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Abstract—IoT (Internet-of-Things) devices require both re-
liable, ultra-low latency connection and on-demand access to
computing resources in their vicinity. Edge computing can pro-
vide nearby computing resources through offloading to cloudlets.
However, challenges lie in providing stable services in big cities,
emergency situations, and places lacking sufficient infrastructure
due to dynamic IoT demands and their uncertain mobility,
coupled with intermittent or limited connectivity to nearby
computing resources. There has been an increasing adoption of
UAV-mounted mobile cloudlets to address these issues, where
mobile cloudlets can be seamlessly integrated into the existing
network infrastructure for offloading and enhanced connectivity.
However, adaptively placing mobile cloudlets under continuously
evolving conditions is still an open problem. In this paper,
we study mobile cloudlet placement in highly dynamic, next-
generation edge networks. Our objective is to maintain stable
ultra-low-latency services and enhance coverage by optimizing
the placement of mobile cloudlets in highly dynamic scenarios.
We propose a novel approach for this problem using inspirations
from concepts in physics, namely the center of gravity and
force of attraction. Our approach emulates how physical bodies
maintain balance and adjust their positions when acted upon
by dynamic external forces for efficient placement of mobile
cloudlets in response to dynamic and uncertain device mobility.
The results show that our proposed approach provides high
device coverage, excellent energy efficiency, and stable edge
services in real-time.

Index Terms—physics-inspired approach; dynamic placements;
mobile cloudlets; edge computing; next-generation networks

I. INTRODUCTION

Exciting developments in wireless networks and telecom-

munications have dramatically impacted many different fields.

Nonetheless, continuous efforts to further progress and envi-

sion future technologies based on increasing demand for data,

flexible computing resources, and connectivity are being made.

It is now clear that there will be many novel, cutting-edge,

and large-scale applications on billions of connected devices

and IoT (Internet-of-Things) endpoints that will be pushing

boundaries of the existing infrastructure [1], [2]. For instance,

new applications like Extended Reality (XR) have a unique

combination of requirements including on-demand services

with extremely high network speed and low latency [3].

Edge computing can partially address these requirements by

allowing users to consume the computing resources in their

vicinity via offloading, thereby reducing the access latency

and data traffic to the core infrastructure [4]. The convergence

of edge computing with next-generation networks (5G and

beyond) can complete the requirements puzzle by providing

extremely high network speeds [5], thereby creating the notion

of next-generation edge networks.

Nonetheless, covering highly mobile users while providing

stable low-latency services as they move across the service

region is a complex problem. Locations with limited or

disrupted connectivity during natural disasters or generally

poor infrastructure cannot sufficiently serve mobile users. Even

infrastructures with wide coverage may not meet offloading

and ultra-low latency requirements. Next-generation wireless

networks with multi-gigabit data rates can still have technical

challenges such as signal reflection, path loss, and block-

ages [5]. On the other hand, offloading to static edge servers

(or cloudlets) is equally challenging and leads to frequent

service and task migrations for mobile users. Accordingly,

the long-term, static placement of cloudlets does not meet

all the requirements of mobile users in next-generation edge

networks. Thus, we can adequately serve highly mobile users

with dynamic demands only when efficient approaches to

dynamically place the cloudlets are available.

Mobile cloudlets mounted on Unmanned Aerial Vehicles

(UAVs) have been well-studied and already under adoption

in the industry [6], [7] to enhance user experience and enable

new innovative applications. Federal Aviation Authority (FAA)

and Verizon’s Skyward currently collaborate to test cellular-

connected UAVs [8]. Some studies have proposed UAVs to

complement wireless backhaul networks [9] and even an entire

cellular infrastructure based on a hierarchical deployment of

UAVs [10]. UAV-mounted cloudlets can be flexibly deployed

as the user demands and distributions change over a region.

This is especially applicable to support compute-intensive

latency-critical computations in disaster scenarios [7], massive

demand areas such as stadiums, and emerging applications

including drone air-delivery. For instance, dispersed teams

of rescue workers can use XR headgears in inaccessible or

partially accessible landscapes for path finding during natural

disasters, and cognitive assistance such as identifying objects,

people, and threats. These rapidly evolving compute-intensive

applications (object detection, risk assessment, and navigation)

need ultra-low latency and stable offloading services so that
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well-informed decisions can be made in a matter of millisec-

onds, which are otherwise not possible under damaged or

distant infrastructure, and where emergency support vehicles

and equipment cannot reach. Mobile cloudlets meet these

critical requirements by directly bringing resources to the

rescuers in response to their uncertain movements.

The purpose of this paper is to present an ingenious place-

ment of mobile cloudlets in next-generation edge networks

to provide ultra-low latency services for the emerging appli-

cations considering realistic constraints. We aim to provide

stable services to the users through mobile cloudlets when

user distribution and demands change rapidly.

We design a novel approach, called Physics-inspired Mobile

Cloudlet Placement approach, PMCP, to address these issues

by borrowing the concepts of “center of gravity” and “force

of attraction” from physics. Our proposed approach responds

to uncertain device mobility in real-time. PMCP not only

removes the overhead of predicting device locations but also

does not require the acquisition of sensitive mobility data to

make those predictions.

As a part of our study, we define an optimal integer

programming formulation of the mobile cloudlet placement

problem, OMCP, and implement the classic DBSCAN algo-

rithm [11] with path planning to serve as our two performance

benchmarks. We perform extensive experiments by creating

multiple scenarios, including both 2D and 3D user distribution

and mobility, based on real mobility traces obtained from KTH

Walkers dataset [12]. We then compare PMCP’s results with

OMCP and DBSCAN. The results show that our approach

achieves high coverage values, superior energy efficiency, and

stable services for all scenarios in real-time.

