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ABSTRACT

Analyzing multilingual code holistically is key to systematic quality
assurance of real-world software which is mostly developed in mul-
tiple computer languages. Toward such analyses, state-of-the-art
approaches propose an almost-fully language-agnostic methodology
and apply it to dynamic dependence analysis/slicing of multilingual
code, showing great promises. We investigated this methodology
through a technical analysis followed by a replication study apply-
ing it to 10 real-world multilingual projects of diverse language
combinations. Our results revealed critical practicality (i.e., having
the levels of efficiency/scalability, precision, and extensibility to
various language combinations for practical use) challenges to the
methodology. Based on the results, we reflect on the underlying pit-
falls of the language-agnostic design that leads to such challenges.
Finally, looking forward to the prospects of dynamic analysis for
multilingual code, we identify a new research direction towards
better practicality and precision while not sacrificing extensibility
much, as supported by preliminary results. The key takeaway is
that pursuing fully language-agnostic analysis may be both im-
practical and unnecessary, and striving for a better balance between
language independence and practicality may be more fruitful.
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1 INTRODUCTION

Software failures are consequential and costly. A fundamental ap-
proach to assuring software quality hence mitigating these failures
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is to verify program behaviors via dynamic analysis [16, 17, 37].
For instance, among other such analyses, dynamic dependence
analysis [15, 26] (including one of its special forms, dynamic slic-
ing [36]), has empowered a range of applications in software quality
assurance (e.g., fault diagnosis [20, 25], security testing [33, 35, 47]).
Meanwhile, most (80+%) real-world software today is multilingual
(i.e., the program is written in multiple languages), according to re-
cent studies regardless of the sample size (e.g., around 1,000 [52] or
over 15,000 [63]) and data sources (e.g., at major companies [41] or
in the open-source world [57, 58]). The latest study confirmed the
status quo: only 18% of the studied systems use one language [50].

In this context, holistic analysis of multilingual code is key to
systematic quality assurance of real-world software systems [48].
To understand this critical need, consider a few specific cases. In
several samples of Android malware [12], the main app logic in one
language invoked malicious code in another language. For instance,
the game malware com. tinker.gameone [32] retrieves the user’s
Facebook credential through its C# code, and passes the private
data to an untrustworthy remote server in its Java code. Such issues
also have been found in the Android framework itself. For example,
as reported in CVE-2016-6691 [55], the framework called, from its
Java code via the Java native interface (JNI), the Qualcomm Wi-Fi
gbk2utf module in C++ which had GBK encoding errors.

Yet cross-language bugs are not limited to one language combi-
nation (e.g, Java-C) or one interfacing mechanism (e.g., JNI) [49],
albeit the only few prior relevant works available all targeted that
particular case (i.e., Java-C with JNI) [11, 39, 40, 46]. For instance,
recently Li et al. [51] demonstrated multiple cases of high-severity
security vulnerabilities of different kinds that happen across Python
and C code in popular open-source projects such as NumPy [61].

While these examples are about security defects, cross-language
correctness defects would happen the same way. The root cause is
common: the defects originated in the code written in one language
(i.e., one language unit) propagated to and were only exhibited in a
different language unit. It would be difficult for single-language tech-
niques/tools [19, 21-24, 28] to find these defects as their underlying
analyses are not holistic—they dismiss cross-language dependen-
cies and behaviors. Manual approaches (e.g., code review) are not
always practical because humans can get easily lost in complex,
large codebases like that of NumPy (one million SLOC) [61]. To ad-
dress this challenge, the state-of-the-art approach Orss [13] and its
follow-up works [14, 44, 45] propose and promote language-agnostic
dynamic analysis for multilingual code, focusing on (dynamic) pro-
gram slicing as a demonstrating case. Here being language-agnostic
means total language independence—the analysis is designed with-
out assuming (i.e., independently of) any specific knowledge about
the particular languages used in the multilingual software.
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Given the general diversity (in terms of varying language com-
binations used) of multilingual code, the promises of the language-
agnostic methodology advocated in these prior approaches are
highly meritorious, both intuitively (e.g., it would work for any
language combinations) and based on their evaluation results. Yet
as we arguably and empirically show, there are also major pitfalls
underneath this methodology that risk practicality. Ultimately, the
sensible pursuit should be on the balance between the language
independence of the analysis design and the practicality of the
analysis with respect to real-world multilingual software.

