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Abstract—IoT (Internet-of-Things) devices require both re-
liable, ultra-low latency connection and on-demand access to
computing resources in their vicinity. Edge computing can pro-
vide nearby computing resources through offloading to cloudlets.
However, challenges lie in providing stable services in big cities,
emergency situations, and places lacking sufficient infrastructure
due to dynamic IoT demands and their uncertain mobility,
coupled with intermittent or limited connectivity to nearby
computing resources. There has been an increasing adoption of
UAV-mounted mobile cloudlets to address these issues, where
mobile cloudlets can be seamlessly integrated into the existing
network infrastructure for offloading and enhanced connectivity.
However, adaptively placing mobile cloudlets under continuously
evolving conditions is still an open problem. In this paper,
we study mobile cloudlet placement in highly dynamic, next-
generation edge networks. Our objective is to maintain stable
ultra-low-latency services and enhance coverage by optimizing
the placement of mobile cloudlets in highly dynamic scenarios.
We propose a novel approach for this problem using inspirations
from concepts in physics, namely the center of gravity and
force of attraction. Our approach emulates how physical bodies
maintain balance and adjust their positions when acted upon
by dynamic external forces for efficient placement of mobile
cloudlets in response to dynamic and uncertain device mobility.
The results show that our proposed approach provides high
device coverage, excellent energy efficiency, and stable edge
services in real-time.

Index Terms—physics-inspired approach; dynamic placements;
mobile cloudlets; edge computing; next-generation networks

1. INTRODUCTION

Exciting developments in wireless networks and telecom-
munications have dramatically impacted many different fields.
Nonetheless, continuous efforts to further progress and envi-
sion future technologies based on increasing demand for data,
flexible computing resources, and connectivity are being made.
It is now clear that there will be many novel, cutting-edge,
and large-scale applications on billions of connected devices
and IoT (Internet-of-Things) endpoints that will be pushing
boundaries of the existing infrastructure [1], [2]. For instance,
new applications like Extended Reality (XR) have a unique
combination of requirements including on-demand services
with extremely high network speed and low latency [3].
Edge computing can partially address these requirements by
allowing users to consume the computing resources in their
vicinity via offloading, thereby reducing the access latency
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and data traffic to the core infrastructure [4]. The convergence
of edge computing with next-generation networks (5G and
beyond) can complete the requirements puzzle by providing
extremely high network speeds [5], thereby creating the notion
of next-generation edge networks.

Nonetheless, covering highly mobile users while providing
stable low-latency services as they move across the service
region is a complex problem. Locations with limited or
disrupted connectivity during natural disasters or generally
poor infrastructure cannot sufficiently serve mobile users. Even
infrastructures with wide coverage may not meet offloading
and ultra-low latency requirements. Next-generation wireless
networks with multi-gigabit data rates can still have technical
challenges such as signal reflection, path loss, and block-
ages [5]. On the other hand, offloading to static edge servers
(or cloudlets) is equally challenging and leads to frequent
service and task migrations for mobile users. Accordingly,
the long-term, static placement of cloudlets does not meet
all the requirements of mobile users in next-generation edge
networks. Thus, we can adequately serve highly mobile users
with dynamic demands only when efficient approaches to
dynamically place the cloudlets are available.

Mobile cloudlets mounted on Unmanned Aerial Vehicles
(UAVs) have been well-studied and already under adoption
in the industry [6], [7] to enhance user experience and enable
new innovative applications. Federal Aviation Authority (FAA)
and Verizon’s Skyward currently collaborate to test cellular-
connected UAVs [8]. Some studies have proposed UAVs to
complement wireless backhaul networks [9] and even an entire
cellular infrastructure based on a hierarchical deployment of
UAVs [10]. UAV-mounted cloudlets can be flexibly deployed
as the user demands and distributions change over a region.
This is especially applicable to support compute-intensive
latency-critical computations in disaster scenarios [7], massive
demand areas such as stadiums, and emerging applications
including drone air-delivery. For instance, dispersed teams
of rescue workers can use XR headgears in inaccessible or
partially accessible landscapes for path finding during natural
disasters, and cognitive assistance such as identifying objects,
people, and threats. These rapidly evolving compute-intensive
applications (object detection, risk assessment, and navigation)
need ultra-low latency and stable offloading services so that
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well-informed decisions can be made in a matter of millisec-
onds, which are otherwise not possible under damaged or
distant infrastructure, and where emergency support vehicles
and equipment cannot reach. Mobile cloudlets meet these
critical requirements by directly bringing resources to the
rescuers in response to their uncertain movements.

The purpose of this paper is to present an ingenious place-
ment of mobile cloudlets in next-generation edge networks
to provide ultra-low latency services for the emerging appli-
cations considering realistic constraints. We aim to provide
stable services to the users through mobile cloudlets when
user distribution and demands change rapidly.

We design a novel approach, called Physics-inspired Mobile
Cloudlet Placement approach, PMCP, to address these issues
by borrowing the concepts of “center of gravity” and “force
of attraction” from physics. Our proposed approach responds
to uncertain device mobility in real-time. PMCP not only
removes the overhead of predicting device locations but also
does not require the acquisition of sensitive mobility data to
make those predictions.

