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Log-related Coding Patterns to Conduct Postmortems of

Attacks in Supervised Learning-based Projects
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Adversarial attacks against supervised learninga algorithms, which necessitates the application of logging

while using supervised learning algorithms in software projects. Logging enables practitioners to conduct

postmortem analysis, which can be helpful to diagnose any conducted attacks. We conduct an empirical

study to identify and characterize log-related coding patterns, i.e., recurring coding patterns that can be

leveraged to conduct adversarial attacks and needs to be logged. A list of log-related coding patterns can

guide practitioners on what to log while using supervised learning algorithms in software projects.

We apply qualitative analysis on 3,004 Python files used to implement 103 supervised learning-based soft-

ware projects. We identify a list of 54 log-related coding patterns that map to six attacks related to supervised

learning algorithms. Using Log Assistant to conduct Postmortems for Supervised Learning (LOPSUL), we quan-

tify the frequency of the identified log-related coding patterns with 278 open-source software projects that

use supervised learning.We observe log-related coding patterns to appear for 22% of the analyzed files, where

training data forensics is the most frequently occurring category.
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1 INTRODUCTION

Supervised learning algorithms use training data provided in the form of inputs labeled with
corresponding outputs to construct models [69]. Constructed models are then used to make
predictions on unseen data [69]. Since the 1990s, supervised learning algorithms have been used
in diverse domains, such as finance, healthcare, and transportation [44].
While supervised learning algorithms, such as Naive Bayes (NB), and deep neural network

(DNN) have yielded benefits, these algorithms are susceptible to attacks [7, 29, 45]. In the context
of machine learning, attacks are actions that target supervised learning to cause malfunction [50].
Attacks against supervised learning-based projects can have serious consequences for people’s
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well-being [19, 20, 54, 55]. Examples include but are not limited to: (i) minuscule changes to an
image can malfunction a DNN-based diagnosis software to misclassify a benign mole as malig-
nant [20], and (ii) hand-crafted stickers can reduce the performance of traffic sign classification
software by 100%, potentially jeopardizing transportation safety [19].
The above-mentioned examples show that attacks against supervised learning algorithms can

have real-world consequences, which necessitates the application of logging so that practition-
ers can conduct postmortem analysis. The importance of logging in supervised learning-based
projects, i.e., software projects that use supervised learning algorithms, have been advocated
by policymakers, such as the U.S. and Europe ACM Public Policy Council [24], as well as by
researchers [49, 52]. Logging in supervised learning-based projects can help practitioners to
perform postmortem analysis of attacks directed towards supervised learning-based projects
[52].

Despite the importance of logging, practitioners lack guidance on how logging can be applied
while developing supervised learning-based projects [64]. A lack of guidance related to logging
can either lead practitioners to not log at all [22, 34], or log too much [22, 34], which can cause
performance concerns [75], and hinder troubleshooting [40, 46]. Existing research [43, 76, 82] has
provided guidelines on what code elements can be logged, for example, exception blocks, return-
value variables, and logic branches. However, these guidelines do not consider the attack types
and mechanisms, which are pivotal to detecting and performing postmortem analysis of attacks
in supervised learning-based projects [52].

We conduct an empirical study of log-related coding patterns to guide practitioners on what to
logwhile developing supervised learning-based projects. Log-related coding patterns are recurring
coding patterns that can be leveraged to conduct adversarial attacks and needs to be logged. Our
hypothesis is that through systematic investigation, we can identify log-related coding patterns
and the attacks they map to, which can aid practitioners to make informed decisions on what to
log to facilitate postmortem analysis of any conducted attacks.
We answer the following research questions:

—RQ1: What categories of log-related coding patterns appear in supervised learning-

based projects? [Section 4]
—RQ2: How frequently do identified log-related coding patterns appear in supervised

learning-based projects? [Section 6]

We conduct our empirical study by applying qualitative analysis on 3,004 Python files to identify
log-related coding patterns that map to attacks against supervised learning algorithms. We collect
our set of 3,004 Python files from 103 OSS repositories maintained by ModelZoo [2]. We construct
a static analysis tool called Log Assistant to conduct Postmortems for Supervised Learning

(LOPSUL). We use LOPSUL to quantify the frequency of log-related coding patterns in 278 OSS-
supervised learning-based projects. The datasets and source code used to conduct our empirical
study are available online [5]. An overview of ourmethodology is presented in Figure 1. The source
code of LOPSUL is available online [8].
Contributions: We list our contributions as follows:

— A list of log-related coding pattern categories for supervised learning-based projects;
— An empirical evaluation of how frequently log-related coding patterns appear in supervised
learning-based projects; and

— A tool called LOPSUL to automatically identify log-related coding patterns in software
projects.
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Fig. 1. An overview of our research methodology.

2 MOTIVATING EXAMPLE

We use a hypothetical example to motivate our article. Tracy is a data scientist working for a
U.S.-based medical insurance company. As part of automating the process of approving medical
benefit claims, Tracy has been asked to develop a binary classification software that will lever-
age a patient’s medical history to decide if a patient will be awarded requested medical benefits.
Tracy starts building the classification software by first creating a data import method shown in
Listing 1. The data import method is used for data pre-processing, and model building using super-
vised classification algorithms. Upon construction, the classification software is evaluated using
an oracle dataset provided by the company. Satisfied with performance Tracy and higher-ups of
the company decide to use the classification software in practice.
Within three months of usage, the company starts noticing benefit claims getting approved

by the classification software for patients who are not insured by the company. Higher-ups
from the company assume that these are fraudulent claims, possibly done by creating adversar-
ial samples from a user with or without malicious intent, and ask Tracy to investigate if their
hypothesis is valid. Unfortunately, as evident from Listing 1 while implementing the data im-
port module for the classification software no logging practices were applied that could have
helped Tracy to perform the necessary postmortem analysis. “I wish I knew code snippets used

for data imports can be leveraged to conduct malicious attacks”, Tracy contemplates and starts look-
ing for resources that describe what coding patterns can be leveraged for adversarial supervised
learning.

Listing 1. Use of read_csv(path_to_bill) to import data. The read_csv()method can be used to provide

dataset with adversarial samples using path_to_bill.

Our article aims at helping practitioners on identifying coding patterns that can be leveraged
to conduct adversarial attacks in supervised learning-based projects. We refer to these coding
patterns as log-related coding patterns, i.e., recurring coding patterns that can be leveraged to
conduct adversarial attacks and needs to be logged. In Listing 1, pd.read_csv() is an example
log-related coding pattern, where the method pd.read_csv() can be used to provide datasets
with adversarial samples using the path_to_bill parameter.