In this paper, we reflect on the language-agnostic methodology
as demonstrated in ORBs [13], the core in the line of works around
it. We first briefly revisit how it works and the promises it holds
(§2), followed by discussing the pitfalls as illustrated through a
replication study of OrsBs against 10 randomly chosen multilin-
gual projects on GitHub (§3). We offer insights into our empirical
findings and lay out a new research direction towards alternative
tradeoffs between language independence and practicality that lead
to more practical solutions (§4), as we look forward to the prospects
of language-agnostic dynamic analysis of multilingual code.

Open science. Our artifact for this paper is available on figshare.

2 THE PROMISES

The state-of-the-art multilingual analysis, OrBs [13], achieves the
greatest language-independence to date—it instruments at the given
query (i.e., slicing criterion, which includes a code line number and
a variable on that line), and the rest of the analysis is language
agnostic. It works by tentatively deleting some other code lines,
recompiling and executing the remaining code, and checking if the
variable’s value changes—if so, those lines are deleted. This process
is repeated until no more lines can be deleted, and the remaining
code lines are considered the dynamic slice of the query.

Indeed, per its inner workings, ORBs only requires probing for
the run-time values of criterion variables in the enclosing language
unit. Other than this language-specific step, the analysis does not as-
sume any knowledge about (the syntax or semantics) the languages
involved in the multilingual code under analysis. This language-
agnostic design holds great promises, because multilingual software
is diverse and complex. Prior studies on successful projects in top
companies reported that there were 2,500 languages in use and
most applications were written in 2 to 15 languages [41]. Later
studies based on open-source projects found that more than half
of the samples used two or more languages. Most recently, further
studies showed that multilingual code uses a variety of language
combinations (e.g., java c++, python shell, javascript ruby
php) [50] and diverse mechanisms for interfacing between different
language units (e.g., one unit calling another via explicit calls to
foreign functions, one unit embedding another) [51].

With these levels of diversity and complexity, it is clearly desir-
able to have an analysis be agnostic of the underlying languages of
a given multilingual program, as it implies that the analysis can be
perfectly generalized to any given multilingual software without
additional (e.g., language-specific engineering) effort. The original
evaluation experiments for OrBs [13] consolidated the promises—it
worked reasonably well for not only small benchmarks (of a few

Haoran Yang, Wen Li, and Haipeng Cai

hundred lines of code), but also with (four source files chosen from)
a real-world multilingual project Bash (a Unix shell).

In sum, as in non-code-based approaches (e.g., entirely drop-
ping any code analysis) [18], the language-agnostic methodology
demonstrated via ORBs appeared to be highly promising.

3 THE PITFALLS

Despite its appealing promises, the language-agnostic design in-
stantiated in ORrBs [13] could face practicality challenges with large-
scale, real-world multilingual systems. The largest-scale real-world
case studied in the original OrBs evaluation only considered a
quite small portion (four source files) of the project, rather than the
holistic system. As a result, the complexity dealt with may not be
representative of that of a whole, real-world multilingual system.

3.1 Technical Analysis

Technically, the design may suffer from a few limitations that make
it impractical: (1) since the code lines to remove must be deleted
together and lines are grouped speculatively [13] (despite aids of
simple heuristics [14, 45]), it can take numerous trials, resulting in
along time to delete even one line (e.g., up to 1 minute per line for a
small program of 2KLOC [45]); (2) every single trial requires a com-
plete recompilation and then re-execution of the entire software,
another potential source of overhead and inefficiency; (3) it only
works with source code, because it relies on deleting the code at
source level and (re)building the source after deletion; and (4) it is
semi-automated as it requires users to write multiple scripts that fit
the inner workings of the analysis for each system under analysis.
As a result, the technique is not applicable where recompilation is
infeasible (e.g., source code is unavailable or incomplete).

The fact that the deleted lines are grouped speculatively has
another potential consequence—these lines may not be maximally
removable for each instance of the line-deletion operation. In par-
ticular, since the grouping is heuristic and tentative while having
to be done scrupulously to reduce the possibility of (re)compilation
failure, there may often be code lines that could be deleted but are
not comprehensively identified for deletion. The consequence is
that the resulting slice may include many code lines that should
not be in the slice (i.e., they should have been deleted since the
criterion is not dependent on them). In other words, the language-
agnostic methodology of OrRBs may result in an excessive rate of
false positives (i.e., great impression).

