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lations show that the radical rebound step is enantioselectivity-

determining, whereas the preceding HAT step is only moderately stereoselective. Furthermore, the selectivity in the initial HAT is
ablated by rapid conformational change of the radical intermediate prior to C—N bond formation. This finding is corroborated by
our experimental study using a set of enantiomerically pure, monodeuterated substrates. Furthermore, classical and ab initio
molecular dynamics simulations were carried out to investigate the conformational flexibility of the carbon-centered radical
intermediate. This key radical species undergoes a facile conformational change in the enzyme active site from the pro-(R) to the
pro-(S) configuration, whereas the radical rebound is slower due to the spin-state change and ring strain of the cyclization process,
thereby allowing stereoablative C—N bond formation. Together, these studies revealed an underappreciated enantioinduction
mechanism in biocatalytic C(sp®)—H functionalizations involving radical intermediates, opening up new avenues for the
development of other challenging asymmetric C(sp®>)—H functionalizations.

B INTRODUCTION precursors including organic azides and hydroxylamine esters,
a putative metal nitrene intermediate forms in the enzyme’s
active site, enabling further C(sp®)—H amination in a
stereoselective fashion.”’

In recent years, the Arnold group engineered “P411”
enzymes, a class of cytochromes P450 featuring an iron-
binding serine residue, to facilitate asymmetric C(sp*)—H
amination processes.(’a_g In 2019, a set of P411 nitrene
transferases were developed for the asymmetric intramolecular
amination of primary, secondary, and tertiary C(sp’)—H
bonds.® With P411p,,,.,, cyclic 1,2-diamine derivatives formed

Due to the ubiquity of C—H bonds in organic molecules,
selective C—H functionalization reactions hold the potential to
significantly streamline organic synthesis.' Over the past
decade, extensive efforts have been devoted to the develop-
ment of catalytic asymmetric functionalization of C(sp®)—H
bonds.” Among these C—H functionalization processes,
asymmetric C—H amination is particularly attractive, as it
allows for the rapid assembly of chiral amines that are found in
a range of important pharmaceuticals and agrochemicals.’®
Owing to their exquisite control over reaction stereochemistry,
biocatalytic methods have recently emerged as an appealing
alternative to stereoselective C(sp*)—H functionalization.” Received:  February 28, 2022
Over the past 8 years, the groundbreaking work from Arnold, Published: May 18, 2022
Fasan, Hartwig, and many other researchers has culminated in

a range of enantioselective C(sp®)—H amination processes

using a metalloenzyme-catalyzed nitrene transfer mechanism.”

In these C(sp3)—H amination reactions, using nitrene
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with excellent enantioselectivity via the asymmetric function-
alization of secondary C(sp®)—H bonds (Figure 1A). Our

(A) Enantioselective amination of secondary C(sp®)-H bonds
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Figure 1. Possible mechanisms of enantioinduction in the engineered
P411p;,,,-catalyzed asymmetric amination of secondary C(sp®)—H
bonds.

previous density functional theory (DFT) calculations using an
Fe—porphine model complex indicated a stepwise mechanism
involving an Fe nitrene-mediated hydrogen atom transfer
(HAT) and a subsequent radical rebound step, leading to
C(sp®)—N bond formation products.”* To date, the
enantioselectivity-determining step in this intramolecular
secondary C(sp®)—H amination process remains unresolved.