As a part of our study, we define an optimal integer
programming formulation of the mobile cloudlet placement
problem, OMCP, and implement the classic DBSCAN algo-
rithm [11] with path planning to serve as our two performance
benchmarks. We perform extensive experiments by creating
multiple scenarios, including both 2D and 3D user distribution
and mobility, based on real mobility traces obtained from KTH
Walkers dataset [12]. We then compare PMCP’s results with
OMCP and DBSCAN. The results show that our approach
achieves high coverage values, superior energy efficiency, and
stable services for all scenarios in real-time.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the state-of-the-art research in this domain.
In Section III, we introduce the mobile cloudlet placement
problem and formulate a mathematical optimization model.
In Section IV, we present our proposed approach, PMCP, in
detail. In Section V, we evaluate the performance of PMCP
by extensive experiments. In Section VI, we summarize our
results and present possible directions for future research.

II. RELATED WORK

Numerous studies have been conducted to address the
cloudlet placement problem in a static scenario. Clustering-
based approaches have been proposed by Kang et al. [13] and
Jia et al. [14]. Greedy approaches include the likes of Zeng et
al. [15] and Yao et al. [16]. Other static approaches include
a search-based algorithm by Wang er al. [17], an energy-
aware heuristic approach by Li et al. [18], and a coverage
maximization approach [19]. Lu et al. [20] studied the robust
placement of edge servers under failure scenarios, and Fan
and Ansari [21] proposed another heuristic algorithm for cost-
aware placement to obtain sub-optimal solutions. Many of
these studies lack heterogeneity. Bhatta and Mashayekhy pro-
posed a meta-heuristic approach [22] and a bifactor approx-
imation algorithm [23] for heterogeneous cloudlet placement.
However, these studies do not consider the mobility of the

users, the cloudlets, or both. These approaches are primarily
designed for the permanent placement of cloudlets, hence, they
are not suitable for scenarios where placements need to be
updated in very short time intervals.

There are related studies on UAV positioning and mobility
models in flying ad-hoc networks (FANET) and node place-
ment in wireless sensor networks (WSN) [24], [25]. Studies on
WSN node placement focus on maximizing the surveillance
area or geographical coverage of the nodes [24]. However, our
problem is concerned with covering actual devices that need
computing resources and connectivity to services. Moreover,
higher geographic coverage may not even lead to better
device coverage in a dynamic environment where multiple
sub-regions may not even have any users. Likewise, FANET
positioning and mobility models are essentially geographical
deployments, and they too do not follow the users or their
demands. Many models are in fact based on time-based,
topological, and even random positioning of UAVs, agnostic
of user mobility or demand [25]. Hence, existing studies in
both of these domains insufficiently address our problem.

When it comes to mobile cloudlet placements, there are
extremely limited studies on dynamic or online placement of
cloudlets since the primary infrastructure has been most often
perceived to be static and perennial. However, mobile cloudlets
have become increasingly relevant due to ubiquitous mobile
applications today, rendering a necessity for more studies.
Xiang et al. [26] proposed an adaptive cloudlet placement
approach for mobile applications. Their approach identifies
gathering regions of mobile devices using position clustering
and generates mobility paths of the cloudlets to new locations
based on the shortest distance. Their approach inherently does
not capture the mobility of each cloudlet as a part of the main
decision, which is to determine the cluster centers instead.
They recalculate cluster centers in each time slot and only
calculate the mobility paths after the new cluster centers are
established. Moreover, their approach looks at the placement
from a 2D perspective with homogeneous cloudlets and is
computationally heavy, limiting its applicability significantly,
especially for real-time scenarios. Zhang et al. [27] presented
another adaptive cloudlet placement approach that directly
improves on the previous study. They proposed a covering-
based clustering technique to determine cloudlet placement
locations. They also made the covering algorithm parallel on
Spark to speed it up. Nonetheless, the limitations stay the
same since their core assumptions are exactly the same as
the previous study. Jin et al. [28] proposed another clustering-
based approach that deploys cloudlets dynamically based on
the geographic location and the number of tasks generated by
devices. However, their approach again relies on establishing
new device cluster centers in each time window and then
moving the cloudlets to their closest destination centers.

Wang et al. [29] proposed an online algorithm that dis-
patches UAV-mounted edge servers by identifying UAV hover
locations to complement existing infrastructure during heavy
usage by maximizing the number of served tasks. However,
they do not consider separating distance between the UAVs
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and possible interference when they are placed too close to
each other, around the same location. Although the UAVs
hover at different heights, all devices are assumed to be on
the ground. Hence, the coverage is observed in terms of the
2D influence radius on the ground. Moreover, they do not
consider the concept of service stability. A dynamic approach
for mobile environments by Yuan et al. [30] uses deep learning
for virtual edge node placements in edge cloud systems.
Their combination of deep-learning-based predictions and
hierarchical-clustering-based placement approach is catered
more towards dynamic service placement than the actual place-
ment of mobile cloudlets. Service or application placement
approaches have inherently different properties which are not
suitable for our problem. Moreover, user mobility is highly
uncertain, and even deep learning may lead to inaccuracy and
consequently high latency services. Furthermore, considering
the importance of user privacy, our approach does not rely on
learning or predicting user mobility patterns.

