Security Misconfigurations in Open Source Kubernetes
Manifests: An Empirical Study

AKOND RAHMAN, Auburn University, USA
SHAZIBUL ISLAM SHAMIM, Auburn University, USA
DIBYENDU BRINTO BOSE, Virginia Tech, USA
RAHUL PANDITA, GitHub, USA

Context: Kubernetes has emerged as the de-facto tool for automated container orchestration. Business
and government organizations are increasingly adopting Kubernetes for automated software deployments.
Kubernetes is being used to provision applications in a wide range of domains, such as time series forecasting,
edge computing, and high performance computing. Due to such a pervasive presence, Kubernetes-related
security misconfigurations can cause large-scale security breaches. Thus, a systematic analysis of security
misconfigurations in Kubernetes manifests, i.e., configuration files used for Kubernetes, can help practitioners
secure their Kubernetes clusters.

Objective: The goal of this paper is to help practitioners secure their Kubernetes clusters by identifying security
misconfigurations that occur in Kubernetes manifests.

Methodology: We conduct an empirical study with 2,039 Kubernetes manifests mined from 92 open-source
software repositories to systematically characterize security misconfigurations in Kubernetes manifests. We
also construct a static analysis tool called Security Linter for Kubernetes Manifests (SLI-KUBE) to quantify the
frequency of the identified security misconfigurations.

Results: In all, we identify 11 categories of security misconfigurations, such as absent resource limit, absent
securityContext, and activation of hostIPC. Specifically, we identify 1,051 security misconfigurations in
2,039 manifests. We also observe the identified security misconfigurations affect entities that perform mesh-
related load balancing, as well as provision pods and stateful applications. Furthermore, practitioners agreed
to fix 60% of 10 misconfigurations reported by us.

Conclusion: Our empirical study shows Kubernetes manifests to include security misconfigurations, which
necessitates security-focused code reviews and application of static analysis when Kubernetes manifests are
developed.

CCS Concepts: » Security and privacy — Software security engineering,.

Additional Key Words and Phrases: configuration, container orchestration, devops, devsecops, empirical study,
kubernetes, misconfiguration, security

1 INTRODUCTION

Container technologies, such as Docker and LXC are gaining popularity amongst information
technology (IT) organizations for deploying software applications. For example, PayPal uses 200,000

Authors’ addresses: Akond Rahman, Auburn University, 345 West Magnolia Avenue, Auburn, AL, USA, 36830, akond@auburn.
edu; Shazibul Islam Shamim, Auburn University, 345 West Magnolia Avenue, Auburn, AL, USA, 36830, mzs0283@auburn.edu;
Dibyendu Brinto Bose, Virginia Tech, 202 Kraft Drive SW, Blacksburg, VA, USA, 24060, brintodibyendu@vt.edu; Rahul
Pandita, GitHub, 88 Colin P Kelly Jr Street, San Francisco, CA, USA, 94107, rahulpandita@github.com.

1:ii Rahman et al.

| securityContext: ey | ot coted ver e
2 capabilities: rivileses | username: USer <------------!
3 drop: | PIIVIIEZES | 3 ## RabbitMQ application password
: : b oo 1 ” e . _
| ALL :101 ch'11d : 1 password: pFXfKH5CKA < RSSTEe——,
_ . containers ,) R
B runAsUser: 101 “ememamimamca 6 ## Value for the RABBITMQ_LOGS environment variable
6 allowPrivilegeEscalation: true <---' T ##
7 8 logs: '-'
a b

Fig. 1. Anecdotal evidence of security misconfigurations in Kubernetes manifests. Figure 1a shows an example
of a security misconfiguration related to privilege escalation in a Kind manifest [59]. Figure 1b shows an
example of a hard-coded username and password in a Helm manifest [13].

containers to manage 700 software applications [60]. For managing these containers at scale, prac-
titioners often use automated container orchestration, i.e, the practice of pragmatically managing
the lifecycle of containers with tools, such as Kubernetes [59].

Since its inception in 2014, Kubernetes has established itself as the de-facto tool for automated
container orchestration [9, 87]. According to Stackrox survey [97], 91% of the surveyed 500 practi-
tioners use Kubernetes for container orchestration. As of Sep 2020, Kubernetes has a market share
of 77% amongst all container orchestration tools [99]. Organizations, such as Adidas, Twitter, IBM,
U.S. Department of Defense (DOD), and Spotify are currently using Kubernetes for automated
container orchestration. Use of Kubernetes has resulted in benefits, e.g., using Kubernetes the U.S.
DoD decreased their release time from 3~8 months to 1 week [19]. In the case of Adidas, the load
time for their e-commerce website was reduced by half, and the release frequency increased from
once every 4~6 weeks to 3~4 times a day [49].

Kubernetes-based container orchestration, similar to every other configurable software, is suscep-
tible to security misconfigurations. However, due to the pervasive nature of Kubernetes-based
container orchestration, such misconfigurations can have severe security implications. According
to the 2021 ‘State of Kubernetes Security Report’, 94% of 500 practitioners experienced at least one
Kubernetes-related security incident, majority of which can be attributed to security misconfig-
urations [87]. The survey also states Kubernetes-related misconfigurations to “pose the greatest
security concern” for Kubernetes-based container orchestration [87]. Anecdotal evidence attests to
such perceptions: for example, a Kubernetes-related security misconfiguration resulted in a data
breach that affected 106 million users of Capital One, a U.S.-based credit card company [44, 100].

Additionally, we observe anecdotal evidence in open-source software (OSS) repositories that provide
clues on what categories of security misconfigurations can occur for Kubernetes. In Figure 1 we
present two code snippets related toKubernetes manifests, and mined from OSS repositories [25, 98].
In Figure 1a we observe a misconfiguration, where allowPrivilegeEscalation is enabled with
allowPrivilegeEscalation: true. Enabling allowPrivilegeEscalation allows a child process
of a container to gain more privileges than its parent process, which malicious users can leverage
to gain unauthorized access to the Kubernetes cluster [55]. In Figure 1b, we observe a hard-coded
username and password specified in a Kubernetes manifest.

All of the above-mentioned evidence emphasizes the need of inspecting and mitigating security
misconfigurations for Kubernetes manifests, i.e., files used to specify configurations for Kubernetes-
based orchestration [59]. However, practitioners often lack knowledge needed to mitigate security
misconfigurations [15, 55]. A systematic characterization of security misconfigurations can be

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study T:iii

helpful to gain an understanding of security misconfigurations that appear for Kubernetes. Such
characterization is potentially useful to practitioners who can leverage the identified misconfigura-
tion categories for security-focused code review, and apply automated tools to detect and mitigate
security misconfigurations that occur for Kubernetes.

The goal of this paper is to help practitioners secure their Kubernetes clusters by identifying security
misconfigurations that occur in Kubernetes manifests.

Accordingly, we answer the following research questions:

e RQ1: What categories of security misconfigurations occur in Kubernetes manifests?

e RQ2: How frequently do security misconfigurations occur in Kubernetes manifests?

o RQ3: What categories of Kubernetes objects are affected by security misconfigurations?

e RQ4: How do practitioners perceive the identified security misconfigurations in Kuber-
netes manifests?

We conduct an empirical study with 2,039 Kubernetes manifests mined from 92 OSS repositories
to quantify the frequency of security misconfigurations in OSS Kubernetes manifests. As part of
our empirical study we build a security static analysis tool called Security Linter for Kubernetes
Manifests (SLI-KUBE). With a qualitative analysis technique called open coding [89], we categorize
Kubernetes objects that are affected by security misconfigurations. Further, we submit 133 bug
reports to identify practitioners perceptions for the identified security misconfigurations. An
overview of our methodology is presented in Figure 2. Source code and datasets used in the paper
is available online [80]. SLI-KUBE is also available online [4].

Contributions: We list our contributions as follows:
o A list of security misconfigurations that occur in OSS Kubernetes manifests;

e An empirical evaluation of how frequently security misconfigurations occur in OSS Kubernetes
manifests;

o A list of Kubernetes object categories that are affected by security misconfigurations;

e An evaluation of how practitioners perceive the identified security misconfigurations in Kuber-
netes manifests; and

e SLI-KUBE: A security static analysis tool to quantify the frequency of identified security miscon-
figurations.

We organize the rest of the paper as follows: in Section 2 we describe the identified security
misconfigurations. In Section 3 we provide the methodology to answer RQ2, RQ3, and RQ4. The
answers for RQ2, RQ3, and RQ4 are presented in Section 4. The discussion of our empirical study,
related work, and limitations of our paper is respectively, provided in Sections 5, 6, and 7. We
conclude our paper in Section 8.

2 CATEGORIES OF SECURITY MISCONFIGURATIONS

In this section we address RQ1: What categories of security misconfigurations occur in Kubernetes
manifests? We first provide the necessary background on Kubernetes manifests in Section 2.1. Next,
we describe the methodology to identify security misconfigurations in Section 2.2. Finally, we
describe the identified security misconfigurations in Section 2.3.

Tiv Rahman et al.

RQ3: Object
Categorization

Open Coding Static Analysis
— I ———

Dataset from RQ1: Security RQ2: Frequency
Bose et al. Misconfiguration Analysis of
Categories Security
Misconfigurations RQ4: Practitioner

Perception

Fig. 2. An overview of our methodology.

2.1 Background

Kubernetes is a tool to programmatically manage containers at scale [59]. A Kubernetes installation
is colloquially referred to as a Kubernetes cluster [59]. Kubernetes is installed on a physical or
virtual machine called the ‘host’, which runs the Kubernetes API server [59]. The Kubernetes API
server receives and processes HTTP-based API requests. Kubernetes uses a state-based approach
where it first queries if the necessary container configurations are consistent with the configurations
presented in Kubernetes manifests. If not, with ‘kubectl’ Kubernetes changes the configurations of
containers by applying all the configurations specified in the Kubernetes manifests.

A pod is the fundamental unit that is pivotal to perform Kubernetes-based container orchestration.
A pod is the smallest deployable unit of computing that is created and managed by Kubernetes for
container orchestration. A pod logically groups one or multiple containers with shared storage
and network resources. Pods are considered as deployment units for Kubernetes, and pivotal for
Kubernetes-based container orchestration. For each pod, there exists a specification that applies for
all containers grouped by the pod [59]. Specifications for pods can be specified with Kubernetes
manifests, i.e., configuration files written in YAML format. For representing the states of orchestrated
containers, Kubernetes uses objects. Objects are persistent entities, which allows Kubernetes to
know what desired state of orchestration needs to be achieved. Similar to pods, configurations of
objects can also be specified with Kubernetes manifests that are written in YAML format. For our
empirical study, a Kubernetes manifest can belong to any of the following sub-categories: Kind
and Helm. Throughout the paper a Kubernetes manifest corresponds to either a Kind manifest or a
Helm chart.

Kind Manifest: Kind manifests are used to specify configurations for objects. Kind manifests
are executed with Kubernetes-provided utilities, such as kubectl. In the case of Kind manifests,
Kubernetes objects are specified using the Kind attribute. Kind manifests are different from the
kind tool [51], which is used to setup and run a Kubernetes locally. Listing 1 shows an example
of a pod being specified with a Kind manifest. The pod includes one container with the image

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study 1BY

1kind: Pod

2metadata:

3 name: example-pod

4+ labels:

5 name: example-pod
6 app: example-app

7 Spec:

s containers:

9 - image: hello-world
10 name: example-pod

Listing 1. An example of a Kind manifest.

1# Configuration values specified in a Helm manifest

— ('values.yaml')
2

3Dep: { Gonfiguration value for nancspace }
| ~namespace: default ¢---------------~------- !
/;5 label: helm-example ¢---------- :_(zo_n_ﬁ_gilfa_t_io_n__/eflll?_f(zr_]_.a_tie_l_E

6...

e

| \ 8# Configuration values used by a Helm template

\ \ 9metadata:

\ Y10 namespace: {{ .Values.Dep.namespace }}

*11 name: {{ .Values.Dep.label }}
12spec:
13 replicas: {{ .Values.Dep.replicaCount }}

Fig. 3. An example of a Helm chart.

hello-world. We identify Kind manifests by inspecting if an YAML manifest includes the following
keys: apiVersion and Kind.

Helm Chart: Practitioners can also specify configurations for Kubernetes objects using Helm, a
package manager for Kubernetes [13]. Unlike Kind manifests, Helm charms are executed by the Helm
package manager [36]. In Helm charts, configuration values can be specified using an YAML manifest
called ‘values.yaml’, which are later used by templates [13]. Assignment of a configuration within
a template confirms that configuration value being used for provisioning [13]. Figure 3 shows an
example of using Helm manifests to specify configurations. The configuration values for namespace
and label are later used in a Helm template respectively, in lines#10 (. Values.Dep.Namespace)
and #11 (.Values.Dep.replicaCount). We identify Helm charts by inspecting if (i) YAML manifests
are labeled as ‘values.yaml’, and if any of the values are used by YAML manifests are in a directory
called ‘templates’; or (i) an YAML manifest resides in the ‘template’ directory and the ‘template’
directory contains ‘tpl’ files.

2.2 Methodology to Identify Security Misconfiguration Categories

We used the qualitative analysis technique - open coding [89] to derive security misconfiguration
categories. Open coding is well-suited to identify insights in an under-explored domain, such as
Kubernetes security misconfigurations. Furthermore, open coding provides a systematic way to
surface similarities across textual artifacts, and group such similarities into categories [89].

1:vi Rahman et al.

As part of the open coding process, first, the rater identifies configurations in a Kubernetes manifest.
Second, the rater inspects the values for each identified configuration to determine if the configura-
tion is in fact a security misconfiguration. While determining misconfigurations, the rater uses the
following definition of security misconfiguration provided by the U.S. National Institute of Stan-
dards and Technology (NIST) [68] “A setting within a computer program that violates a configuration
policy or that permits unintended behavior that impacts the security posture of a system”. Both raters,
who are well-versed on Kubernetes (having used them in practice) initially came up with a list of
security misconfigurations that can potentially cause unintended behaviors based on their experi-
ence. Third, the rater derives categories based on similarities between the identified instances of
security misconfigurations. For each identified security misconfiguration category, the rater further
checks if the category violates any of the Kubernetes-related security best practices as documented
by Shamim et al. [91]. Shamim et al. conducted a grey literature review with 103 Internet artifacts,
where they specifically looked into security best practices applicable for Kubernetes. As Internet
artifacts are used by industry experts to recommend best practices [82], we assume Shamim et al.’s
paper to be used in this content as the paper (i) systematically synthesizes security-related best
practices from multiple Internet artifacts, and (ii) is peer-reviewed. Shamim et al.’s paper leveraged
a grey literature review with 101 Internet artifacts including multiple artifacts that came out of
Snyk [96], where practitioners have discussed the security best practices for Kubernetes. Other
artifact sources that were leveraged by Shamim et al. [91] include artifacts authored by practitioners
from Google Cloud, Cloud Native Computing Foundation (CNCF), VMWare, Tech Republic, DZone,
SonaType, IBM, and Microsoft. We have included the list of Internet artifacts used by Shamim et al.
in our replication package [80].