Specifically, two enantioinduction scenarios, including enan-
tiodetermining HAT and enantiodetermining radical rebound,
could account for this stereoselective C(sp®)—H amination. As
described in Figure 1B, in the HAT event, either of the two
prochiral C—H bonds (C—H® and C—H") can be cleaved by
the Fe nitrene (I), giving rise to two prochiral radical
intermediates (IT and IIT), respectively. If the interconversion
of the prochiral radicals is slower than the rebound step (k,,
k_, < kg, kg), retention of stereochemistry would be expected
in the subsequent radical rebound step. In this scenario, the
HAT step would constitute the enantioselectivity-determining
step. On the other hand, if the configurational change of this
prochiral carbon-centered radical is much faster relative to the
rebound step (k;, k_, > kg, kg), stereoablation® would take
place at this carbon-centered radical. In this case, the
subsequent radical rebound would account for the excellent
enantioselectivity under the Curtin—Hammett conditions.
Although several computational studies on related P411-
catalyzed C(sp*)—H amination processes supported the HAT/
radical rebound mechanism,”*"®° the enantioselectivity-
determining step and the origin of enantioselectivity in most
reactions are still not well understood. It is often assumed that
the HAT step is enantioselectivity-determining.%’C The
enantioselectivity control in the radical rebound step has not
been quantitatively investigated by computation or experiment.
In particular, the relative rates of C—N bond forming radical
rebound and the conformational reorganization of the carbon-
centered radical remain elusive. Therefore, it is unclear
whether radical rebound has any impact on the enantiose-
lectivity. Additionally, the impact of key active site residues on
these individual steps in the catalytic cycle is also unexplored.
Here, we report a combined computational and exper-
imental study to shed light on the mechanism and origin of
stereoselectivity of this biocatalytic C(sp*)—H amination. To
differentiate between the two mechanistic scenarios and gain
insights into the origin of stereocontrol, we undertook
computational studies using quantum mechanics/molecular
mechanics (QM/MM) calculations, classical and ab initio
molecular dynamics (MD) simulations. We investigated the
reaction free energy profiles and the enantiocontrol of the
HAT and the radical rebound steps. We also performed
computational studies on the rate of the interconversion
between the prochiral carbon-centered radical intermediates.
Moreover, deuterium-labeling experiments were performed to
support the computational results by quantitatively determin-
ing the levels of enantioselectivity in the HAT and radical
rebound steps. Finally, the roles of key active site residues on
catalytic activity and enantioselectivity were investigated

(i) Enzyme preparation and
substrate docking

(ii) Classical MD simulations,
clustering analysis, and
constrained MD simulations
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Figure 2. Protocol for computational investigations of asymmetric enzymatic reactions.
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computationally and validated experimentally using mutated
enzymes generated from site-directed mutagenesis. Collec-
tively, these studies revealed that the enantioselectivity of this
enzymatic C(sp®)—H amination is determined in the radical
rebound step, a scenario which is often overlooked in previous
studies.

B COMPUTATIONAL DETAILS

Classical MD Simulations. To account for the dynamic
nature of the protein scaffold,'’ we implemented the protocol
shown in Figure 2 to unravel the reaction mechanism and
origin of stereoselectivity in the enzymatic C(sp®)—H
amination. The initial geometry of P41lp,,., used in the
calculations was generated by modifying the X-ray crystal
structure of a related P411 enzyme (PDB ID: SUCW). Eight
amino acid residues were mutated using the Mutagenesis tool
in PyMOL'' (see Figure S1 for mutated residues). The
substrate was then docked into P411p,,., using AutoDock."?
Classical MD simulations were carried out using the pmemd
module'® of the GPU-accelerated Amber 16 package.'* Force
field parameters for the Fe nitrene complex were generated
using the MCPB. py module'” with the general Amber force
field (gaﬁf),lé and the Amber ff14SB force field'” was used for
standard residues. After initial equilibration (see the Support-
ing Information), a 500 ns MD simulation was performed
using the isothermal—isobaric ensemble (NPT). Clustering
analysis was carried out using the cpptraj module'® to identify
the most populated structure in the last 300 ns of the MD
simulation [see Figure S2 for root-mean-square deviation
(rmsd) along the SO0 ns MD trajectory]. The rmsd of the
backbone was used as the distance metrics in the clustering
analysis. Conformational samplings of the Fe nitrene
intermediate and all the HAT and radical rebound transition
states were then carried out using 50 ns of classical MD
simulations. For transition states, the breaking and forming
bonds were constrained by applying a force constant of 1000
kcal'mol™"-A™? in the MD simulations. In the last 20 ns of each
MD simulation, snapshots were extracted every 5 ns, giving
four structures from each simulation and a total of 20
snapshots. Subsequently, QM/MM calculations were per-
formed using the 20 snapshots as input geometries for each
stationary point along the reaction pathway.'”