The rest of the paper is organized as follows. In Sec-

tion II, we discuss the state-of-the-art research in this domain.

In Section III, we introduce the mobile cloudlet placement

problem and formulate a mathematical optimization model.

In Section IV, we present our proposed approach, PMCP, in

detail. In Section V, we evaluate the performance of PMCP

by extensive experiments. In Section VI, we summarize our

results and present possible directions for future research.

II. RELATED WORK

Numerous studies have been conducted to address the

cloudlet placement problem in a static scenario. Clustering-

based approaches have been proposed by Kang et al. [13] and

Jia et al. [14]. Greedy approaches include the likes of Zeng et
al. [15] and Yao et al. [16]. Other static approaches include

a search-based algorithm by Wang et al. [17], an energy-

aware heuristic approach by Li et al. [18], and a coverage

maximization approach [19]. Lu et al. [20] studied the robust

placement of edge servers under failure scenarios, and Fan

and Ansari [21] proposed another heuristic algorithm for cost-

aware placement to obtain sub-optimal solutions. Many of

these studies lack heterogeneity. Bhatta and Mashayekhy pro-

posed a meta-heuristic approach [22] and a bifactor approx-

imation algorithm [23] for heterogeneous cloudlet placement.

However, these studies do not consider the mobility of the

users, the cloudlets, or both. These approaches are primarily

designed for the permanent placement of cloudlets, hence, they

are not suitable for scenarios where placements need to be

updated in very short time intervals.

There are related studies on UAV positioning and mobility

models in flying ad-hoc networks (FANET) and node place-

ment in wireless sensor networks (WSN) [24], [25]. Studies on

WSN node placement focus on maximizing the surveillance

area or geographical coverage of the nodes [24]. However, our

problem is concerned with covering actual devices that need

computing resources and connectivity to services. Moreover,

higher geographic coverage may not even lead to better

device coverage in a dynamic environment where multiple

sub-regions may not even have any users. Likewise, FANET

positioning and mobility models are essentially geographical

deployments, and they too do not follow the users or their

demands. Many models are in fact based on time-based,

topological, and even random positioning of UAVs, agnostic

of user mobility or demand [25]. Hence, existing studies in

both of these domains insufficiently address our problem.

When it comes to mobile cloudlet placements, there are

extremely limited studies on dynamic or online placement of

cloudlets since the primary infrastructure has been most often

perceived to be static and perennial. However, mobile cloudlets

have become increasingly relevant due to ubiquitous mobile

applications today, rendering a necessity for more studies.

Xiang et al. [26] proposed an adaptive cloudlet placement

approach for mobile applications. Their approach identifies

gathering regions of mobile devices using position clustering

and generates mobility paths of the cloudlets to new locations

based on the shortest distance. Their approach inherently does

not capture the mobility of each cloudlet as a part of the main

decision, which is to determine the cluster centers instead.

They recalculate cluster centers in each time slot and only

calculate the mobility paths after the new cluster centers are

established. Moreover, their approach looks at the placement

from a 2D perspective with homogeneous cloudlets and is

computationally heavy, limiting its applicability significantly,

especially for real-time scenarios. Zhang et al. [27] presented

another adaptive cloudlet placement approach that directly

improves on the previous study. They proposed a covering-

based clustering technique to determine cloudlet placement

locations. They also made the covering algorithm parallel on

Spark to speed it up. Nonetheless, the limitations stay the

same since their core assumptions are exactly the same as

the previous study. Jin et al. [28] proposed another clustering-

based approach that deploys cloudlets dynamically based on

the geographic location and the number of tasks generated by

devices. However, their approach again relies on establishing

new device cluster centers in each time window and then

moving the cloudlets to their closest destination centers.

Wang et al. [29] proposed an online algorithm that dis-

patches UAV-mounted edge servers by identifying UAV hover

locations to complement existing infrastructure during heavy

usage by maximizing the number of served tasks. However,

they do not consider separating distance between the UAVs

160

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 25,2023 at 00:39:56 UTC from IEEE Xplore.  Restrictions apply. 



and possible interference when they are placed too close to

each other, around the same location. Although the UAVs

hover at different heights, all devices are assumed to be on

the ground. Hence, the coverage is observed in terms of the

2D influence radius on the ground. Moreover, they do not

consider the concept of service stability. A dynamic approach

for mobile environments by Yuan et al. [30] uses deep learning

for virtual edge node placements in edge cloud systems.

Their combination of deep-learning-based predictions and

hierarchical-clustering-based placement approach is catered

more towards dynamic service placement than the actual place-

ment of mobile cloudlets. Service or application placement

approaches have inherently different properties which are not

suitable for our problem. Moreover, user mobility is highly

uncertain, and even deep learning may lead to inaccuracy and

consequently high latency services. Furthermore, considering

the importance of user privacy, our approach does not rely on

learning or predicting user mobility patterns.

In summary, apart from [29], none of the existing dynamic

placement approaches consider cloudlet capacities or user to

cloudlet assignments as a part of their problem formulation.

Most importantly, in all existing studies, the movement of

the individual cloudlets is not directly guided by changes in

device positions and demands in their immediate surrounding.

In our approach, the mobile cloudlets are aware of and respond

to changes around them in real-time. There is no prediction

involved, which reduces the run-time overhead. Similarly,

sensitive long-term mobility data required for those predictions

do not need to be acquired or processed by our approach.

