is shown in the fourth panel of Figure 2.
Then, we assemble the set of exponential decay fit constants a
and fit these constants to a power-law function of ξ. The
resulting fit is

E t e , 49t0.4 0.5ˆ (ˆ) ( )( ) ˆ= x- -

in agreement with Equation (48). The fit for a compared with
the values of a measured from simulation data can be seen in
the final panel of Figure 2.

7. Transition to Linearity

As the discharge proceeds, the initial stage of slow, large-
amplitude oscillations, which experience the exponential
damping described by Equation (48), will cease, and the
discharge will proceed to a phase of smaller oscillations at a
higher frequency. We call this later regime the “linear” stage,
which we analyze in Section 8, revealing significantly weaker
damping than in the nonlinear stage.9 In this section, we
discuss the conditions that cause the transition between the
nonlinear stage and the linear stage.
In the nonlinear stage, damping is caused by sharp spikes

in 2ŵ . These strong spikes will cease to exist when, in
Equation (23),

1, 50t
2

3

ˆ
ˆ

( )ˆw
w

¶
~

where 2ŵ , defined in Equation (24), varies in time like
Equation (41). The time variation in ŵ comes from two
sources: the change in the values of nsˆ and in the values of
1 s

3gá ñ . The component of t
2ˆˆw¶ coming from the change in nsˆ

is already small at the time of screening and does not contribute
to the spiking behavior. Instead, the spiking results from large
displacements in the particle momentum as the wave electric
field grows from zero to its full amplitude over the course of a
half-period of oscillation, changing the values of 1 s

3gá ñ .
These displacements become negligible roughly at the point

where the displacement in particle u caused by the wave is
insufficient to reverse the typical u of the injected particles, ul.
The variation in a particle’s momentum, δu, is found by
considering the second term in Equation (36) or the maximum

9 Oscillations with k = 0, including those observed in our simulations before
a late fragmentation into finite-k modes discussed in this section, are exact
nonlinear solutions to Equation (23) no matter their amplitude. For such a
special wave, the techniques discussed in Section 8 require only that the
timescale of the background plasma variation be significantly longer than the
period of oscillation. However, this condition is roughly equivalent to one
requiring that the effect of the wave on particle motion be small, which is
necessary for the linearization of the Vlasov equation.
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magnitude u− ul with support in Equation (37),

u
E

. 51
ˆ

ˆ
( )d

w
~

This quantity is a relativistic version of the quiver or jitter
velocity familiar from classical plasma physics (Catto &
Myra 1989). For this quantity to no longer be large enough to
reverse ul requires

E

u
1. 52

l

ˆ

ˆ
( )

w
~

After this point, spiking activity and the concomitant strong
exponential damping considered in Section 6 cease. We will
show that the subsequent discharge evolution is characterized
by much weaker damping, such that the final radio emission
amplitude is roughly determined by the electric field amplitude
at the time Equations (50) and (52) are satisfied.

Additional simplification is possible when conditions
stronger than Equations (50) and (52) hold, specifically,

 1 53t
2

3

ˆ
ˆ

( )ˆw
w

¶

and

E

u
1, 54

l

ˆ

ˆ
( )

w

which state, respectively, that the timescale of background
plasma variation is significantly longer than the period of
oscillation and that the displacement in particle momentum
caused by the wave is very small.

We can observe the onset of Equations (50) and (52), and a
later progression to Equations (53) and (54), in our simulation.
Figure 3 displays the values of 2ŵ , the rms value of the electric

field in the simulation box divided by the frequency, E2ˆ ŵá ñ ,
and t

2 3ˆ ˆˆw w¶ in two simulations. Considering the simulation
with ξ= 2.8× 106 (a higher value of ξ, which displays similar
trends, is shown in the right panel of Figure 3), we observe an

initial stage where E u 1l
ˆ ( ˆ )w , the plasma frequency

changes quickly, and the electric field damps rapidly. Once
the simulation obeys Equation (52), around t 6000ˆ = , the
strong damping ceases. The frequency still has significant
variation, resulting from coherent displacements in the plasma
distribution function caused by an electric field that, though not
able to reverse newly injected particles, is able to cause
noticeable momentum changes. This means that although
Equation (50) roughly holds, Equation (53) is not satisfied.
This situation is difficult to understand analytically but
corresponds in our simulation to negligible damping.
Later, around t 11, 000ˆ = , our simulation of k= 0 electric

field oscillations fragments into superluminal finite-k modes,
which may be a result of a parametric-type instability like that
considered in Cruz et al. (2021a). An illustration of this
fragmentation is given in Figure 4. After this point, the value of