Upon completing the aforementioned three steps, we will derive a list of security misconfiguration
categories. In this manner, our identified security misconfigurations convey the message that if
identified security misconfigurations are not mitigated, they can permit unintended behaviors.

The first and second authors act as raters, and conduct the open coding process. The first author
and second author respectively, has experience in working with Kubernetes for one and two
years. Both rater individually manually inspects 1,796 Kubernetes manifests provided by Brinto
et al. [9]. Brinto et al. [9]’s dataset includes 1,796 Kubernetes manifests that are modified in 5,193
commits, and collected from 38 OSS repositories. Of the 1,796 Kubernetes manifests, 90% and 10%
are respectively, Kind and Helm manifests. For each Kubernetes manifest, both raters individually
apply the aforementioned open coding process.

Upon completion of the open coding process, the first and second authors respectively, identify
11 and 6 categories of security misconfigurations. We compute Krippendorff’s a [45] to quantify
agreement, similar to prior work in software engineering [6, 29, 86]. The Krippendorft’s « is
0.45, indicating ‘unacceptable’ agreement [45]. Both raters discussed their disagreements and
observed that root cause of their disagreements occur due to the second author missing five
categories, identified by the other author. These categories are: activation of hostIPC, activation of
hostNetwork, activation of hostPID, capability misuse, and Docker socket mounting. The second
rater missed categories because of being unaware of these configurations. Upon discussion, both
raters conduct the inspection process again. After completing the inspection process, we calculate
Krippendorff’s « to be 1.0, indicating ‘perfect’ agreement [45]. We use Krippendorff’s a instead
of Cohen’s k, because Krippendorff’s a: (i) emphasizes disagreement leading to more reliability
on the achieved agreement rate, and (ii) handles multiple categories [45]. Furthermore, qualitative
analysis experts have advocated for the use of Krippendorff’s & over Cohen’s x [46, 52].

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study

Table 1. Examples of Security Misconfiguration Categories

T:vii

Category (Count)

Violated Practice

Example Code Snippet

Absent Resource Limit (69)

Limit CPU and Memory
Quota [91]

spec:
containers:
- name: employee
image: piomin/employee-service

Absent securityContext (82) Implementing Pod-specific ~ spec:
Policies [91] containers:
- name: inventory-container
image: inventory:1.0-SNAPSHOT
Activation of hostIPC (1) Implementing Pod-specific ~ spec:
Policies [91] hostIPC: true
Activation of hostNetwork (13) Implementing Pod-specific ~ spec:

Policies [91]

hostNetwork: true

Activation of hostPID (2) Implementing Pod-specific ~ spec:
Policies [91] hostPID: true
Capability Misuse (20) Implementing Pod-specific ~ capabilities:
Policies [91] add:
- CAP_SYS_ADMIN
- CAP_SYS_MODULE
Docker Socket Mounting (4) Implementing Pod-specific - name: dockersocket

Policies [91]

mountPath: /var/run/docker.sock

Escalated Privileges for Child Con-
tainer Processes (1)

Implementing Pod-specific
Policies [91]

allowPrivilegeEscalation: true

Hard-coded Secret (126)

Authorization & Authenti-
cation [91]

POSTGRES_PASSWORD: VGVzdERCQGhvbWUy

Insecure HTTP (467)

Enable
port [91]

SSL/TLS ~ Sup-

value: http://elastisearch-logging:9200

Privileged securityContext (9)

Implementing Pod-specific
Policies [91]

securityContext:
privileged: true

2.3 Answer to RQ1: Security Misconfiguration Categories

Altogether, we identify 11 categories of security misconfigurations in Kubernetes manifests. An
example of each category with a mapping to the violated security practice is presented in Table 1.
All the examples presented in Table 1 are obtained from Kind manifests. ‘Count’ corresponds to
the count for the Brinto et al. [9] dataset for each category. Figure 4 presents relative distribution
of the identified categories.

I. Absent Resource Limit: The category of not specifying resource limits for containers within a
pod. A pod is a logical unit that groups a set of containers together for any Kubernetes cluster [50].
With the use of 1imits, the amount of CPU and memory for a pod can be specified. However, if
the limits are unspecified, then Kubernetes clusters are susceptible to denial of service attacks [91],
as malicious users can increase the flow of traffic, which in turn can lead to unbounded CPU and
memory requests [50].

II. Absent securityContext: The category of not using securityContext while provisioning
containers. A lack of securityContext is indicative of not applying access control policies for pods,
which in turn can provide malicious users the opportunity to gain access into the Kubernetes cluster.

Teviii Rahman et al.

Security Misconfiguration Categories Distribution

Privileged security-context

Absent Resource Limit

8.7%

Absent securityContext

10.3%

Activation of hostIPC
0.1%

Activation of hostNetwork
1.6%

Activation of hostPID

0.3%

Capability Misuse

Docker Socket Mour: g
0.5%
Escalated Privileges for Child

0.1%

Insecure HTTP
58.8%

Hard-coded Secret

15.9%

Fig. 4. Distribution of Security Misconfiguration Categories

Use of securityContext is critical to restrict malicious activities that can arise from zero-day
vulnerabilities or supply chain attacks for Kubernetes clusters [55].

III. Activation of hostIPC: The category of activating hostIPC while specifying configurations
in Kubernetes manifests. The hostIPC configuration controls if containers within a pod can share
the inter process communication (IPC) namespace. The IPC namespace provides separation of IPC
between the host and containers. If the host’s IPC namespace is shared with the container, it would
allow processes within the container to see all of IPC communications on the host system. Allowing
hostIPC: true would not only remove the separation between host and containers, but also allow
a malicious user to get access to the host, and observe all processes running on the host [23].

IV. Activation of hostNetwork: The category of activating hostNetwork while specifying config-
urations in Kubernetes manifests. For Kubernetes, hostNetwork is a configuration that allows a pod
to run in the host’s network namespace [5]. When a pod is configured with hostNetwork: true,
the applications running in such a pod can directly see the network interfaces of the host machine
where the pod was started. An application that is configured to listen on all network interfaces will
in turn be accessible on all network interfaces of the host machine. Use of hostNetwork: true
allows malicious users to get access to the workloads that are running on the host, and apply packet
sniffing tools, such as tcpdump [56].

V. Activation of hostPID: The category of activating hostPID while specifying configurations in
Kubernetes manifests. The hostPID configuration controls if the containers in a pod can share the
host process ID (PID) namespace. The default value is false. When hostPID is true then a pod has
access to the namespace where host process is running. The implication of activated hostPID is that
it allows a malicious user to find all of the process running on the host, and use that information
to conduct malicious activities [18]. The Kubernetes official documentation advises against use

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study T:ix

of hostPID: true stating that if hostPID: true is used, in conjunction with process mentoring
tools, such as ptrace [58], then privilege escalation can occur outside of the container.

VI. Capability Misuse: The category of activating Linux capabilities, which allows malicious
users to gain root-level access into a Kubernetes cluster. We observe two categories: (i) misuse with
CAP_SYS_ADMIN, and misuse with CAP_SYS_MODULE configurations.

CAP_SYS_ADMIN allows for a wide range of privileged system administration operations, which
cannot be performed by a normal user [103]. CAP_SYS_ADMIN facilitates container breakouts, i.e.,
the event where a container user is able to nullify container isolation and access resources, such as
system calls on the host machine [55].

With CAP_SYS_MODULE capability, Linux kernel modules can be loaded to bypass authorizations in
place [55]. Use of CAP_SYS_MODULE allows a malicious user to abuse the SYS_MODULE capability of
Linux to perform container breakout, and retrieve contents of the root Docker host [67].

VII. Docker Socket Mounting: The category of mounting of the Docker socket path by using the
/var/run/docker.sock configuration. Mounting of Docker socket leaks information about other
containers, which can be leveraged by a malicious user. Docker uses a non-networked UNIX socket,
and when used in daemon mode, Docker only allows connections from authenticated entities. If

this socket is mounted without adequate permissions, then the socket can be used to spin up any
container, create new images, or shut down existing containers [12].

VIII. Escalated Privileges for Child Container Processes: The category of allocating privileges
for child processes within a container that are higher than that of the parent processes. With
allowPrivilegeEscaltion : true a child process of a container can gain more privileges than
its parent process. The security implication is that malicious users can leverage these child processes
to gain unauthorized access to the Kubernetes cluster [11].

IX. Hard-coded Secret: The category of providing hard-coded secrets as configurations in Ku-
bernetes manifests. We identify three sub-categories: (i) hard-coded usernames, (ii) hard-coded
passwords, and (iii) hard-coded private tokens. Exposure of hard-coded secrets can be leveraged by
malicious users to gain unauthorized access for the Kubernetes cluster. Common Weakness Enu-
meration (CWE) identifies hard-coded secrets as one of the top 25 security weakness in 2021 [61].
Hard-coded secrets have been attributed to the 2019 Uber data breach [90], the 2020 medical data
breach in 2020 [85], and the 2021 D-link breach [69].

X. Insecure HTTP: The category of using HTTP without SSL/TLS certificates to setup URLs or
transmit traffic inside and outside the Kubernetes clusters. Without SSL/TLS certificates, the data
transmitted across Kubernetes objects are susceptible to man-in-the-middle (MITM) attacks.

XI. Privileged securityContext: The category of using privileged securityContext in Kuber-
netes manifests. securityContext is used to provide access control configurations for a pod or a
container [50]. Examples include but are not limited to: (i) define access control for a Kubernetes
object, (ii) apply profiling to restrict capabilities of individual programs running on a Kubernetes
cluster, and (iii) allow a certain process to gain more privileges than its parent process. However,
due to privileged securityContext, all access control features provided by securityContext will
be obsolete. One Kubernetes expert labeled privileged: true as the “the most dangerous flag in
the history of computing”, as this configuration gives the illusion of containerization but in fact
disables all security features provided by securityContext [55].

1:x Rahman et al.

We provide a mapping of which security misconfigurations are applicable for Kind and Helm
manifests in Table 2. We observe that majority of the misconfiguration categories are found in
Kind manifests. All of the 11 identified categories are found in Kind manifests, whereas 2 of the 11
categories, namely hard-coded secret and insecure HTTP appear in Helm manifests. One possible
explanation can be attributed to the dataset we analyzed. Future research can systematically
investigate the comparative distribution of security misconfigurations between Helm and Kind
manifests.

Table 2. Mapping of Misconfiguration Categories With Kind and Helm Manifests.

Category Kind Helm
X

Absent Resource Limit
Absent securityContext
Activation of hostIPC
Activation of hostNetwork
Activation of hostPID
Capability Misuse
Docker Socket Mounting
Escalated Privileges for Child Container Processes
Hard-coded Secret
Insecure HTTP
Privileged securityContext

AN N NN N N N NN
X NN X X X X X X X

Answer to RQ1: We identify 11 categories of security misconfigurations in Kubernetes manifests,
which include misconfigurations unique to Kubernetes, such as absent resource limit.

3 METHODOLOGY

In this section, we describe the methodology to conduct our empirical study by first, describing the
construction and evaluation of SLI-KUBE, which we use to quantify the frequency of identified
security misconfigurations. Second, we provide the methodology to answer RQ2, RQ3, and RQ4.

3.1 Security Linter for Kubernetes Manifests (SLI-KUBE)

We describe the construction and evaluation process of SLI-KUBE respectively, in Sections 3.1.1
and 3.1.2.

3.1.1 SLI-KUBE Methodology. As described in Section 2.1, the flow of configuration data in Kuber-
netes manifests is unique to Kubernetes itself, which necessitates construction of a static analysis
tool that accounts for Kubernetes-specific information flow analysis.

Step-1: Parsing: SLI-KUBE parses Kubernetes manifests into key-value pairs. For each key, a value
can be a nested dictionary, or a list, or a single value. In the case of nested dictionaries, SLI-KUBE
preserves the hierarchy of the extracted keys for Kubernetes manifest.

Step-2: Rule Matching: From the parsed content of Kubernetes manifests, SLI-KUBE applies rule
matching to identify security misconfigurations. The rules needed to identify categories are listed
in Table 3. The rules are derived by abstracting code snippets for each misconfiguration category.
The rules presented in Table 3 leverage pattern matching similar to prior research [78, 79]. The
string patterns used by each rule in Table 3 is provided in Table 4.

Rule Derivation Process: We identify the commonalities in patterns capable of expressing security
misconfigurations, and abstract such commonalities as rules to detect misconfigurations. We provide

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study 1:xi
an example in Table 5 to demonstrate our rule derivation process. In the ‘Coding Pattern’ column,
we observe two coding patterns that are instances of over-privileged securityContext. In both
coding patterns, privileged keyword is used to specify the coding pattern. SLI-KUBE can parse
both coding patterns as key value pairs, where privileged is the key and true is the value. In
both coding patterns we notice commonality in the key value pairs, which can be abstracted to a
rule isKey(x) A isSecuirtyContext(x) A isPrivileged(x) A isEnabled(x.value). We repeat the same
abstraction process for other misconfiguration categories.

Step-3: Def-use chain analysis: Static analysis tools are susceptible to generate false positives,
if the information flow is disregarded. We mitigate this limitation by applying def-use chain
analysis [2], where we track the flow of a misconfiguration within Kubernetes manifests.

SLI-KUBE performs two types of information flow analysis that account for the information flow
in Kind and Helm manifests. In the case of Kind manifests, SLI-KUBE recursively applies def-
use chain analysis across the nested key-value pairs for each manifest to identify if a security
misconfiguration is used by a pod. For Kind manifests, SLI-KUBE uses the spec tag to identify if a
security misconfiguration is used by a pod. In the case of Helm manifests, SLI-KUBE applies def-use
chain analysis to identify if security misconfigurations that are specified in ‘values.yaml’ are used
by YAML files within the ‘templates/’ directory.