3 BACKGROUND

We provide background information on machine learning, adversarial machine learning, and
logging to help the reader gain background necessary for our article.
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Machine Learning:ML is the science of getting machines to learn autonomously from real-world
interactions and experiences through data that we feed themwithout being explicitly programmed
[32]. ML encompasses a broad range of ML tools, techniques, and ideas. Depending on what type
of feedback is available to the learning system, ML techniques are divided into three broad cate-
gories: supervised learning, unsupervised learning, and reinforcement learning. SLPs use super-
vised learning algorithms, that build a mathematical model of a dataset that includes both inputs
and outputs [59]. The data is known as training data and consists of a set of training examples.
Supervised learning algorithms look for patterns from the training dataset. A high-impact area
of progress in supervised learning in recent years involves DNN, which are multi-layer threshold
unit networks, each of which calculates simple parameterized function of its inputs [61].
Unsupervised learning algorithms take a dataset that contains only inputs and find structure

or commonality in data, such as data point grouping or clustering [25]. Unsupervised algorithms
learn from unlabeled data, known as test data. Whereas supervised ML algorithms find patterns
in a dataset of correct answers, unsupervised learning tasks look for patterns that are often impos-
sible to identify by humans. Reinforcement learning is an ML area concerned with how software
agents should take action in an environment to maximize the notion of cumulative reward [67].
Reinforcement learning, as opposed to providing the computer with correct input-output pairs,
provides the machine with a method for measuring its performance with positive reinforcement
and the machine learns behavior through trial-and-error interactions with the environment [33].
Adversarial Machine Learning: Although ML involves multiple knowledge-based systems, the
data-driven approach of ML presents additional security challenges in the training and testing
phases of system operations. ML has become so interconnected with security that the ability of
the technical community to implement ML in a secure manner will be vital to future environments
[47]. Adversarial machine learning has emerged to study the weaknesses of machine learning
approaches in adversarial settings and to develop methods to make learning stable for adversarial
exploitation [71]. Adversarial machine learning is concerned with designing ML algorithms that
can withstand security challenges, studying the capabilities of attackers, and understanding the
consequences of an attack [68]. To make a system secure, it is not sufficient to have an effective
strategy, it is also necessary to anticipate the response of the opponent to that strategy [31]. It is
important to explore the attacks along with defenses in order to get a deepen understanding of the
security issue of ML systems, with the aim of providing an effective defense to mitigate attacks on
security-sensitive applications such as autonomous driving, healthcare, and finance.
Logging: Logging is a common programming practice that developers use to record the run-time
behavior of a software system for software forensics. Logs have been used for a variety of purposes
like debugging [76], system monitoring [51], security compliance [76], and business analytics [6].
Security incidents can arise from the misuse of existing software systems. Thus, appropriate log-
ging mechanisms should be implemented at the software level to support the detection and inves-
tigation of security incidents.
Logs are generated during runtime by the output statements that developers insert into the

source code. It is crucial to avoid logging too little or too much. To achieve so, developers need
to make informed decisions on where to log and what to log in their logging practices during
development. There are no well-defined guidelines for software logging [23, 77]. Some of the
common information that needs to be logged for easier forensic are the name of the identity
provider or security realm that vouched for the username, if that information is available; the
affected system component or other objects (such as a user account, data resource, or file); the
status that says if the object succeeded or failed; the application context, such as the initiator
and target systems, applications, or components; “from where” information for messages related
to network connectivity or distributed application operation; and the time stamp and time zone
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to help answer “when”. Recently, there have been many research works devoted to the area of
where-to-log [16, 23, 76, 82], what-to-log [28, 42, 78], and how-to-log [11, 13, 77]. However, most
of these works focus on improving the quality of log printing code [12].

4 RQ1: LOG-RELATED CODING PATTERNS

In this section, we describe our threat model, and provide the methodology to answer RQ1: What

categories of log-related coding patterns appear in supervised learning-based projects? Later in Sec-
tion 4.3, we provide answers to RQ1.

4.1 Threat Model

Our threat model can have two categories of users: users with malicious intent, and users with no
malicious intent. A malicious user performs adversarial attacks with the intent to cause harm to
the system, while a regular user may perform adversarial attacks for socially beneficial methods
as explained by Albert et al. [4]. In SLPs, malicious users i.e., users with malicious intent, can at-
tempt to manipulate the input data, corrupt the model or tamper with the output with the goal of
impacting confidentiality, integrity, availability, and privacy of the systems. A user with no mali-
cious intent can also perform attacks for desirable aims as documented by Albert et al. [4]. Attacks
can happen during the training phase or during the testing phase. Attacks at testing time do not
tamper with the targeted model but instead either cause it to produce adversary-selected outputs
(i.e., integrity attack) or collect evidence about the model characteristics (i.e., confidentiality at-
tack). Attacks on training attempt to corrupt the model itself through explicit attacks or via an
untrusted data collection component. Users can perturb the training data by inserting adversarial
inputs into the existing training data (injection), or altering the training data directly (modifica-
tion). Besides tampering with the training data, users may modify the category labels or tamper
with the features. Users can tamper with the learning algorithm by colluding with an untrusted
ML training component. We define “log-related coding patterns” as recurring coding patterns that
can be leveraged to conduct adversarial attacks and need to be logged. We focus on identifying
“vulnerable points” within SLPs with the help of log-related coding patterns.

4.2 Methodology for RQ1

Log-related coding patterns are recurring coding patterns that can be leveraged to conduct ad-
versarial attacks. We use verb-object pairs to determine log-related coding patterns because King
et al. [34] reported that verb-object pairs express actions that need to be logged to detect security-
related breaches. Our hypothesis is that by identifying verb-object pairs we can determine what
coding patterns need to be logged to conduct postmortem analysis if supervised learning-based
projects are attacked. We answer RQ1 using the following steps:

4.2.1 Step-1: Dataset Collection. We use supervised learning-based projects maintained and
curated by ModelZoo. ModelZoo is a platform, which curates software projects that use machine
learning algorithms, such as supervised learning, deep learning, and reinforcement learning. Many
researchers and practitioners are using ModelZoo for different tasks with all kinds of architectures
and data [2]. These models are learned and applied for problems ranging from simple regression
to large-scale visual classification. Our assumption is that by using software projects maintained
by ModelZoo we will be able to apply qualitative analysis to a diverse set of projects that use
supervised learning.We download 103 repositories that use supervised learning fromModelZoo on
August, 2020. Attributes of the collected repositories are provided in Table 1. While downloading
the repositories we delete all data except the Python files and the number of commits to make
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Table 1. Attributes of Supervised Learning-based Projects Used in Section 4.2

Attribute Statistic

Total Repositories 103

Total Commits 11,662

Total Python Files 3,004

Total Lines Of Code 5,71,054

Applications Audio Speech, Computer Vision, Natural Language Processing, Generative Models

sure we do not include any personal data. We only collect metadata of the repositories that do not
include any personal information of the repository contributors or users.

4.2.2 Step-2: Qualitative Analysis. We apply qualitative analysis by applying the following
steps:
Step-2.1: Verb-Object Pair Identification. From the downloaded repositories we collect 3,004

Python files that we use to identify verb-object pairs. We use a similar approach to King et al. [34],
where a rater manually inspects each file to identify verb-object pairs. We repeat the process for
all files in our dataset and identify all unique verb object pairs.
Step-2.2: Validation with CRUDHeuristics. The derivation process of log-related coding pat-

terns is susceptible to rater bias. We mitigate the bias by applying closed coding to determine if
the identified verb-object pair maps to Create, Read, Update, Delete (CRUD) action provided
by King et al. [34]. King et al. [34] identified seven CRUD actions that must be logged to detect
security breaches for software projects that are used in the healthcare domain. If a mapping ex-
ists between the verb-object pair and a CRUD action, then we can mitigate the rater bias that is
inherent within the verb-object pairs identified in Step-2.1.
From the collected verb-object pairs from Step-2.1, wefirst determine the action that is expressed.