Above all, the greatest barrier with the language-agnostic method-
ology in ORBs may be its efficiency and scalability. Follow-up
works achieved valuable improvements (e.g., enabling forward
slicing [44]—the original implementation of OrBs only works for
backward slicing, mitigating the efficiency issue [45]), but the prac-
ticality (efficiency/scalability wise) challenge remains due to the
unchanged nature of the language-agnostic methodology.

3.2 Empirical Analysis

To validate the above dissection and understand the gap, we per-
formed a replication study on ORBs using the artifact shared by the
authors in their paper [13].

Dataset: We targeted open-source multilingual projects on GitHub
that primarily used two or all of three programming languages:
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Table 1: Efficiency results of ORBs on real-world systems.

Subject Language combination Code size | #Qfin. | Time (hrs)
Pyrasite [1] python c++ 1,580 10 2.67
Affinity [2] java ct++ 4,677 0 24+
Pyjnius [3] python java 5,071 10 7.36
Snappy [4] java ct++ shell 14,615 0 24+
Pysonar2 [5] | java python 18,247 0 24+
Deap [6] python ¢ 22,491 7 22.2
sbe [7] java ct++ ¢ 48,406 0 24+
brotli [8] c c# java javascript 51,073 0 24+
Vertx-web [9] | java python 124,942 0 24+
Mongo [10] ct+ javascript python 178,735 0 24+

Python, C/C++, and Java, because they are widely considered main-
stream languages and commonly ranked among the top-5 lists by
various sources (e.g., [? ]). Among all such projects, we sampled
those that are popular (i.e., with 1,000 or more stars) and active (i.e.,
updated within the last six months). We also dismissed projects
where the language unit in any of the three targeted languages
accounts for less than 1% of total project code size. Then, from the
resulting sample, we randomly selected 10 projects that cover all
possible combinations of the three primary languages, as outlined
in Table 1. The first column gives the project name and link.

Metrics: As per our technical analysis of the pitfalls, we mainly
examine the efficiency of OrBs in terms of the slicing time cost. For
each slicing criterion, we set a timeout of 24 hours, which is a reason-
ably large budget that a developer possibly affords in practice. In
addition, concerning the practical usefulness of the resulting slices,
we also look at the slice size—generally the smaller slices are more
desirable because developers may not afford inspecting a very-large
slice, especially given that Orss itself does not provide additional
guidance (e.g., inspection priorities or ranking of statements in a
slice) for the post-slicing analysis.

Procedure: We have applied ORBs to the 10 chosen multilingual
systems, on a Ubuntu 18.04.5 LTS server with Intel(R) Xeon(R) CPU
E7- 4870 2.40GHz and 512GB RAM.

For each subject, we randomly picked one test to exercise it
and 10 queries (i.e., slicing criteria) to compute dynamic slices for,
such that each language unit contains the number of queries that
is proportional to the code size of the unit. For a given criterion, if
Orss does not finish the slicing within 24 hours, we terminated it
and considered the case a timeout/failure.

Results: The overall efficiency results are summarized in Table 1.
The languages for which at least one query was picked are listed in
the second column, and the total code size of each subject in the
third. The fourth column (#Qfin.) indicates the number of queries
with which OrBs successfully finished the slicing in 24 hours.

As shown, only 3 (relatively small) subjects saw some queries
finished within the timeout, and Orss timed out for any query
of the other subjects. For the only 27 (out of 100 total) queries it
returned a slice for, the average cost was 9.5 hours per query.

Table 2 outlines the further details on the 27 successfully finished
cases, including the slicing criterion (SC) no. (2nd column), the slice
size—the number of source lines of code (SLOC) in the slice (3rd
column), and the number of hours (hrs) spent on computing each
slice (last column). The slice ratio—the ratio of the slice size to the
total number of executed lines in the subject execution underlying
the slicing (4th column)—provides another perspective into the
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slice size with respect to the worst-case slicing results (i.e., all the
executed lines are considered part of the slice).