III. MOBILE CLOUDLET PLACEMENT PROBLEM

This paper aims to continuously place and readjust the

locations of mobile cloudlets in a region to maximize device

coverage and maintain stable services, given the uncertain

changes in user demands and movements. As such, we model

the region as a finite 3D grid within which the devices and

the mobile cloudlets move. The 3D grid is made up of smaller

contiguous 3D sub-divisions called cells.

The 3D grid is a collection of non-overlapping equal-

sized cells or cubes denoted by C = {c1, c2, . . . , ck, . . . , cn}.

Note that the geometric representation of the cells can be

other 3D shapes such as a hexagonal prism or a sphere. For

simplicity, we consider cubes. Each cell represents the 3D

coverage of a unit cloudlet within which ultra-low latency

can be offered. The interconnected cells make the contiguous

Fig. 1: Mobile cloudlet placement scenario in 2D

3D region. The cells, represented using 3D coordinate axes,

are always indexed from top-left to bottom-right with the

index denoting the area they cover. The mobile cloudlets and

devices may change their locations from cell to cell over

time τ = {1, 2, . . . , t, . . . , T}. The cloudlets move between

the cells to follow the changes in the device distribution, as

shown in Figure 1 (shown in 2D for simplicity).

We denote the set of heterogeneous mobile cloudlets

by M = {m1,m2, . . . ,mj , . . . ,mu}. Each mobile

cloudlet mj ∈ M is represented by a 3-tuple mj =
{μt

j , rj ,Λj} denoting its attributes: μt
j is the service capacity

(in resource units) at time t, rj is the 3D coverage (3D

cell dimensions), and Λj is the maximum cell distance the

cloudlet can travel within a time slot t. Note that the resources

indicated by service capacity μt
j can be processing, memory,

or storage individually or as a combination. We assume a

single resource for simplicity and without loss of generality.

Similarly, the maximum cell travel Λj depends on multiple

parameters such as the speed of the mobile cloudlet, power

consumption/available battery, and the weight carried by the

mobile cloudlet. This is used to set a constraint on general

mobility of the cloudlets so that they follow a realistic travel

path and travel a limited distance in every time slot while

avoiding collisions during placement.

Likewise, we denote the set of heterogeneous devices

by D = {d1, d2, . . . , di, . . . , dv}. Each device di ∈ D is repre-

sented by a 3-tuple di = {δti , cti, λt
i} denoting its attributes: δti

is the demand (in resource units) at time t, cti is the 3D cell

of the mobile device at time t, and λt
i is an ordered triple

denoting the 3D coordinates of the mobile device at time t.
For simplicity of modeling, if a cloudlet fails at any instant,

the cloudlet capacity becomes 0. If it has recovered, its

capacity comes back to non-zero. The same applies to a device

when it is disconnected or connected, and the device demand

goes to 0 or non-zero, respectively. These can also be treated

as a device going out of bounds and returning back to the

service region. We assume that these values are set by the

underlying sensor networks. In addition, all connected devices

are assumed to receive ultra-low latency services if they are

within the 3D coverage regardless of their absolute distance

from the mobile cloudlet.

Our goal is to maximize the coverage of the devices in the

region (number of connected devices) with ultra-low latency

services by moving the cloudlets in response to the device

mobility. We define the following decision variables:

αt
jk =

{
1 if cloudlet mj is assigned to cell ck at time t,

0 otherwise.

γt
jkl =

{
1 if cloudlet mj moves from ck to cl at time t,

0 otherwise.

βt
ij =

{
1 if device di is assigned to cloudlet mj at time t,

0 otherwise.
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We mathematically formulate the Optimal Mobile Cloudlet

Placement problem (OMCP) as an Integer Program (IP) as

follows:

max

T∑
t=1

v∑
i=1

u∑
j=1

βt
ij (1)

Subject to:

u∑
j=1

n∑
k=1

αt
jk = |M|, ∀t ∈ τ (2)

n∑
k=1

Δ(cti, ck)(β
t
ij + αt

jk − 1) ≤ rj , ∀di ∈ D,mj ∈ M, t ∈ τ

(3)v∑
i=1

δtiβ
t
ij ≤ μt

j , ∀mj ∈ M, t ∈ τ (4)

γt
jkl ≥ αt−1

jk + αt
jl − 1, ∀mj ∈ M, ck, cl ∈ C, t ∈ {2, . . . , T}

(5)

γt
jkl ≤ αt−1

jk , ∀mj ∈ M, ck, cl ∈ C, t ∈ {2, . . . , T} (6)

γt
jkl ≤ αt

jl, ∀mj ∈ M, ck, cl ∈ C, t ∈ {2, . . . , T} (7)

Δ(ck, cl)γ
t
jkl ≤ Λj , ∀ck, cl ∈ C,mj ∈ M, t ∈ {2, . . . , T}

(8)u∑
j=1

αt
jk ≤ 1, ∀ck ∈ C, t ∈ τ (9)

n∑
k=1

αt
jk ≤ 1, ∀mj ∈ M, t ∈ τ (10)

βt
ij ≤

n∑
k=1

αt
jk, ∀di ∈ D,mj ∈ M, t ∈ τ (11)

u∑
j=1

βt
ij ≤ 1, ∀di ∈ D, t ∈ τ (12)

γt
jkl ∈ {0, 1}, ∀mj ∈ M, ck, cl ∈ C, t ∈ τ (13)

αt
jk, β

t
ij ∈ {0, 1}, ∀mj ∈ M, di ∈ D, ck ∈ C, t ∈ τ (14)

The objective function shown in Eq (1) maximizes the cov-

erage of the devices, i.e., mapping of the devices to the

placed cloudlets. Constraints (2) ensure that the total number

of cloudlets placed in the region is equal to the number of

available cloudlets. Constraints (3) guarantee that each covered

device must be within the coverage radius of some cloudlet.