Next, we map the expressed action to each of the seven CRUD actions provided by King et al. [34].
The rater uses the definitions for each CRUD action to determine if the identified action can be
mapped to a CRUD action.
Step-2.3: Mapping to Supervised Learning Attacks. After separating the verb-object pairs,

we determine if the identified verb-object pairs can be used to conduct an attack against a super-
vised learning algorithm. A rater determines if a verb-object pair can be mapped to an attack by
first, identifying the action expressed by the verb-object pair. Second, the rater examines if the ac-
tion can be leveraged to conduct an attack by using four publications that describe how attacks
can be conducted for supervised learning algorithms. The four publications are: “SoK: Security and
privacy in machine learning”, “Towards Security Threats of Deep Learning Systems: A Survey”, “A
Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View”,
and “The security of machine learning”, respectively, authored by Papernot et al. [53], He et al. [29],
Liu et al. [45], and Barreno et al. [7]. We use the four publications because these publications dis-
cuss the categories of adversarial attacks against supervised learning algorithms, such as random
forest, and the mechanisms on how to conduct such attacks. Fourth, as the final step, the rater
separates the verb-object pairs that can be used to conduct attacks, along with the applicable algo-
rithms. Upon completion of this step, we will separate coding patterns that map to attacks against
supervised learning-based projects.
Step-2.4: Open Coding to Determine Categories.We apply open coding on the identified cod-

ing patterns from Step-2.3. While there are no duplicates amongst the identified coding patterns,
semantic similarities may exist between multiple coding patterns. For example, the following two
coding patterns, load_images(params) and load_audio(audio_path) are different in syntax but
are similar with respect to semantics, i.e., reading data from a file. We systematically identify these
similarities and derive categories using open coding. We use open coding because open coding can
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Table 2. Example to Demonstrate Our Qualitative Analysis Approach for RQ1

Example Coding Pattern Step-2.1 (Verb Object Pair) Step-2.2 (CRUD Action) Step-2.3 (Attack

Mapping)

Step-2.4 (Open Coding)

load_images(params) verb:load, object:params CRUD action: read action: read, attack:

data poisoning

Category: Training Data Forensics,

Coding patterns: load_images(),
load_audio()load_audio(audio_path) verb:load, object:audio_path CRUD action: read action: read, attack:

data poisoning

be used to generate categories from text mined from software artifacts, e.g., source code snippets.
After completion of open coding, the rater identifies a category. Furthermore, the rater separates
the verbs from the verb-object pairs from the coding patterns, which was used to derive the cate-
gory. In our categorization, a coding pattern can belong to multiple categories, as the same coding
pattern can map to multiple attacks.
We use two code snippets listed in the column “Example Coding Pattern” of Table 2 to

demonstrate our qualitative analysis process. As shown in the “Step-2.1 (Verb Object Pair)” col-
umn, we identify load and params, respectively, as a verb and object for the coding pattern
load_images(params). Next, we map the verb-object pair to the CRUD action read, following
the definition of King et al. [34]. The action “read” can be used to conduct data poisoning attacks
as reported by Papernot et al. [53] and He et al. [29].
Steps-2.1, 2.2, and 2.3 are similar for the two coding patterns: load_images(params) and

load_audio(audio_path). As both coding patterns can be used to conduct data poisoning attacks
by reading training data, we create a category called “Training Data Forensics” in Step-2.4.
Rater verification: The first and second author, who respectively, has experience in software se-
curity of 3 and 6 years, individually apply the above-mentioned steps on the collected Python
files. Upon completion of the open coding process, the authors discussed their agreements and dis-
agreements. The first and second authors, respectively, identified six and seven categories. The first
author identified one category not identified by the second author namely “Download Forensics”.
At this stage the Cohen’s Kappa [14] is 0.6, indicating moderate agreement [39]. Upon completing
the discussion, both raters individually revisit their categories and agreed on six security-relevant
categories. At this stage the Cohen’s Kappa is 1.0.

4.3 Answer to RQ1

We identify six categories of log-related coding patterns that should be logged in supervised
learning-based projects, as shown in Figure 2. We provide the definition, description, correspond-
ing ML attacks, and subcategories for each category. We list the identified coding patterns, corre-
sponding attacks, and applicable classifier algorithms for each category in Table 3.
I. Download Forensics: This category includes coding patterns that can be used to conduct at-
tacks due to malformed input and therefore, need to be logged to enable forensics. For training,
supervised learning models need data, which can be downloaded from the Internet. However, un-
solicited downloads may result in downloading corrupt data from the Internet that can impact
supervised learning model performance. According to Kurita et al. [38], downloading untrusted
pre-trained weights poses a security threat. Downloading models from remote sources can facil-
itate attacks due to malformed input [74]. Therefore, logging needs to be enabled for the coding
patterns included in the download forensics category.
In Listing 2, logging needs to be enabled for the coding pattern wget.download(), because if we

have the information of the source of the remote dataset, it could help the practitioner determine
if an attack occurred and perform necessary postmortem analysis. We identify seven log-related
coding patterns that belong to the download forensics category.
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Fig. 2. A taxonomy of log-related coding patterns for supervised learning-based projects.

Listing 2. Example of a coding pattern that belongs to the download forensics category.

II. Flip Label Forensics: Label perturbation attack usually happens when labels of training data
are collected from external sources. For instance, a collaborative spam filtering process updates the
e-mail classifier based on feedback from end-users, where malicious users can mislabel e-mails in
their inboxes to feed false information to the updatemethod [80]. Amalicious user can significantly
reduce the performance of supervised learning algorithms by flipping the labels of train data [80].
This technique can be used to effectively fool road sign classifiers for autonomous vehicles by
perturbing the labels for a fraction of the training data. To keep track of whether or not labels
are being manipulated or not, logging needs to be enabled. Flip label forensics includes two sub-
categories:
II-A. Creating Labels with Dataframe Manipulations: This subcategory includes coding

patterns that can be used to conduct label perturbation attacks while creating labels through
dataframe manipulations and therefore, need to be logged to enable forensics. Code snippets, such
as hfw.create_dataset(‘‘labels’’) can be used to create labels by manipulating dataframes.
However, malicious users might perturb the created labels to perform label perturbation attacks.
In case of such an attack, it can be helpful to have the logged information to troubleshoot.
In Listing 3, logging needs to be enabled for the coding pattern hfw.create_dataset(), because

if we have the information of the source of the labels, in case of a label perturbation attack it could
help the practitioner perform necessary postmortem analysis. We identify four log-related coding
patterns that belong to this subcategory.

Listing 3. Example of a coding pattern that belongs to the creating labels with dataframe manipulations

subcategory.
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Table 3. Answer to RQ1: Log-related Coding Pattern Categories and Corresponding Attacks

Categories Coding Patterns Attack Algorithms

Download

Forensics

wget.download(); urlopen(); prepare_url_image();
load_url(); misc.download_model();
latest_blob.download_to_filename(); _download();
download_from_url();

Malformed input: In malformed input attack the

malicious user concocts an input to the supervised

learning system that reliably produces an output

different from the intended output [26].

DNN

Flip Label

Forensics

read_h5file(); hf.get(); load_data_and_labels();
load_image(); scipy.io.loadmat();
hfw.create_dataset(); interpreter.get_tensor();
evaluate(); coco_gt.loadRes();

Label perturbation: The baseline strategy of label

perturbation attack is to perturb the labels for a fraction

of the training data to reduce the prediction accuracy of

supervised learning systems [53].