In summary, apart from [29], none of the existing dynamic
placement approaches consider cloudlet capacities or user to
cloudlet assignments as a part of their problem formulation.
Most importantly, in all existing studies, the movement of
the individual cloudlets is not directly guided by changes in
device positions and demands in their immediate surrounding.
In our approach, the mobile cloudlets are aware of and respond
to changes around them in real-time. There is no prediction
involved, which reduces the run-time overhead. Similarly,
sensitive long-term mobility data required for those predictions
do not need to be acquired or processed by our approach.

III. MOBILE CLOUDLET PLACEMENT PROBLEM

This paper aims to continuously place and readjust the
locations of mobile cloudlets in a region to maximize device
coverage and maintain stable services, given the uncertain
changes in user demands and movements. As such, we model
the region as a finite 3D grid within which the devices and
the mobile cloudlets move. The 3D grid is made up of smaller
contiguous 3D sub-divisions called cells.

The 3D grid is a collection of non-overlapping equal-
sized cells or cubes denoted by C = {c1,¢2,...,Cry. .-, Cn}
Note that the geometric representation of the cells can be
other 3D shapes such as a hexagonal prism or a sphere. For
simplicity, we consider cubes. Each cell represents the 3D
coverage of a unit cloudlet within which ultra-low latency
can be offered. The interconnected cells make the contiguous

Fig. 1: Mobile cloudlet placement scenario in 2D

3D region. The cells, represented using 3D coordinate axes,
are always indexed from top-left to bottom-right with the
index denoting the area they cover. The mobile cloudlets and
devices may change their locations from cell to cell over
time 7 = {1,2,...,t,...,T}. The cloudlets move between
the cells to follow the changes in the device distribution, as
shown in Figure 1 (shown in 2D for simplicity).

We denote the set of heterogeneous mobile cloudlets
by M = {mi,ma,...,mj,...,my}. Each mobile
cloudlet m; € M is represented by a 3-tuple m; =
{/‘37 rj,A;} denoting its attributes: ”E‘ is the service capacity
(in resource units) at time ¢, r; is the 3D coverage (3D
cell dimensions), and A; is the maximum cell distance the
cloudlet can travel within a time slot ¢. Note that the resources
indicated by service capacity ,u§ can be processing, memory,
or storage individually or as a combination. We assume a
single resource for simplicity and without loss of generality.
Similarly, the maximum cell travel A; depends on multiple
parameters such as the speed of the mobile cloudlet, power
consumption/available battery, and the weight carried by the
mobile cloudlet. This is used to set a constraint on general
mobility of the cloudlets so that they follow a realistic travel
path and travel a limited distance in every time slot while
avoiding collisions during placement.

Likewise, we denote the set of heterogeneous devices
by D = {di,ds,...,d;,...,d,}. Each device d; € D is repre-
sented by a 3-tuple d; = {¢, ct, At} denoting its attributes: &}
is the demand (in resource units) at time ¢, cﬁ is the 3D cell
of the mobile device at time ¢, and XZ? is an ordered triple
denoting the 3D coordinates of the mobile device at time ¢.

For simplicity of modeling, if a cloudlet fails at any instant,
the cloudlet capacity becomes 0. If it has recovered, its
capacity comes back to non-zero. The same applies to a device
when it is disconnected or connected, and the device demand
goes to 0 or non-zero, respectively. These can also be treated
as a device going out of bounds and returning back to the
service region. We assume that these values are set by the
underlying sensor networks. In addition, all connected devices
are assumed to receive ultra-low latency services if they are
within the 3D coverage regardless of their absolute distance
from the mobile cloudlet.

Our goal is to maximize the coverage of the devices in the
region (number of connected devices) with ultra-low latency
services by moving the cloudlets in response to the device
mobility. We define the following decision variables:

¢ 1 if cloudlet m; is assigned to cell ¢; at time ¢,
A =

gk 0 otherwise.

. 1 if cloudlet m; moves from ¢, to ¢; at time ¢,
ikl 0 otherwise.

‘ 1 if device d; is assigned to cloudlet m; at time ¢,
0 otherwise.

161
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We mathematically formulate the Optimal Mobile Cloudlet
Placement problem (OMCP) as an Integer Program (IP) as

follows: .
max) > ) B M
t=1 i=1 j=1
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The objective function shown in Eq (1) maximizes the cov-
erage of the devices, i.e., mapping of the devices to the
placed cloudlets. Constraints (2) ensure that the total number
of cloudlets placed in the region is equal to the number of
available cloudlets. Constraints (3) guarantee that each covered
device must be within the coverage radius of some cloudlet.
The constraint indicates that a device d; currently at cell ¢! if
mapped to a cloudlet m; placed at a cell ¢, the distance
between their cells must be less than or equal to the 3D
coverage 7; of the cloudlet. Constraints (4) satisfy supply
and demand based on each cloudlet capacity and its covered
device demands. The sum of all device demands assigned to
a cloudlet must be less than or equal to the resources of that
cloudlet. Constraints (5) ensure that a cloudlet moves from
one cell to another at ¢ only if its cell association changes
over time t — 1 and ¢. Constraints (6) and (7) ensure that a
cloudlet moves from one cell to another at ¢ only if it was
placed in the source cell at ¢ — 1 and in the destination cell
at t. Constraints (8) ensure that a cloudlet moves no further
than the maximum distance it can travel within time slot ¢.