The constraint indicates that a device di currently at cell cti if

mapped to a cloudlet mj placed at a cell ck, the distance

between their cells must be less than or equal to the 3D

coverage rj of the cloudlet. Constraints (4) satisfy supply

and demand based on each cloudlet capacity and its covered

device demands. The sum of all device demands assigned to

a cloudlet must be less than or equal to the resources of that

cloudlet. Constraints (5) ensure that a cloudlet moves from

one cell to another at t only if its cell association changes

over time t − 1 and t. Constraints (6) and (7) ensure that a

cloudlet moves from one cell to another at t only if it was

placed in the source cell at t − 1 and in the destination cell

at t. Constraints (8) ensure that a cloudlet moves no further

than the maximum distance it can travel within time slot t.

Constraints (9) ensure that at most one cloudlet is placed at

any cell in the region. Constraints (10) ensure that a cloudlet

can only be placed at a single cell. Constraints (11) guarantee

that a device can only be served by a cloudlet that is placed in

the grid. Constraints (12) guarantee that each device is served

by at most one cloudlet. Finally, constraints (13) and (14)

ensure the integrality requirements of the decision variables.

IV. PHYSICS-INSPIRED MOBILE CLOUDLET PLACEMENT

We propose a novel approach to place and dynamically

change the locations of the mobile cloudlets in response

to dynamic and uncertain device mobility. Our approach,

called Physics-Inspired Mobile Cloudlet Placement (PMCP),

is inspired by the concept of the center of gravity and force of
attraction. These concepts have been used for weighted facility

location [31] and clustering approaches [32], [33], respectively,

in the fields such as operations research and machine learning.

The latter especially applies to robust adaptive clustering in

distributed networks [33]. In edge computing, the idea of

attractive and repulsive forces has been used to move data-

collecting mobile edge nodes closer to trustworthy nodes

and away from untrustworthy nodes in their overall travel

path [34]. Although our work is markedly different from these

individual studies, all of them suggest that our approach is

highly suitable for the dynamic placement of mobile cloudlets

under uncertainty.

PMCP performs the initial mobile cloudlet placement based

on the center of gravity to evenly balance the location of the

cloudlets. Such a balanced initial placement allows cloudlets

to be placed around weighted centers of device demands, en-

hancing potential coverage. Subsequently, PMCP readjusts the

locations of the mobile cloudlets in real-time by moving them

using the force of attraction to follow the sub-regions with

high user concentration. Since cloudlets follow the devices,

devices are likely to be served by the same cloudlets over time,

leading to less migration and switching services between the

cloudlets, which is significantly important in providing low-

latency stable edge services. As the cloudlets astutely match

the devices’ mobility, it can extend the battery life of the

cloudlets by avoiding unnecessary cloudlet movements. Next,

we explain these parts in detail.

A. Initial Placement

The initial placement by PMCP is inspired by the center

of gravity method. The goal of the initial placement is to

minimize the weighted distance of the devices from the mobile

cloudlets that will be placed in the 3D grid. PMCP estimates

the weighted centers of gravity for the devices in the grid

based on the demands and the cell locations of the devices at

time τ = 1. The estimated centers of gravity are iteratively

improved until they converge. The cloudlets are then initially

placed at the central cell locations of the converged centers

of gravity. The initial placement by PMCP is described in

Algorithm 1.

In Algorithm 1, individual demands of the devices are first

aggregated per cell and stored in list A. Thereafter, a list of u
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Algorithm 1 PMCP - Initialization

1: Input: M, C,D
2: A ← AggregateDemandsByCell(C,D)
3: CoG ← TopCells(A,u) � Top u cells in A
4: CoGMap ← CoGDeviceMappings(D,CoG)
5: CoGMap* = ∅
6: while CoGMap* != CoGMap do
7: CoG = ∅
8: for {ck : [da, db, ..]} ∈ CoGMap do
9: Calculate ( ̂X, ̂Y , ̂Z) based on [da, db, ..]

10: CoG ← CoG ∪ the cell closest to ( ̂X, ̂Y , ̂Z)

11: CoGMap* ← CoGMap
12: CoGMap ← CoGDeviceMappings(D,CoG)
13: CoGMap ← SortDescByDemands(CoGMap)
14: MCP ← MapCloudletsCoGs(CoGMap,M)
15: Output: MCP

cells with the highest demands, i.e., CoG is generated from A
(line 3). Note that CoG is the list of temporary centers of

gravity cells, and u ≤ n is the number of all mobile cloudlets.

Function CoGDeviceMappings(D,CoG) (line 4) returns

a mapping between the cells identified in CoG and the devices,

where each device is assigned to the closest cell in CoG. This

mapping CoGMap = {ck : [da, db, ..]} represents the tem-

porary mapping of the devices to the centers of gravity CoG
cells, which converges through calculations in the next steps of

Algorithm 1 (lines 5-12) to provide the initial mobile cloudlet

placements.
Once the temporary mapping is done, the algorithm ini-

tializes CoGMap* as an empty CoG cells-to-devices mapping

to keep track of the changes in the mapping between the

centers of gravity CoG and the devices. The recalculation

of centers of gravity happens iteratively (lines 6-12) as long

as the new CoG and mappings differ from the previous

round, i.e., CoGMap and CoGMap* are not equal. For ev-

ery CoG cell ck in CoGMap and its corresponding list of

devices [da, db, ..], central coordinates (X̂, Ŷ , Ẑ) are calculated

(line 9) using Equation 15.