Support Vector

Machine (SVM),

Logistic

Regression (LR)

Pipeline

Forensics

pipeline_pb2.TrainEvalPipelineConfig();
get_configs_from_pipeline_file(); ArgumentParser();

Physical domain: In physical domain attacks, malicious

users find perturbations preserved by the data pipeline

that precedes the classifier in the overall targeted system

[37].

DNN

Prediction

Forensics

get_tensor(); show_data_summary(); Model stealing: Model stealing attack attempts to

replicate a supervised learning model via the APIs

provided, without prior knowledge of training data and

algorithms [30].

LR, SVM, DNN

Pre-trained

Model Forensics

load_decoder(); load_previous_values();
load_pretrained(); patch_path(); sp_model.Load();
load_model_package(); load_model();
load_state_dict(); load_param(); load_checkpoint();

Model poisoning: In model poisoning attack, a malicious

user pollutes a supervised learning model with certain

latent behavior, to be unwittingly adopted by third

parties and later exploited by the malicious user [53].

LR, SVM, MLP,

DNN

Training Data

Forensics

open(); load_celebA(); load_images(); load_wav();
load_randomly_augmented_audio();
load_generic_audio(); load_audio();
_load_vocab_file(); json.load(); load_lua();
get_raw_files(); load_attribute_dataset(); load();
upload_from_filename(); read_file();
from_tensor_slices(); read_csv(); MNIST(); open();
File(); frombuffer(); get_loader(); read_h5file();

Data poisoning: Data poisoning attack aims to reduce

the prediction accuracy of supervised learning systems

by polluting training data in a manner so that it is

imperceptible to the human eye [53]

NB, SVM, DT,

MLP, DNN

II-B. Loading Labels From Datasets Where Labels are Predefined: This subcategory
includes coding patterns that can be used to conduct label perturbation attacks by perturbing the
predefined labels in a dataset and therefore, need to be logged to enable forensics. Code snippets,
such as hf.get(‘label’) can be used to load labels from a dataset. In supervised learning, the
labels might be loaded from a remote or local file. Loading classification labels from the file can
facilitate label perturbation attacks [53] as malicious users may change the labels used to train
models. In case of such an attack, it can be helpful to have the logged information to troubleshoot.
In Listing 4, logging needs to be enabled for the coding pattern hf.get(), because if we have

the information of the source of the loaded predefined labels, in case of a label perturbation attack
it could help the practitioner perform necessary postmortem analysis. We identify five log-related
coding patterns that belong to this subcategory.

Listing 4. Example of a coding pattern that belongs to the loading labels from datasets where labels are

predefined subcategory.

III. Pipeline Forensics: This category includes coding patterns that can be used to conduct phys-
ical domain attacks [53] while loading pipeline configurations and, therefore, need to be logged
to enable forensics. A machine learning pipeline includes the following stages: training the model,
evaluating the model, deploying the model, and using the model for predictions. Data pipelines
used in supervised learning often are susceptible to attacks. In physical domain attacks, malicious
users find perturbations preserved by the data pipeline that precedes the classifier in the overall
targeted system [37]. When the malicious user is unable to directly modify feature values used as
model inputs, a physical domain attack helps to reduce the accuracy of the model classification.
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As a consequence of a physical domain attack, autonomous vehicles may over speed if the road
sign recognition models inside were compromised [18]. In such a physical attack, a malicious user
change existing physical road signs with adversarial perturbations that is the change is done after
the training process but before the deploying process of the pipeline. To keep track of whether or
not an attack on the data pipeline is happening, logging needs to be enabled.
In Listing 5, logging needs to be enabled for the coding pattern ArgumentParser(), because if

we have the information of the source of the loaded pipeline configurations, in case of an adver-
sarial attack it could help the practitioner determine if an attack occurred and perform necessary
postmortem analysis. We identify three log-related coding patterns that belong to the pipeline
forensics category.

Listing 5. Example of a coding pattern that belongs to the pipeline forensics category.

IV. Prediction Forensics: This category includes coding patterns that can be used to conduct
model stealing attacks and, therefore, need to be logged to enable forensics. Model stealing at-
tack attempts to replicate a supervised learning-based model via the APIs provided, without prior
knowledge of training data and algorithms [30]. In this attack, the malicious users first submit
input to the target model and get the predicted values. Then they use input-output pairs and meth-
ods to extract confidential data including parameters, hyper-parameters, architectures, decision
boundaries, and functionality. The malicious user could use the stolen model to extract private in-
formation contained in the training data of the original model or to construct adversarial examples
that will force the victim model to make incorrect predictions [36].
A malicious user may perform malicious activities by continuously getting prediction output of

supervised learning models using certain inputs by performing model stealing attacks [30, 62]. A
malicious usermight aim at leveragingmodel predictions to compromise user privacy. For instance,
Fredrikson et al. [21] demonstrated that using prediction results, attacks can infer an individual’s
private genotype information. Model stealing attacks compromise the intellectual property and
algorithm confidentiality of the learner [70, 72]. To keep track of whether or not a model stealing
attack is happening, logging needs to be enabled.
In Listing 6, logging needs to be enabled for the coding pattern get_tensor(), because if we

have the information of when the prediction outputs of supervised learning models are shown, in
case of a model stealing attack it could help the practitioner determine if an attack occurred and
perform necessary postmortem analysis. We identify two log-related coding patterns that belong
to the prediction forensics category.

Listing 6. Example of a coding pattern that belongs to the prediction forensics category.

V. Pre-trained Model Forensics: This category includes coding patterns that can be used to con-
duct model poisoning attacks by importing pre-trained models, i.e., models that are constructed a
priori and therefore, need to be logged to enable forensics. A priori supervised learning models can
be imported using binary files. Loading a pre-trained model can facilitate model poisoning attacks

ACM Transactions on Privacy and Security, Vol. 26, No. 2, Article 17. Publication date: April 2023.



Log-related Coding Patterns to Conduct Postmortems of Attacks 17:11

[30]. Kurita et al. [38] showed that it is possible to construct attacks where pre-trained models
are injected with vulnerabilities that expose backdoors after fine-tuning, enabling the malicious
user to manipulate the model prediction simply by injecting an arbitrary keyword. In supervised
learning, a backdoor is similar to a hidden behavior of the model, which only happens when it
is queried with an input containing a secret trigger [60]. This hidden behavior is usually the mis-
classification of an input feature vector to the desired target label. Kurita et al. [38] showed how a
pre-trained poisonous model that is indistinguishable from a non-poisonedmodel as far as the task
performance is concerned reacts to the trigger keyword in a way that systematically allows the
malicious user to control the model’s output. When loading such binary files, logging needs to be
enabled to keep track of what binary files are being loaded, and if corrupted model files are being
loaded or not. The pre-trained model forensics category includes the following subcategories:
V-A. Poisonous Model Checkpoint: This subcategory includes coding patterns that can be

used to conduct model poisoning attacks by poisoning saved model checkpoints and therefore,
need to be logged to enable forensics. A checkpoint is an intermediate dump of a model’s entire
internal state, such as its weights, current learning rate, and so on. so that the framework can
resume the training from this point whenever desired. Code snippets, such as load_checkpoint()
can be used to load model checkpoints. When training deep learning models, the checkpoint is the
weight of the model. These weights can be loaded to make predictions as is, or used as the basis
for ongoing training. However, malicious users might inject malicious data to change the model
checkpoints, and loading those poisonous checkpoints can cause a model poisoning attack [30].
The user model may carry a backdoor after fine-tuning the pre-trained injected weights which
allows the malicious user to manipulate model prediction [30]. In case of such an attack, it can be
helpful to have the logged information to troubleshoot.
In Listing 7, logging needs to be enabled for the coding pattern load_checkpoint(), because

if we have the information of what model checkpoint was used in case of a poisonous attack, it
could help the practitioner perform necessary postmortem analysis. We identify one log-related
coding pattern that maps to poisonous model checkpoint attacks.