2ŵ , where here 2ŵ is given by Equation (24) evaluated across
the simulation box, which is proportional to, but not the same
as, the frequency of a given k mode, does change slowly. This
evolution occurs because the electric field is no longer able to
cause coherent changes in the plasma distribution function.
Conditions (53) and (54) hold, and a new method of analysis, to
be explained in Section 8, becomes possible.
We note here that we also ran simulations beginning with a

finite-k mode. Specifically, we ran simulations starting from a
sinusoidal electric field with one period in the simulation box
(equivalent to a wavenumber k= 0.63 de

1- with skin depth
calculated from the plasma density two time steps into the
simulation); the maximum initial electric field in these
simulations is 2 larger than the uniform electric field in the
normal simulations, such that the rms electric field amplitude is
the same. Plasma is injected in the same way and at the same
rate as in the k= 0 simulations. The discharge in the nonzero-k
simulation quickly evolves into even higher-k oscillations
because the initial field is more quickly screened near the zeros
of the electric field. There is no later fragmentation, and the
oscillations remain superluminal throughout the discharge.
The resulting damping of these simulations is shown in

Figure 3 by the orange dashed line. The nonzero-k discharge
exhibits a strong exponential damping phase, which ends when

Figure 3. Evolution of parameters important to the transition to linearity in simulations with (left) ξ = 2.8 × 106 and (right) ξ = 2.3 × 107, shown in blue. Displayed
are (from top to bottom) the squared frequency of the oscillation, the ratio of the rms amplitude of the electric field in the simulation box to the frequency (which
characterizes the change in particle u caused by the wave), and the normalized rate of change of the oscillation frequency. The dashed orange lines show the same
quantities in a simulation run starting from an electric field with a finite k, as discussed at the end of Section 7. The plotted frequency is the value of Equation (24)
evaluated across the box, equivalent to the quantity plotted for the k = 0 simulation, even though this simulation has spatial variation.
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the rms amplitude of the electric field in the box approximately
satisfies Equation (52). This damping is followed by a weak
damping phase, without the intermediate stage of minimal
damping and E u 1l

ˆ ( ˆ )w ~ exhibited by the k= 0 simulations.
However, the value of Equation (24) evaluated across the
simulation box in finite-k simulations does not show the
spiking behavior considered in Section 6, because the picture
we advanced in that section will hold only locally.

8. Linear Stage

In a plasma where Equations (53) and (54) are satisfied, the
system enters a period in which the plasma wave is a small
perturbation on the background and the frequency of the
oscillation changes slowly, as quantified by Equation (53). In
our simulations, this occurs after the fragmentation of the k= 0
mode into finite-k oscillations; however, because the observed
oscillations still have low values of k, the evolution of their
amplitude can be roughly analyzed in the same way as a
k= 0 mode.

Specifically, the electric field differential equation,
Equation (23), can be analyzed directly using textbook WKB
techniques (Stix 1992), giving

E
1

, 55
2ˆ

ˆ
( )

w
~

with the electric field oscillation frequency determined by the
current value of Equation (24). In this stage, 2ŵ changes due to
increasing plasma density and evolving 1 3

,gá ñ+ -, which
together yield an overall-increasing frequency, such that
Equation (55) represents a slow damping of the electric field.
(Ignoring the effect of changing 1 3