QM/MM Calculations. The ONIOM method™ imple-
mented in Gaussian 16> was used in all QM/MM calculations.
Water molecules and counterions within S A from the enzyme
were included in the QM/MM calculations. The QM region
includes the Fe—porphine complex, the substrate, and
boundary hydrogen atoms, with a total of 66 atoms and a
total charge of —1 (Scheme 1). The deprotonated axial serine
ligand was used because the calculated pK, values of a
methoxy-ligated Fe(porphine)—nitrene complex (3.07) and a
methoxy-ligated Fe(porphine)—NHR complex (1.89) indicate
relative high acidity of the protonated serine ligand. The pK,y
calculations were performed in an aqueous solution using the
computational method described by Smith et al.”* (see the
Supporting Information for details). A deprotonated axial
ligand was also used in several previous computational studies
of P411 enzymes.®* &7%>*

For the QM region, the B3LYP”*/6-31+G(d)—~LANL2DZ-
(Fe) level of theory was used in geometry optimization and
vibrational frequency calculations, and the B3LYP-D3(BJ)/6-
311+G(d,p)—LANL2TZ(f)(Fe) level of theory was used in
single-point energy calculations because of its good agreement

Scheme 1. QM Region Used in the QM/MM Calculations
Ph

with CCSD(T) benchmark results.”® For the MM region, the
same force field parameters from the classical MD simulations
discussed above were used. Residues greater than 15 A away
from the QM region were fixed duringé geometry optimization.
The quadratic coupled algorithm™ and the mechanical
embedding scheme were used in geometry optimization.
Single-point energy calculations were performed with the
electronic embedding scheme, which better describes the
electrostatic interactions between QM and MM regions.26
Open-shell singlet, triplet, and quintet spin states for each
structure were calculated using QM/MM. Wave function
stability of the open-shell singlet spin state was confirmed by
using the “stable = opt” keyword in Gaussian. Boltzmann-
weighted average Gibbs free energies' >’ of the 20 snapshots
were calculated using

1y -AG,
AG,,, = —kgT In| — :
ave B n[ n Z exp( kBT )]

i=1

(1)

where n is the number of structures (n = 20), k is the
Boltzmann constant, and T is the temperature (T = 298.15 K).
Gibbs free energies computed from individual snapshots (AG;)
are provided in the Supporting Information (Table S1).

AIMD Simulations. Ab initio MD (AIMD) simulations
were performed using the QUICKSTEP module with the
hybrid Gaussian and plane waves (GPW) method”®
implemented in the CP2K package.”” Because the entire
system is treated using DFT, to reduce computational costs,
the enzyme is truncated into a smaller cluster model®
composed of the Fe—porphine complex, the substrate, and
side chains of amino acid residues within 5 A of the substrate
based on the QM/MM-optimized geometry of 4, (Scheme
2). The backbone atoms were constrained in the AIMD
simulations. The BLYP functional**”*' with D3 dispersion
correction”” and the DZVP basis set’ with Goedecker—
Teter—Hutter pseudopotentials®* were used. The plane wave
cutoff and the convergence criterion were 280 Ry and 107" au,
respectively. Metadynamics simulations®> were carried out at
298 K with a time step of 0.5 fs. The N'—C'—C>~C? dihedral
angle of 4,,,.x was used in the metadynamics simulations as a
collective variable. The Gibbs free energy profile was obtained
using thermodynamic integration.36

B EXPERIMENTAL METHODS

Expression of P411 Variants. Escherichia coli [E. cloni BI21
(DE3)] cells carrying plasmid encoding P411 variant were grown
overnight in 4 mL of Luria broth with ampicillin. Preculture (1.5 mL,
5% v/v) was used to inoculate 28.5 mL of hyper broth with ampicillin
in a 125 mL Erlenmeyer flask. This culture was incubated at 37 °C,
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230 rpm for 2 h in a New Brunswick Innova 44R shaker. The culture
was then cooled on ice for 20 min and induced with 0.5 mM IPTG
and 1.0 mM S-aminolevulinic acid (final concentrations). Expression
was conducted at 22 °C, 150 rpm for 20 h. Cells were then transferred
to a 50 mL conical centrifuge tube and pelleted by centrifugation
(3000g, 5 min, 4 °C) using an Eppendorf S910R tabletop centrifuge.
The supernatant was removed and the resulting cell pellet was
resuspended in M9-N buffer to ODgy, = 30. An aliquot of this cell
suspension (2 mL) was taken to determine the protein concentration
by the hemochrome assay after lysis sonication.