Constraints (9) ensure that at most one cloudlet is placed at
any cell in the region. Constraints (10) ensure that a cloudlet
can only be placed at a single cell. Constraints (11) guarantee
that a device can only be served by a cloudlet that is placed in
the grid. Constraints (12) guarantee that each device is served
by at most one cloudlet. Finally, constraints (13) and (14)
ensure the integrality requirements of the decision variables.

IV. PHYSICS-INSPIRED MOBILE CLOUDLET PLACEMENT

We propose a novel approach to place and dynamically
change the locations of the mobile cloudlets in response
to dynamic and uncertain device mobility. Our approach,
called Physics-Inspired Mobile Cloudlet Placement (PMCP),
is inspired by the concept of the center of gravity and force of
attraction. These concepts have been used for weighted facility
location [31] and clustering approaches [32], [33], respectively,
in the fields such as operations research and machine learning.
The latter especially applies to robust adaptive clustering in
distributed networks [33]. In edge computing, the idea of
attractive and repulsive forces has been used to move data-
collecting mobile edge nodes closer to trustworthy nodes
and away from untrustworthy nodes in their overall travel
path [34]. Although our work is markedly different from these
individual studies, all of them suggest that our approach is
highly suitable for the dynamic placement of mobile cloudlets
under uncertainty.

PMCP performs the initial mobile cloudlet placement based
on the center of gravity to evenly balance the location of the
cloudlets. Such a balanced initial placement allows cloudlets
to be placed around weighted centers of device demands, en-
hancing potential coverage. Subsequently, PMCP readjusts the
locations of the mobile cloudlets in real-time by moving them
using the force of attraction to follow the sub-regions with
high user concentration. Since cloudlets follow the devices,
devices are likely to be served by the same cloudlets over time,
leading to less migration and switching services between the
cloudlets, which is significantly important in providing low-
latency stable edge services. As the cloudlets astutely match
the devices’ mobility, it can extend the battery life of the
cloudlets by avoiding unnecessary cloudlet movements. Next,
we explain these parts in detail.

A. Initial Placement

The initial placement by PMCP is inspired by the center
of gravity method. The goal of the initial placement is to
minimize the weighted distance of the devices from the mobile
cloudlets that will be placed in the 3D grid. PMCP estimates
the weighted centers of gravity for the devices in the grid
based on the demands and the cell locations of the devices at
time 7 = 1. The estimated centers of gravity are iteratively
improved until they converge. The cloudlets are then initially
placed at the central cell locations of the converged centers
of gravity. The initial placement by PMCP is described in
Algorithm 1.

In Algorithm 1, individual demands of the devices are first
aggregated per cell and stored in list A. Thereafter, a list of «
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Algorithm 1 PMCP - Initialization

1: Input: M,C,D

2: A + AggregateDemandsByCell (C,D)

3: CoG < TopCells (A, u) > Top u cells in A
4: CoGMap ¢ CoGDeviceMappings (D, CoG)

5: CoGMap=* = {)

6: while CoGMap* != CoGMap do

7. CoG=0

8: for {cy, : [da,dy, .|} € CoGMap do

9: Calculate (X, Y, Z) based on [da,dp, .|
10: CoG 4 CoG U the cell closest to (X,Y, Z)
11: CoGMapx* < CoGMap

12: CoGMap < CoGDeviceMappings (D, CoG)
13: CoGMap ¢ SortDescByDemands (CoGMap)
14: MCP < MapCloudletsCoGs (CoGMap, M)

15: Output: MCP

cells with the highest demands, i.e., CoG is generated from A
(line 3). Note that CoG is the list of temporary centers of
gravity cells, and u < n is the number of all mobile cloudlets.
Function CoGDeviceMappings (D, CoG) (line 4) returns
a mapping between the cells identified in CoG and the devices,
where each device is assigned to the closest cell in CoG. This
mapping CoGMap = {c¢i : [da,ds,..]} represents the tem-
porary mapping of the devices to the centers of gravity CoG
cells, which converges through calculations in the next steps of
Algorithm 1 (lines 5-12) to provide the initial mobile cloudlet
placements.

Once the temporary mapping is done, the algorithm ini-
tializes CoGMap+ as an empty CoG cells-to-devices mapping
to keep track of the changes in the mapping between the
centers of gravity CoG and the devices. The recalculation
of centers of gravity happens iteratively (lines 6-12) as long
as the new CoG and mappings differ from the previous
round, i.e., CoGMap and CoGMap~* are not equal. For ev-
ery CoG cell ¢, in CoGMap and its Acogegponding list of
devices [dg, dp, ..], central coordinates (X, Y, Z) are calculated
(line 9) using Equation 15.

5 251%7}7 _ Zaz’yi’é‘: > iz
The sums, denoted by >, in the equations above are over
a set of devices that is supposed to be covered by a single
mobile cloudlet. Therefore, (X,Y, Z) represents a weighted
center of gravity, where a mobile cloudlet will be placed. This
implies that the mobile cloudlet will be closer to the devices
with higher demand, inadvertently prioritizing cells with more
demands, enhancing the overall coverage.