,gá ñ+ -, Equation (55) gives

E t1 1 4ˆ ˆ~ , a dramatically weaker damping than Equation (48).)
Further physical insight into this damping can be obtained

by arriving at Equation (55) via energy arguments. Using

Equation (18), we can state

E j E
1

2
, 56t

2ˆ ˆ ˆ ( )ˆ¶ = -

which relates the change in the energy in the electric field to the
power exerted on the current by the electric field. Via the same
method used to obtain Equation (23), we also have

j E 57t
2ˆ ˆ ˆ ( )ˆ w¶ =

with ŵ defined in Equation (24). Using Equation (57) to
substitute for Ê in Equation (56), we can arrive at

E j j

t2 2 2

1
. 58t

2 2

2
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The first term on the left side represents the wave energy in the
electric field and the second the energy from the velocity of
particles in the wave. When the wave frequency changes
slowly, we can say these are roughly equal on average and
replace Equation (58) with an expression in terms of the electric
field amplitude:

E
E

t2

1
. 59t

2
2

2

2
⎜ ⎟
⎛
⎝

⎞
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ˆ ˆ

ˆ
ˆ
ˆ

( )ˆ
w

w
¶ = -

¶
¶

From this, we can reproduce Equation (55).
The relationship in Equation (55), with a frequency calcu-

lated from the current value of Equation (24) across the whole
simulation box, and the squared electric field strength given by
its average value in the box, is compared to simulation in
Figure 5, showing good agreement.
In summary, the linear stage, which occurs late in the

discharge, is marked by weak damping. The nature of this
damping is such that the relationship between the electric field
strength and frequency throughout the linear stage is given by
Equation (55).

9. Conclusion with Implications for Pulsar Radio Emission

We have developed a one-dimensional model for the
evolution of the wave amplitude during a pulsar polar cap

Figure 4. Depiction of the fragmentation of the ξ = 2.8 × 106 simulation into
higher-k modes. The first plot shows the electric field in the simulation box
before the k = 0 breakup; the second shows the electric field after the
fragmentation. Both of these plots show the full simulation domain, but the
skin depth shrinks as time progresses, such that the axis labels of the two plots
are different. The final plot zooms in on a small section of the box at three close
times; the black lines move at the speed of light between the times and are
overrun by the peak of one oscillation, indicating that the modes are
superluminal.

Figure 5. The electric field in a simulation with ξ = 2.8 × 106 compared to an
oscillation with amplitude given by Equation (55) and time-dependent
frequency given by Equation (24). The comparison begins after the simulation
has fragmented into finite-k modes, as discussed in Section 7.
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discharge. In this model, the initial inductive electric field in the
pulsar polar cap is screened by the creation of electron–positron
pairs, setting up oscillations that continue to be damped by pair
creation. This damping process has three phases: a screening
phase, described in Section 5; a nonlinear phase, described in
Section 6; and a linear phase, described in Section 8. The
conditions for the transition between the nonlinear stage and
the linear stage are considered in Section 7.

In a realistic, two-dimensional pulsar polar cap, the
discharge waves are initially electromagnetic (Philippov et al.
2020); in addition, they will refract and may develop an even
larger electromagnetic component as they also encounter cross-
field gradients after their creation (Melrose et al. 2020). These
electromagnetic waves eventually escape the plasma as
Poynting flux. Our one-dimensional model does not consider
the magnetic component of the plasma oscillations and cannot
treat the escape process, which will be the focus of future work.
However, the electromagnetic oscillations interact with the pair
plasma through a parallel wave electric field and the resulting
plasma current, and this interaction, in which the physics of our
model is key, is responsible for the evolution of the amplitude
of the radio emission. In this conclusion, we will thus use the
physics understanding from our model to give new insight into
multiple elements of pulsar observations.