Biotransformations Using Whole E. coli Cells. Suspensions of
E. coli [E. cloni BL21(DE3)] cells expressing the appropriate P411
variant in M9-N buffer (ODgy, = 30) were kept on ice. In another
conical tube, a solution of p-glucose (500 mM in M9-N buffer) was
prepared. To a 2 mL vial were added the suspension of E. coli cells
expressing P411 (ODgqoo = 30, 345 L) and p-glucose (40 uL of SO0
mM stock solution in M9-N buffer). This 2 mL vial was then
transferred into an anaerobic chamber, where the azide substrate (15
uL of a 270 mM stock solution in EtOH) was added. The final
reaction volume was 400 uL; final concentrations were 10 mM
substrate and S0 mM p-glucose (note: reaction performed with E. coli
cells resuspended to ODgy, = 30 indicates that 345 uL of ODgy, = 30
cells were added, and likewise for other reaction ODyy, descriptions.)
The vials were sealed and shaken in a Corning digital microplate
shaker at room temperature and 680 rpm for 12 h. The reaction
mixture was then extracted with EtOAc and analyzed by chiral high-
performance liquid chromatography (HPLC) using an internal
standard.

B RESULTS AND DISCUSSION

Reaction Mechanism. The Gibbs free energy profile of
the P411p;,,,-catalyzed C—H amination of sulfamoyl azide
substrate 1 obtained from QM/MM calculations is shown in
Figure 3 (see Figure S4 in the Supporting Information for
QM/MM-optimized structures). The quintet (high spin),
triplet (intermediate spin), and open-shell singlet (low spin)
spin states of each intermediate and transition state structure
were considered in the calculations. Here, only the pathways
involving the cleavage of the C—HS bond of the substrate to
form the favored (S)-enantiomer of the product are shown.
The cleavage of the C—H" bond follows the same mechanism
(see Figure S5). The origin of enantioselectivity will be
discussed in detail in a later section of the article. Our QM/
MM calculations reveal that Fe nitrene species 3 has
substantial radical character on the nitrogen center, facilitating

Fe—N distance
2.22 (2.01) [2.01]

)
N 5
# % Quintet
[Fe] =
-3 3-  — Triplet
e * =
O)W * —— Open-shell singlet
1

Figure 3. Computed Gibbs free energy profiles of the P411p;,,.,-
catalyzed C—H amination from QM/MM calculations. Black, blue,
and purple values represent bond distances (in A) of quintet, triplet
(in parentheses), and open-shell singlet (in brackets) spin states,
respectively.

for the C—H bond activation (see Figure S6 for spin densities
of all computed structures). The C—H® cleavage via TS1 gives
rise to the benzylic radical intermediate 4,,,.5, where the (Si)-
face of the benzylic radical points toward the nitrenoid
nitrogen. Based on our QM/MM studies, this HAT step is
exergonic and irreversible, which is consistent with DFT
investigations with a model Fe—porphine complex (Figure S7).
In the HAT step, the triplet and open-shell singlet spin states
are very similar in energy, whereas the quintet is substantially
higher in energy. The similar energy profiles suggest that the
HAT step may involve both triplet and singlet spin states, a
“two-state reactivity” reminiscent of the HAT step of the native
C—H hydroxylation with P450 enzymes, which involves both
doublet and quartet states of the active Fe oxo species.’’
However, unlike the P450-catalyzed C—H hydroxylation,
where the low-spin doublet Fe"'—OH intermediate (com-
pound II) undergoes barrierless radical rebound, both the low-
and intermediate-spin intermediates of the Fe''—NHR
intermediate 4, s require substantial barriers to radical
rebound via TS2. Instead, the quintet spin state becomes the
most favorable in the radical rebound transition state (TS2),
indicating a spin-crossover’”*® event from the triplet and
singlet intermediates to the quintet spin state prior to the
radical rebound (see Figure S8 for the calculated minimum
energy crossing point between the triplet and quintet surfaces).

These computed energy profiles indicated a key difference
between the P411p;,,.,-catalyzed C—H amination and the
P450-catalyzed C—H hydroxylation.”” In the P450-catalyzed
hydroxylation, low-spin pathways are effectively concerted with
ultrashort-lived intermediates, while high-spin pathways are
stepwise. By contrast, the P411p;,,.,-catalyzed C—H amination
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Figure 4. QM/MM-computed free energy profiles of the P411p;,,.,-catalyzed amination of two prochiral benzylic C—H bonds in 1. Only the most-
stable spin state of each species, denoted by superscript, is reported. AG,,. and AH,,, values are Boltzmann-weighted Gibbs free energies and
enthalpies computed from initial structures taken from 20 MD snapshots. Blue: pathway leading to the major enantiomeric product 2. Red:

pathway leading to the minor enantiomeric product ent-2.