Back to Algorithm 1, the cell closest to (X, Y, Z) is added
to CoG list as a new center of gravity (line 10). Note that CoG
is cleared in line 7 to enlist the newly calculated centers of
gravity. In line 11, the previous CoGMap becomes CoGMap*,
and the new CoGMap is calculated by reassigning devices to
the closest cells in the updated CoG (line 12). At the end of
each iteration, CoGMap represents temporary CoG cells with
their corresponding devices. These iterations continue until the
updated CoG and their device mappings, i.e., CoGMap do not
change any further.

(15)

Device movements

——  Vectors pullingthe cloudlet

====F Resulting cloudlet movement
.

Fig. 2: A mobile cloudlet responding to device mobility

After convergence, CoGMap is then sorted in descend-
ing order of the total demand of the devices assigned to
each cell in CoG using SortDescByDemands (CoGMap)
function (line 13). The mobile cloudlets are mapped one-
to-one to the converged CoG based on their size by
MapCloudletsCoGs (CoGMap, M) function to provide
the mobile cloudlet placements MCP, which is the map-
ping of mobile cloudlets to the CoG cells {(mg,cp)
y.-,(mj,ci), ...} and the output of Algorithm 1.

B. Adaptive Placement

In physics, the force of attraction between two bodies can
be formulated in multiple ways based on the type of force.
Attractive forces can be the magnetic force, electric force, or
the most well-known gravitational force. In our approach, we
formulate the force of attraction as a vector pull force from
the devices acting on the mobile cloudlets which attracts them
to their new locations.

Our proposed approach, PMCP, uses this physics concept
by considering the devices as moving masses (which need to
be served) since they continuously change positions between
time slots. In addition, PMCP considers the mobile cloudlets
as fixed masses (that are deployed to serve devices) since they
are assumed to be at rest in their placed cells until pulled into
new cells by the changing device demands and mobility.

Essentially, mobile cloudlets (fixed masses) are initially
placed around the devices (moving masses) using the center
of gravity method, i.e., Algorithm 1. The mobile cloudlets
then move as they are attracted (pulled) by the devices, as
illustrated in Figure 2. We use mobile cloudlets’ capacities
and the mobile devices’ demands to represent their physical
masses. The mobile cloudlets thus respond to the changes in
device locations and demands, and they move to a cell in the
direction of the aggregate vector pull forces of the devices. It
is important to note that when calculating the forces, mobile
cloudlets do not physically interact with each other, neither do
the devices.

As we formulate the adaptive part of PMCP, we aim to relo-
cate the mobile cloudlets by estimating their new cell locations
at each time slot, denoted by w;(t) for cloudlet m;, based on
changes in the device specifications at each time slot. Algo-
rithm 2 determines and outputs the new positions of all mobile
cloudlets at every time slot based on the overall vector pull
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Algorithm 2 PMCP - Adaptive Placement

Algorithm 3 DeviceAssignments ()

1: Input: MCP

2: DCA = DeviceAssignments (MCP)
3:fort=2,3,...,7 do

4: for all mj G M do

5: D (t) =DCA[m

6: Calculate force ? (t) using Eqn (16)

7: Assign constrained force %(t) to m; using Eqn (17)
8: Find estimated location wj; (¢) of m; using Eqn (18)
9: w;(t) = ClosestCell (w;(t))

10: MCP(t) < w;(t) VYm; € M

11: DCA = DeviceAssignments (MCP (¢))

12: QOutput at ¢: MCP (t)

force acting on them. The force acting on mobile cloudlet m;
is the superposition of all individual forces emerging from
each device assigned to it at the end of the previous time
slot, obtained by calling DeviceAssignments () function,
presented in Algorithm 3. Further details of Algorithm 2 are
provided later in this subsection.

As we can observe in Algorithm 3, each device is assigned
to its closest feasible mobile cloudlet. The device assignment
to the cloudlet is performed as long as the device is within
the coverage radius and the mobile cloudlet has enough
capacity to meet its demand (lines 1-15). For every device,
the algorithm searches for the closest cloudlet that can cover
the device and has sufficient remaining capacity to meet its
demand (lines 6-12). If such a cloudlet exists, the device is
assigned to the cloudlet and the cloudlet capacity is adjusted
accordingly (lines 13-15). Otherwise, the devices are simply
included in the uncovered devices list (line 17). This part of
the algorithm provides the actual assignment of the devices
which are connected to the mobile cloudlets and are used to
calculate the coverage values.

Next, Algorithm 3 performs an extended assignment to
assist the cloudlets’ mobility (lines 18-22). Here, all devices
that could not be covered due to the radius and capacity
constraints are assigned to the cloudlets if the devices are
within twice the coverage radius of the cloudlet. This is a key
feature of the algorithm to make the cloudlets more aware
of the devices in their vicinity and move better so that even
uncovered devices are covered in later time slots. This also
prevents mobile cloudlets with a unit coverage radius from
getting stuck in a cell with no device as they will be aware
of neighboring cells and can move to serve those uncovered
devices in later time slots instead of waiting until some device
moves into their coverage radius. The output of Algorithm 3
contains a mapping of all mobile cloudlets to their extended
device assignments denoted by DCA.

Algorithm 2 uses the output of Algorithm 3 to obtain a list
of devices assigned to cloudlet m; at the start of time slot ¢,
denoted by D (t) (lines 2-5). Then, Algorithm 2 calculates the
total vector pull force acting on mobile cloudlet m; using the
formula given by Equation (16).