To start, we develop an expression for the frequency of the
pulsar’s emission. We note that in the linear phase of the
discharge, the pair distribution function approaches a Maxwell–
Jüttner (Jüttner 1911) distribution drifting at ul (at the large
Lorentz factors given in Equation (3) characterizing the lower-
energy pairs, γl≈ ul, and we will present results in terms of ul).
For such a distribution, 1 3gá ñ depends on ul and on the
thermal spread of newly injected pairs, which is defined by the
temperature, T. In particular, for pulsar conditions, where
ul? 1, Tmc2, and T/(mc2)= ul, the plasma frequency,
Equation (24), can be roughly represented by Rafat et al.
(2019):

n e
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The pulsar’s radio emission is in the form of a superluminal O
mode, which has a frequency ωO above the plasma frequency.
Pair multiplicity in polar cap cascades of active pulsars
relatively quickly reaches values of ∼103 and continues to
grow until reaching the maximum multiplicity of a∼few× 105

(Timokhin & Harding 2015, 2019). Electromagnetic waves
likely escape the plasma when it is characterized by a pair
multiplicity between these values.10 Evaluating Equation (60)
numerically for a pair multiplicity at the bottom of this range,

we get
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with νO representing the frequency of O-mode waves. Pulsar
radio emission has been observed at frequencies as low as 15
MHz (see, for example; Pilia et al. 2016), making Equation (61)
possibly consistent with observations. O-mode oscillations with
higher wavenumbers have higher frequencies; in addition, later
in the discharge process, when the plasma multiplicity increases
above∼ 103 and ul drops down to ∼10, the frequency will
increase. Both of these effects push Equation (61) toward the
radio range.
To continue, we present a set of arguments leading to an

expression for pulsar radio luminosity. The luminosity depends
on the amplitude of the emission when it leaves the pulsar. As
we described in Section 6, all strong damping of the plasma
waves occurs in the nonlinear stage. Considering
Equation (52), the end of the nonlinear phase occurs when

eE

u m c
1, 62

l t
( )

w
~

where E is the electrostatic component of the wave amplitude
at the point of transition between the nonlinear and linear
stages, ul∼ 103 is the injection momentum of the lower-energy
pairs, and ωt∼ 109 rad s−1 defines the characteristic wave
frequency at the end of the nonlinear phase. Evaluation gives
E u m c e 10 Gl t

5w= ~ . The time to reach the end of the
nonlinear phase, ts, can be found in Equation (49),
t E E t2 lns 0 0( )x~  . Estimating E Eln 100( )  and using
Equation (20), one obtains

t
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This time is shorter than the light-crossing time across the polar
cap, Rpc/c, so the nonlinear phase of the discharge completes in
all active pulsars.
As described in Section 8, the damping of the electric field is

weak during the linear stage, so the rough overall radio
luminosity is likely to be set at the end of the nonlinear phase.
(The end of the nonlinear phase also corresponds to the lowest
frequencies of emission, because ul will decrease and multi-
plicity will increase in the linear phase. The pulsar spectrum
declines with frequency, such that luminosity is dominantly
determined by the low-frequency contributions occurring at the
end of the nonlinear stage.) Emission across the pulsar polar cap
gives a radio luminosity of L c E Rsin 4rad

2
pc
2( ) ( ) ( )a hp p~  ,

where α is the typical angle between the direction of wave
propagation and the background magnetic field (see Philippov
et al. 2020) and η characterizes the fraction of pair-producing
field lines in the polar cap. Using Equation (62), one obtains
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10 For a number of reasons, waves might escape the pair-forming blob, i.e., the
region where the plasma density increases and the wave amplitude drops,
before the pair multiplicity there saturates at κ ∼ 105. The wavenumbers k of
waves in our full discharge simulations (Philippov et al. 2020) are a
nonnegligible fraction of ω/c, similar to the superluminal waves observed in
the simulations that start with a nonzero k discussed in this paper. Hence, the
group velocity of oblique electromagnetic O-mode waves in hot plasma will be
significant, and they should be able to outrun the region with increasing plasma
density. The waves might also escape from the sides of the pair-forming blob—
the freshly created pair plasma is highly nonuniform, so the waves would
refract toward regions of smaller density and might escape the blob (a scenario
discussed in Melrose et al. 2021). On the other hand, for some magnetic field
lines, the pair-forming blob will be moving toward the neutron star (see
Timokhin & Arons 2013) and the waves propagating toward the magneto-
sphere would not need to go through the region of increasing plasma density.
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This luminosity is toward the lower end of the range of
observed radio luminosities (Szary et al. 2014; Wu et al. 2020);
higher values of luminosity may be explained by the escape of
some radiation before the end of the nonlinear stage. The
prediction in Equation (64) can also be expressed as a fraction
of the pulsar’s spin-down luminosity, L cE R 4sd 0