favors the stepwise mechanism regardless of whether the
singlet or triplet Fe nitrene is involved in HAT. The relatively
high barrier in the C—N bond forming radical rebound step is
due to the spin-state change from the near-degenerate singlet/
triplet carbon-centered radical 4,,,.s to the quintet state in
TS2. The radical rebound from singlet and triplet 4,,.g is
disfavored due to several factors. First, in the triplet and singlet
rebound transition states, >T'S2 and 'TS2, the Fe—N bond is
elongated (2.33 and 2.09 A, respectively) relative to 405
(2.01 A), requiring significant distortion. In contrast, the Fe—
N bond in quintet *4,,, is already elongated (2.22 A). This
predistortion of the Fe—N bond facilitates the nitrogen
rebound via the quintet state. The elongated Fe—N bond in
the quintet >TS2 reduces the steric repulsions between the
secondary benzylic radical and the Fe—porphyrin during
radical rebound. Second, the ground state of the product
complex is the high-spin quintet Fe(II)—porphyrin S. This
leads to smaller thermodynamic driving force for the radical
rebound on the singlet and triplet surfaces compared to that
involving the quintet intermediate 54Pm_s. Lastly, the five-
membered cyclic transition state TS2 suffers from relatively
high ring-strain energy. Based on computed values derived
from hypothetical homodesmotic reactions®’ (Figure S9), the
ring strain energies of the five-membered ring transition state
TS2 and the cyclic amination product 2 are 7.7 and 5.1 kcal/
mol, respectively. Therefore, the ring strain energy of the
cyclization transition state makes the intramolecular C—N
rebound slower than the corresponding intermolecular
process.”"®” Taken together, the QM/MM-computed
reaction energy profiles revealed an unusual mechanism with
a high-barrier radical rebound, indicating relatively long
lifetimes of the carbon-centered radical intermediates, which

may lead to the ablation of stereochemistry prior to radical
rebound.

Enantioselectivity in the HAT and Radical Rebound
Steps. Because the high radical rebound barrier shown above
indicates that either the HAT or the radical rebound step can
be enantioselectivity-determining, we computed the enantio-
selectivity in both steps in the amination of the two prochiral
benzylic C—H bonds in 1 (Figure 4). From the Fe nitrene
species 3, HAT with the C—H® (TS1) and C—H* (TS3)
bonds require activation free energies of 12.2 and 14.0 kcal/
mol, respectively. After the formation of the prochiral benzylic
radical intermediates 4,,,,.r and 4.5, subsequent C—N bond
forming radical rebound takes place via quintet transition
states, TS2 and TS4, to form the two enantiomers of the
amination product. The computed activation free energy
difference (AAG¥) between radical rebound transition states
TS2 and TS4 is 6.5 kcal/mol, much higher than the moderate
AAG? of the HAT step, which is only 1.8 kcal/mol.

The computed energy profiles have some interesting
implications on the enantiocontrol of the asymmetric
amination. Although the HAT step is exergonic and
irreversible, the relatively high barriers to radical rebound
suggest that the rate of interconversion between benzylic
radical intermediates 4, g and 4,,,.s may be faster than the
C—N bond forming radical rebound. This scenario is
reminiscent of the Curtin—Hammett principle, where the
enantioselectivity is only affected by the energy difference
between the radical rebound transition states, TS2 and TS4.
Additionally, the computed AAG* for HAT (1.8 kcal/mol)
corresponds to 91% ee, much lower than the experimentally
observed enantioselectivity (>99.9% ee). On the other hand,
the high enantioselectivity in the radical rebound step (AAG*
= 6.5 kcal/mol, which corresponds to >99.9% ee) is consistent
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with the high levels of enantioselectivity observed in the
experiment.

Deuterium-Labeling Experiments. Our QM/MM cal-
culations revealed an unusual enantioinduction mechanism,
wherein the HAT step is moderately enantioselective and the
nitrogen-rebound step is highly enantioselective. To further
shed light on the enantioselectivity-determining step in this
intramolecular C—H amination, we prepared a set of
enantiopure monodeutero, monoprotio substrates and sub-
jected them to the enzymatic reaction conditions (Figure SA).