As in the original ORrBs evaluation,
we did not have the ground-truth slic-
ing results to compute precision and slicing. (Sb.: Subject; Sn.:
recall. Yet the numbers of Table 2 Slicing criterion no.; Ss.:
show t.hat O-RBS is very .likely to be Slice size (SLOC); St.: Slice
excessively imprecise—it produced ratio (%); Th.: Time (hrs)

Th.

Table 2: Detailed results
on the finished cases of

more than half of the executed code [spTsn TS5, TSE
lines in all of the slices for the two 1| 132 | 11% | 3.00
lative 1 bi 2| 188 | 15% | 3.8
relative large subjects. 3 188 | 152 | 3.15
© 4| 129 | 11% | 3.10
. % 5| 129 | 11% | 3.40
3.3 Key Insights £ 6| 118|10% | 194
i £ 7] 118 | 10% | 1.95
Overall, the empirical results ap- 8| 118 | 10% | 1.93
9| 135|11% | 248
peared to C(')rroborate' the results w0l 132 117 | 260
of our technical analysis (§3.1): the 12962 | 83% | 8.33
_ : PES . 2| 2961 | 83% | 8.29
Iangl.lage agnostic des.lg.n 1nstapt1 5| 2521 | 71% | 832
ated in Orss suffered critical efficien- w 42962 | 83% | 836
cy/scalability barriers and was sub- | & 5 | 2,612 | 73% | 5.79
cy/ y bar - B 6250 | 71% | 842
ject to excessive imprecision. & 712977 | 84% | 8.42
Takin, loser look into the re- 8| 2973 | 83% | 842
aking a close 00. to the .e o | 2341 | 66% | 4.69
sults, we observed that in all the fail- 10 | 2,973 | 83% | 4.53
ure (timeout) cases, ORBs was stuck 1) 5,460 | 53% | 19.63
; ) ) 2 | 5460 | 53% | 19.84
in unfruitful cycles betweenrecompi- | _ | 3| 5460 | 53% | 23.99
lation and line deletion (because the g 7 | 5,008 | 49% | 21.99
i X . A 8 | 5008 | 49% | 22.60
deletion causes failures to compile). 9 | 5008 | 49% | 23.28
The underlying reason, as outlined 10 | 5,008 | 49% | 23.75

earlier, was that OrBs made heuristic attempts in identifying the
group of code lines to delete without even fully knowing about the
syntactic (not to mention semantic) relationships among those lines.
As a result, the majority of such attempts failed as the remaining
program with those lines deleted failed to compile.

Meanwhile, in the small percentage of cases in which it finished
the slicing within 24 hours, OrBs often identified excessively large
groups of code lines to delete. In particular, when heuristically form-
ing the group of code lines to delete, the deletion-line grouping
step often ended up also including the lines that have no depen-
dence relationships with the slicing criterion, The result was the
excessively-large dynamic slices, as seen especially in the cases of
Pyjnius. Apparently, there was no consistent correlation between
the degree of this imprecision and the total code size of the multi-
lingual system—e.g., Deap is much larger than Pyjnius (22.5 verus
5.1 KLOC), but the former saw much smaller slices produced by
OgrBs (50% versus 80%) in terms of slice ratio.

In short, this replication study led us to the following insights:
(1) the need for almost no knowledge about any language makes
Orss almost fully language-agnostic, yet that lack of knowledge
also led to totally uninformed hence opportunistic line deletion,
a core step in the design of the language-agnostic methodology;
thus, (2) a more practical design would need to strike a better
balance between language independence and efficiency/scalability
by utilizing slightly more knowledge about each language.

4 THE PROSPECTS

Following the insights obtained from our technical and empirical
analyses (§3.3), we believe it is necessary to explore other tradeoffs
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Figure 1: Envisioned high-level design for better balancing
language independence and analysis practicality.

between the language independence and practicality (in terms of ef-
ficiency/scalability primarily but also concerning practically useful
levels of precision). Note that language independence does matter
for a multilingual code analysis, because the more independent
the analysis is of the underlying languages, the more extensible/-
generalizable the analysis is to accommodate the diverse language
combinations in real-world multilingual systems. Thus, a total re-
laxation of the tradeoff with the (almost fully) language-agnostic
methodology as demonstrated in OrBs by entirely compromising
language independence to favor practicality is not a viable solution.