Table 3. Rules Used by SLI-KUBE

Rule
isKey(x) A isContainer(x) A —isSecuirtyContext(x.value)
(isKey(x) A (isSpec(x) VisContainer(x)) A= (isLimitResourcesA
(isLimitMemory A isLimitRequests))))

Category
Absent securityContext
Absent Resource Limit

Activation of hostIPC

(isKey(x) A isHostIPC(x) A isEnabled(x.value)

Activation of hostPID

(isKey(x) A isHostPID(x) A isEnabled(x.value)

Activation of hostNetwork

(isKey(x) A isHostNetwork(x) A (isEnabled(x.value)

Capability Misuse

(isKey(x) A isContainer(x) A hasCapability(x) A
(isCAPSYSADMIN (x.value) V isCAPSYSMODU LE (x.value))

Docker Socket Mounting

isKey(x) A isPath(x) A isDockerSocket (x.value)

Escalated Privileges for Child Con-
tainer Processes

(isKey(x) A isPrivEscalat(x) A (isEnabled(x.value)

Hard-coded Secret

isKey(x) A (isUser(x) V isPassword(x) V isToken(x))

Insecure HTTP

isKey(x) (AisProtocol(x.name) V isHTTP (x.value))

Over-privileged securityContext isKey(x) A isSecuirtyContext(x) A isPrivileged(x) A

isEnabled(x.value)

3.1.2 Evaluation of SLI-KUBE . Security static analysis tools are subject to empirical evaluation [78,
79]. We use an oracle dataset to evaluate SLI-KUBE’s accuracy. A security expert, who is a PhD
student, created the oracle dataset. To construct the oracle dataset, we use 240 randomly-selected
Kubernetes manifests from the GitLab dataset described in Section 3.2. We use this dataset as it
was not used during the open coding process described in Section 2.2. The rater applied closed
coding [21] to identify security misconfigurations in a manifest. Closed coding is the process of
mapping an entry to a pre-defined category [21]. We do not impose any time limit for the rater to
conduct closed coding. We provided the rater a guidebook that included the names, definitions,
and examples of each security misconfiguration. The guidebook is available online [80] publicly.

The rater took 50 hours to conduct closed coding. Upon completion of the closed coding process,
we apply SLI-KUBE on the 240 Kubernetes manifests collected from 8 repositories. We evaluate
SLI-KUBE using precision and recall. Precision refers to the fraction of correctly identified security

T:xii

Rahman et al.

Table 4. String Patterns Used for Rules in Table 3.

Function String Pattern
hasCapability() ‘capabilities’
isCAPSYSADMIN () ‘CAP_SYS_ADMIN’
isCAPSYSMODULE() ‘CAP_SYS_MODULE’
isContainer() ‘container’
isDockerSocket () ‘/var/run/docker.sock’
isEnabled() ‘true’

isHostIPC() ‘hostIPC’
isHostNetwork() ‘hostNetwork’
isHostPID() ‘hostPID’

isHTTP() ‘http:’
isLimitMemory() ‘limits’
isLimitRequests() ‘requests’
isLimitResources() ‘resources’

isPath() ‘path’

isPassword () ‘password’
isPrivEscalat () ‘allowPrivilegeEscalation’
isProtocol() ‘protocol’
isPriviledged () ‘privileged’
isSecurityContext() ‘securityContext’
isSpec() ‘spec’

isToken() ‘key’

isUser() ‘user’

Table 5. An Example to Demonstrate the Rule Derivation for ‘Over-privileged securityContext’

Coding Pattern

Parsing Output of SLI-KUBE

neutron-server
securityContext
privileged: true

—hame:

<Key, ‘neutron-server’, <Key, ‘securityContext’, <Key, ‘privileged’, true »>

-name: cinder
securityContext
privileged: true

<Key, ‘cinder’, <Key, ‘securityContext’, <Key, ‘privileged’, true »>

misconfigurations among the total identified misconfigurations, as determined by SLI-KUBE. Recall
refers to the fraction of correctly identified security misconfigurations that have been retrieved by
SLI-KUBE. We use Equations 1 and 2 respectively, to calculate precision and recall. In Equations 1
and 2, FN, FP, TN, and TP respectively refers to false negatives, false positives, true negatives,
and true positives. For example, if there is 1 instance of absent securityContext, and SLI-KUBE
identifies that instance without the generating any false positives or false negatives, then SLI-
KUBE’s recall will be 1.0 according to Equation 2. As another example, if SLI-KUBE identifies that
1 instance of absent securityContext but generated one false positive then, SLI-KUBE’s precision
will be 0.5 according to Equation 1.

- TP
Precision = ——— (1)
TP+ FP
TP
Recall = (2)

TP+ FN

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study Tixiii

As shown in Table 6, SLI-KUBE’s precision and recall is > 0.90, which gives us the confidence of SLI-
KUBE’s ability to detect security misconfigurations automatically, while generating a few false pos-
itive instances. We observe SLI-KUBE to generate false positives for hard-coded secrets and insecure
HTTP. False positives occur due to pattern matching, e.g., user_data: ‘cloud-init-parts/generic’
is identified by SLI-KUBE as a hard-coded username, even though a hard-coded username is not
being specified. As another example of a false positive is hostPorts:

http: 80, where a port configuration is identified as an instance of insecure HTTP. We do not make
any conclusions on the severity of the detected misconfigurations. We acknowledge that SLI-KUBE
may perform better with respect to detection, but Snyk may prioritize some misconfigurations
better than SLI-KUBE.

Table 6. Evaluation of SLI-KUBE with Oracle Dataset

Category Count Precision Recall
Absent Resource Limit 13 1.0 1.0
Absent securityContext 8 1.0 1.0
Activation of hostIPC 1 1.0 1.0
Activation of hostNetwork 1 1.0 1.0
Activation of hostPID 1 1.0 1.0
Capability misuse 20 1.0 1.0
Docker Socket Mounting 1 1.0 1.0
Escalated Privilege for Child Container Processes 1 1.0 1.0
Hard-coded Secret 86 0.82 1.0
Insecure HTTP 214 0.93 1.0
Privileged securityContext 8 1.0 1.0
Average - 0.9 1.0

Differences Between SLI-KUBE and Existing Tools: We highlight the differences between
our tool, SLI-KUBE and existing tools that also analyzes Kubernetes manifests in Table 7. For
comparison we select four state-of-the-art security static analysis tools, namely Checkov [10],
KubeLinter [48], Datree [24], and Snyk [96]. We inspect the respective documentation for each of
them to identify which of the 11 security misconfiguration categories are identified by these tools.
Only SLI-KUBE detects all of the 11 categories of security misconfigurations. Checkov, KubeLinter,
Datree, and Snyk respectively, is not able to detect 2, 3, 5, and 3 of the 11 security misconfiguration
categories. Therefore, the precision and recall will be 0.0 for the categories that Checkov, KubeLinter,
Datree, and Snyk are unable to detect. For example as shown in Table 8, we observe Snyk’s precision
and recall to be 0.0 for absent securityContext, insecure HTTP, and hard-coded secrets. The
average precision and recall for Snyk is respectively, 0.64 and 0.73.

3.2 Dataset Collection

We quantify the frequency of security misconfigurations by mining OSS projects. We use two data
sources: (i) OSS GitLab projects and (ii) OSS GitHub projects. OSS projects hosted on social coding
platforms are susceptible to quality concerns, e.g., users often host projects on GitHub for personal
purposes that do not adequately reflect professional software development [63]. To mitigate this
issue, in prior work [1, 47, 63, 74], researchers have leveraged a set of attributes of OSS GitHub
repositories to identify repositories that are reflective of professional software development. These
attributes include but are not limited to count of certain file types [76], count of commits per
month [63], and count of contributors [1, 47]. These attributes provide motivation for our criteria
to curate OSS repositories:

T:xiv Rahman et al.

Table 7. Comparison of SLI-KUBE with Existing Tools

Category SLI-KUBE Checkov KubeLinter Datree Snyk
Absent Resource Limit v v v v v
Absent securityContext v v X X X
Activation of hostIPC v v v v v
Activation of hostNetwork v v v v v
Activation of hostPID v v v v v
Capability Misuse v v X X v
Docker Socket Mounting v v v v v
Escalated Privileges for Child Container Processes v v v X v
Hard-coded Secret v X v X X
Insecure HTTP v X X X X
Privileged securityContext v v v v v
Table 8. Evaluation of Snyk with Oracle Dataset
Category Count Precision Recall
Absent Resource Limit 13 0.02 1.0
Absent securityContext 8 0.0 0.0
Activation of hostIPC 1 1.0 1.0
Activation of hostNetwork 1 1.0 1.0
Activation of hostPID 1 1.0 1.0
Capability misuse 20 1.0 1.0
Docker Socket Mounting 1 1.0 1.0
Escalated Privilege for Child Container Processes 1 1.0 1.0
Hard-coded Secret 86 0.0 0.0
Insecure HTTP 214 0.0 0.0
Privileged securityContext 8 1.0 1.0
Average - 0.64 0.73

e Criterion-1: At least 10% of the files in the repository must be Kubernetes manifests. By using
a cutoff of 10% we seek to collect repositories that contain Kubernetes manifests for analysis.
Prior research [41] shows that configuration files can co-locate with source code and test code
files. Using this threshold, we assume to identify repositories that have enough Kubernetes
configuration files, i.e., manifests for analysis.

e Criterion-2: The repository must be available for download.
e Criterion-3: The repository is not a clone to avoid duplicates.

e Criterion-4: The repository must have > 2 commits per month. Munaiah et al. [63] previously
used the threshold of > 2 commits per month to determine which repositories have enough
software development activity. We use this threshold to filter repositories with little activity.

e Criterion-5: The repository has > 5 contributors. Our assumption is that the criterion of >
5 contributors may help us to filter out irrelevant repositories, such as repositories used for
personal use. Prior research [37] has also used the threshold of at least five contributors.

o Criterion-6: The repository is not used for a ‘toy’ project. We consider a project as ‘toy’ project if
description and content of the README file for each projects indicates that the project is used to
demonstrate examples, conduct course work, and used as book chapters. Both the first and second
author individually conduct this manual inspection. The set of projects that both authors agree

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study

200~

°
— 150~ s -
5 < 200-
3 3
% 100- %
& S 100-
= 50- ° =
[
0- ¢ 0-
COUNT
GITLAB

T:xv

Fig. 5. Distribution of manifests count per repositories respectively for the GitLab and GitHub dataset.

to be a toy project is considered as final. By reading the README files of repositories collected
with Criterion-5, we also determine if the projects are deployable, i.e., can be downloaded and
executed as a software application. Both the first and second author individually conduct this
manual inspection. The set of projects that both authors agree to be deployable is considered as

final.

Table 9 summarizes how many projects are filtered using our criteria. Attributes of the collected
projects are available in Table 10. Altogether we download 92 repositories by cloning the master
branches on November 2021. We use the GHTorrent dataset hosted on Google Big Query. We run
queries on Google Big Query to obtain the initial list of GitHub repositories. In the case of GitLab

repositories, we use the GitLab API [33].

For GitHub and GitLab we identify the median count of manifests per repository to respectively, be
10 and 12. The maximum count of manifests per repository is 192 and 281 respectively, for GitLab
and GitHub. We provide the full distribution of manifest count per repositories for the GitLab and

GitHub datasets in Figure 5.

Table 9. Filtering of OSS Projects To Answer RQy

GitHub GitLab
Initial Repo Count 3,405,303 546,000
Criterion-1 >10% YAML files) 6,633 8,194
Criterion-2 (Available) 6,512 7,914
Criterion-3 (Non-duplicates) 4,317 5,871
Criterion-4 (Commit/month >2.0) 1,325 671
Criterion-5 (Contrib. >5) 189 44
Criterion-6 (Not Toy Project) 71 21
Final Repo Count 71 21

1:xvi Rahman et al.

Table 10. Dataset Attributes

Attribute GitHub GitLab

Repositories 71 21

Kubernetes Objects 3,630 827

Kind Manifests 1,508 369

Helm Charts 82 80

Kubernetes Manifests 1,590 449

Contributors 1,187 977

Commits 37,184 15,870

Size (LOC) 148,588 51,512

Duration 9/2015-12/2021 (75 months) 10/2015-12/2021 (74 months)

3.3 RQ2: Frequency of Identified Security Misconfigurations

We answer RQ2 by collecting 2,039 Kubernetes manifests from the 92 repositories. As shown in
Table 10, of the 2,039 Kubernetes manifests 449 are obtained from 21 GitLab repositories, and 1,590
Kubernetes manifests from 71 GitHub repositories. Each of the Kubernetes manifest mined from
the GitHub and GitLab repositories is either a Kind or a Helm manifest.

We apply SLI-KUBE on the collected 2,039 Kubernetes manifests to quantify the frequency of
identified security misconfigurations. We report four metrics: (i) count, (ii) configuration density,
(iii) manifest proportion, and (iv) object proportion. Configuration density corresponds to the
count of security misconfigurations that appear in every 1,000 lines of code. Manifest proportion
corresponds to the proportion of Kubernetes manifests in which at least one instance of security
misconfiguration appears. Object proportion corresponds to the proportion of Kubernetes objects
that are affected by at least one security misconfiguration. We use these four metrics as each of
these metrics can help us contextualize the frequency of security misconfigurations from multiple
perspectives. Count provides the occurrences of security misconfigurations. Configuration density
measures how many security misconfigurations occur in every 1,000 lines of Kubernetes manifest,
and can be used to estimate inspection efforts for Kubernetes manifests. Manifest proportion
measure on average how likely a Kubernetes manifest can include at least one instance of security
misconfiguration. Object proportion measures on average how many Kubernetes objects are affected
by a security misconfiguration. As practitioners seek information on how security issues are used
in the code [95], with the metric object proportion, practitioners can assess how many of the
Kubernetes objects can be affected by security misconfigurations.

Correlation Between Maturity and Presence of Security Misconfigurations: One possible
explanation to the presence of security misconfigurations is maturity, i.e., manifests that are short-
lived may tend to include security misconfigurations. We use age to calculate maturity, and use age
to evaluate our hypothesis. We calculate age by calculating the difference in days between the first
date the manifest was created and the date the manifest was last modified. We hypothesize that the
Kubernetes manifests with no security misconfigurations will be more mature, i.e., have longer age
than that of Kubernetes manifests with at least one security misconfiguration. Accordingly, we
state the following null and alternate hypothesis:

o Null: There is no difference in age between Kubernetes manifests with no security miscon-
figurations and Kubernetes manifests with at least one security misconfiguration.

e Alternative: The age of Kubernetes manifests with no security manifests is significantly
higher than that of Kubernetes manifests with at least one security misconfiguration.

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study T:xvii

We reject the null hypothesis if p-value < 0.01 by applying Mann-Whitney U test [53] following
Cramer and Howitt’s observations [22]. We use Mann-Whitney U test as this test makes no
assumptions about the underlying distributions of the data [53].