(A) Deuterium-labeling experiments

SON, P41 7 7
D ;\H | 2N3 Diane2 HN/ \NMe N HN/ \NMe Eq. 1
NQ > D Hame
Ph Me
Ph Ph
(R)-1-d, 2-d, 2
96% 4%
>99% ee >99% ee

|:> KIE and enzyme enantiocontrol both favor C-H cleavage:
AGyg + AGgnangioselectivity = AAGH,p(HAT-(R)-1-d,)
= -RTIn(ky/kp) = —1.87 kcal/mol

SO,N P411 O\\ //O O\\S//O
H ;\D i 2N3 Diane2 HN/ \NMe . HN/ \NMe Eq.2
)\/N\ Hag Dag
Ph Me 7—‘ 7—‘
PH PH
(S)-1-d 2 2.d,
67% 33%
>99% ee >99% ee

E> KIE favors C-H cleavage; enzyme enantiocontrol favors C-D cleavage:
= AAGH,p(HAT-(S)-1-d,)
= -RTIn(ky/kp) = 0.41 kcal/mol

AGKIE - AGenantioselectivily

(B) Dissecting the KIE and enzyme enantioinduction effects
* AGye = -0.73 kcal/mol
implications
* AGgpantiosstectivity = ~1.14 kcal/mol |:> «+ HAT step is moderately
enantioselective.

« HAT step is irreversible.

* high ee for both Egs. 1 and 2 » Enantioselectivity is not

determined in the HAT step.

Figure S. Enantioselectivity-determining step in the P411p;,,.-
catalyzed C—H amination identified by deuterium-labeling experi-
ments. Reactions were carried out using whole E. coli cells harboring
P411p;,ne- Product distribution and enantioselectivity were provided
in the figure. <10% Deuterium on the N atom was observed by 'H
NMR spectroscopy, presumably due to proton exchange with H,O of
the reaction buffer.

When (R)-1-d; was applied, the biocatalytic C—H amination
furnished the product with >99% ee, and the 2-d,/2 ratio was
determined to be 96:4 on the basis of 'H NMR analysis. When
(S)-1-d, was applied, this biocatalytic amination reaction still
furnished the same enantiomeric product with >99% ee, and
the 2/2-d, ratio was found to be 67:33.

Quantitative activation free energy analysis of these reactions
was next performed (Figure SB. See Figures S10 and S11 for
detailed calculations). Based on our QM/MM-computed
energy profiles with evolved P411y;,,., (Figure 4) and DFT
calculations on a model complex (Figure S7), the HAT step in
this C—H amination is irreversible. Thus, the 2/2-d, ratio, that
is, AAG*y,p(HAT), is controlled by two energy terms,
including AGgg, which reflects the kinetic isotope effect
(KIE) in the HAT step, and AG, , which reflects the

enantioselectivity’

enzyme-induced enantioselectivity in the HAT event with the
non-deuterated substrate. With (R)-1-d, as the substrate, both
the KIE and the enzymatic stereocontrol favor the abstraction
of the pro-(S)-H, thus leading to a higher 2-d,/2 ratio. On the
other hand, when (S)-1-d;, was applied, enzymatic stereo-
control overrides the inherent KIE effect, resulting in a lower
2/2-d, ratio. Activation free energy analysis allowed us to
dissect the two effects, and the two energy terms of AGyg and
A G pantioselectivity Were determined to be —0.73 and —1.14 keal/
mol, respectively. This AGgy value corresponds to a ky/kp of
3.4. This KIE is consistent with previously measured KIEs with
related enzymatic intramolecular C—H amination processes.””"
The primary intramolecular KIE suggests an irreversible HAT
step, which is consistent with the computed reaction energy
profiles. Moreover, the small value of AG,pioselectiviey fOr the
HAT step corresponds to an enantiomeric ratio (e.r.) of 87:13
(74% ee), clearly showing that the HAT step with P411p,. ., is
only moderately enantioselective, and the very high level of
product enantiopurity was controlled by the radical rebound
step. Therefore, these results suggest that the benzylic radical is
relatively long-lived, and the excellent enantioselectivity
observed in this enzymatic C—H amination is likely controlled
by the C—N bond-forming radical rebound step.

Stereoablation after HAT via Conformational Change
of Benzylic Radical Species. The experimental and
computational results discussed above indicate that although
HAT is irreversible, it is not enantioselectivity-determining.
This means the prochiral benzylic radical intermediates 4,,,.x
and 4,,,.s must undergo rapid interconversion before the
radical rebound. This mechanistic scenario is not well
understood for radical-mediated enzymatic reactions, partic-
ularly new-to-nature enzymatic reactions, considering the short
lifetime of radical intermediates.