2
pc
2 ( )p p=

(Spitkovsky 2006):
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Observations show practically no dependence of the radio
luminosity on pulsar parameters (Szary et al. 2014; Wu et al.
2020); however, Equation (64) shows a nonnegligible depend-
ence on B* and Ω. We should note that the uncertainties in our
simplified estimate for ωt and the numerical factors η and α

may substantially reduce this dependence. For example, in
young energetic pulsars with large Ω (and B*) the pair creation
front is expected to be less inclined with respect to the
background magnetic field, which reduces α and hence the
dependence of the radio luminosity on these parameters. We
will refine these dependencies in our future multidimensional
studies.

Next, although the overall radio luminosity is set at the
transition between the nonlinear and linear phases, some
modification in the amplitude does occur in the linear phase.
We expect that radiation will escape the plasma throughout the
linear stage (and possibly during the nonlinear stage as well) in
a continuous process that occurs concurrently with the
generation of the plasma waves. The relationship between
amplitude and frequency in the linear stage, given by
Equation (55), would thus be visible to an observer if, across
the polar cap, the wave amplitude became unaffected by the
plasma at a variety of different points in the linear damping
process, when the value of the plasma frequency is different.
This relationship roughly agrees with the observed spectrum of
emission, Sω∼ ω−1.4±1.0, with Sω the intensity emitted at that
frequency (Bates et al. 2013). This suggests that the pulsar
radio spectrum may result in part from the linear damping
physics of the pair discharge.

Finally, the distribution of particles right after the end of the
initial screening, Equation (31), can be used as a model for the
spectrum of particles flowing back from the discharge to the
pulsar surface, allowing greater understanding of the X-ray
hotspots observed by NICER (Gendreau et al. 2016; Salmi
et al. 2020).
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Appendix A
Discussion of Sawtooth Oscillations

Works that study pulsar polar cap discharges using a fluid
treatment observe sawtooth-shaped oscillations, where electric
field evolution is linear except at turning points (Levinson et al.
2005). There have been tentative suggestions in the literature
that such sawteeth may be a generic feature of relativistic pair
discharges, extending also to kinetic treatments (Cruz et al.
2021a). In fact, sawteeth do not occur in a kinetic treatment.
To understand why, let us first consider the origin of

sawteeth in a fluid treatment. We can define a Lorentz factor
associated with the electron and positron fluids as, with s=+ ,
− again indicating species,

1

1
, A1s

v

c
s
2

2

( )g º
-

with vs the velocity of species s; furthermore, we define Ns as
the density of fluid species s measured in the pulsar frame. The
equations governing this system are (Levinson et al. 2005)

m N v N q E, A2t s s s s s( ) ( )g¶ =
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E q N v4 0, A4t
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with m again representing the pair mass, qs the species charge,
E the electric field, and S/2 the source rate. Under equivalent
normalizations to those used in Section 3, these become
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s( ˆ ) ˆ ˆ ( )ˆ g b¶ =

N 1, A6t sˆ ( )ˆ¶ =

and

E
q

e
N

1
0. A7t

s

s
s sˆ ˆ ( )ˆ åx b¶ + =

Except over short timescales when the pair fluid velocities
reverse direction, the electron and positron fluids are highly
relativistic, such that Equation (A7) approaches

E
q

e
N

1
; A8t

s

s
sˆ ˆ ( )ˆ åx¶ = -

with constant or slowly changing density, this represents a
linear or nearly linear change in the magnetic field, giving the
sawtooth form seen in the first panel of Figure 1 of Levinson
et al. (2005).
A kinetic description of the polar cap oscillations, presented

in Section 3, differs fundamentally from a fluid one in that it
takes into account that a plasma is composed of particles of
many different velocities, unlike a fluid, which has a single
velocity. Thus, the replacement presented in Equation (A8) is
not possible, and the electric field evolution is sinusoidal, with
a frequency given by Equation (24). We note that to obtain a
fluid-like result, i.e., one with linear oscillations of E 0t