Correlation Between Development Factors and Presence of Security Misconfigurations:
We hypothesize the following metrics related to the development of Kubernetes manifests that
correlate with presence of security misconfigurations:

e IsDeployed: This metric determines whether or not a manifest is used in a repository, which
can be deployed. Our hypothesis is manifests that are part of a deployment-related repository is
likely to get more security-focused reviews, and therefore are likely to contain fewer security
misconfigurations.

o Size: This metric computes the number of lines in a manifest. We hypothesize manifest size to
show correlation with presence of security misconfigurations. We take motivation from prior
research [81, 104] that demonstrates the co-relation between size and software defects. We
hypothesize that the probability of a manifest including a security misconfiguration is higher for
manifests that are larger in size.

e Age: This metric computes the age of a manifest as measured by the difference between last
commit date and first commit date. Prior research [72] has shown age of software artifacts
to show correlation with software defects. We hypothesize that the probability of a manifest
including a security misconfiguration is higher for manifests that are less mature, i.e., have lower
age.

e Commits: This metric computes the count of commits made for a manifest. Prior research [64]
has shown commits to correlate with the presence of software defects. We hypothesize that the
probability of a manifest including a security misconfiguration is higher for manifests that are
modified through larger number of commits.

e Developers: This metric computes the count of developers who modify a manifest. Prior re-
search [77, 83] has shown developer count to correlate with the presence of software defects. We
hypothesize that the probability of a manifest including a security misconfiguration is higher for
manifests that are modified by multiple developers than that of fewer developers.

e Minor contributors: This metric computes the count of developers who modify < 5% of the
total lines of code for a manifest. Prior research [77, 83] has shown developer count to correlate
with the presence of software defects. We hypothesize that the probability of a manifest including
a security misconfiguration is higher for manifests that have more minor contributors than
others.

We calculate these metrics for all Kubernetes manifests that we obtain from our OSS repositories
collected during our filtering criteria.

Quantifying Correlation: We use a logistic regression model [31] to quantify the correlation between
presence of security misconfigurations and the aforementioned metrics. In our logistic regression
model, the dependent variable is presence of security misconfiguration, with two possible values:
‘1’ indicating presence of a misconfiguration, and ‘0’ indicating absence of a misconfiguration. The
independent variables are: ‘IsDeployed’, ‘size’, ‘age’, ‘commits’, ‘developers’, and ‘minor contributors’.
Except for deployment status all metrics are numeric. IsDeployed is a factor variable with two
possible outcomes: ‘1°, which means the manifest being part of a repository that is deployed, and
‘0’ that means the manifest is not part of a repository that is not deployed.

Tixviii Rahman et al.

Prior to applying the logistic regression, we apply the following recommended practices: (i) apply
log transformation to reduce heteroscedasticity [20], and (ii) test if multi-colineraity exists between
the independent variables using variable influence factor (VIF) [31]. For our model we report (i)
McFadden’s R2 [102] value that can estimate our model’s explainability, (ii) p-values for each
independent variable, and (iii) coefficients, sum of square errors, and deviance for each independent
variable.

Following Cramer and Howitt’s observations [22], we determine a metric to have a correlation if
the p-value for that metric is < 0.01.

3.4 RQ3: Kubernetes Objects Affected by Security Misconfigurations
We answer RQ3 using the following steps:

Kind-related Data Separation: first, we remove false positive instances generated by SLI-KUBE
for both datasets. Second, for each of the 11 categories, we extract key values pairs from each
Kubernetes manifest. Third, we separate key values pairs for the key Kind. We identify values for
Kind because in Kubernetes Kind determines the type of Kubernetes object is being provisioned.

Open coding: We identify 70 unique Kubernetes objects respectively, from 256 Kind manifests
from the above-mentioned step. We apply open coding on the collected 70 Kubernetes object names
to determine Kubernetes object categories for which security misconfigurations are specified. Open
coding is a qualitative analysis technique to identify categories from structured or unstructured
text [89]. For open coding, each rater first reads the definition of each object using the Kubernetes
documentation [50]. Next, the rater groups the Kubernetes objects based on definition similarities.

By extracting the values for the Kind key in Kind manifests, we determine the Kubernetes objects
that could be impacted by security misconfigurations. We use Figure 6 to illustrate our process
of deriving Kubernetes object categories that are affected by security misconfigurations. Under
the ‘Text’ textbox we observe a set of Kubernetes objects that are affected by a security miscon-
figuration category. We observe a set of pod-related Kubernetes objects that are affected by two
misconfiguration categories: hard-coded secrets and insecure HTTP. As all of these objects are
related to provisioning pods, and also affected by security misconfigurations, we group them as
one category called ‘Pod Provisioning Objects’.

The first and third authors are the two raters, who independently apply open coding as described
above. Both raters individually apply open coding for 70 Kubernetes objects. Upon completion of
this phase, we record a Krippendorft’s « of 0.82, indicating an ‘acceptable’ agreement [45]. The
raters disagree on 2 categories that are resolved using the resolver, i.e., the second author of the
paper. The third author identifies two categories not identified by the first author, namely, ‘Pod
Scaling’ and ‘Background Process Execution’. The resolver’s decision is final on the disagreed
upon categories. Our methodology for choosing a resolver is to identify an individual who has
worked with Kubernetes in an academic or professional setting. In the department we are unable to
find one, and hence used the second author. We use the second author as a resolver as the author
is well-versed on Kubernetes, and has used Kubernetes in practice. The second author also has
participated in identifying the security misconfiguration categories. Our assumption is that the
second author’s experience in Kubernetes can help resolve disagreements on what Kubernetes
objects are likely to be affected by security misconfigurations.

The resolver read the definition of the two categories and determined if the two categories are
stand alone or could be merged with existing categories identified by the first author. The resolver

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study T:xix

| Text |—>| Initial Category |—>| Category |

| [Keys Mapped with

1 Hard-Coded Secrets] :

i Deployment, Deployment-
\ Config, Pod

\ . .
E :’Pod Provisioning B P‘?d Pg;'U"LSlton-]
— Objects Affected by ng Jbjects
1
11 Hard-coded Secrets
1

1
N L L e T e

: [Keys Mapped with Insecure
| HTTP] :

X Deployment, Deployment-

: Config, HorizontalPod Au-

| toscaler, Host, Pod, PodDis-
: ruptionBudget

:’Pod Provisioning X
> Objects Affected by |
Hard-coded Secrets !

1
N ’

Fig. 6. An example to demonstrate the methodology of applying open coding to determine Kubernetes object
categories affected by security misconfigurations.

determined that ‘Pod Scaling’ and ‘Background Process Execution’ can respectively, be merged
with ‘Pod’ and ‘Process Execution’, as they both fit the definition of these two categories.

3.5 RQ4: Practitioner Perceptions of Identified Security Misconfigurations

We answer RQ4 using two steps: submit bug reports, and conduct semi-structured interviews where
we collect feedback from practitioners directly about SLI-KUBE. We describe these two steps as
follows:

3.5.1 Bug Report Submission. We submitted bug reports to gather feedback from practitioners.
From the identified misconfigurations with SLI-KUBE, we randomly-selected 242 misconfigura-
tions mined from 43 repositories. Altogether we submit 133 bug reports for which of these 242
misconfigurations. In each bug report, we identify the locations of security misconfigurations,
description of the misconfigurations, and possible consequences of the misconfigurations. We ask
in the bug report if the practitioner would fix the misconfigurations, or have changed the code
to fix the misconfigurations. All of these bug reports are submitted on May 2022. We provide an
example of a bug report in Figure 7. The links for all bug reports are available online [80]. Table 11
shows the count of bug reports submitted for each category of security misconfiguration. All bug
reports are submitted by May 10, 2022.

3.5.2 Semi-structured Interviews. We conduct semi-structured interviews to get feedback from
practitioners. We use randomly-selected 250 email addresses and sent emails to all 250 emails. For
our semi-structured interview we used emails from the repositories that we mined and described
in Section 3.3. The second author of the paper sent the emails. Upon response and approval, we
invited the participants over Zoom. In all, we found 9 interviewees who agree to participate. All
interviewees participated via Zoom.

As part of this semi-structured review, we first state the purpose of the interview, demonstrate
SLI-KUBE, and then we ask questions. We describe each of these steps below:

Purpose: The purpose of the interview is to understand if SLI-KUBE is useful for practitioners to
detect security misconfigurations in Kubernetes manifests.

1:xx Rahman et al.

Security Misconfiguration: HTTP Without TLS #2
akondasif opened this issue on Nov 2, 2021 - 0 comments

@ akondasif commented on Nov 2, 2021 - edited + @

Dear Colleague,

We are looking to find ways to help developers find security misconfigurations, i.e., Kubernetes manifest configurations that
violate security best practices for Kubernetes manifests.

We have noticed an instance of HTTP without TLS/SSL in one of your Kubernetes manifests. The recommended practice is
use of secure HTTP for each team's development and production environment. Enabling TLS ensures secure communication
between cluster components. Otherwise, the communication could susceptible to man in the middle attacks.

Location of security misconfiguration:

/deploy]/:
Line 67 in c85950b

ploy -yaml

e/frontend/

[67 - —-backend-url=http://backend: 9898/echo |

Please use SSL/TLS to fix this misconfiguration. We would like to hear if you agree to fix this misconfiguration or have fixed
the misconfiguration.

Fig. 7. Example of a bug report submitted used to answer RQ4.

Demonstration of SLI-KUBE: As described by He et al. [35], we perform the following activities
to demonstrate SLI-KUBE for each practitioners:

e Proposition: Proposition corresponds to describing the goal of the semi-structured interview,
which is to obtain feedback from practitioners about the usefulness of SLI-KUBE.

o Evidence: Evidence corresponds to the artifacts that are used for the interview. As part of this
activity we describe the construction and usage of SLI-KUBE. We also describe verbally the
security weakness categories with examples.

o Method of demonstration: As part of this activity we showcase the execution of SLI-KUBE where
we describe how SLI-KUBE takes input and the output generates. As part of the demonstration
process we ran SLI-KUBE on a repository, showed the output it generates, described the execution
flow, and walked through the generated CSV file. While walking through the generated CSV file
we discuss the meaning of each column. We showcased the code to demsontrate how SLI-KUBE
detects a misconfiguration and applies def-chain analysis.

Questions: Upon demonstration of SLI-KUBE we ask two questions verbatim:

o (Q1-Usefulness: Do you think SLI-KUBE is useful to detect security misconfigurations in Kuber-
netes manifests?

e (Q2-Transition: How can we transition SLI-KUBE to practice for wide-scale adoption?

We impose no limit on time to answer these questions. We also allowed the participants to talk
about any topics that they think is relevant to the answers of the above-mentioned questions.

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study

Taxxi

Table 11. Count of Submitted Bug Reports for Each Category of Security Misconfigurations

4 FINDINGS

We provide answers to RQ2, RQ3, and RQ4 respectively, in Sections 4.1, 4.2, and 4.3.

Category Count
Absent Resource Limit 30
Absent securityContext 15
Activation of hostIPC 1
Activation of hostNetwork 7
Activation of hostPID 1
Capability misuse 10
Docker Socket Mounting

Escalated Privilege for Child Container Processes

Hard-coded Secret 29
Insecure HTTP 22
Privileged securityContext 10
Total 133

4.1 Answer to RQ2: Frequency of Identified Security Misconfigurations

In this section, we answer How frequently do security misconfigurations occur in Kubernetes

manifests?

Table 12. Answer to RQ2: Occurrences, Configuration Density, Manifest Proportion, and Object Proportion

Occurrences Config. Density | Manifest Prop. (%) | Object Prop. (%)
Category GitLab GitHub| GitLab GitHub| GitLab GitHub GitLab GitHub
Absent Resource Limit 10 70 0.25 0.48 2.23 4.4 1.2 2.15
Absent securityContext 2 81 0.05 0.5 0.44 4.6 0.2 2.17
Activation of hostIPC 0 1 0.0 0.006 0.0 0.06 0.0 0.03
Activation of hostPID 0 5 0.0 0.03 0.0 0.3 0.0 3.69
Activation of hostNetwork 3 11 0.07 0.07 0.67 0.7 2.29 4.04
Capability Misuse 20 0 0.51 0.0 2.67 0.0 4.35 0.0
Docker Socket Mounting 1 3 0.02 0.02 0.22 0.19 1.2 0.19
Escalated Privileges for Child 0 3 0.0 0.02 0.0 0.19 0.0 1.18
Container Processes
Hard-coded Secret 108 111 2.75 0.7 2.22 2.7 0.72 124
Insecure HTTP 217 395 5.53 2.7 14.0 8.5 12.9 20.49
Privileged securityContext 9 1 0.23 0.006 2.00 0.06 1.8 0.02
Total 370 681 [943 46 [202 15.7 [285 46.9

We observe 1,051 instances of security misconfigurations in 2,039 Kubernetes manifests. For the
GitLab dataset, at least one security misconfiguration occur in 20.2% of the 449 manifests. For
GitHub dataset, 15.7% of the 1,590 manifests include at least one security misconfiguration. A
complete breakdown is available in Table 12 where we also report configuration density in the
‘Config. Density’ column.

Correlation Between Maturity and Presence of Security Misconfigurations: From our Mann-
Whitney U test, we observe p-value = 0.94 and 0.43 respectively, for the GitHub and the GitLab
dataset. We cannot reject the null hypothesis, and conclude that maturity of Kubernetes manifests
as measured by age is not correlated with presence of security misconfigurations.

Tixxii Rahman et al.

Correlation Between Development Factors and Presence of Security Misconfigurations:
We present the results of our logistic regression models in Tables 13 and Table 14 respectively,
for GitHub and GitLab. In both tables we report the co-efficient estimates, standard errors, p-
values, and deviance. For both datasets we observe size to be correlated with presence of security
misconfigurations.

For GitHub and GitLab McFadden R2 is respectively, 7.9 x 107%2 and 0.27. This indicates that even
though the model for GitLab is well-fitted, the model for GitHub does not fit well. A McFadden R2
value between 0.2 and 0.4 is a good indication of well-fitted model [102]. We also observe a VIF of
< 5 for all independent variables for both datasets indicating insignificant multi-colinearity to exist
between the independent variables.

Based on our logistic regression analysis for both datasets we conclude size, as measured by
lines of code, to correlate with presence of security misconfigurations in Kubernetes manifests.
According to our logistic regression analysis for both datasets, the likelihood for including a security
misconfiguration is higher for Kubernetes manifests that are larger in size.

Table 13. Logistic Regression Results for GitHub Dataset

Metric Coeff. Estimate Error p-value Deviance
(Intercept) -4.9 0.37

IsDeployed 0.01 0.10 0.90 0.01
Size 0.60 005 <2x10716 203.6
Age -0.02 0.04 0.59 0.21
Commits -0.12 0.15 0.41 0.03
Developers 0.21 0.50 0.67 12.9
Minor Contributors 1.37 0.57 0.017 5.84

Table 14. Logistic Regression Results for GitLab Dataset

Metric Coeff. Estimate Error p-value Deviance
(Intercept) -5.86 1.07

IsDeployed -0.03 0.19 0.87 0.001
Size 133 012 <2x107%6 228.8
Age -0.24 0.05 0.02 16.1
Commits 0.34 0.26 0.19 0.71
Developers -1.26 1.53 0.41 1.37
Minor Contributors 0.32 1.75 0.85 0.03

Answer to RQ2: From our empirical study we identify 1,051 instances of security misconfigura-
tions that affect 13.9% of total 4,707 Kubernetes objects. According to our logistic regression
analysis, the likelihood for including a security misconfiguration is higher for Kubernetes
manifests that are larger in size.