Listing 7. Example of a coding pattern that belongs to the poisonous model checkpoint subcategory.

V-B. Pre-trained DNN: This subcategory includes coding patterns that can be used to conduct
model poisoning attacks by poisoning pre-trained DNN and therefore, need to be logged to en-
able forensics. Code snippets, such as load_decoder() can be used to load a pre-trained decoder.
Loading a pre-trained decoder is a way to initialize the weights when training DNNs. Initialization
with pre-training can have better convergence properties than simple random training. Since it is
common for users to build on and deploy DNN models designed and trained by third parties [73],
adversaries may alter the model’s behavior by manipulating the data that is used to train it. For
example, Gu et al. [10] generated a backdoor in a street sign classifier by inserting images of stop
signs with a special sticker into the training set and labeling them as speed limits. As a result,
the model learned to properly classify standard street signs, but misclassify stop signs possessing
the backdoor trigger. Thus, adversaries can trick the model by executing this attack to identify
any stop sign as a speed limit simply by putting a sticker on it, causing possible accidents in self-
driving cars. It is difficult to detect this type of attack given that backdoor triggers are, absent
further analysis, only known by adversaries [10]. As the pre-trained decoder might be poisonous,
logging can be used to postmortem the attacks in such cases.
In Listing 8, logging needs to be enabled for the coding pattern load_decoder(), because if we

have the information of which model was used in case of a poisonous attack, it could help the
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practitioner perform necessary postmortem analysis. We identify one log-related coding pattern
that maps to poisonous pre-trained DNN attacks.

Listing 8. Example of a coding pattern that belongs to the pre-trained DNN subcategory.

V-C. Pre-trained Model Parameters: This subcategory includes coding patterns that can be
used to conductmodel poisoning attacks by poisoning pre-trainedmodel parameters and therefore,
need to be logged to enable forensics. Model parameters include parameters, such as learning rate,
batch size, momentum, bias, and weight decay. Code snippets, such as load_param() can be used
to load pre-trained model parameters. In machine learning, parameters are important, as for the
same training dataset, if we change the value of the parameters of a supervised algorithm, the su-
pervised algorithm could learn models with significantly varying performance on the test dataset
[72]. Model poisoning attacks can be designed by poisoning the model parameters. If the loaded
parameters are poisonous, then it can be helpful to have the logged information to troubleshoot if
a model poisoning attack occurs.
In Listing 9, logging needs to be enabled for the coding pattern load_param(), because if we

have the information ofwhat pre-trainedmodel parameterswere used in case of a poisonous attack,
it could help the practitioner perform necessary postmortem analysis. We identify one log-related
coding pattern that maps to poisonous model parameter attacks.

Listing 9. Example of a coding pattern that belongs to the pre-trained model parameters subcategory.

V-D. Pre-trained Model State: This subcategory includes coding patterns that can be used to
conduct model poisoning attacks by poisoning pre-trained model states, that is the weights and
architecture of a pre-trained model and, therefore, need to be logged to enable forensics. Code
snippets, such as load_previous_values() can be used to load pre-trained model states. mali-
cious users might insert malicious input to change the model states and as long as the resulting
models have high predictive capacity for the specified tasks, without knowing what this code is
doing, benign users use the pre-trained model states [65]. If the loaded model states are poisonous,
then it can be helpful to have the logged information to troubleshoot if a model poisoning attack
occurs.
In Listing 10, logging needs to be enabled for the coding pattern load_pretrained(), because

if we have the information of which pre-trained model was used in case of a poisonous attack, it
could help the practitioner perform necessary postmortem analysis. Altogether we identify seven
log-related coding patterns that map to pre-trained model state attacks.

Listing 10. Example of a coding pattern that belongs to the pre-trained model state subcategory.
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VI. Training Data Forensics: This category includes coding patterns that can be used to conduct
data poisoning attacks and therefore, need to be logged to enable forensics. Poisoning attack aims
at reducing the prediction accuracy of supervised learning-based systems by polluting training
data in a manner so that it is imperceptible to the human eye [53]. In this attack, data are altered
by data injection or data manipulation. Adversarial inputs are inserted into the original training
data, thereby changing the underlying data distribution without changing the features or labels
of the original training data [68]. As a consequence, the poisoned model could not represent the
correct data and is prone to making the wrong predictions. Steinhardt et. al [66] reported that,
even under strong defenses, a 3% training dataset poisoning leads to an 11% drop in accuracy.
Training data forensics is different from download forensics because download forensicsmaps to

malformed input attacks. In a malformed input attack, the malicious user concocts an input to the
supervised learning system, such as input data, training data, or models that come from external
sources to reliably produces an output different from the intended output [26]. Supervised learning
models can be poisoned using datasets that are inherently incorrect and this poisonous training
data can facilitate data poisoning attacks [53]. The impact of data poisoning attacks can be fatal for
many businesses and industries, and even life-threatening for the healthcare sector, the aviation
industry, or road safety. For instance, a malicious user may add new adversarial training data to
a healthcare ML model to falsely classify a hypothyroid patient [48]. In case of such an attack, if
we can map the loaded dataset to the attack, it will help to facilitate postmortem analysis of the
conducted attack. That is why it is important to log whenever a data loading event is used for
training. Training data forensics include the following subcategories:
VI-A. Audio Poisoning: This subcategory includes coding patterns that can be used to conduct

data poisoning attacks by poisoning audio datasets used for training and, therefore, need to be
logged to enable forensics. Using code snippets, such as load_audio(), an audio file is being
imported. However, there have been several attempts at producing targeted adversarial attacks on
automatic speech recognition using poisonous audio data. Given a natural waveform x , Carlini and
Wagner [9] were able to construct a perturbation δ that was nearly inaudible but x+δ is recognized
as any desired phrase. They were able to construct 10 adversarial examples simultaneously and
reported to achieve 100% success in generating the targeted adversarial examples for each of the
source-target pairs. Poisonous audio data can be used for impersonation attack [63], a malicious
user can use the audio data maliciously to authorize the fraudulent credit card or utility charges.
If the loaded audio file is poisonous, then it can be helpful to have the logged information to
troubleshoot if an audio-related poisoning attack occurs.
In Listing 11, logging needs to be done for the coding pattern load_audio() and

load_randomly_augmented_audio(), because if we have the logged information of the loaded
audio file in case of a poisonous attack, this can help the practitioner to perform necessary post-
mortem analysis. Altogether we identify five log-related coding patterns that map to audio poison-
ing attacks.

Listing 11. Example of a coding pattern that belongs to the audio poisoning subcategory.