2 ˆˆ¶ = ,
we could take the limit 1 03

,gá ñ + - in the frequency given
by Equation (24), which corresponds to the artificial situation
of a plasma composed just of particles moving with c, which
bears some resemblance to a fluid moving at c.
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As a further illustration of the difference between kinetic and
fluid oscillations, we present in Figure 6 a comparison between
the first kinetic bounce shown in Figure 2 and a calculation of
the fluid analog evolution of the electric field that would occur
if Equation (A8) governed the system. The difference in the
two lines is significant.

Appendix B
Estimate of Scaling of A and tb̂

In this appendix, we develop a rough model for A and tb̂. To
do this, we consider the behavior of Equation (37) near the
beginning of a period in which electrons are decelerated,
t

2
ˆ

ˆ= p
w
. Specifically, consider that the contribution of new

particles to the frequency is

t
n n

duf u t u

1 1

1
, 1 , B1

u t

u

new
2

3
new

3
new

,new
2 3 2l

max

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

ˆ (ˆ) ˆ ˆ

ˆ ( ˆ)( ) ( )
(ˆ)ò

w
x g x g

x

= +

» +

+

+

-

-

-
-

with f ,new-̂ defined in Equation (37) and u tmax (ˆ) defined in
Equation (40). The frequency is dominated by contributions
from the electrons because positrons are accelerated to even
higher u than their injection momentum ul, increasing their
Lorentz factor and decreasing their contribution to the
frequency. The value of A represents the height of the spike
in 2ˆxw that occurs just past t

2
ˆ

ˆ= p
w
, at the time where particles

added near the zero of the electric field are pulled through
u= 0. The value of Atb̂ represents the area under this spike.

Specifically, we can write

A tmax . B2
t 3

2

new
2

2

[ ˆ (ˆ)] ( )
ˆ

ˆˆ

x w~
p
w

< <p
w

and

At t dt . B3b
2

3 2

new
2ˆ ˆ (ˆ) ˆ ( )

ˆ

ˆ

òx w~
p w

p w

We numerically evaluate these quantities for E 1n
ˆ ~ at several

values of ŵ and fit the resulting data, giving

A B40.5ˆ ( )w~ -

and

t . B5b
0.7ˆ ˆ ( )w~ -

We note from Equation (41) that at times of zero-crossing
A2ŵ x~ and use Equation (B4) to write

1
, B62

0.5
ˆ

ˆ
( )w

xw
~

whence,

A B70.2 ( )x~

and

t . B8b
0.3ˆ ( )x~

Simulation confirms that the height and width of the spikes
increase slowly with ξ.

Appendix C
Effect of Finite Temperature

All analysis after Equation (12) assumes negligible injection
temperature; our simulations use a small injection temperature
of T= 0.1mc2, as described in Section 4. However, as noted in
Section 3, newly injected pairs in fact have a thermal spread of
roughly Tmc2. To examine the effect of this thermal spread,
we run two more cases of our ξ= 2.8× 106 simulation with
injection temperatures of T= 1mc2 and T= 10mc2. The effect
of finite injection temperature on these simulations can be seen
in Figure 7. The left figure, which depicts the quantity also
shown in Figure 5, shows that higher-temperature simulations
have a lower frequency and a higher saturation amplitude. In
addition, the fragmentation into finite-k modes occurs later in
the higher-temperature simulation. The right plot in Figure 7
displays the spatial profile of Ê at a time late in the discharge,
after the simulation fragments into finite-k modes, and should
be compared to the quantities in Figure 4, showing that
higher-temperature simulations have slightly larger wavelength
modes.

Figure 6. Comparison of electric field evolution in the first kinetic bounce
shown in Figure 2 with its fluid analog.
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