4.2 Answer to RQ3: Kubernetes Objects Affected by Security Misconfigurations

We identify 6 categories of Kubernetes objects available in Kind manifests that are affected by
security misconfigurations. A mapping between the identified object category and the security
misconfiguration category is provided in Table 15. We describe each of these categories as follows:

Load Balancing for Meshes: The category includes objects that are used to perform load balancing
amesh of services. With Kubernetes, practitioners can implement meshes, i.e., a collection of services

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study T:xxiii

to be added and managed with observability in place. In our dataset we observe practitioners
using the Gateway object, which is provided by Istio to implement service meshes [40]. In the
case of service meshes to ensure service reliability, load balancers distribute traffic across multiple
services [88]. As shown in Listing 2, the Gateway object used for load balancing could be susceptible
to MITM attacks if insecure HTTP is used for traffic routing.

1kind: Gateway
2metadata:

3 name: cinema-gateway
4 namespace: default

5 spec:
¢ selector:

7 istio: ingressgateway
s servers:

9 - port:

10 number: 80

11 name: http

12 protocol: HTTP

Listing 2. An example of how insecure HTTP is used to provision an Isito Gateway object.

Pod Provisioning: This category includes objects that are used to create, scale, manage, and
delete all pods within a Kubernetes cluster. A pod is a set of one or multiple containers that share
the same storage, same network resources, and specification on how to run these containers [38].
While Kubernetes provides a rich collection of features to manage containers at scale, without the
detection and mitigation of security misconfigurations, these containers could provide malicious
actors opportunities to conduct security attacks. In the example presented in Listing 3, all containers
that belong to nfs-server, will have a privileged securityContext, which may lead to container
breakouts [55].

1kind: Pod

2 ...

3 Spec:

4 containers:

5 - name: nfs-server

6 image: call518/ocaas-nfs-server:1.0
7 securityContext:

8 privileged: true

Listing 3. Privileged securityContext is used to provision a pod using the Pod object.

Process Execution: This category includes objects that are used to execute a group of foreground
or background process within one or multiple pods. This category include two sub-categories: (i)
DaemonSet objects, i.e., Kubernetes objects that ensure required background processes are running
on all nodes without user intervention [38]; (ii) CronJob objects that are used to create Kubernetes
jobs on a repeated schedule. In Kubernetes, a job corresponds to the process that executes and
re-executes pods until a specified number of pods successfully terminate [38, 50].

T:xxiv Rahman et al.

1kind: DaemonSet
2 ...
3 spec:

4 serviceAccountName: filebeat
5 terminationGracePeriodSeconds: 30
6 hostNetwork: true

Listing 4. hostNetwork is used to provision a process for a pod with the DaemonSet object.

1kind: CronJob

2 spec:

3 containers:

4 - name: cronjob

5 image: spotify/alpine:latest
6 imagePullPolicy: Always

7 command:

8 - curl
9 args:
10 - http://bootstorage-svc:5000/api/

11 bootstorage/deletelru

Listing 5. Insecure HTTP is used to provision a cron process for a pod with the CronJob object.

In Listing 4 we provide an example, where we observe a DaemonSet to be provisioned with activation
of hostNetwork. As described in Section 2.3, when a pod is configured with hostNetwork: true,
the applications running in such a pod can directly see the network interfaces of the host machine,
which in turn provides malicious users unauthorized visibility. Listing 5 shows how a cron process
with the CronJob object is used to curl content from an insecure HTTP connection.

Secret: This category includes objects that are used to store and manage secrets, such as usernames,
passwords, and private SSH keys. The purpose of the Secret object is to efficiently manage secrets
that are needed for authorization and authentication without introducing duplicates. In order to
secure secrets, Kubernetes stores Secrets-related data in a tmpfs, which are never written to
physical storage [38]. However, hard-coding secrets while provisioning Secret objects weakens
the security features provided by Kubernetes, as by default “Secrets are stored as unencrypted
base64-encoded strings and can be retrieved by anyone with API access” [70]. Listing 6 shows a
hard-coded username and password to provision a Secret object.

1kind: Secret

2metadata:

3 name: mongodb-secret

4 type: Opaque

s data:

6 username: dXNlcm5hbWU=
7 password: cGFzc3dvcmQ=

Listing 6. Hard-coded username and password provided for the Secret object.

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study Tixxv

Stateful Applications: This category includes objects that are used to provision stateful appli-
cations with StatefulSet. Characteristics of stateful applications include but are not limited to:
(i) requiring unique network identifiers, (ii) requiring persistent and stable storage, and (iii) up-
dating pods in an ordered and automated rolling manner [50]. Listing 7 shows use of privileged
securityContext and capability misuse to provision a set of stateful applications.

1kind: StatefulSet
2600

3 Spec:

4+ containers:

- name: cinder

5

6 image: call518/oaas-newton
7 “e

3 securityContext:

9 privileged: true

10 capabilities:

1 add:

12 - CAP_SYS_ADMIN

Listing 7. CAP_SYS_ADMIN and over-privileged securityContext is used to provision a stateful application
with the StatefulSet object.

Traffic Routing: This category includes objects that are used to route service traffic in and out of
the Kubernetes cluster. Kubernetes provides a variety of objects that can be used to control how
service traffic will be routed within the Kubernetes cluster and outside of the cluster. Examples of
such objects include: Ingress, Egress, DestinationRule, and VirtualService. While setting up
the rules we observe practitioners to use insecure HTTP, which can expose all the traffic generated
and managed by their Kubernetes clusters to be susceptible to MITM attacks. We provide an
example in Listing 8.

1kind: DestinationRule
2 ...

3 spec:
4+ host: istio-policy.istio-system.svc.cluster.local
s trafficPolicy:

6 connectionPool:

7 http:

Listing 8. Insecure HTTP is used to provision routing of network traffic with the DestinationRule object.

Answer to RQ3: Six categories of Kubernetes objects are affected by security misconfigurations:
load balancing for meshes, secret, stateful applications, pods, process execution, and traffic
routing.

4.3 Answer to RQ4: What are the practitioner perceptions of the identified security
misconfigurations?

We answer RQ4 by describing the responses obtained from bug reports (Section 4.3.1) and semi-

structured interviews (Section 4.3.2).

1:xxvi Rahman et al.

Table 15. Mapping of Kubernetes Object Categories and Security Misconfiguration Categories

Kubernetes Object ~ Misconfiguration
Load Balancing for Insecure HTTP

Meshes

Secret Hard-coded secret

Stateful Applications Privileged securityContext, Activation of hostNetwork, Capability Misuse

Pod Absent securityContext, Absent Resource Limit, Activation of hostPID, Activation of
hostIPC, Activation of hostNetwork, Escalated Privileges for Child Container Processes,
Insecure HTTP

Process Execution Activation of hostPID, Activation of hostIPC, Activation of hostNetwork, Docker
Socket Mounting

Traffic Routing Insecure HTTP

4.3.1 Answer to RQ4 - Bug Reports. In this section, we answer How do practitioners perceive
the identified security misconfigurations in Kubernetes manifests? As of September 15, 2022,
we obtain 10 responses to our bug reports for 242 instances with a response rate of 4.1%. Out of 10,
we observe practitioners agree with the reported 6 misconfiguration instances. The most agreed
upon category are: activation of hostIPC, activation of hostPID, and Docker socket mounting.
The least agreed upon category is insecure HTTP. A complete breakdown of reported practitioner
perception is provided in Figure 8. We have not obtained any responses for the following categories:
absent resource limit, absent securityContext, activation of hostNetwork, capability misuse,
escalated privileges for child container processes, and privileged securityContext.

In the case of insecure HTTP category, practitioners stated the following reasons on why they
disagreed. For one instance of insecure HTTP one practitioner mentioned that the identified
insecure HTTP instance is invalid as it is used internally “Thanks, but this is an internal call so
I’'m not too worried.”. Another practitioner disagreed with an instance of insecure HTTP as the
practitioner assumed that the developed manifest will used with cert-manager, and thus the reported
instance is invalid: “TLS is fully supported in podinfo [the manifest name] when using a service mesh”.
Another practitioner discarded an instance of insecure HT'TP assuming the submitted bug report
was generated by a bot: “I know you are a bot”. In the case of a hard-coded secret, one practitioner
mentioned that these are default values stating “default values in k8s files”. The above-mentioned
statements from disagreeing practitioners also suggest lack of awareness, e.g., if another practitioner
comes across a manifest with a hard-coded secret, then that practitioner can perceive hard-coded
secrets to be acceptable [79].

Nuanced Perspectives of Insecure HTTP: Figure 8 shows practitioners to disagree mostly with
insecure HTTP. One possible explanation is that inherently traffic within pods can be protected
with TLS support. For example, Istio internally uses TLS for inter-service communication [88], and
therefore detected instances of insecure HTTP that are managed with Istio will not be perceived
positively by practitioners. Despite reported disagreements we advocate for the mitigation of
insecure HTTP instances as both local and remote sites that use HTTP can be insecure [7].

Our response rate is low, which can be attributed to a lack of monetary incentives [76, 94], practi-
tioners’ negative biases for static analysis alerts [42, 78, 79] as well as for submitted bug reports
related to security static analysis alerts [79]. Survey response rate in cybersecurity and software
engineering research can respectively, be as low as 3% [66] and 6% [94]. We mitigate the limitation of
low response rate for bug reports by conducting semi-structured interviews that we have discussed
in the next section.

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study Taxxvii

. Agree Disagree

c
i
E Docker.Sock_2 -
=
& HostIPC_1-
c
8 Host.PID_1-
2 ost.PID_
=
y |
- Secret_2
=
=
5 HTTP 4- I
3 _
[
(7]

0% 25% 50% 75% 100%
Agreement Rate

Fig. 8. Answer to RQ4: Practitioner perception of identified security misconfigurations

4.3.2 Answer to RQ4 - Interviews. From our semi-structured interview we observe all 9 practitioners
to find SLI-KUBE useful for detecting security misconfigurations in Kubernetes manifests. In
Table 16 we report their responses along with their reported experience in working with Kubernetes.
As shown in the ‘Usefulness of SLI-KUBE’ column in Table 16, all practitioners agreed that security
misconfiguration categories detected by SLI-KUBE are valid, and useful to secure the Kubernetes-
based installations. For example, I8 said “Some DevOps folks don’t care about security so tools like
this [SLI-KUBE] are helpful as these tools can automatically find security issues”. 18 further added
“Before this [SLI-EKUBE] I didn’t know we should scan insecure http. Now I understand the importance
of checking insecure HTTP”. Similar positive enthusiasm was expressed by 17 who said “In general it
[SLI-KUBE] looks super cool. Good work. I am a Kubernetes developer myself and I see the beauty of
it”.

From the response of the second question we obtain the following activities to transition SLI-KUBE
to practice:

o CI pipeline integration: Multiple interviewees (I3, 16, 17, I8, 19) suggested SLI-KUBE’s seamless
integration in a continuous integration (CI) pipeline as one possible improvement. Currently
SLI-KUBE runs as a Python application. With integration in a CI-based pipeline, such as in
Jenkins, a practitioner may find SLI-KUBE more useful. According to I8, “I will be happy if this
tool can be easily integrated into CI systems, such as Jenkins”. 17 stated “For what I have seen people
do not run static analysis tools on their own local machines because people are lazy. The way it is
100% sure that people will use is in the CI”. I3 further added, “We can easily integrate this tool in
QA and staging. If you have something like the scripts then we can add the tool to our CI pipeline”.

o Kubernetes integration: Our interviewees (I1, 12, I5) also suggested the integration of SLI-KUBE
inside Kubernetes itself. I1 observed that SLI-KUBE will be better utilized if the tool is already
available as part of Kubernetes. Whenever a manifest is executed Kubernetes will check if any of
the 11 security misconfiguration categories appear. I1’s views were echoed by 12 who suggested
two other alternatives on how to integrate SLI-KUBE into Kubernetes. One option is admissions
controller that uses the Kubernetes API. An admission controller is a program that intercepts
requests to the Kubernetes API server before making a Kubernetes object persistent [59]. I5
discussed how containers can be leveraged for Kubernetes-based integration: “What you could
also do if you would be able to put the checking tool [SLI-KUBE] in a container and access the tool
via Kubernetes APL. Many etcd tools work like that. So there are ways to enhance it [SLI-KUBE]
without changing the tools too much”.

Tixxviii Rahman et al.

Table 16. Interviewee Profile

ID Experience Job Title Duration (Minutes) Usefulness
(Years)
I 2 Consultant 28.2 YES
12 7 SRE 33.0 YES
13 3 SRE 30.3 YES
14 5 SRE 38.5 YES
15 4 Developer 30.2 YES
I6 2 Developer 36.4 YES
17 2 Developer 26.3 YES
18 3 SRE 26.4 YES
19 1 Developer 9.1 YES

e Severity-based prioritization: Interviewees (I4, I5, 16, I8) recommended severity-based prioriti-
zation for SLI-KUBE so that it not only reports the occurrences of security misconfigurations but
also prioritizes these occurrences based on severity. I8 stated “All the categories are important,
but if the users can understand the priorities then that would be good”. Interviewees also provided
hints on what are the highly severe misconfiguration categories that deserve prioritization. For
example, according to I5 the highly severe misconfiguration categories are: capability misuse, ac-
tivation of hostNetwork, activation of host IPC, and Docker socket mounting. I6 identified the
following as highly severe misconfiguration categories: escalated privileges for child container
processes, privileged securityContext, and hard-coded secret.

¢ Flexibility for users: Currently, to use SLI-KUBE a user needs to provide a directory of Ku-
bernetes manifests, which is later analyzed to identify occurrences of all 11 categories security
misconfigurations. This could be limiting as pointed out by multiple interviewees (12, 14, 19). 12
stated “Different companies want different things, allowing their people to run their own checks.
Having the flexibility to control what checks to run is beneficial”. 12 hinted at the use of policy
languages, such as Cue ! and Rego 2. 14 suggested SLI-KUBE to also consider Kubernetes objects
that have already been provisioned: “I believe it would be useful if it [SLI-KUBE] would also work
on existing Kubernetes objects. A cluster’s configuration can be different from the configurations of
Kubernetes manifests. I don’t believe this would be an issue as you can get YAML files from running
Kubernetes installations. I guess you would have to connect from the script with the cluster and then
you may have to use ‘kubeconfig’ from the local environment”.