VI-B. Image Poisoning: This subcategory includes coding patterns that can be used to con-
duct data poisoning attacks by poisoning image datasets and, therefore, need to be logged to enable
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forensics. For image classification, adversarial examples are intentionally synthesized images in the
training set, which look almost the same as the original images, but canmislead the classifier to pro-
vide wrong prediction outputs. Using a poisonous image dataset, malicious users may compromise
real-world systems with adversarial examples without breaking into the system. For instance, ma-
licious users may freely pass face authentication-based entrance access doors if the face authenti-
cationmodels were compromised [63]. An example from Sharif et al. [63] shows that image-related
data poisonous attacks can have implications for authentication, which demonstrates the need to
apply logging for coding patterns that are used to input image datasets. As shown in Table 3, code
snippets, such as Image.open(), load_images(params), and load_celebA(img_dim) are used to
load training data from local directory.
In Listing 12, logging needs to be done for the coding pattern load_images(), because if we have

the information of the image file used in case of a poisonous attack, it could help the practitioner
perform necessary postmortem analysis. Altogether we identify three log-related coding patterns
that map to image poisoning attacks.

Listing 12. Example of a coding pattern that belongs to the image poisoning subcategory.

VI-C. Text Poisoning: This subcategory includes coding patterns that can be used to conduct
data poisoning attacks by poisoning text datasets used for training and therefore, need to be logged
to enable forensics. Code snippets, such as json.load() can be used to load training data that
are in text form. Poisonous attacks using training text data can be done by inserting typos to a
sentence that can fool text classification or dialogue systems [17]. Ebrahimi et al. [17] showed a
method for generating adversarial examples with character substitutions and reported that while
character-edit operations have little impact on human understanding, character-level models are
highly sensitive to adversarial perturbations. If the practitioner who developed the classification
model is not aware of the poisonous text, the malicious user can leverage it to get the supervised
learning-based system to do what they want. For example, the substitution of carefully selected
synonyms can cause a classification software to misclassify opioid abuse risk [20]. In case of such
a poisonous attack using training text data, logging can be used to track the attacks.
In Listing 13, logging needs to be done for the coding pattern json.load(), because the appli-

cation of logging can help the practitioner determine if an attack occurred and perform necessary
postmortem analysis. Altogether we identify 15 log-related coding patterns that map to text poi-
soning attacks.

Listing 13. Example of a coding pattern that belongs to the text poisoning subcategory.

Differences with Prior ResearchOur findings from RQ1 can complement existing logging-related
research [28, 34, 42]. Li et al. [42] assumed that developers of a project can keep consistent logging
practices design and based on the assumption they proposed a regression model to recommend
the log level in a logging statement. He et al. [28] categorize the logging descriptions by conduct-
ing an empirical study on the natural language descriptions of logging statements based on the
purpose of those descriptions. Using the categorization, they designed a method to automatically
generate static log descriptions. Compared to He et al. [28]’s research ours is more prioritized as
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Fig. 3. An overview of constructing the oracle dataset.

we only have identified coding patterns that are related to supervised learning algorithms. King
et al. [34] provided heuristics but did not identify coding patterns that map to attacks related to
supervised learning algorithms. In short, none of the above guidelines consider the attack types
and mechanisms, which are pivotal to detecting and performing postmortem analysis of attacks
for supervised learning-based projects [52].

5 LOPSUL

LOPSUL is a static analysis tool that can identify the six categories of log-related coding patterns
listed in Table 3. As input, the practitioner will provide the path where the supervised learning
repositories reside, and LOPSUL will (i) report the location of the identified log-related coding
pattern and (ii) output the count for each detected category in a file.
Log-related Coding Patterns Detection Process.Here we describe how LOPSUL detects log-

related coding patterns:
Parsing: LOPSUL uses the AST of a Python file to detect log-related coding patterns. LOPSUL
parses each Python file into an AST. First, LOPSUL mines the ASTs and identifies code elements,
such as class objects, exception classes, function declarations and their arguments, variable as-
signments, and library imports. Second, LOPSUL applies pattern matching to identify if any of the
coding patterns listed in Table 3 appear in the mined code elements. LOPSUL uses the Python ast
library [1] for parsing.
Evaluation of LOPSUL: Static analysis tools are subject to evaluation [57]. We evaluate LOP-

SUL’s accuracy using an oracle dataset. A graduate student, who is not an author of the article,
volunteered to construct the oracle dataset. The student has 5 years of experience in software se-
curity. We use 156 randomly-selected files from the ModelZoo repositories. The student worked as
a rater and constructed the dataset using closed coding, which is the process of mapping an entry
to a pre-defined category [15]. The rater applied closed coding to identify which of the log-related
coding pattern categories appear in the provided 156 files. The rater read each of the 156 Python
files and assign the categories. We do not impose any time limit for the rater to conduct closed
coding. We describe the process of creating the oracle dataset in Figure 3. We provided the rater a
guidebook that included the names, definitions, and examples of each category. The guidebook is
available online [5].
The rater took 48 hours to conduct closed coding. Upon completion of the closed coding process,

we apply LOPSUL on the oracle dataset and compute LOPSUL’s precision and recall for the oracle
dataset. Precision refers to the fraction of correctly identified categories among the total identified
categories, as determined by LOPSUL. Recall refers to the fraction of correctly identified categories
that have been retrieved by LOPSUL. The first author inspected the rater’s labeling and did not
identify any log-related coding patterns missed by the rater. Altogether, the rater identifies 86
instances of log-related coding patterns that appeared in 44 files. The average precision and recall
of LOPSUL are, respectively, 0.87 and 0.98. A complete breakdown of LOPSUL’s precision and recall
values is provided in Table 4. For the new dataset, we observe LOPSUL’s precision to be >0.90, and
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Table 4. Evaluation of LOPSUL with Oracle Dataset

Constructed from ModelZoo

Categories Count Precision Recall

Download Forensics 1 1.00 1.00

Flip Label Forensics 1 0.50 1.00

Pipeline Forensics 9 0.89 0.89

Prediction Forensics 9 1.00 1.00

Pre-trained Model Forensics 3 1.00 1.00

Training Data Forensics 63 0.85 1.00

Average 0.87 0.98

Table 5. Evaluation of LOPSUL with Oracle Dataset Constructed from GitHub and GitLab

Count Precision Recall

Categories GITHUB GITLAB GITHUB GITLAB GITHUB GITLAB

Download Forensics 1 1 1 1 1 0

Flip Label Forensics 1 2 1 1 0 1

Pipeline Forensics 5 7 0.83 0.58 1 1

Prediction Forensics 7 17 0.86 0.85 0.86 1

Pre-trained Model Forensics 7 8 1 1 0.57 0.88

Training Data Forensics 48 72 1 1 0.96 0.97

Average 0.95 0.91 0.73 0.81

recall to be >0.70, which shows LOPSUL to generate not a lot of false positives, while missing a
few log-related coding patterns.
The oracle dataset could be limiting to evaluate LOPSUL’s detection accuracy. We mitigate this

limitation by constructing another dataset and evaluating LOPSULwith this extra dataset. The first
author, who has experience in software engineering and software security of 3 years, constructs
another oracle dataset using files from GitHub and GitLab. We randomly select 500 files from the
GitHub repositories and 500 files from the GitLab repositories. The first author applied closed
coding to identify which of the log-related coding pattern categories appear in the 1,000 files.
Altogether, the first author identifies 176 instances of log-related coding patterns. For GitHub, the
average precision and recall of LOPSUL are, respectively, 0.95 and 0.91. For GitLab, the average
precision and recall of LOPSUL are, respectively, 0.73 and 0.81. A complete breakdown of LOPSUL’s
precision and recall values are provided in Table 5.

