Understanding Language Selection 1n
Multi-Language Software Projects on GitHub

Wen Li Na Meng

Li Li Haipeng Cai

Washington State University, USA Virginia Tech, USA Monash University, Australia Washington State University, USA

li.wen@wsu.edu nm8247 @vt.edu

Abstract—There are hundreds of programming languages
available for software development today. As a result, modern
software is increasingly developed in multiple languages. In this
context, there is an urgent need for automated tools for multi-
language software quality assurance. To that end, it is useful to
first understand how languages are chosen by developers in multi-
language software projects. One intuitive perspective towards the
understanding would be to explore the potential functionality
relevance of those choices. With a plethora of publicly hosted
multi-language software projects available on GitHub, we were
able to obtain thousands of popular, relevant repositories across
10 years from 2010 to 2019 to enable the exploration. We start
by estimating the functionality domain of each project through
topic modeling, followed by studying the statistical correlation
between these domains and language selection over all the
sample projects through association mining. We proceed with
an evolutionary characterization of these projects to provide a
longitudinal view of how the association has changed over the
years. Our findings offer useful insights into the rationale behind
developers’ choices of language combinations in multi-language
software construction.

Index Terms—Multi-language software, language selection,
functionality relevance, evolution

I. INTRODUCTION

Nowadays, technologies such as components and frame-
works, which could provide high reliability and usability, are
being utilized increasingly often in order to speed up the
development and integration of software products. As software
development continues to expand into a plethora of domains,
including cloud services and IoT systems, different functional
features or components are preferably developed with different
languages to take advantage of combining the best of each.
As a result, it has been clear that most of the current real-
world software applications have used more than one language
during construction [1]-[5].

The problem of locating defects across multi-component
systems, with an effective program analysis technique, has
created a new field of research that continues to grow. As a
critical step prior to developing such techniques, it is useful to
understand how languages are selected during multi-language
software construction and the rationale behind it. For instance,
an IoT software system might utilize Java (due to its merits in
platform independence) for plug-in development and then use
C (due to its efficiency advantages) for use cases involving
system programming. These subsystems must then interact
with each other as a whole for the entire system to function

li.li@monash.edu haipeng.cai@wsu.edu

as required. The combination of C and Java seems to have
become the most popular choices for IoT systems indeed. Yet
a full picture in this regard remains to be seen.

Prior research has been concerned about programming lan-
guage selection, but focused on languages used in a specific
field (e.g., bioinformatics) or on the relationship between the
use of individual languages and a specific property of software
(e.g., bug-proneness). Other studies have looked at the poten-
tial correlation between bug resolution schemes and language
use. These prior studies have not considered an evolutionary
view or the rationale underneath language selection.

Towards filling these gaps, we are conducting a systematic
study on language use and selection in open-source multi-
language projects on GitHub. We collected 10,000 projects
across ten years and characterized them as one single dataset
for understanding the functionality relevance of language
selection. Furthermore, treating the ten yearly sets of projects
each as an individual dataset while applying the same associ-
ation analysis led us to an evolutionary look at the relevance.

We found that language selection was weakly or moderately
associated with some functionality domains. Over time, the top
language selections for those domains changed considerably,
whereas the primary languages appeared relatively stable. We
are currently working on an in-depth analysis of various
implications of language selection in multi-language software
to discover the rationales behind such selections.

II. METHODOLOGY

Our study took open-source projects on GitHub as its pri-
mary input. From this data source, we mined different kinds of
repository data for a single-period characterization (SPC) and
an evolutionary characterization (EVC). We randomly picked
projects with 1,000 or more stars (i.e., top-popularity projects).
To be useful for our study, projects without a meaningful topic
or description information were skipped, and those that use
no more than one language were dismissed. We thus obtained
1,000 projects from each of the past ten years (2010 through
2019). Then, the SPC used the entire dataset as a whole, while
the EVC treated each yearly sample set separately.

More specifically, in the SPC we extracted the topic meta-
data of each project, from which each project’s functionality
domain (i.e., category) was identified through topic modeling
using Latent Dirichlet Allocation(LDA) [6]. With the function-
ality category (domain) assigned to each project, we computed

TABLE I: Overall association between software functionality
domains and top language selections in SPC

Software Domain

‘ Top Language Selection ‘ Support ‘ Confidence ‘ Lift ‘

0S c c++ shell 1.13% 473% | 1.62
Communication html java javascript shell 2.19% 233% | 1.71
Word processors html java javascript 3.74% 31.5% | 1.14
Video software c css html javascript java 1.39% 433% | 2.42
Programming tools | ¢ ct++ cmake 3.97% 38.2% | 1.93
Mobile Application | java javascript 2.64% 25.2% | 2.05
Programming tools | c++ cmake shell 2.38% 229% | 1.22
Word processors html javascript python 2.95% 24.8% | 1.45
Games c++ java shell 2.32% 26.1% | 3.85
Communication ct+ java shell 2.29% 244% | 141
Music software javascript python 1.59% 31.2% | 2.92

the association between such categories and language selec-
tions in a given project set via association rule mining. In
particular, we identified frequent if-then associations which
consist of an antecedent (if, software domain here) and a
consequent (then, language selection here), using the Apriori
algorithm [7] implemented in the Mlxtend library [8].