X̂ =

∑
δixi∑
δi

, Ŷ =

∑
δiyi∑
δi

, Ẑ =

∑
δizi∑
δi

(15)

The sums, denoted by
∑

, in the equations above are over

a set of devices that is supposed to be covered by a single

mobile cloudlet. Therefore, (X̂, Ŷ , Ẑ) represents a weighted

center of gravity, where a mobile cloudlet will be placed. This

implies that the mobile cloudlet will be closer to the devices

with higher demand, inadvertently prioritizing cells with more

demands, enhancing the overall coverage.
Back to Algorithm 1, the cell closest to (X̂, Ŷ , Ẑ) is added

to CoG list as a new center of gravity (line 10). Note that CoG
is cleared in line 7 to enlist the newly calculated centers of

gravity. In line 11, the previous CoGMap becomes CoGMap*,

and the new CoGMap is calculated by reassigning devices to

the closest cells in the updated CoG (line 12). At the end of

each iteration, CoGMap represents temporary CoG cells with

their corresponding devices. These iterations continue until the

updated CoG and their device mappings, i.e., CoGMap do not

change any further.

Fig. 2: A mobile cloudlet responding to device mobility

After convergence, CoGMap is then sorted in descend-

ing order of the total demand of the devices assigned to

each cell in CoG using SortDescByDemands(CoGMap)
function (line 13). The mobile cloudlets are mapped one-

to-one to the converged CoG based on their size by

MapCloudletsCoGs(CoGMap,M) function to provide

the mobile cloudlet placements MCP, which is the map-

ping of mobile cloudlets to the CoG cells {(ma, cb)
, . . . , (mj , ck), . . . } and the output of Algorithm 1.

B. Adaptive Placement

In physics, the force of attraction between two bodies can

be formulated in multiple ways based on the type of force.

Attractive forces can be the magnetic force, electric force, or

the most well-known gravitational force. In our approach, we

formulate the force of attraction as a vector pull force from

the devices acting on the mobile cloudlets which attracts them

to their new locations.

Our proposed approach, PMCP, uses this physics concept

by considering the devices as moving masses (which need to

be served) since they continuously change positions between

time slots. In addition, PMCP considers the mobile cloudlets

as fixed masses (that are deployed to serve devices) since they

are assumed to be at rest in their placed cells until pulled into

new cells by the changing device demands and mobility.

Essentially, mobile cloudlets (fixed masses) are initially

placed around the devices (moving masses) using the center

of gravity method, i.e., Algorithm 1. The mobile cloudlets

then move as they are attracted (pulled) by the devices, as

illustrated in Figure 2. We use mobile cloudlets’ capacities

and the mobile devices’ demands to represent their physical

masses. The mobile cloudlets thus respond to the changes in

device locations and demands, and they move to a cell in the

direction of the aggregate vector pull forces of the devices. It

is important to note that when calculating the forces, mobile

cloudlets do not physically interact with each other, neither do

the devices.

As we formulate the adaptive part of PMCP, we aim to relo-

cate the mobile cloudlets by estimating their new cell locations

at each time slot, denoted by wj(t) for cloudlet mj , based on

changes in the device specifications at each time slot. Algo-

rithm 2 determines and outputs the new positions of all mobile

cloudlets at every time slot based on the overall vector pull
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Algorithm 2 PMCP - Adaptive Placement

1: Input: MCP
2: DCA = DeviceAssignments(MCP)
3: for t = 2, 3, . . . , T do
4: for all mj ∈ M do
5: ̂Dj(t) = DCA[mj]
6: Calculate force

−→
Fj(t) using Eqn (16)

7: Assign constrained force
−→
Fj(t) to mj using Eqn (17)

8: Find estimated location ŵj(t) of mj using Eqn (18)
9: wj(t) = ClosestCell(ŵj(t))

10: MCP(t) ← wj(t) ∀mj ∈ M
11: DCA = DeviceAssignments(MCP(t))
12: Output at t: MCP(t)

force acting on them. The force acting on mobile cloudlet mj

is the superposition of all individual forces emerging from

each device assigned to it at the end of the previous time

slot, obtained by calling DeviceAssignments() function,

presented in Algorithm 3. Further details of Algorithm 2 are

provided later in this subsection.

As we can observe in Algorithm 3, each device is assigned

to its closest feasible mobile cloudlet. The device assignment

to the cloudlet is performed as long as the device is within

the coverage radius and the mobile cloudlet has enough

capacity to meet its demand (lines 1-15). For every device,

the algorithm searches for the closest cloudlet that can cover

the device and has sufficient remaining capacity to meet its

demand (lines 6-12). If such a cloudlet exists, the device is

assigned to the cloudlet and the cloudlet capacity is adjusted

accordingly (lines 13-15). Otherwise, the devices are simply

included in the uncovered devices list (line 17). This part of

the algorithm provides the actual assignment of the devices

which are connected to the mobile cloudlets and are used to

calculate the coverage values.

Next, Algorithm 3 performs an extended assignment to

assist the cloudlets’ mobility (lines 18-22). Here, all devices

that could not be covered due to the radius and capacity

constraints are assigned to the cloudlets if the devices are

within twice the coverage radius of the cloudlet. This is a key

feature of the algorithm to make the cloudlets more aware

of the devices in their vicinity and move better so that even

uncovered devices are covered in later time slots. This also

prevents mobile cloudlets with a unit coverage radius from

getting stuck in a cell with no device as they will be aware

of neighboring cells and can move to serve those uncovered

devices in later time slots instead of waiting until some device

moves into their coverage radius. The output of Algorithm 3

contains a mapping of all mobile cloudlets to their extended

device assignments denoted by DCA.