In order to investigate the rate of the interconversion
between benzylic radical intermediates 4.,z and 4, ¢ via
conformational reorganization, classical MD and AIMD
simulations were carried out.”’ Using the QM/MM-optimized
structure of 4.z as the starting geometry, a 500 ns classical
MD simulation was performed. Within the first 6.5 ns of the
MD simulation, a snapshot with geometry akin to 4,,.¢ was
obtained (see Figure S12). The rotations about the S—N' and
C'—C? bonds (Figure 6A,B) occur at approximately the same
time, from 6.0 to 6.3 ns (see Figure S13 for rotation about the
N'—C' bond). This process allows the bulky Ph group on the
substrate to point toward the same direction without clashing
with the Fe—porphyrin. Throughout the 500 ns classical MD
simulation, frequent rotations about the S—N' and C'-C?
bonds were observed (see Figure S14). These results suggest
that within the enzyme’s active site, the benzylic radical is
conformationally flexible and can rapidly rotate to expose
either prochiral face of the carbon-centered radical toward
Fe"—NHR prior to the C—N bond forming radical rebound.

Next, we performed AIMD metadynamics simulations to
quantitively determine the Gibbs free energy barrier to the
isomerization of the benzylic radical intermediates. The AIMD
simulations suggest that the transformation of 4,,,.g t0 4,0.s is
facile, with a low barrier of 3.6 kcal/mol with respect to 4,.0.r
(Figure 6C). This result is consistent with the rapid
conformational change observed in the classical MD
simulations. Most importantly, this conformational change
from 4, g to 4,y6. OCcurs at a time scale faster than the C—N
bond-forming radical rebound, highlighting the essential role of
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Figure 6. Isomerization of 4,,,  to 4. (A,B) Rotations about S—
N' (A) and C'—C? (B) bonds in the first 6.5 ns of a 500 ns classical
MD simulation starting from 4,,.z. (C): Free energy profile of the
isomerization from AIMD metadynamics simulation of a cluster
model of 34Pm_R using the N'—C'-C>—C?® dihedral angle as a
collective variable.

radical rebound in determining the enantioselectivity of this
enzymatic C—H amination.*”

Origin of Enantioselectivity and the Roles of Key
Residues. The QM/MM-optimized structures of intermedi-
ates and transition states in the C—H amination pathways are
shown in Figure 7. In all structures, C—H/zm or n/zm
interactions between the substrate and the W263 residue, a
key mutation previously introduced during the directed
evolution of P411y,,., are observed. This indicates that
W263 plays an essential role in enhancing substrate binding
and stabilizing intermediates and both HAT and radical
rebound transition states. With the C—H/x interaction with
W263 and a steric effect of A87, the orientation of the
substrate is constrained, pointing the Ph group on the substrate
toward V328, a key residue for enantioinduction (vide infra).

In the transition state stereoisomers leading to the opposite
enantiomeric products, the benzylic C—H bonds in TS1 and
TS3 and the benzylic radical in TS2 and TS4 approach from
the opposite faces of the Fe nitrene or Fe"~NHR complex. In

transition states TS3 and TS4, the benzyl group is placed close
to V328, leading to steric repulsions between these two groups,
whereas in TS1 and TS2, the benzyl group approaches from
the opposite side of V328, and thus, the steric repulsion is
diminished. Although TS3 and TS4 are both destabilized by
steric repulsions with V328, the magnitude of steric effect is
different—the Ph group is placed much closer to V328 in the
radical rebound transition state TS4 [d(H--H) = 2.14 A]
because of the shorter distance between the benzylic carbon
and the Fe—porphyrin (2.33 A) than that in TS3. The stronger
steric repulsions that destabilize TS4 lead to the greater
enantioselectivity in the radical rebound step (AAGT poung =
6.5 kcal/mol) compared to that in the HAT step (AAG¥yur =
1.8 kcal/mol).