Answer to RQ4: From our semi-structured interviews, we observe all interviewed practitioners
to find SLI-KUBE to be useful in identifying security misconfigurations. For our submitted
bug report, we observe a 60% agreement for the 10 security misconfigurations for which we
obtained responses.

5 DISCUSSION

We discuss the implications of our findings in this section:

!https://cuelang.org/docs/integrations/k8s/
https://www.kubermatic.com/blog/opa-rego-in-a-nutshell/

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study T:xxix

5.1 Kubernetes Objects Affected by Security Misconfigurations

According to Martin and Hausenblas [55], in order to facilitate ‘vanilla’ deployments for a wide range
of users, “Kubernetes has been designed to be historically with minimum security features”. Hence,
practitioners should be aware of the security misconfigurations, and how these misconfigurations
can be detected and mitigated while developing Kubernetes manifests. Yet, our empirical study
shows that practitioners include security misconfigurations, >= 15.7% of the manifests include at
least one security misconfiguration. These misconfigurations impact the Kubernetes objects that are
pivotal to provision Kubernetes clusters, such as objects used in load balancing, and objects used for
stateful applications. Given the fact that Kubernetes is being used to provision applications in a wide
range of domains, such as forecasting [93], smart grids [65], edge computing [92] [101], electronic
vehicles [43], machine learning [17], and high performance computing [54, 62], unmitigated security
misconfigurations leave these provisioned software application open to attacks from malicious users.
As organizations rely on Kubernetes to automate their software supply chain [14], unmitigated
security weaknesses in Kubernetes manifests can lead to security attacks against Kubernetes-based
software supply chain.

5.2 Implications for Practitioners

Our findings show that security misconfigurations in Kubernetes manifests are quite prevalent. For
the GitHub and GitLab dataset the proportion of Kubernetes manifests is respectively 15.7% and
20.2%. We recommend the following practices in this regard:

5.2.1 Application of Security Static Analysis. We recommend practitioners to use static analysis to
identify security misconfigurations in Kubernetes manifests. Practitioners can use our tool SLI-
KUBE to identify the 11 categories of security misconfigurations. We also advocate the scanning to
be conducted before being pushed to a repository, otherwise, misconfigurations related to objects,
such as Secrets will be uploaded to the repositories.

5.2.2 Mitigation Strategies. While static analysis can detect security misconfigurations, further
efforts are needed to mitigate the detect instances. To that end, we suggest the following recom-
mendations to remove security misconfigurations:

Absent securityContext: With the securityContext configurations, adequate access control
should be applied for all containers that are managed by a pod.

Absent Resource Limit: With configurations, such as cpu, memory, request, and limit, all provi-
sioned containers’ CPU and memory should be bounded.

Activation of hostIPC: Practitioners should use a PodSecurityPolicy that ensures hostIPC is set
to false for all pods.

Activation of hostPID: Practitioners should use a PodSecurityPolicy that ensures hostPID is set
to false for all pods.

Activation of hostNetwork: Instead of using hostNetwork: true for gaining access to the host
network, practitioners can use docker run -user from the Kubernetes console [3].

Capability Misuse : Instead of using CAP_SYS_ADMIN and CAP_SYS_MODULE with no restrictions,
practitioners should apply the principle of least privilege to allow certain containers with limited
Linux capabilities. Practitioners are encouraged to leverage configurations, such as —cap-drop and
—cap-add to limit which containers have what capabilities.

1:xxx Rahman et al.

Docker Socket Mounting: Practitioners should avoid the exposure of Docker daemon socket via

/var/run/docker. sock. In the case, the use of the Docker daemon socket is necessary, the socket
should be used in read-only fashion in a secured manner using either a HTTPS-based encrypted
socket or a secure web proxy [26, 71].

Escalated Privileges for Child Container Processes: To configure pods, allowPrivilegeEscalation
should always be set to false.

Hard-coded Secret: Practitioners should use secret management tools, such as Hashicorp Vault [34]
and Bitnami Sealed Secrets [8, 84] with the recommended secret management practices [75].

Insecure HTTP: For traffic routing TLS/SSL should always be enabled for HTTP. Kubernetes provides
the certificates.k8s.io API, which allows for TLS support where TLS certificates are managed
by a Certificate Authority [50].

Privileged securityContext : The privileged configuration for securityContext should re-
main false. In the case a container needs certain capabilities, practitioners can use Kubernetes
capabilities 3.

5.2.3 Affected Kubernetes Objects. Objects are pivotal for orchestrating containers with Kubernetes.
Objects specified in manifests tell Kubernetes what is the desired state that the orchestrated
containers need to be. By characterizing the objects that are affected by security misconfigurations
we gain an understanding what types of computing infrastructure are being impacted. For example,
from Table 15 we observe security misconfigurations to affect pods that are used to manage
containers. Answer to RQ3 show that critical computing infrastructure are impacted security
misconfigurations, and thus needs to be mitigated with secure development of Kubernetes manifests.
Table 15 shows that security misconfigurations detected by SLI-KUBE are used by Kubernetes objects
used to manage critical container-based infrastructure, which could be helpful for practitioners to
be more aware of security misconfigurations in Kubernetes manifests.

5.3 Implications for Researchers

We describe the implications for researchers in the following subsections:

5.3.1 Opportunities for Future Research. One contribution of our empirical study is the develop-
ment of SLI-KUBE, which could be of interest to researchers for future work. With SLI-KUBE,
researchers can investigate if combinations of the security misconfigurations can lead to novel
attacks. Researchers can investigate to what extent existing vulnerability repair techniques can be
applied to repair Kubernetes-related security misconfigurations, and what other novel techniques
need to be proposed and evaluated. Results presented in Tables 13 and 14 provide an opportu-
nity for researchers to understand and characterize the presence of security misconfigurations by
considering socio-technical factors unique to Kubernetes development.

5.3.2 Benchmark-related Implications. Any emerging domain benefits from empirical benchmarks
to facilitate further research and transition research to practice [28]. Our empirical findings stated in
Section 4 will directly contribute in establishing empirical benchmarks for Kubernetes security. In
particular, our paper is the first to show the frequency of security misconfigurations in Kubernetes
manifests through systematic mining of software repositories. Future research can investigate
to what extent the frequency of identified security misconfigurations are generalizable for other
datasets obtained from proprietary domains. Furthermore, SLI-KUBE can also be used as part

Shttps://jamesdefabia.github.io/docs/user-guide/containers/

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study Toxxxi

of developing empirical benchmarks that can further advance the science of Kubernetes-based
container orchestration.

5.3.3 Transition to Practice. While SLI-KUBE has shown promise in detecting security misconfigu-
rations, further research and development efforts need to be pursued to transition SLI-KUBE from
a research tool to a practitioner tool, which can be easily integrated into mainstream IDEs, such as
Visual Studio Code. Accomplishing the following activities might be of interest to researchers and
practitioners for transitioning SLI-KUBE to practice:

e Expand the derived taxonomy presented in Section 2.3 by including more security misconfigura-
tion categories and more container orchestration tools. Replicating our methodology presented
in Section 2.2 could be a starting point to accomplish this activity.

e Reduce false positives through generation of novel techniques. Empirical evidence presented in
Section 3.1 shows that SLI-KUBE as well as Snyk are prone to generating false positives. Therefore,
further research is needed to reduce false positives in detecting security misconfigurations.

o Generate repairs of security misconfigurations so that detected misconfigurations are mitigated
effectively.

e Transition SLI-KUBE for practitioner use by executing recommendations listed in Section 4.3.2:

Integrate SLI-KUBE to CI pipelines;

— Integrate SLI-KUBE to Kubernetes internally;

Prioritize misconfiguration categories reported by SLI-KUBE; and

Provide flexibility for SLI-KUBE users.

6 RELATED WORK

Our paper is closely related to existing research in Kubernetes, which remains an under-explored
area. Casalicchio et al. [16] analyzed 97 academic publications, and concluded security area to
be an under-explored research domain for Kubernetes. To address this gap, researchers have
conducted empirical studies: e.g., Shamim et al. [91] conducted a grey literature review using a
qualitative analysis of 103 Internet artifacts and derived 11 security best practices for configuring
and managing Kubernetes cluster. As another example, Bose et al. [9] identified the presence of
security defect-related commits in Kubernetes OSS repositories. While these studies are a good
starting point, we observe a lack of research related to empirical studies in the area of Kubernetes
security misconfigurations.

Our paper is also closely related with empirical studies focused on secure software development,
which is becoming commonplace [27, 30, 32, 39, 57, 78, 79, 105]. Meng et al. [57] have investigated the
prevalence of insecure coding practices in Java by observing accepted answers in StackOverflow.
Islam et al. [39] identified coding anti-patterns with security implications for enterprise Java
applications. Ghafari et al.[32], Gadient et al. [30], and Rahkema et al. [73] in separate studies
quantified the presence of vulnerable code in software ecosystems, such as Android [30, 32] and
Swift [73]. In the domain of infrastructure as code (IaC), Rahman et al. [78] applied static analysis
to quantify frequency of security weaknesses in Ansible [79], Chef [79], and Puppet scripts [78].
However, techniques that apply for IaC scripts, such as Ansible, Chef, and Puppet scripts are
not applicable for Kubernetes manifests, as the syntax and semantics of Kubernetes manifests is
different to that of IaC scripts [59].

Tixxxii Rahman et al.

The aforementioned discussions demonstrates a lack of empirical research in the area of Kubernetes
security misconfigurations, which we address in our paper.

7 THREATS TO VALIDITY

We discuss the limitations of our paper as follows:

Conclusion Validity: Our derivation of security misconfiguration categories used in Section 2 are
limited to the dataset provided by Bose et al. [9]. We mitigate this limitation by allocating raters with
experience in Kubernetes who inspect each of the 1,796 Kubernetes manifests. Furthermore, we
characterize the 92 repositories used for our empirical study as ‘open-source software’, which may
give the impression that these are well-curated software projects whose software is open-source.
However, our repositories might not be reflective of such well-curated projects. We mitigate this
limitation by adding another criterion, where the first author manually inspects any available
README files and descriptions of obtained GitHub and GitLab projects.

Our criterion to determine the deployment-ability can include repositories that are used for other
experimental goals, such as staging [82] and not necessarily deploying an application. We mitigate
this limitation through manual inspection of the README files of each repository.

SLI-KUBE may generate false negatives and false positives when applied on other datasets. Such
limitation can bias the results presented for RQ2 in Section 4.1. We mitigate this limitation by
evaluating SLI-KUBE using an oracle dataset as discussed in Section 3.1.2.

The Kubernetes objects reported in Section 4.2 are limited to the datasets mined from GitHub and
GitLab. If the same methodology is applied for other datasets collected from proprietary domains,
additional categories of Kubernetes objects could be obtained, which are not reported in Section 4.2.
Furthermore, we have not differentiated between objects that are native to Kubernetes and that
come from third party controllers.

Construct Validity: SLI-KUBE is a static analysis tool that applies def-use chain analysis to identify
a security misconfiguration. SLI-KUBE does not leverage mesh-related semantics, and as a result
may detect instances of insecure HTTP that are irrelevant. Furthermore, our use of Kind manifests
also include Istio manifests that are used for service meshes, which might yield objects unique to
Istio, and impact the results of RQ3. We mitigate this limitation by generating categories of affected
objects with open coding. We acknowledge that our criteria are not comprehensive and can miss
the additional curation that we could have obtained using the criterion of a license file.

Our bug report response is low, which can be limiting to conclude the usefulness of SLI-KUBE
for practitioners. We mitigate this limitation by conducting semi-structured interviews with 9
practitioners. All practitioners agreed that SLI-KUBE is useful to detect security misconfigurations
in Kubernetes manifests.

External Validity: Our datasets are constructed by mining OSS projects. Our findings may not gener-
alize for proprietary datasets. Furthermore, our empirical study is susceptible to the limitation that
we cannot claim the repositories used are reflective of production Kubernetes-based deployments,
and therefore, our findings may not generalize to Kubernetes manifests used for production in IT
organizations.

Internal Validity: While constructing the oracle dataset the rater may have expectations on the
outcomes that could potentially impact the closed coding process. We mitigate the limitation by
using a rater who is not an author of this paper.

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study Texxxiii

8 CONCLUSION

Kubernetes has become the go-to tool to implement the practice of automated container orchestra-
tion. While Kubernetes has yielded benefits for IT organizations, security misconfigurations can
make Kubernetes-based software deployments susceptible to security attacks. To aid practitioners
in securing their Kubernetes clusters we have conducted an empirical study with 2,039 Kubernetes
manifests. We identify 11 categories of security misconfigurations for Kubernetes manifests, which
can be used to conduct security-focused code review for Kubernetes manifests. Using SLI-KUBE we
identify 1,051 instances of security misconfigurations in 2,039 Kubernetes manifests. We observe 6
categories of Kubernetes objects affected by security misconfigurations, which include Kubernetes
objects used to provision pods and traffic routing. We also observe that practitioners agree with
60% of 10 reported instances of security misconfigurations.

Based on our findings, we recommend the application of security-focused code review and static
analysis to identify security misconfigurations, so that unmitigated misconfigurations are not
leveraged by the malicious users to conduct Kubernetes-related security breaches. Our derived
taxonomy—that includes 11 categories of security misconfigurations—can be useful for practitioners
to identify configurations that have security implications. Also, with SLI-KUBE, practitioners can
also identify where security misconfigurations are located, and what Kubernetes objects are affected.
In this manner, practitioners will obtain further context about where a security misconfiguration
occurs, and how they are used to orchestrate containers with Kubernetes objects.

Our empirical study also lays the groundwork for further research in the domain of container
orchestration, e.g., systematic creation of benchmarks, generation and mitigation of novel attacks,
development of automated techniques that can repair security misconfigurations, and transition SLI-
KUBE to practice. Results of RQ2 showcases the variation in frequency of security misconfiguration
categories, which can further be explored and replicated for proprietary datasets. We hope our
empirical study will advance the science of secure container orchestration.

ACKNOWLEDGMENTS

This research was partially funded by the U.S. National Science Foundation (NSF) Award # 2247141,
Award # 2310179, and the U.S. National Security Agency (NSA) Award # H98230-21-1-0175. We
thank the PASER group at Auburn University for their valuable feedback. Special thanks to Farhat
Lamia Barsha for her help on creating the oracle dataset.

REFERENCES

[1] Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran, and Tim Menzies. 2018. We Don’T Need
Another Hero?: The Impact of "Heroes" on Software Development. In Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP ’18). ACM, New York, NY,
USA, 245-253. https://doi.org/10.1145/3183519.3183549

[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles, techniques. Addison wesley 7, 8 (1986), 9.