Algorithm 2 uses the output of Algorithm 3 to obtain a list

of devices assigned to cloudlet mj at the start of time slot t,

denoted by D̂j(t) (lines 2-5). Then, Algorithm 2 calculates the

total vector pull force acting on mobile cloudlet mj using the

formula given by Equation (16).

−→
Fj(t) =

∑
∀di(t)∈̂Dj(t)

−→η δti∑
∀di(t)∈̂Dj(t)

δti
(16)

Algorithm 3 DeviceAssignments()

1: Input: MCP
2: DCA ← ∅, uncovered devices ← ∅
3: for di ∈ D do � Assignments for Coverage
4: min distance = ∞
5: best cloudlet = ∅
6: for mj ∈ M do
7: ck = CloudletCell(MCP,mj)
8: distance = Δ(cti, ck)
9: if μt

j ≥ δti and distance ≤ rj then
10: if distance < min distance then
11: best cloudlet = mj

12: min distance = distance
13: if best cloudlet �= ∅ then
14: μt

j = μt
j − δti

15: DCA ← {mj , di}
16: else
17: uncovered devices ← di
18: for di ∈ uncovered devices do � Assignments for Mobility
19: for mj ∈ M do
20: distance = Δ(cti, ck)
21: if distance ≤ 2 ∗ rj then
22: DCA ← {mj , di}
23: Output: DCA

We define −→η = Δ(λt
i, wj(t−1)) as the displacement between

the position of mobile cloudlet mj at t−1 to the current device

position λt
i. Hence, force

−→
Fj(t) denotes the expected weighted

positional change of mobile cloudlet mj . Note that force
−→
Fj(t)

is a vector quantity with component forces in the direction of

each 3D axis based on the displacement vector −→η .

Since the mobility of the cloudlets is constrained by the

maximum travel parameter Λj , we update the force value. The

actual value of the force used in deducing the new position is

given by Equation (17).

−→
Fj(t) =

⎧⎪⎨⎪⎩
Λj if

−→
Fj(t) > Λj

−→
Fj(t) otherwise.

(17)

Then, the estimated position ŵj(t) of mobile cloudlet mj

is given by Equation (18).

ŵj(t) =
−→
Fj(t) + wj(t− 1), (18)

where the vector components of the force are added to the

corresponding 3D coordinates of the position of the cloudlet

in the previous time slot wj(t − 1). Note that MCP from the

initial placement (Algorithm 1) is utilized as wj(1).
After these calculations (lines 6-8), the final position wj(t)

of the cloudlet is determined by finding the closest cell ck
to the estimated position ŵj(t) (line 9). Here, only the cells

that are not already assigned to a previously evaluated mobile

cloudlet are considered for the final position. The history of

cloudlet locations is maintained in MCP(t), and the device as-

signments DCA are updated for use in the next round (lines 10-

11). Every cloudlet moves to its new final position wj(t), i.e.,

the center of the cell ck using MCP(t).

To summarize, the mobile cloudlets move towards the

devices with the highest attractive force and finally relocate
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(b) Coverage for 3D Scenarios

Fig. 3: Comparison of coverage values at each time slot.

to the centers of the cells, closest to their estimated positions

in the grid. Algorithm 2 outlines the entire process of the

adaptive placement of PMCP. After each adaptive placement

iteration, the devices are individually mapped to the relocated

mobile cloudlets using Algorithm 3, and the mappings are used

to make the placement decision in the next round.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

For an extensive evaluation, the experiments on the PMCP

approach need to be performed under a realistic user mobility

model and appropriate distribution of changing user demands.

We utilize the KTH Walkers dataset [12] to establish mobility

scenarios for our experiments. The dataset represents traces

of pedestrian mobility from a part of downtown Stockholm.

Moreover, the dataset was specifically designed to study

mobility models for opportunistic communications, making it

a highly suitable dataset for evaluating our approach. There

are four sub-traces (3 Olstermann traces and 1 Subway trace)

in the KTH Walkers dataset, each of which we use to generate

one 2D and one 3D mobility dataset for our experiments. We

likewise assume a uniform distribution for mobile cloudlet

capacities and individual user demands. We experiment with

a different number of devices to test the scalability of our

approach and deduce the number of mobile cloudlets for each

scenario based on the number of devices.

We compare the performance of the PMCP with the optimal

solutions by OMCP and the results of DBSCAN with path

planning (DBSCAN-PP). DBSCAN-PP is chosen as a bench-

mark since it is a well-known density-based clustering method

and behaves similar to existing mobile cloudlet placement

approaches in the literature (e.g., [26], [28]) when we add the

path planning component. It is hence a strong benchmark given

the unavailability of implementation of more recent studies.

TABLE I: Experiment Scenarios

Scenario |M| |D| |T | μt
j δti

Scenario3 (S3-2D/3D) 16 300 10 U [140, 170] U [2, 10]
Scenario2 (S2-2D/3D) 12 180 10 U [120, 160] U [2, 10]
Scenario1 (S1-2D/3D) 8 100 10 U [80, 100] U [2, 10]
Subway (SW-2D/3D) 8 100 6 U [80, 120] U [2, 10]

We compare these approaches in terms of user coverage

attained at each time slot, the rate of cloudlet switches made

by devices (to test the stability of each approach), cumulative

distance traveled by the cloudlets, and the running time across

different time slots. We also visualize the cloudlet placements

to demonstrate the movement of the mobile cloudlets in

response to dynamic changes in device specifications.