}?J(t) ZVd (t)eD; (1) 7

(16)
Z\m (t)eD; (t) H

1: Input: MCP
2: DCA < 0, uncovered_devices + ()
3: for d; € D do > Assignments for Coverage

4: min_distance = oo

5: best_cloudlet = ()

6: for m; € M do

7. ¢k = CloudletCell (MCP, m;)
8: distance = A(cﬁ, Ck)

9: if 4} > 6 and distance < r; then
10: if distance < min_distance then
11: best_cloudlet = m;

12: min_distance = distance
13: if best_cloudlet # () then

14: wh o=k — o

15: DCA <+ {mj,d;}

16: else

17: uncovered_devices < d;

18: for d; € uncovered_devices do > Assignments for Mobility

19: for m; € M do

20: distance = A(ck, cx)
21: if distance < 2 xr; then
22: DCA <« {mj,d;}

23: Output: DCA

We define 77 = A(ML, w;(t—1)) as the displacement between
the position of mobile cloudlet m; at t—1 to the current device
?j (t) denotes the expected weighted
positional change of mobile cloudlet m ;. Note that force F}(t)
is a vector quantity with component forces in the direction of
each 3D axis based on the displacement vector 7

Since the mobility of the cloudlets is constrained by the
maximum travel parameter A;, we update the force value. The
actual value of the force used in deducing the new position is
given by Equation (17).

A if F(t) > A
F(t) = an
F(1)

Then, the estimated position w;(t) of mobile cloudlet m;
is given by Equation (18).

position Af. Hence, force

otherwise.

Tj(t) = F (t) +w;(t — 1), (18)

where the vector components of the force are added to the
corresponding 3D coordinates of the position of the cloudlet
in the previous time slot w;(¢ — 1). Note that MCP from the
initial placement (Algorithm 1) is utilized as w;(1).

After these calculations (lines 6-8), the final position w; (¢)
of the cloudlet is determined by finding the closest cell ¢y
to the estimated position w;(t) (line 9). Here, only the cells
that are not already assigned to a previously evaluated mobile
cloudlet are considered for the final position. The history of
cloudlet locations is maintained in MCP (¢) , and the device as-
signments DCA are updated for use in the next round (lines 10-
11). Every cloudlet moves to its new final position w;(?), i.e.,
the center of the cell ¢ using MCP (t) .

To summarize, the mobile cloudlets move towards the
devices with the highest attractive force and finally relocate
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Fig. 3: Comparison of coverage values at each time slot.

to the centers of the cells, closest to their estimated positions
in the grid. Algorithm 2 outlines the entire process of the
adaptive placement of PMCP. After each adaptive placement
iteration, the devices are individually mapped to the relocated
mobile cloudlets using Algorithm 3, and the mappings are used
to make the placement decision in the next round.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

For an extensive evaluation, the experiments on the PMCP
approach need to be performed under a realistic user mobility
model and appropriate distribution of changing user demands.
We utilize the KTH Walkers dataset [12] to establish mobility
scenarios for our experiments. The dataset represents traces
of pedestrian mobility from a part of downtown Stockholm.
Moreover, the dataset was specifically designed to study
mobility models for opportunistic communications, making it
a highly suitable dataset for evaluating our approach. There
are four sub-traces (3 Olstermann traces and 1 Subway trace)
in the KTH Walkers dataset, each of which we use to generate
one 2D and one 3D mobility dataset for our experiments. We
likewise assume a uniform distribution for mobile cloudlet
capacities and individual user demands. We experiment with
a different number of devices to test the scalability of our
approach and deduce the number of mobile cloudlets for each
scenario based on the number of devices.

We compare the performance of the PMCP with the optimal
solutions by OMCP and the results of DBSCAN with path
planning (DBSCAN-PP). DBSCAN-PP is chosen as a bench-
mark since it is a well-known density-based clustering method
and behaves similar to existing mobile cloudlet placement
approaches in the literature (e.g., [26], [28]) when we add the
path planning component. It is hence a strong benchmark given
the unavailability of implementation of more recent studies.

TABLE I: Experiment Scenarios

Scenario Ml Dl T ot

Scenario3 (S3-2D/3D) 16 300 10  U[140,170] U2, 10]
Scenario2 (52-2D/3D) 12 180 10  U[120,160] U2, 10]
Scenariol (S1-2D/3D) 8 100 10 U[g0,100]  U[2,10]
Subway (SW-2D/3D) 8 100 6 U[80, 120] U[2,10]

We compare these approaches in terms of user coverage
attained at each time slot, the rate of cloudlet switches made
by devices (to test the stability of each approach), cumulative
distance traveled by the cloudlets, and the running time across
different time slots. We also visualize the cloudlet placements
to demonstrate the movement of the mobile cloudlets in
response to dynamic changes in device specifications.

Table I presents the different experiment scenarios in terms
of the number of mobile cloudlets available, the number of de-
vices, the number of time slots in the experiment, distribution
of cloudlet capacities, and distribution of device demands. For
each scenario, both 2D and 3D mobility datasets have been
created. 2D datasets are direct representations of available
traces, while 3D datasets were generated by assuming a 3D
landscape over which mobility happens. This is done by
adding non-negative z-coordinates (to denote elevations of the
assumed landscape) to the existing trace data. In addition,
the maximum travel parameter A; for all of these experiment
scenarios are based on a uniform distribution U[2, 3].