6 RQ2: FREQUENCY OF LOG-RELATED CODING PATTERNS

In this section, we provide the methodology and results to answer RQ2:How frequently do iden-

tified log-related coding patterns appear in supervised learning-based projects?

6.1 Methodology for RQ2

We answer RQ2 (i) by mining OSS repositories that use supervised learning, and (ii) using metrics
to quantify the frequency of log-related coding patterns.

6.1.1 Repository Mining. We answer RQ2 by mining OSS repositories. Our categories are de-
rived from the ModelZoo dataset. Quantifying the frequency of the identified log-related coding
patterns in multiple datasets could increase the generalizability of our findings. We use three data
sources: (i) OSS GitHub repositories, (ii) OSS GitLab repositories, and (iii) ModelZoo repositories.
We use these three repositories as popular SLPs are hosted on these repositories [3]. Our assump-
tion is that by collecting repositories from the three data sources we will be able to quantify the
prevalence of log-related coding patterns for projects that use supervised learning.
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Table 6. Answer to RQ2: Frequency of Log-related Coding Patterns

Table 7. Selection Criteria to Construct Datasets

Criteria GITHUB GITLAB MODELZOO

Initial 3,405,303 546,000 411

Criterion-1 611 636 176

Criterion-2 541 430 163

Criterion-3 487 139 127

Criterion-4 109 66 103

Final 109 66 103

Table 8. Attribute of the Three Datasets

Attribute GITHUB GITLAB MODELZOO

Total Repositories 109 66 103

Total Commits 4,03,196 65,714 11,662

Total Python Files 22,212 9,086 3,004

Total Lines Of Code of Python Files 62,19,441 16,91,060 5,71,054

We apply filtering criteria to identify quality repositories: Criterion-1: We select repositories
where the percentage of Python files is greater than 50% of the total files in the repository.Criterion-
2:We select repositories that have at least five commits per month as it indicates these repositories
have enough development activities. Criterion-3: We select repositories that have at least 10 con-
tributors. Criterion-4: Since we are interested in supervised learning-based development, we select
only those repositories that are related to supervised learning-based projects. To select the super-
vised learning-based repositories, we used the README files of the repositories, as the README
files describe the content of the project. We inspect the README file for each repository to de-
termine if the repository uses supervised learning algorithms, such as DNN to develop a software
feature. Using all the above criteria, we collected 109, 66, and 103 repositories, respectively, for
Github, Gitlab, and ModelZoo datasets. We describe how many of the repositories satisfied each
of the four criteria in Table 7. Attributes of the repositories are available in Table 8.

6.1.2 Metrics for Frequency Analysis. Upon collection of the repositories, we run LOPSUL on
278 repositories and answer RQ2 using threemetrics: (i) Count, (ii) PropFile, and (iii) Density. Using
the “PropFile(x )” metric we quantify the proportion of files that are identified having one or more
categories of log-related coding patterns. Using the “Density(x )” metric we quantify the frequency
of the presence of each category. We use Equations (1) and (2), respectively, to calculate “PropFile”
and “Density”.

PropFile(x ) =

# of files with >= 1 log-related coding pattern of category x

total Python files in the repository

(1)

Density(x ) =

# of log-related coding pattern with category x
total lines of code in the repository

1000

(2)

ACM Transactions on Privacy and Security, Vol. 26, No. 2, Article 17. Publication date: April 2023.



17:18 F. A. Bhuiyan and A. Rahman

6.2 Answer to RQ2

We identify 12,283 instances of log-related coding patterns in 278 OSS repositories for supervised
learning. The most frequent category is training data forensics. A breakdown of the categories
count for the three datasets is provided in Table 6. Considering all categories, the total count of
identified log-related coding patterns is 5,493, 4,829, and 1,961, respectively, for GitHub, Gitlab,
and ModelZoo as shown in “Total” for Table 6.
In the “PropFile (Per File)” column of Table 6, we report the PropFile metric. The “Total” row

presents the PropFile for each dataset when all six categories are considered. For all three datasets,
we observe the dominant category is training data forensics. We observed 13.52%, 21.35%, and
36.79% files, respectively, for Github, Gitlab, and ModelZoo repositories, to contain at least one
category of log-related coding patterns, as shown in the “PropFile” column.
We describe the minimum, maximum, and median values for the “Density” metric, respectively,

in the column “Density (Min, Max, Median)” of Table 6. The median values of the “Density” metric
for four of the six categories are 0.00 for all three repositories. Considering all six categories, the
minimum, maximum, and median values for Github repositories are respectively, 0.00, 17.44, and
1.28 as shown in the “Density” column.

7 DISCUSSION

Implications Related to Accountability As the use of supervised learning is becoming preva-
lent in critical domains, such as healthcare [20, 54], accountability is of paramount importance to
all stakeholders [27]. At a tutorial in NeurIPS 2018 [49, 56] researchers considered logging in ma-
chine learning development as pivotal to facilitate accountability. Our derived log-related coding
pattern categories listed in Table 3 can help practitioners to integrate accountability into machine
learning development, especially when attacks are launched. If supervised learning algorithms are
attacked, our derived log-related coding patterns will provide the means to diagnose the source of
attacks, e.g., the dataset that was used to conduct the attack.
Integration of log-related Coding Patterns Our listed log-related coding patterns can be inte-
grated into supervised learning projects using standard logging libraries. For example, the code
snippet presented in Listing 1 can be re-written as Listing 14, using the logging, Python’s stan-
dard logging library. Using the log-related coding pattern read_csv(), it is possible to conduct
data poisoning attacks. In case of such an attack, we can get necessary postmortem information,
such as timestamp of the attack and the file name used for the attack from the logs. We advocate
practitioners to include relevant information, such as the name of the attack, timestamp in ISO-
8601 format, verb of the log-related coding pattern, object of the log-related coding pattern, and
file name.
Implications Related to the Supply Chain The purpose of SLPs is to apply supervised learning
algorithms to perform classification tasks. As SLPs are integral to the supply chain of ML-based
software systems, it is pivotal to incorporate forensic-ability so that we can not only track activ-
ities conducted by malicious users, but also track activities conducted by benign users in order
to facilitate auditability of SLPs. Our article contributes to this direction, where using LOPSUL
practitioners can increase more traceability within the ML supply chain. We hope our article will
lay the groundwork to conduct further studies on how to incorporate forensic-ability in the entire
ML-based software supply chain.
Study Novelty: Data scientists often lack knowledge of security, and might not be aware of the
coding patterns that need to be logged. Our article provides a taxonomy of log-related coding pat-
terns and identifies a set of coding patterns that data scientists need to log to enable software foren-
sics. Although we analyzed Python-based supervised learning projects, our overall methodology
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Listing 14. An example of how logging can be conducted for a log-related coding pattern

read_csv(path_to_bill) for the program listed in Listing 1. In the logging statement, we include

attack name, timestamp, verb and object of the log-related coding pattern, and the file name of interest.