In general, we envision a new methodology for dynamic analysis
of multilingual code (as for distributed systems [34, 38]) to decouple
analysis (e.g., dependence computation or slicing) algorithm from data
harvesting (i.e., the process of collecting the program data needed by
the analysis). An overview of this decoupling design is depicted in
Figure 1. The key idea and rationale is that (1) the data harvesting is
realized via minimal, language-specific static analyses, relying on as
little knowledge about each particular language of the multilingual
code as possible, but the harvested data is language-independent
in terms of its format and semantics, and (2) the analysis algorithm
itself is that of an entirely language-agnostic dynamic analysis, as
enabled by the language independence of the data harvested. In this
way, we will overcome semantics disparity induced by language
heterogeneity through minimal language-specific effort, so as to
reach the practicality goal at the sweet spot in balancing language
independence and practicality. Conceptually, the language-specific
(static) analyses and the language-agnostic (dynamic) analysis are
bridged through an analysis data unification layer in between where
data harvesting will actually happen at runtime.

The key insight underlying this proposed design is that min-
imizing language-specific analysis hence maximizing language-
independence and analysis-extensibility (yet not losing scalability)
can be achieved by decoupling analysis algorithms from specific lan-
guage semantics through harvesting language-independent data. As a
proof of concept of this design, we built a cross-language dynamic
data dependence analyzer for Java-C programs on top of an earlier
work SensA [17]. We instrumented at every statement where a
variable is defined or used as in [27] to send at runtime the variable
value in a language-agnostic format to an analysis server through in-
terprocess communication (IPC). We used Soot [42] and LLVM [43]

Language-agnostic
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for probing and identifying variable definitions and uses in the
Java and C unit, respectively. We then ran the instrumented code
twice, one normally to get the original execution and the other with
statements of interest being voided (i.e., operations there changed
to “no operation"). Once the analysis data is collected by the server,
it computes dependencies through differencing the original and
voided executions. Our experiments on a number of Java-C pro-
grams showed that the decoupling design worked successfully—it
correctly computed all dynamic data dependencies across the two
heterogeneous language units. The key here is that decoupling the
analysis data collection and the core analysis algorithm is realized
via IPC—which is by nature language-independent.

5 RELATED WORK

Previous studies suggested that unifying or abstracting language
semantics is not scalable because it relies on heavyweight per-
language engineering [53, 54, 59, 60]. Converting code in differ-
ent languages into a uniform intermediate representation (IR) suf-
fers from misinterpretation/misconversion issues due to language-
semantics disparity. Also, the IR conversion for a given language
is not always practical, because it requires vast engineering ef-
fort [12]; these issues are further aggravated by the evolution of
each language—for instance, while LLVM [43] aims at a uniform IR
for several languages, only a couple of front ends (e.g., for C/C++)
received regular maintenance while those needed for the IR conver-
sion for other languages did not hence are not practically usable.
Meanwhile, a common or meta model [53, 60, 62] is not amenable
to dynamic analysis, since code represented in such models (e.g,
the uniform IR) cannot be executed anymore, nor are they able to
represent execution information of the original code.

Earlier approaches [53, 54, 56, 59, 60] to cross-language analy-
sis are mostly static while relying on substantial language-specific
modeling and/or engineering. Recently proposed dynamic cross-
language analysis [29] captures coarse-grained (file-level) depen-
dencies by modifying OS kernel for regression test selection. Ex-
tracting co-change patterns to derive file-level dependencies achieves
language independence by avoiding code analysis [30, 31], which
is difficult to extend for finer granularity.

6 CONCLUSION

As the growing majority of today’s software systems are built using
multiple languages, holistic analysis of multilingual code is essen-
tial for systematic software quality assurance. We revisited the
promises of a state-of-the-art methodology for dynamic analysis of
multilingual code that promotes such analyses be language-agnostic.
While conceptually appealing and promising, this methodology may
suffer technical limitations that impede its practical use against
real-world multilingual software systems. We thus proceeded with
an empirical analysis to demonstrate such pitfalls of the language-
agnostic methodology. Following the insights distilled from our
study, we envisioned a new methodology towards more practical
dynamic analysis of multilingual software.
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