We obtain the optimal results from OMCP by solving the
integer program using IBM ILOG CPLEX Concert Technol-
ogy API for Java [35]. All approaches are implemented in
the same version of Java, and all experiments are run on the
same JVM on the Nautilus HyperCluster [36] with 16 CPU
cores and 64 GB RAM. This justifies a direct comparison
between the approaches. It is also noteworthy that OMCP is
an NP-hard problem. As such, CPLEX may never converge
to a provably optimal result for some experiment scenarios.
Hence, the best results obtained within a specified time limit
(30 minutes) are presented for consistency and are shown by
OMCP-30. This means, if OMCP could not solve the problem
optimally in 30 min, the best obtained result in this duration
has been used for comparison. Note that optimizing more
than 30 minutes showed no significant improvement in our
results of all experiment scenarios.

B. Analysis of Results

1) Coverage: We first compare the coverage values of
PMCP, DBSCAN-PP, and OMCP-30. Figure 3a shows the
mean and standard deviations of the 2D scenarios. The mean
value of coverage obtained by PMCP across different 2D
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Fig. 4: Visualization of comparative cloudlet placements and PMCP coverage at different time slots.

scenarios and time slots is 92.89% with standard deviation
of 4.63. In all scenarios, PMCP outperforms DBSACN-PP in
terms of coverage. DBSCAN-PP obtains lower mean coverage
of 85.67% with standard deviation of 8.3. As an NP-hard prob-
lem, OMCP does not guarantee termination with an optimal
solution in a finite time. As the problem size increases in terms
of the number of devices and time slots, it is more difficult
to obtain the optimal solutions or even high-coverage time-
limited solutions using OMCP-30. This is most noticeable in
Scenario 2 (S2-2D and S2-3D).

Figure 3b shows the coverage results of the 3D scenarios.
The mean coverage obtained by PMCP is lower than the 2D
scenarios but still high at 86.22% with standard deviation
of 7.14. DBSCAN-PP is more consistent with a lower standard
deviation of 5.59, however, it again achieves lower mean
coverage of 83.25%. The coverage values obtained by PMCP
are consistently more than DBSCAN-PP and OMCP-30 with
lower standard deviations except for a few cases as seen
in Figure 3. The Subway scenarios (SW-2D and SW-3D)
and Scenariol-3D (S1-3D) are exceptions to this observation
where OMCP-30 has higher coverage with a lower standard
deviation. This is because the size of these scenarios is much
smaller. They either have a smaller number of devices or
fewer time slots or both. Hence, it is easier for an exhaustive
approach like OMCP-30 to find values closer to the optimal
solution. DBSCAN-PP performs better in terms of coverage in
Subway-3D (SW-3D) scenario since this scenario has distinct
dense clusters, but PMCP is still comparable given a large
overlap in the error bars of both approaches. Moreover,
cloudlets can move more freely in DBSCAN-PP since new
cluster centers can be far (larger than A ;) from current cloudlet
cells, which may lead to infeasible placements.

2) Adaptive Nature: We visualize the cloudlet placements
to illustrate the smooth adaptive movement of cloudlets in
PMCP in response to the devices’ movements. In Figure 4,
we present the comparative cloudlet placements according to
PMCP (red) and OMCP-30 (green) along with the devices
(blue and orange based on PMCP coverage) across different
time slots of Subway 3D (SW-3D) scenario. The device
distributions across time slots first show that Subway 3D
scenario realistically depicts the visible 3D features in subway
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stations like stairs and escalators at the entrance/exit and the
area around and outside the station. Figure 4a shows the initial
placement at 7 = 1, which looks better for PMCP since
it places cloudlets (red) close to the demand centers (with
coverage of 91%). Hence, the cloudlet placements by PMCP
appear closer on average to the devices than the placements
by OMCP-30 (green). There are some exact overlaps between
PMCEP cloudlets and OMCP-30 cloudlets too. In comparison,
OMCP-30 cloudlets are placed more strategically to cover a
larger number devices (about 95%) but are not close to the
devices in some of their locations.

As the devices move, both approaches readjust the place-
ments of the cloudlets. At 7 = 3 (see 4b), the placements by
OMCP-30 look better based on the distribution of devices. The
coverage of OMCP-30 here is 96% compared to only 78% for
PMCP. However, PMCP has significantly readjusted cloudlet
placements based on the new user distribution. As the devices
have scattered more, so have the PMCP cloudlets. Moving into
final time slot 7 = 6, Figure 4c shows that PMCP has caught
up significantly in terms of following the devices and has
placed cloudlets close to device clusters at the bottom-left and
the top-right (notice the wider coverage in the figure), which
did not have nearby PMCP cloudlets in 7 = 3. The visualiza-
tions here validate that PMCP places the mobile cloudlets by
truly responding to dynamic and uncertain changes in device
distribution at every time slot and achieves consistent coverage
compared to the optimal coverage. They also demonstrate that
PMCP does not favor the devices in dense regions only and
adapts to even sparse regions over time. PMCP fairly serves
all devices in the long-term since the devices far away from
the dense regions are eventually covered too.