To validate the computationally revealed roles of key
residues, such as W263, V328, and A87, we carried out site-
directed mutagenesis and tested the catalytic activity and
enantioselectivity of these P411p;,,., variants (Tables 1 and
S4). We found that mutations W263A and W263F did not
affect the enantioselectivity but substantially reduced the
enzyme activity (Table 1, entries 1—3). This finding is
consistent with the stabilization effect of W263 observed
from QM/MM calculations. The P411p;,,., A87V and A87L
variants also led to lower yields without impacting
enantioselectivity (entries 4—5). This suggests that a larger
residue 87 may hinder substrate binding and decrease
conversion without altering the mode of enantioinduction.
We further validated the role of V328 by evaluating the
enantioselectivity of P411p;,.., V328A generated by site-
directed mutagenesis. Indeed, mutant P411p;,.., V328A
provided product 2 with 97% ee and lower activity, suggesting
a larger residue at 328 is needed for enantiocontrol (entry 6).
Furthermore, double mutants P411p;,,., V328A A87V and
P411p;,0., V328A A87L were generated and found to furnish
further decreased enantioselectivity (81 and 55% ee,
respectively, entries 7—8). Our QM/MM calculations using
the V328A A87V variant indeed showed a decreased
enantioselectivity in the radical rebound step (AAG* = 1.7
kcal/mol, Figure S17) due to reduced steric repulsions
between the substrate and residue 328. These results are
consistent with our computational model and demonstrate the
importance of residues 328 and 87 in crafting a substrate
binding pocket for excellent enantiodifferentiation.

B CONCLUSIONS

Using a combined QM/MM and experimental approach, we
investigated the mechanism and origin of enantioselectivity of
the recently developed biocatalytic asymmetric C(sp®)—H
amination process. This C—H amination was found to occur
via an irreversible HAT step and a C—N bond-forming radical
rebound step. Contrary to previous understanding on
enantioinduction mechanisms, we showed that radical re-
bound, rather than HAT, is enantioselectivity-determining in
this biocatalytic intramolecular C—H amination. Our QM/
MM calculations indicated that the radical rebound is relatively
slow due to the spin-state change and ring strain in the
intramolecular cyclization transition state. Classical and AIMD
simulations suggested that the carbon-centered radical under-
goes much faster conformational change, allowing for stereo-
ablation at the carbon-centered radical intermediate. There-
fore, under the Curtin—Hammett conditions, the enantiose-
lectivity is determined in the radical rebound step. The QM/
MM-computed activation free energy differences between the
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Figure 7. QM/MM-optimized lowest-energy structures of the intermediates and transition states in the P411p;,,.,-catalyzed asymmetric amination
of secondary C(sp*)—H bond in 1. Boltzmann-weighted Gibbs free energies (in parentheses, kcal/mol) are relative to Fe nitrene species *3. Blue
dashed lines represent C—H/x interactions, measured by the shortest distance between the hydrogen atom and a carbon atom on the aromatic ring.

Distances are in A.

Table 1. Effects of Key Residues W263, A87, and V328 on
Activity and Enantioselectivity of Enzyme Variants
Generated by Site-Directed Mutagenesis

whole E. coli cells

Vi
?—0 harboring P411pjane2 mutants HNT  NMe

N

oSN e M9-N buffer (pH = 7.4) /—/
rt,12h PH
1 2

entry enzyme mutant yield (%) TTN ee (%)
1 P4llpge 8l+1 2460 + 20 >99
2 DP4llp,,., W263A 1440 40 + 10 >99
3 P4lly,,., W263F 24+ 1 850 + 20 >99
4 DP4lly,., ASTV 40+4 1100+ 100  >99
S P4llp,. ASTL 8+1 450 + 70 >99
6  P4lly,., V328A $9+3 1690 % 60 97
7 Pally,. V328A AS7V 18 +2 510 + 60 81
8 P4llp,,., V328A AS7L 3+0 150 + 4 S5

“Yields and ee’s were determined by HPLC analysis. Reactions were
carried out using whole E. coli cells harboring P411p;,,,., mutants.

two stereoisomeric pathways indicated a moderate level of
stereoselectivity in the HAT step (AAG* = 1.8 kcal/mol) and
an excellent level of enantioinduction (AAG* = 6.5 kcal/mol)
at the radical rebound stage that can account for the high levels
of enantioselectivity observed in the experiment. These
computational findings are corroborated by experimental
results employing enantiopure and deuterium-labeled sub-
states, which also indicated moderate enantioselectivity in an
irreversible C—H cleavage event, and thus, the excellent

enantioselectivity of the overall amination must be controlled
in the subsequent radical rebound step. The roles of several
key active site residues, including W263, A87, and V328, in
confining substrate orientation and manifesting enantioinduc-
tion via steric effects, have been demonstrated computationally
and validated experimentally by evaluating the activity and
enantioselectivity of enzyme variants generated by site-directed
mutagenesis. Together, this study highlights an unusual
enantioinduction mechanism in metalloenzyme-catalyzed
asymmetric transformations involving radical intermediates.
We expect that these insights will guide the further
development of stereoselective new-to-nature biocatalytic
reactions using a radical mechanism.
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