Table I presents the different experiment scenarios in terms

of the number of mobile cloudlets available, the number of de-

vices, the number of time slots in the experiment, distribution

of cloudlet capacities, and distribution of device demands. For

each scenario, both 2D and 3D mobility datasets have been

created. 2D datasets are direct representations of available

traces, while 3D datasets were generated by assuming a 3D

landscape over which mobility happens. This is done by

adding non-negative z-coordinates (to denote elevations of the

assumed landscape) to the existing trace data. In addition,

the maximum travel parameter Λj for all of these experiment

scenarios are based on a uniform distribution U [2, 3].
We obtain the optimal results from OMCP by solving the

integer program using IBM ILOG CPLEX Concert Technol-

ogy API for Java [35]. All approaches are implemented in

the same version of Java, and all experiments are run on the

same JVM on the Nautilus HyperCluster [36] with 16 CPU

cores and 64 GB RAM. This justifies a direct comparison

between the approaches. It is also noteworthy that OMCP is

an NP-hard problem. As such, CPLEX may never converge

to a provably optimal result for some experiment scenarios.

Hence, the best results obtained within a specified time limit

(30 minutes) are presented for consistency and are shown by

OMCP-30. This means, if OMCP could not solve the problem

optimally in 30 min, the best obtained result in this duration

has been used for comparison. Note that optimizing more

than 30 minutes showed no significant improvement in our

results of all experiment scenarios.

B. Analysis of Results

1) Coverage: We first compare the coverage values of

PMCP, DBSCAN-PP, and OMCP-30. Figure 3a shows the

mean and standard deviations of the 2D scenarios. The mean

value of coverage obtained by PMCP across different 2D
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(a) τ = 1 (b) τ = 3 (c) τ = 6

Fig. 4: Visualization of comparative cloudlet placements and PMCP coverage at different time slots.

scenarios and time slots is 92.89% with standard deviation

of 4.63. In all scenarios, PMCP outperforms DBSACN-PP in

terms of coverage. DBSCAN-PP obtains lower mean coverage

of 85.67% with standard deviation of 8.3. As an NP-hard prob-

lem, OMCP does not guarantee termination with an optimal

solution in a finite time. As the problem size increases in terms

of the number of devices and time slots, it is more difficult

to obtain the optimal solutions or even high-coverage time-

limited solutions using OMCP-30. This is most noticeable in

Scenario 2 (S2-2D and S2-3D).

Figure 3b shows the coverage results of the 3D scenarios.

The mean coverage obtained by PMCP is lower than the 2D

scenarios but still high at 86.22% with standard deviation

of 7.14. DBSCAN-PP is more consistent with a lower standard

deviation of 5.59, however, it again achieves lower mean

coverage of 83.25%. The coverage values obtained by PMCP

are consistently more than DBSCAN-PP and OMCP-30 with

lower standard deviations except for a few cases as seen

in Figure 3. The Subway scenarios (SW-2D and SW-3D)

and Scenario1-3D (S1-3D) are exceptions to this observation

where OMCP-30 has higher coverage with a lower standard

deviation. This is because the size of these scenarios is much

smaller. They either have a smaller number of devices or

fewer time slots or both. Hence, it is easier for an exhaustive

approach like OMCP-30 to find values closer to the optimal

solution. DBSCAN-PP performs better in terms of coverage in

Subway-3D (SW-3D) scenario since this scenario has distinct

dense clusters, but PMCP is still comparable given a large

overlap in the error bars of both approaches. Moreover,

cloudlets can move more freely in DBSCAN-PP since new

cluster centers can be far (larger than Λj) from current cloudlet

cells, which may lead to infeasible placements.

2) Adaptive Nature: We visualize the cloudlet placements

to illustrate the smooth adaptive movement of cloudlets in

PMCP in response to the devices’ movements. In Figure 4,

we present the comparative cloudlet placements according to

PMCP (red) and OMCP-30 (green) along with the devices

(blue and orange based on PMCP coverage) across different

time slots of Subway 3D (SW-3D) scenario. The device

distributions across time slots first show that Subway 3D

scenario realistically depicts the visible 3D features in subway

stations like stairs and escalators at the entrance/exit and the

area around and outside the station. Figure 4a shows the initial

placement at τ = 1, which looks better for PMCP since

it places cloudlets (red) close to the demand centers (with

coverage of 91%). Hence, the cloudlet placements by PMCP

appear closer on average to the devices than the placements

by OMCP-30 (green). There are some exact overlaps between

PMCP cloudlets and OMCP-30 cloudlets too. In comparison,

OMCP-30 cloudlets are placed more strategically to cover a

larger number devices (about 95%) but are not close to the

devices in some of their locations.

As the devices move, both approaches readjust the place-

ments of the cloudlets. At τ = 3 (see 4b), the placements by

OMCP-30 look better based on the distribution of devices. The

coverage of OMCP-30 here is 96% compared to only 78% for

PMCP. However, PMCP has significantly readjusted cloudlet

placements based on the new user distribution. As the devices

have scattered more, so have the PMCP cloudlets. Moving into

final time slot τ = 6, Figure 4c shows that PMCP has caught

up significantly in terms of following the devices and has

placed cloudlets close to device clusters at the bottom-left and

the top-right (notice the wider coverage in the figure), which

did not have nearby PMCP cloudlets in τ = 3. The visualiza-

tions here validate that PMCP places the mobile cloudlets by

truly responding to dynamic and uncertain changes in device

distribution at every time slot and achieves consistent coverage

compared to the optimal coverage. They also demonstrate that

PMCP does not favor the devices in dense regions only and

adapts to even sparse regions over time. PMCP fairly serves

all devices in the long-term since the devices far away from

the dense regions are eventually covered too.