[3] Akihiro Suda. 2020. [CVE-2020-15257] Don’t use —net=host . Don’t use spec.hostNetwork . https://medium.com/
nttlabs/dont-use-host-network-namespace-f548aeeef575. [Online; accessed 09-Jan-2022].

[4] akondrahman. 2022. akondrahman/sli-kube. https://hub.docker.com/repository/docker/akondrahman/sli-kube

[5] Ales Nosek. 2017. Accessing Kubernetes Pods from Outside of the Cluster. https://alesnosek.com/blog/2017/02/14/
accessing-kubernetes-pods-from-outside- of-the-cluster/. [Online; accessed 18-Jan-2022].

[6] Vard Antinyan, Miroslaw Staron, and Anna Sandberg. 2017. Evaluating code complexity triggers, use of complexity
measures and the influence of code complexity on maintenance time. Empirical Software Engineering 22, 6 (2017),
3057-3087.

[7] Kayce Basques. 2015. Why HTTPS matters. https://web.dev/why-https-matters/. [Online; accessed 12-Jan-2022].

[8] bitnami labs. 2022. bitnami-labs/sealed-secrets. https://github.com/bitnami-labs/sealed-secrets. [Online; accessed
10-Jan-2022].

https://doi.org/10.1145/3183519.3183549
https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575
https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575
https://hub.docker.com/repository/docker/akondrahman/sli-kube
https://alesnosek.com/blog/2017/02/14/accessing-kubernetes-pods-from-outside-of-the-cluster/
https://alesnosek.com/blog/2017/02/14/accessing-kubernetes-pods-from-outside-of-the-cluster/
https://web.dev/why-https-matters/
https://github.com/bitnami-labs/sealed-secrets

T:xxxiv Rahman et al.

Dibyendu Brinto Bose, Akond Rahman, and Shazibul Islam Shamim. 2021. ‘Under-reported’ Security Defects in
Kubernetes Manifests. In 2021 IEEE/ACM 2nd International Workshop on Engineering and Cybersecurity of Critical
Systems (EnCyCriS). IEEE, 9-12.

bridgecrew. 2022. checkov. https://www.checkov.io/4.Integrations/Kubernetes.html. [Online; accessed 12-May-2022].
bridgecrew. 2022. Ensure containers do not run with AllowPrivilegeEscalation. https://docs.bridgecrew.io/docs/
ensure-containers-do-not-run-with-allowprivilegeescalation. [Online; accessed 10-Jan-2022].

bridgecrew. 2022. Limit mounting Docker socket daemon in a container. https://docs.bridgecrew.io/docs/bc_k8s_26.
[Online; accessed 20-Jan-2022].

Steve Buchanan, Janaka Rangama, and Ned Bellavance. 2020. Helm Charts for Azure Kubernetes Service. In
Introducing Azure Kubernetes Service. Springer, 151-189.

Jim Bugwadia. 2022. A MAP for Kubernetes Supply Chain Security. https://nirmata.com/2022/03/15/a-map-for-
kubernetes-supply-chain-security/. [Online; accessed 02-Nov-2022].

Canonical. 2021. Kubernetes and cloud native operations report 2021. https://juju.is/cloud-native-kubernetes-usage-
report-2021

Emiliano Casalicchio and Stefano Iannucci. 2020. The state-of-the-art in container technologies: Application,
orchestration and security. Concurrency and Computation: Practice and Experience 32, 17 (2020), e5668.

Swati Choudhary. 2021. Kubernetes-based Architecture For An On-premises Machine Learning Platform. Master’s thesis.
Aalto University.

Chris Pisano. 2019. Limiting Pod Privileges: hostPID. https://medium.com/@chrispisano/limiting-pod-privileges-
hostpid-57ce07b05896. [Online; accessed 21-Jan-2022].

CNCEF. 2020. With Kubernetes, the U.S. Department of Defense Is Enabling DevSecOps on F-16s and Battleships.
https://www.cncf.io/case-study/dod/

Patricia Cohen, Stephen G West, and Leona S Aiken. 2014. Applied multiple regression/correlation analysis for the
behavioral sciences. Psychology press.

Benjamin F Crabtree and William L Miller. 1999. Doing qualitative research. sage publications.

Duncan Cramer and Dennis Laurence Howitt. 2004. The Sage dictionary of statistics: a practical resource for students
in the social sciences. Sage.

DataDogHQ. 2022. Host’s IPC namespace is not shared. https://docs.datadoghq.com/security_platform/default_
rules/cis-docker-1.2.0-5.16/. [Online; accessed 19-Jan-2022].

datree. 2022. datree. https://hub.datree.io/built-in-rules#containers. [Online; accessed 14-May-2022].

dghubble. 2022. dghubble/go-twitter. https://github.com/dghubble/go-twitter. [Online; accessed 12-Jan-2022].
Docker. 2022. Daemon socket option. https://docs.docker.com/engine/reference/commandline/dockerd/. [Online;
accessed 19-Jan-2022].

Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis framework for smart contracts. In 2019
IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE,
8-15.

Norman Fenton and James Bieman. 2014. Software metrics: a rigorous and practical approach. CRC press.

Erin Friess. 2019. Scrum Language Use in a Software Engineering Firm: An Exploratory Study. IEEE Transactions on
Professional Communication 62, 2 (2019), 130-147. https://doi.org/10.1109/TPC.2019.2911461

Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, and Oscar Nierstrasz. 2019. Security code smells in
Android ICC. Empirical software engineering 24, 5 (2019), 3046-3076.

Andrew Gelman and Jennifer Hill. 2006. Data analysis using regression and multilevel/hierarchical models. Cambridge
university press.

Mohammad Ghafari, Pascal Gadient, and Oscar Nierstrasz. 2017. Security smells in android. In 2017 IEEE 17th
international working conference on source code analysis and manipulation (SCAM). IEEE, 121-130.

GitLab. 2022. API Documentation. https://docs.gitlab.com/ee/api/. [Online; accessed 01-June-2022].

Hashicorp. 2022. Manage Secrets & Protect Sensitive Data. https://www.vaultproject.io/. [Online; accessed
19-Jan-2022].

Wei He, Jianyang Ding, Xiaomei Shen, Xinyu Han, and Longli Tang. 2021. A Survey on Software Reliability
Demonstration. IOP Conference Series: Materials Science and Engineering 1043, 3 (jan 2021), 032008. https://doi.org/
10.1088/1757-899x/1043/3/032008

Helm. 2021. The package manager for Kubernetes. https://helm.sh/. [Online; accessed 03-Nov-2021].

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2020.
Taxonomy of Real Faults in Deep Learning Systems. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (Seoul, South Korea) (ICSE "20). Association for Computing Machinery, New York, NY, USA,
1110-1121. https://doi.org/10.1145/3377811.3380395

https://www.checkov.io/4.Integrations/Kubernetes.html
https://docs.bridgecrew.io/docs/ensure-containers-do-not-run-with-allowprivilegeescalation
https://docs.bridgecrew.io/docs/ensure-containers-do-not-run-with-allowprivilegeescalation
https://docs.bridgecrew.io/docs/bc_k8s_26
https://nirmata.com/2022/03/15/a-map-for-kubernetes-supply-chain-security/
https://nirmata.com/2022/03/15/a-map-for-kubernetes-supply-chain-security/
https://juju.is/cloud-native-kubernetes-usage-report-2021
https://juju.is/cloud-native-kubernetes-usage-report-2021
https://medium.com/@chrispisano/limiting-pod-privileges-hostpid-57ce07b05896
https://medium.com/@chrispisano/limiting-pod-privileges-hostpid-57ce07b05896
https://www.cncf.io/case-study/dod/
https://docs.datadoghq.com/security_platform/default_rules/cis-docker-1.2.0-5.16/
https://docs.datadoghq.com/security_platform/default_rules/cis-docker-1.2.0-5.16/
https://hub.datree.io/built-in-rules#containers
https://github.com/dghubble/go-twitter
https://docs.docker.com/engine/reference/commandline/dockerd/
https://doi.org/10.1109/TPC.2019.2911461
https://docs.gitlab.com/ee/api/
https://www.vaultproject.io/
https://doi.org/10.1088/1757-899x/1043/3/032008
https://doi.org/10.1088/1757-899x/1043/3/032008
https://helm.sh/
https://doi.org/10.1145/3377811.3380395

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study Taxxxv

(38]

(39]

(43]

(55]
[56]

(57]

(58]

[59]

[60]
[61]

[62]

Bilgin Ibryam and Roland Huf3. 2019. Kubernetes patterns: reusable elements for designing cloud-native applications.
O’Reilly Media.

Mazharul Islam, Sazzadur Rahaman, Na Meng, Behnaz Hassanshahi, Padmanabhan Krishnan, and Danfeng Daphne
Yao. 2020. Coding practices and recommendations of spring security for enterprise applications. In 2020 IEEE Secure
Development (SecDev). IEEE, 49-57.

Istio. 2022. Istio/Gateway. https://istio.io/latest/docs/reference/config/. [Online; accessed 10-Jan-2022].

Yujuan Jiang and Bram Adams. 2015. Co-evolution of infrastructure and source code-an empirical study. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE, 45-55.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why Don’t Software Developers
Use Static Analysis Tools to Find Bugs?. In Proceedings of the 2013 International Conference on Software Engineering
(San Francisco, CA, USA) (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 672-681. http://dl.acm.org/citation.cfm?id=
2486788.2486877

Abdukodir Khakimov, Aleksandr Loborchuk, Ibodulaev Ibodullokhodzha, Dmitry Poluektov, Ibrahim A. Elgendy,
and Ammar Muthanna. 2020. Edge Computing Resource Allocation Orchestration System for Autonomous Vehicles.
In The 4th International Conference on Future Networks and Distributed Systems (ICENDS) (St.Petersburg, Russian
Federation) (ICFNDS °20). Association for Computing Machinery, New York, NY, USA, Article 3, 7 pages. https:
//doi.org/10.1145/3440749.3442594

Derek Kortepeter. 2019. U.S. lawmakers eye AWS role in Capital One data breach. https://techgenix.com/aws-
capital-one-data-breach/

Klaus Krippendorft. 2018. Content analysis: An introduction to its methodology. Sage publications.

Klaus Krippendorft and Joseph L Fleiss. 1978. Reliability of binary attribute data. Biometrics 34, 1 (1978), 142-144.
Rahul Krishna, Amritanshu Agrawal, Akond Rahman, Alexander Sobran, and Tim Menzies. 2018. What is the
Connection Between Issues, Bugs, and Enhancements?: Lessons Learned from 800+ Software Projects. In Proceedings
of the 40th International Conference on Software Engineering: Software Engineering in Practice (Gothenburg, Sweden)
(ICSE-SEIP ’18). ACM, New York, NY, USA, 306-315. https://doi.org/10.1145/3183519.3183548

kubelinter. 2022. kubelinter. https://docs.kubelinter.io/#/generated/checks. [Online; accessed 13-May-2022].
Kubernetes 2020. Kubernetes User Case Studies. https://kubernetes.io/case-studies/

Kubernetes. 2021. Production-Grade Container Orchestration. https://kubernetes.io/

kubernetes sigs. 2022. kind. https://kind.sigs.k8s.io/. [Online; accessed 02-June-2022].

Matthew Lombard, Jennifer Snyder-Duch, and Cheryl Campanella Bracken. 2010. Practical resources for assessing and
reporting intercoder reliability in content analysis research projects. https://www.researchgate.net/profile/Cheryl-
Bracken/publication/242785900_Practical_Resources_for_Assessing_and_Reporting_Intercoder_Reliability_in_
Content_Analysis_Research_Projects/ [Online; accessed 14-Jan-2023].

H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger
than the Other. The Annals of Mathematical Statistics 18, 1 (1947), 50-60. http://www.jstor.org/stable/2236101

G Manoj Kumar, Rohit Danti, Odso Amit, R Guru Raghavendra, BR Kiran, and HA Sanjay. 2022. Performance
Evaluation of HPC Application in Containerized and Virtualized Environment. In Emerging Research in Computing,
Information, Communication and Applications. Springer, 793-803.

Andrew Martin and Michael Hausenblas. 2021. Hacking Kubernetes: Threat-Driven Analysis and Defense. O’Reilly
Media.

max. 2020. host ports and hostnetwork: the NATty gritty. https://lambda.mu/hostports_and_hostnetwork/. [Online;
accessed 17-Jan-2022].

Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango Argoty. 2018. Secure coding practices
in java: Challenges and vulnerabilities. In Proceedings of the 40th International Conference on Software Engineering.
372-383.

Michael Kerrisk. 2021. ptrace(2) — Linux manual page. https://man7.org/linux/man-pages/man2/ptrace.2.html.
[Online; accessed 21-Jan-2022].

S. Miles. 2020. Kubernetes: A Step-By-Step Guide For Beginners To Build, Manage, Develop, and Intelligently Deploy
Applications By Using Kubernetes (2020 Edition). Independently Published. https://books.google.com/books?id=
M4VmzQEACAA]

Mirantis. 2021. What are the primary reasons your organization is using Kubernetes? https://www.mirantis.com/
cloud-case-studies/paypal/

MITRE. 2021. 2021 CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.mitre.org/top25/archive/2021/
2021_cwe_top25.html. [Online; accessed 21-Jan-2022].

Subrota Kumar Mondal, Rui Pan, HM Kabir, Tan Tian, and Hong-Ning Dai. 2021. Kubernetes in IT administration
and serverless computing: An empirical study and research challenges. The Journal of Supercomputing 78, 1 (2021),
2937—-2987.

https://istio.io/latest/docs/reference/config/
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
https://doi.org/10.1145/3440749.3442594
https://doi.org/10.1145/3440749.3442594
https://techgenix.com/aws-capital-one-data-breach/
https://techgenix.com/aws-capital-one-data-breach/
https://doi.org/10.1145/3183519.3183548
https://docs.kubelinter.io/#/generated/checks
https://kubernetes.io/case-studies/
https://kubernetes.io/
https://kind.sigs.k8s.io/
https://www.researchgate.net/profile/Cheryl-Bracken/publication/242785900_Practical_Resources_for_Assessing_and_Reporting_Intercoder_Reliability_in_Content_Analysis_Research_Projects/
https://www.researchgate.net/profile/Cheryl-Bracken/publication/242785900_Practical_Resources_for_Assessing_and_Reporting_Intercoder_Reliability_in_Content_Analysis_Research_Projects/
https://www.researchgate.net/profile/Cheryl-Bracken/publication/242785900_Practical_Resources_for_Assessing_and_Reporting_Intercoder_Reliability_in_Content_Analysis_Research_Projects/
http://www.jstor.org/stable/2236101
https://lambda.mu/hostports_and_hostnetwork/
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://books.google.com/books?id=M4VmzQEACAAJ
https://books.google.com/books?id=M4VmzQEACAAJ
https://www.mirantis.com/cloud-case-studies/paypal/
https://www.mirantis.com/cloud-case-studies/paypal/
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

T:xxxvi Rahman et al.