Then, in the EVC, where projects from each different
year during 2010-2019 were considered one separate dataset,
we looked across per-year (SPC) characterization results to
analyze all the projects’ evolutionary dynamics of functionality
relevance of language selection during the ten-year span.

III. RESULTS

Table I lists the results of our association analysis on the
overall functionality relevance of language selection using the
SPC dataset. Our results revealed that there was a noticeable
relationship between language selection and certain functional-
ity domains, although the association was relatively weak (e.g.,
between ¢ c++ shell and OS, and between html java
javascript and word processors) and at most mod-
erate (e.g., between c++ java shell and games). Also,
one language selection may not be consistently associated with
one particular domain—for instance, c++ java shell was
the top selection for both games and communication
software. Also, one domain can be associated with more than
one language selection—for instance, both ¢ c++ cmake
and c++ cmake shell for programming tools.

Figure 1 shows the association evolution for the four
common domains across the years. The legend shows the set
of languages most frequently included in the top language
selections in the EVC dataset. These languages were mapped
to fixed colors and cell positions for each domain and year to
facilitate observing the evolution patterns. As shown, language
selection constantly changed from year to year in any of
the four domains. No selection was always associated with
a domain, although some associations were relatively stabler
than others. For instance, the association of cbjective-c
ruby with mobile application stayed the same for
three years: 2013, 2015, and 2016, while for programming
tools the associated selection was never the same across the
years. Meanwhile, there appeared to be some stable members
in the top language selections associated with each domain.

Progrnmmin?[
tools

Mobile %

[Javascript
D Ruby

. Java

[Obj ectlve c
[JShell

cH

[l Python

I Perl

EC++

[Html

[J Cmake

Application|

H%E:HIHHFH
HEEEH
FH‘—FFHE}};HFFFFHM

Video
Software

T

|

f

|
||

Communication
Software

| FRFFFE R AP T
HjjileEEE

%EEEEBEEEEBE

dh e
R
L
FEAERRY

1T 2012 2013 2014 2015 2016 2017 2018 2019

HH
1

2010 2

0

Fig. 1: Evolution of the association between top language se-
lections and the four functionality domains that were common
among the ten yearly datasets.

IV. CONCLUSION

Every programming language has its strengths and weak-
nesses. Some are better for low-level and high-performance
programming (e.g., C), while others might be more preferred
for Ul (user interface) (e.g., Java). Also, some are more
relevant to specific software domains than others. While
such questions have been explored at the basis of individual
languages, the answers remain unclear for holistic language
combinations in multi-language software construction. In this
study, we aim to find semantic relationships between language
use and software domains, and the top language combinations
correlated with each popular software topic, if any. The
answer provides one way to understand why developers would
choose to use certain combinations of languages in their
projects. We revealed that there exists a verifiable correlation
between software domains and sets of mainstream languages,
which were stronger for some language combinations and
functionality domains than for others. The results offer an
empirical reference for developers when choosing a desirable
programming language combination for a partial domain, as
well as potential insights for program analysis researchers on
what language combinations to focus on and prioritize.

REFERENCES

[1] D. P. Delorey, C. D. Knutson, and C. Giraud-Carrier, ‘“Programming
language trends in open source development: An evaluation using data
from all production phase sourceforge projects,” in Second International
Workshop on Public Data about Software Development, 2007.

[2] C. Jones, Software engineering best practices. McGraw-Hill, Inc., 2009.

[3] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 155-165.

[4] P. Mayer and A. Bauer, “An empirical analysis of the utilization of
multiple programming languages in open source projects,” in Proceedings
of the 19th International Conference on Evaluation and Assessment in
Software Engineering, 2015, pp. 1-10.

[5] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-
ism in github,” in Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, 2014, pp. 1-4.

[6] D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77-84, 2012.

[7] R. Perego, S. Orlando, and P. Palmerini, “Enhancing the apriori algo-
rithm for frequent set counting,” in International Conference on Data
Warehousing and Knowledge Discovery. Springer, 2001, pp. 71-82.

[8] “Mixtend: a python library of useful tools for the day-to-day data science
tasks.” http://rasbt.github.io/mlxtend, 2020.

http://rasbt.github.io/mlxtend

	Introduction
	Methodology
	Results
	Conclusion
	References