3) Stability: Providing stable services is also critical as it

reduces excessive migration that will lead to high latency. Both

high coverage and stable service are the motivations behind the

design of our approach. As a result, our approach compensates

for the coverage gap by improving the stability of the services.

We measure the stability in terms of the switching rate for

devices. The switching rate is the total number of cloudlets

switched by the devices between consecutive time slots divided

by the total number of connections established by the devices

across all time slots. Thus, a lower switching rate means the
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(c) Total running time (ms)

Fig. 5: Comparing cloudlet switching rate of devices, cloudlet distance traveled, and running time.

devices are likely to be served by the same cloudlet across

consecutive time slots leading to fewer migrations between

cloudlets and ultimately smoother, more stable edge services.

Figure 5a shows the switching rate of the three approaches

across all experiment scenarios.

The average switching rates of PMCP, DBSCAN-PP, and

OMCP-30 are 0.259, 0.484, and 0.716, respectively. This

means only 25.9% of the connected devices change cloudlets

between the two time slots in PMCP while a more significant

number of devices 48.4% and 71.6% do that in DBSCAN-

PP and OMCP-30, respectively. The high rate obtained by

OMCP-30 is because it is agnostic to switching and objectively

focuses on maximizing coverage, while DBSCAN-PP has path

planning to minimize the movement of cloudlets between clus-

ters which offers some advantage. Hence, even in the higher

coverage scenarios, users using DBSCAN-PP and OMCP-30

experience more delays in their services. Though we can make

OMCP-30 more adept at handling switching, introducing hard

constraints to limit switching in OMCP-30 may even render

some scenarios theoretically infeasible to solve. This further

supports the performance of PMCP in terms of coverage since

OMCP-30’s coverage values are extremely high benchmarks

to compare against. Among all scenarios, the only comparable

switching rate between the PMCP and OMCP-30 can be

noticed for SW-2D scenario. This indicates that OMCP-30

probably found a solution with less switching by chance.

Otherwise, PMCP always has a significantly lower switching

rate, consequently, ultra-low latency services, compared to

both DBSCAN-PP and OMCP-30.

4) Energy Efficiency: Given that mobile cloudlets are de-

ployed for the same distribution of devices and assuming

all other factors are constant, the energy consumption of

these mobile cloudlets largely depends on their total distance

traveled. Hence, we assess the energy efficiency using the

cumulative distance traveled by the cloudlets in terms of unit

cells, i.e., the distance between centroids of the unit cells

switched by the cloudlets across all time slots. As shown in

Figure 5b, PMCP is extremely efficient in terms of cloudlet

movements for all scenarios. The mean cumulative distance

traveled by the cloudlets are 110.84, 525.69, and 887.95 for

PMCP, DBSCAN-PP, and OMCP-30, respectively across all

scenarios. For some scenarios, the cloudlets have negligible

movements between cells in PMCP, notably S1-2D and S3-2D.

This is because in PMCP, cloudlets do not move to a different

cell unless there is a significant change in the user distribution

in and around their covered cells. DBSCAN-PP is significantly

worse since it re-clusters the devices in each time slot and

moves cloudlets with no maximum travel constraint to newly

established cluster centers based on matching. Unrestricted

movement with poorer energy efficiency makes DBSCAN-

PP impractical. These are obvious limitations of the existing

approaches in the literature that are based on similar princi-

ples. OMCP-30 is again agnostic to minimizing the distance

traveled and purely focuses on maximizing coverage.

5) Running Time: We compare the running time of PMCP

against DBSCAN-PP and OMCP-30 (i.e., 30-minute time

limit shown by the flat line). Illustrated by Figure 5c, PMCP

has exceptionally low running time compared to OMCP-

30. DBSCAN-PP has a similar running time, however, DB-

SCAN needs to be tuned using two hyperparameters (ε and

minPoints), and the running time shown here is for a

tuned version. If there are n combinations of hyperparameters

considered for tuning DBSCAN, then obtaining the presented

results would take n times the presented running time. On the

contrary, PMCP runs in a few milliseconds with total running

time for any scenario never exceeding 56 milliseconds. Most

of this time is spent on the initial placement of the mobile

cloudlets, where mobility decisions are not yet being made.

Also, this figure shows the sum of the running times across all

time slots (sum of 6-10 time slots). Calculations in the adaptive

part of the approach only take close to 1-3 milliseconds for

each time slot, even for the largest experimental scenario.

In summary, PMCP offers consistent high device coverage,

stable services through low switching rate, and markedly su-

perior energy efficiency through reduced cumulative distance

traveled by the cloudlets. PMCP is well designed to run in

real-time and scales well across scenarios.

VI. CONCLUSION

Deployment of mobile cloudlets is an elegant solution

to provide better services in next-generation edge networks

with high user mobility and dynamic, uncertain demands. To
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address the goals of enhancing user coverage and providing

stable edge services, we designed a novel dynamic mobile

cloudlet placement approach, PMCP, inspired by the concepts

in physics. The results show that PMCP not only achieves high

coverage and more stable services but is also energy-efficient

and runs in real-time. This means our approach is practical

for dynamic cloudlet placements and can also be extended to

solve dynamic assignment and resource placement problems.

Since the approach includes iterative calculations, it can also

be parallelized to run faster. We plan to study the distributed

decision making for dynamic cloudlet placements next.
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