(63]

(64

=

(65]

—
~
Do

—

(75]

(76

—

(77

—

(78]

(79

-

(80]

(81

—

(82

—

(83

=

(84

flan)

(85

[}

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017. Curating GitHub for Engineered
Software Projects. Empirical Softw. Engg. 22, 6 (dec 2017), 3219-3253. https://doi.org/10.1007/s10664-017-9512-6
N. Nagappan and T. Ball. 2005. Use of relative code churn measures to predict system defect density. In Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE 2005. 284-292. https://doi.org/10.1109/ICSE.2005.1553571
Amal Nammouchi, Phil Aupke, Andreas Kassler, Andreas Theocharis, Viviana Raffa, and Marco Di Felice. 2021.
Integration of AL IoT and Edge-Computing for Smart Microgrid Energy Management. In 2021 IEEE International
Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe
(EEEIC /I CPS Europe). 1-6. https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584756

Jarmo Nevala. 2018. Cybersecurity situation analysis-Survey in Central Finland. Master’s thesis. School of Technology,
Communication and Transport.

Nishant Sharma. 2020. Docker Container Breakout: Abusing SYS_MODULE capability! https://blog.pentesteracademy.
com/abusing-sys-module-capability-to-perform-docker-container-breakout-cf5c29956edd. [Online; accessed 14-
Jan-2022].

NIST. 2021. misconfiguration. https://csrc.nist.gov/glossary/term/misconfiguration

NJCCIC Advisory. 2021. D-Link Issues Patch for Hard-Coded Password Router Vulnerabilities. https://www.cyber.
nj.gov/alerts-advisories/d-link-issues-patch-for-hard-coded-password-router-vulnerabilities. [Online; accessed
12-Jan-2022].

NSA. 2021. Kubernetes Hardening Guidance. https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_
KUBERNETESHARDENINGGUIDANCE.PDF. [Online; accessed 10-Jan-2022].

OWASP. 2022. Docker Security Cheat Sheet. https://cheatsheetseries.owasp.org/cheatsheets/. [Online; accessed
11-Jan-2022].

Danijel Radjenovi¢, Marjan Heric¢ko, Richard Torkar, and Ales Zivkovié. 2013. Software fault prediction metrics: A
systematic literature review. Information and software technology 55, 8 (2013), 1397-1418.

Kristiina Rahkema and Dietmar Pfahl. 2020. Empirical study on code smells in iOS applications. In Proceedings of the
IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems. 61-65.

Akond Rahman, Amritanshu Agrawal, Rahul Krishna, and Alexander Sobran. 2018. Characterizing the Influence of
Continuous Integration: Empirical Results from 250+ Open Source and Proprietary Projects. In Proceedings of the 4th
ACM SIGSOFT International Workshop on Software Analytics (Lake Buena Vista, FL, USA) (SWAN 2018). ACM, New
York, NY, USA, 8-14. https://doi.org/10.1145/3278142.3278149

Akond Rahman, Farhat Lamia Barsha, and Patrick Morrison. 2021. Shhh!: 12 Practices for Secret Management
in Infrastructure as Code. In 2021 IEEE Secure Development Conference (SecDev). 56—62. https://doi.org/10.1109/
SecDev51306.2021.00024

Akond Rahman, Effat Farhana, Chris Parnin, and Laurie Williams. 2020. Gang of Eight: A Defect Taxonomy for
Infrastructure as Code Scripts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(Seoul, South Korea) (ICSE °20). Association for Computing Machinery, New York, NY, USA, 752-764. https:
//doi.org/10.1145/3377811.3380409 pre-print: https://akondrahman.github.io/papers/icse20_acid.pdf.

Akond Rahman, Effat Farhana, and Laurie Williams. 2020. The ‘as code’activities: development anti-patterns for
infrastructure as code. Empirical Software Engineering 25, 5 (2020), 3430-3467.

Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The seven sins: Security smells in infrastructure as code
scripts. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 164-175.

Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and Laurie Williams. 2021. Security smells in ansible and chef
scripts: A replication study. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 1 (2021), 1-31.
Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pandita. 2022. Verifiability Package for
Paper. https://figshare.com/s/bced7¢8353853a983cd7. https://doi.org/10.6084/m9.figshare.17425478 [Online; accessed
20-August-2022].

Akond Rahman and Laurie Williams. 2019. Source Code Properties of Defective Infrastructure as Code Scripts. Inf.
Softw. Technol. 112, C (aug 2019), 148-163. https://doi.org/10.1016/j.infsof.2019.04.013

Akond Ashfaque Ur Rahman, Eric Helms, Laurie Williams, and Chris Parnin. 2015. Synthesizing Continuous
Deployment Practices Used in Software Development. In Proceedings of the 2015 Agile Conference (AGILE ’15). IEEE
Computer Society, USA, 1-10. https://doi.org/10.1109/Agile.2015.12

Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics are better. In 2013 35th International
Conference on Software Engineering (ICSE). 432-441. https://doi.org/10.1109/ICSE.2013.6606589

Kasun Rajapakse. 2021. Sealed Secrets with Kubernetes. https://enlear.academy/sealed-secrets-with-kubernetes-
a3f4d13dbc17. [Online; accessed 10-Jan-2022].

Fahmida Rashid. 2020. Medical Data Leaks Linked to Hardcoded Credentials in Code. https://www.beyondtrust.com/
blog/entry/hardcoded-and-embedded-credentials-are-an-it-security-hazard-heres-what-you-need-to-know. [On-
line; accessed 02-Jan-2022].

https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584756
https://blog.pentesteracademy.com/abusing-sys-module-capability-to-perform-docker-container-breakout-cf5c29956edd
https://blog.pentesteracademy.com/abusing-sys-module-capability-to-perform-docker-container-breakout-cf5c29956edd
https://csrc.nist.gov/glossary/term/misconfiguration
https://www.cyber.nj.gov/alerts-advisories/d-link-issues-patch-for-hard-coded-password-router-vulnerabilities
https://www.cyber.nj.gov/alerts-advisories/d-link-issues-patch-for-hard-coded-password-router-vulnerabilities
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF
https://cheatsheetseries.owasp.org/cheatsheets/
https://doi.org/10.1145/3278142.3278149
https://doi.org/10.1109/SecDev51306.2021.00024
https://doi.org/10.1109/SecDev51306.2021.00024
https://doi.org/10.1145/3377811.3380409
https://doi.org/10.1145/3377811.3380409
https://figshare.com/s/bced7c8353853a983cd7
https://doi.org/10.6084/m9.figshare.17425478
https://doi.org/10.1016/j.infsof.2019.04.013
https://doi.org/10.1109/Agile.2015.12
https://doi.org/10.1109/ICSE.2013.6606589
https://enlear.academy/sealed-secrets-with-kubernetes-a3f4d13dbc17
https://enlear.academy/sealed-secrets-with-kubernetes-a3f4d13dbc17
https://www.beyondtrust.com/blog/entry/hardcoded-and-embedded-credentials-are-an-it-security-hazard-heres-what-you-need-to-know
https://www.beyondtrust.com/blog/entry/hardcoded-and-embedded-credentials-are-an-it-security-hazard-heres-what-you-need-to-know

Security Misconfigurations in Open Source Kubernetes Manifests: An Empirical Study Texxxvii

(86]

(87]

Paivi Raulamo-Jurvanen, Simo Hosio, and Mika V. Méntyla. 2019. Practitioner Evaluations on Software Testing
Tools. In Proceedings of the Evaluation and Assessment on Software Engineering (Copenhagen, Denmark) (EASE ’19).
Association for Computing Machinery, New York, NY, USA, 57-66. https://doi.org/10.1145/3319008.3319018
RedHat. 2021. State of Kubernetes Security Report. https://www.redhat.com/en/resources/state-kubernetes-security-
report

Sachin Manpathak. 2019. Kubernetes Service Mesh: A Comparison of Istio, Linkerd, and Consul. https://platform9.
com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/. [Online; accessed 20-Jan-2022].
Johnny Saldana. 2015. The Coding Manual for Qualitative Researchers. SAGE.

Julian Schwarz. 2019. Hardcoded and Embedded Credentials are an IT Security Hazard — Here’s What You Need to
Know. https://www.beyondtrust.com/blog/entry/hardcoded-and-embedded-credentials-are-an-it-security-hazard-
heres-what-you-need-to-know. [Online; accessed 02-July-2021].

M. Islam Shamim, F. Ahamed Bhuiyan, and A. Rahman. 2020. XI Commandments of Kubernetes Security: A
Systematization of Knowledge Related to Kubernetes Security Practices. In 2020 IEEE Secure Development (SecDev).
IEEE Computer Society, Los Alamitos, CA, USA, 58-64. https://doi.org/10.1109/SecDev45635.2020.00025

Behshid Shayesteh, Chunyan Fu, Amin Ebrahimzadeh, and Roch Glitho. 2021. Auto-adaptive Fault Prediction System
for Edge Cloud Environments in the Presence of Concept Drift. In 2021 IEEE International Conference on Cloud
Engineering (IC2E). 217-223. https://doi.org/10.1109/IC2E52221.2021.00037

Greg M. Silverman, Himanshu S. Sahoo, Nicholas E. Ingraham, Monica Lupei, Michael A. Puskarich, Michael
Usher, James Dries, Raymond L. Finzel, Eric Murray, John Sartori, Gyorgy Simon, Rui Zhang, Genevieve B. Melton,
Christopher J. Tignanelli, and Serguei VS Pakhomov. 2022. NLP Methods for Extraction of Symptoms from
Unstructured Data for Use in Prognostic COVID-19 Analytic Models. 7. Artif. Int. Res. 72 (jan 2022), 429-474.
https://doi.org/10.1613/jair.1.12631

Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas Zimmermann. 2013. Improving
developer participation rates in surveys. In 2013 6th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). 89-92. https://doi.org/10.1109/CHASE.2013.6614738

Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and Heather Richter Lipford. 2015. Questions
Developers Ask While Diagnosing Potential Security Vulnerabilities with Static Analysis. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for
Computing Machinery, New York, NY, USA, 248-259. https://doi.org/10.1145/2786805.2786812

Snyk. 2022. snyk. https://snyk.io/security-rules/kubernetes/. [Online; accessed 15-May-2022].

Stackrox. 2021. Kubernetes and Container Security and Adoption Trends. https://www.stackrox.com/kubernetes-
adoption-security-and-market- share-for-containers/

stefanprodan. 2022. stefanprodan/podinfo. https://github.com/stefanprodan/podinfo. [Online; accessed 12-Jan-2022].
T4. 2020. Container Platform Market Share, Market Size and Industry Growth Drivers, 2018 - 2023. https:
//www.t4.ai/industries/container-platform-market-share

Twain Taylor. 2020. 5 Kubernetes security incidents and what we can learn from them. https://techgenix.com/5-
kubernetes-security-incidents/

Oana-Mihaela Ungureanu, Cilin Vladeanu, and Robert Kooij. 2021. Collaborative Cloud - Edge: A Declarative API
orchestration model for the NextGen 5G Core. In 2021 IEEE International Conference on Service-Oriented System
Engineering (SOSE). 124-133. https://doi.org/10.1109/SOSE52839.2021.00019

Michael R Veall and Klaus F Zimmermann. 1996. Pseudo-R2 measures for some common limited dependent variable
models. Journal of Economic surveys 10, 3 (1996), 241-259.

Vowneee. 2021. Kubernetes clusters should not grant CAPSYSADMIN security capabilities. https://serverfault.com/
questions/1068292/kubernetes- clusters-should-not- grant- capsysadmin-security-capabilities. [Online; accessed
15-Jan-2022].

Hongyu Zhang. 2009. An investigation of the relationships between lines of code and defects. In 2009 IEEE International
Conference on Software Maintenance. 274-283. https://doi.org/10.1109/ICSM.2009.5306304

Ence Zhou, Song Hua, Bingfeng Pi, Jun Sun, Yashihide Nomura, Kazuhiro Yamashita, and Hidetoshi Kurihara. 2018.
Security assurance for smart contract. In 2018 9th IFIP International Conference on New Technologies, Mobility and
Security (NTMS). IEEE, 1-5.

https://doi.org/10.1145/3319008.3319018
https://www.redhat.com/en/resources/state-kubernetes-security-report
https://www.redhat.com/en/resources/state-kubernetes-security-report
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://www.beyondtrust.com/blog/entry/hardcoded-and-embedded-credentials-are-an-it-security-hazard-heres-what-you-need-to-know
https://www.beyondtrust.com/blog/entry/hardcoded-and-embedded-credentials-are-an-it-security-hazard-heres-what-you-need-to-know
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.1109/IC2E52221.2021.00037
https://doi.org/10.1613/jair.1.12631
https://doi.org/10.1109/CHASE.2013.6614738
https://doi.org/10.1145/2786805.2786812
https://snyk.io/security-rules/kubernetes/
https://www.stackrox.com/kubernetes-adoption-security-and-market-share-for-containers/
https://www.stackrox.com/kubernetes-adoption-security-and-market-share-for-containers/
https://github.com/stefanprodan/podinfo
https://www.t4.ai/industries/container-platform-market-share
https://www.t4.ai/industries/container-platform-market-share
https://techgenix.com/5-kubernetes-security-incidents/
https://techgenix.com/5-kubernetes-security-incidents/
https://doi.org/10.1109/SOSE52839.2021.00019
https://serverfault.com/questions/1068292/kubernetes-clusters-should-not-grant-capsysadmin-security-capabilities
https://serverfault.com/questions/1068292/kubernetes-clusters-should-not-grant-capsysadmin-security-capabilities
https://doi.org/10.1109/ICSM.2009.5306304

	Abstract
	1 Introduction
	2 Categories of Security Misconfigurations
	2.1 Background
	2.2 Methodology to Identify Security Misconfiguration Categories
	2.3 Answer to RQ1: Security Misconfiguration Categories

	3 Methodology
	3.1 Security Linter for Kubernetes Manifests (SLI-KUBE)
	3.2 Dataset Collection
	3.3 RQ2: Frequency of Identified Security Misconfigurations
	3.4 RQ3: Kubernetes Objects Affected by Security Misconfigurations
	3.5 RQ4: Practitioner Perceptions of Identified Security Misconfigurations

	4 Findings
	4.1 Answer to RQ2: Frequency of Identified Security Misconfigurations
	4.2 Answer to RQ3: Kubernetes Objects Affected by Security Misconfigurations
	4.3 Answer to RQ4: What are the practitioner perceptions of the identified security misconfigurations?

	5 Discussion
	5.1 Kubernetes Objects Affected by Security Misconfigurations
	5.2 Implications for Practitioners
	5.3 Implications for Researchers

	6 Related Work
	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