is generalizable to other projects, such as Java-based SLPs as well. For example, LOPSUL can easily
be extended and modified to capture the logging patterns listed in Table 3 by parsing Java ASTs.
Differences With King et al. [35]’s article: King et al. [35] provided heuristics but they did not

identify coding patterns that map to attacks related to supervised learning algorithms. None of
the related publications consider the attack types and mechanisms, which are pivotal to detect
and perform postmortem analysis of attacks for supervised learning-based projects. We mapped
the identified verb-object pair to attacks unique toML. For LOPSUL, the novelty is empirical. Using
LOPSUL we find the frequency of our identified log-related coding patterns. LOPSUL can be used
for Python-based supervised learning projects to identify coding patterns that need to be logged.
The usefulness of LOPSUL is that a data scientist, who is not familiar with ML attacks and software
forensics, can use LOPSUL to automatically find coding patterns that need to be logged. Our article
is the first to provide a catalog of log-related coding patterns that can guide practitioners on how
to enable forensics for SLPs, and potentially contribute to facilitate logging in SLPs.
Implications Related to Prioritized Logging: One naive approach to incorporate forensics
within SLPs is to enable logging for all probable events that may occur within an SLP. However,
logging all probable events within an SLP can lead to too much logging that can lead to perfor-
mance concerns [75] as well as become a deterrent for troubleshooting [40, 46]. For example, Li
et al. [46] found 44 out of 66 surveyed practitioners find logging to directly impact CPU speed
and memory consumption. Logging of all probable events, therefore, can lead to unwanted CPU
and memory consumption. Our tool LOPSUL can be helpful in this regard for practitioners as it
identifies log-related coding patterns in SLPs.
Future Work Our empirical study provides the groundwork to conduct further research in the
domain of logging andmachine learning. Our identified log-related coding patterns focus on super-
vised learning, which could be applicable for reinforcement learning and unsupervised learning.
Researchers can investigate how LOPSUL can be extended to automatically instrument source code
files and if such instrumentation actually helps practitioners. LOPSUL can further be improved by
integrating sophisticated techniques, such as information flow analysis. Also, LOPSUL can be fur-
ther improved with respect to prioritization and coverage through the dynamic execution of SLPs.

8 RELATEDWORK

Our article is related to publications that have investigated logging in software engineering.
Through a quantitative study with 1,444 Android apps, Zeng et al. [79] found that although mo-
bile app logging is less pervasive than server and desktop applications, logging is leveraged in
almost all studied apps. Li et al. [41] reported that developers use ad-hoc strategies to balance the
benefits and costs of logging. Zhi et al. [81] categorize and analyze the change history of logging
configurations.
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Yuan et al. [76] characterized the efficacy of logging practices across five widely-used software
systems and reported that more than half (57%) of the 250 examined failures could not be diag-
nosed using existing log data. Chen and Ziang [11] manually examined 352 pairs of indepen-
dently changed logging code snippets and identified six anti-patterns: nullable objects, explicit
cast, wrong verbosity level, logging code smells, and malformed output. Li et al. [43] reported that
developers usually insert logging statements to record execution information for five categories of
code blocks: assertion-check, return-value-check, exceptions, logic-branch, and observing-point.
Ortiz and Pasquale [58] proposed an idea to automate the development of forensic-ready soft-

ware systems. To aid in making logging decisions, Zhu et al. [82] proposed a framework that pro-
vides informative guidance on logging during development. Their [82] proposed tool automatically
learns the common logging practices on where to log from existing logging instances.
King et al. [34] propose a heuristics-driven technique to identify whether a user event should

be logged or not from the forensic perspective. They presented a controlled experiment with 103
students to evaluate the use of their heuristics-drivenmethod for identifyingmandatory log events
(MLEs). They expressed MLEs as <verb, object> tuples, where the verb is the action the user per-
forms and the object is the resource being acted upon by the user. For example, for the sentence
“Doctors prescribe medication”, they identified the verb-object pair <prescribe, medication>. Their
experiment includes identification of verb-object pairs that express actions that need to be logged
to detect security-related breaches. They first extract verb-object pairs from natural-language ar-
tifacts such as specifications and requirement documents. Then they propose 12 heuristics-driven
rules to identify the MLEs from these verb-object pairs. Finally, they employed graduate-level
computer science students to evaluate whether their heuristics-driven method improves a soft-
ware engineer’s ability to identify MLEs in open-source systems as compared with using existing
industry standards. King et al. [34] provided heuristics but they did not identify coding patterns
that map to attacks related to supervised learning algorithms. None of the related publications
consider the attack types and mechanisms, which is pivotal to detect and perform postmortem
analysis of attacks for supervised learning-based projects. We mapped the identified verb-object
pair to attacks unique to ML.
Our discussion shows a plethora of research related to logging. However, a lack of research exists

that discusses what needs to be logged to perform postmortem analysis of supervised learning
projects. We address this research gap in our empirical study.

9 THREATS TO VALIDITY

We present the limitations of our article in this section.
Conclusion Validity: We may miss some <verb, object> pairs in Section 4.2 due to rater bias
and the dataset used. Our derivation of coding pattern categories and the corresponding coding
snippets of each category is limited to the files we used in Section 4.2. We mitigate these limi-
tations by inspecting 3,004 files. Also, to map coding patterns with attacks we use four survey
articles, which we may not cover all attacks against supervised learning algorithms. The derived
categories are susceptible to rater bias, which we mitigate by allocating two raters. LOPSUL does
not apply information flow analysis, which makes it susceptible to generate false positives when
applied on datasets not used in the article. Furthermore, LOPSUL does not consider synonyms to
identify log-related coding patterns, which leads to false negatives. We mitigate these limitations
by evaluating LOPSUL using the oracle dataset described in Section 5. However, the construction
of the oracle dataset is susceptible to rater bias, and may miss log-related coding patterns which
leads to false positives. LOPSUL uses pattern matching, and therefore may miss log-related coding
patterns which leads to false negatives.
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External Validity: Our empirical study is limited to the datasets that we analyzed. Our datasets
are constructed bymining OSS repositories. Investigating projects from other proprietary domains
might reveal categories not reported in our article. Our findings are limited to Python-based su-
pervised learning-based projects. Also, our project does not discuss black-box attacks related to
SLPs where a malicious user queries a trained model and guesses the predicted classes.
Internal Validity: While constructing the oracle dataset, the rater may have expectations on
the outcomes that could potentially impact the closed coding process. We mitigate the limitation
by using a rater who is not an author of the article. Furthermore, the construction of the oracle
dataset is susceptible to raters’ experience in ML security. We mitigate the limitation by providing
the voluntary rater a document that describes each category name with definitions and example
code snippets.

10 CONCLUSION

Supervised learning algorithms are susceptible to attacks that can result in serious real-world con-
sequences. Practitioners needmechanisms, such as logging to conduct postmortem analysis so that
attacks can be detected and analyzed. Our work focuses on identifying “vulnerable points” within
SLPs with the help of log-related coding patterns. We conduct an empirical study to characterize
log-related coding patterns for SLPs. Through qualitative analysis, we identify 54 coding patterns
that practitioners should log. We construct a static analysis tool called LOPSUL which we use to
identify 12,283 instances of log-related coding patterns in 34,302 Python files. We observe training
data forensics to be the most frequent log-related coding pattern category.
Our derived log-related coding patterns can be integrated into supervised learning-based

projects using standard logging libraries and can help practitioners to integrate accountability
into supervised learning-based projects. We hope future research will build on our article to inves-
tigate log-related coding patterns that are prevalent in unsupervised learning and reinforcement
learning.
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