3) Stability: Providing stable services is also critical as it
reduces excessive migration that will lead to high latency. Both
high coverage and stable service are the motivations behind the
design of our approach. As a result, our approach compensates
for the coverage gap by improving the stability of the services.
We measure the stability in terms of the switching rate for
devices. The switching rate is the total number of cloudlets
switched by the devices between consecutive time slots divided
by the total number of connections established by the devices
across all time slots. Thus, a lower switching rate means the
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Fig. 5: Comparing cloudlet switching rate of devices, cloudlet distance traveled, and running time.

devices are likely to be served by the same cloudlet across
consecutive time slots leading to fewer migrations between
cloudlets and ultimately smoother, more stable edge services.
Figure 5a shows the switching rate of the three approaches
across all experiment scenarios.

The average switching rates of PMCP, DBSCAN-PP, and
OMCP-30 are 0.259, 0.484, and 0.716, respectively. This
means only 25.9% of the connected devices change cloudlets
between the two time slots in PMCP while a more significant
number of devices 48.4% and 71.6% do that in DBSCAN-
PP and OMCP-30, respectively. The high rate obtained by
OMCP-30 is because it is agnostic to switching and objectively
focuses on maximizing coverage, while DBSCAN-PP has path
planning to minimize the movement of cloudlets between clus-
ters which offers some advantage. Hence, even in the higher
coverage scenarios, users using DBSCAN-PP and OMCP-30
experience more delays in their services. Though we can make
OMCP-30 more adept at handling switching, introducing hard
constraints to limit switching in OMCP-30 may even render
some scenarios theoretically infeasible to solve. This further
supports the performance of PMCP in terms of coverage since
OMCP-30’s coverage values are extremely high benchmarks
to compare against. Among all scenarios, the only comparable
switching rate between the PMCP and OMCP-30 can be
noticed for SW-2D scenario. This indicates that OMCP-30
probably found a solution with less switching by chance.
Otherwise, PMCP always has a significantly lower switching
rate, consequently, ultra-low latency services, compared to
both DBSCAN-PP and OMCP-30.

4) Energy Efficiency: Given that mobile cloudlets are de-
ployed for the same distribution of devices and assuming
all other factors are constant, the energy consumption of
these mobile cloudlets largely depends on their total distance
traveled. Hence, we assess the energy efficiency using the
cumulative distance traveled by the cloudlets in terms of unit
cells, i.e., the distance between centroids of the unit cells
switched by the cloudlets across all time slots. As shown in
Figure 5b, PMCP is extremely efficient in terms of cloudlet
movements for all scenarios. The mean cumulative distance
traveled by the cloudlets are 110.84, 525.69, and 887.95 for
PMCP, DBSCAN-PP, and OMCP-30, respectively across all

scenarios. For some scenarios, the cloudlets have negligible
movements between cells in PMCP, notably S1-2D and S3-2D.
This is because in PMCP, cloudlets do not move to a different
cell unless there is a significant change in the user distribution
in and around their covered cells. DBSCAN-PP is significantly
worse since it re-clusters the devices in each time slot and
moves cloudlets with no maximum travel constraint to newly
established cluster centers based on matching. Unrestricted
movement with poorer energy efficiency makes DBSCAN-
PP impractical. These are obvious limitations of the existing
approaches in the literature that are based on similar princi-
ples. OMCP-30 is again agnostic to minimizing the distance
traveled and purely focuses on maximizing coverage.

5) Running Time: We compare the running time of PMCP
against DBSCAN-PP and OMCP-30 (i.e., 30-minute time
limit shown by the flat line). Illustrated by Figure Sc, PMCP
has exceptionally low running time compared to OMCP-
30. DBSCAN-PP has a similar running time, however, DB-
SCAN needs to be tuned using two hyperparameters (e and
minPoints), and the running time shown here is for a
tuned version. If there are n combinations of hyperparameters
considered for tuning DBSCAN, then obtaining the presented
results would take n times the presented running time. On the
contrary, PMCP runs in a few milliseconds with total running
time for any scenario never exceeding 56 milliseconds. Most
of this time is spent on the initial placement of the mobile
cloudlets, where mobility decisions are not yet being made.
Also, this figure shows the sum of the running times across all
time slots (sum of 6-10 time slots). Calculations in the adaptive
part of the approach only take close to 1-3 milliseconds for
each time slot, even for the largest experimental scenario.

In summary, PMCP offers consistent high device coverage,
stable services through low switching rate, and markedly su-
perior energy efficiency through reduced cumulative distance
traveled by the cloudlets. PMCP is well designed to run in
real-time and scales well across scenarios.

VI. CONCLUSION

Deployment of mobile cloudlets is an elegant solution
to provide better services in next-generation edge networks
with high user mobility and dynamic, uncertain demands. To
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address the goals of enhancing user coverage and providing
stable edge services, we designed a novel dynamic mobile
cloudlet placement approach, PMCP, inspired by the concepts
in physics. The results show that PMCP not only achieves high
coverage and more stable services but is also energy-efficient
and runs in real-time. This means our approach is practical
for dynamic cloudlet placements and can also be extended to
solve dynamic assignment and resource placement problems.
Since the approach includes iterative calculations, it can also
be parallelized to run faster. We plan to study the distributed
decision making for dynamic cloudlet placements next.
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