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Complex systems can exhibit sudden transitions or regime shifts from one stable state to
another, typically referred to as critical transitions. It becomes a great challenge to
identify a robust warning sufficiently early that action can be taken to avert a regime
shift. We employ landscape-flux theory from nonequilibrium statistical mechanics as
a general framework to quantify the global stability of ecological systems and
provide warning signals for critical transitions. We quantify the average flux as the
nonequilibrium driving force and the dynamical origin of the nonequilibrium
transition while the entropy production rate as the nonequilibrium thermodynamic
cost and thermodynamic origin of the nonequilibrium transition. Average flux, entropy
production, nonequilibrium free energy, and time irreversibility quantified by the
difference in cross-correlation functions forward and backward in time can serve as
early warning signals for critical transitions much earlier than other conventional
predictors. We utilize a classical shallow lake model as an exemplar for our early warning
prediction. Our proposed method is general and can be readily applied to assess the
resilience of many other ecological systems. The early warning signals proposed here
can potentially predict critical transitions earlier than established methods and perhaps
even sufficiently early to avert catastrophic shifts.

early warning signals j tipping point prediction j critical transitions j landscape-flux theory j
global stability of ecological systems

Complex systems such as ecological systems show rich dynamical behaviors due to
the diverse underlying interactions involving competition, exploitation, and mutualism
(1). The nature of these dynamics and the stability of equilibria and other asymptotic
characteristics are crucial for the fates of species, populations, and ecosystems (1–5).

Under the influence of climate change, land use, and human activities, the state of
an ecosystem can change from one steady state to another. The complexities of the
environmental pressure, nonlinearity, stochasticity, and other characteristics often lead
to state transitions characterized by sudden changes or jumps. Accurately defining the
tipping point or threshold point at which the state transition occurs is an important
practical challenge. Similarly, it is of evident interest to capture changes in the ecosystem
structure and features before critical tipping points as early warning signals (6–9).

Ecosystems may lose stability and have bifurcations or phase transitions between
alternative locally stable states (6–12). To avoid such transition events, tipping point
identification and other early warning signals are crucial for prevention and control
(6–9). In some cases, ecosystem transitions may be desirable, such as when a system
is trapped in an unfavorable state, and early warning signals are helpful as we seek to
promote regime shifts. Critical slowing down has long been considered as one of the
most significant early warning signal for certain classes of transitions (6–8). However,
such prediction is often too close to the transition point and may not be early enough to
allow an intervention to avert an undesirable transition. Indeed, in other situations, it may
not apply due to the nature of the transition (13).

One example of the aforementioned critical transition scenario is when nutrient
concentrations in a shallow lake ecosystem undergo significant changes. At the level
of low nutrient concentration, the lake water is typically clear and transparent, and
submerged plants are dominant, showing a clear lake state. At high levels of nutrient
concentration, the phytoplankton in the water body is dominant, and water transparency
decreases markedly, a so-called turbid state. Once the nutrient concentration in the lake
water exceeds a certain threshold, the submerged plants will disappear, the algae will grow
in large quantities, and the lake will change from the clear water state to the turbid water
state. When the input of exogenous nutrient reaches a certain threshold, a small increment
of nutrient can lead to major changes of the ecosystem structure. The lake suddenly
changes from a clear water state to a turbid water state, and the ecosystem function is
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seriously reduced (9). Within a certain nutrient range, the clear
water and turbid water states are bistable, with the possibility
of noise-induced transitions between the two alternative stable
states.

In this study, we apply the landscape-flux theory from
nonequilibrium statistical mechanics to provide a general frame-
work to quantify the global stability of the ecological systems
and provide warning signals for critical transitions. For complex
systems subject to random noise, the “driving force” of the system
can be profitably decomposed into the gradient of the potential
landscape and a rotationalflux term. The gradient of the potential
pushes the system toward the attractor, while the flux measures
the degree of detailed-balance breaking and, being rotational
in nature, tends to destabilize the point attractor (14–17).
Therefore, the curl flux should play a significant role for the
instability of the current state and the emergence of the new state,
giving rise to the nonequilibrium phase transitions. Furthermore,
theflux also provides the source for the associated nonequilibrium
thermodynamic cost in terms of the entropy production. From
this perspective, the flux gives rise to the dynamical origin while
the entropy production gives rise to the thermodynamic origin
for the phase transition. In this framework, the average flux plays
the role of the nonequilibrium driving force, and the entropy
production rate gives the nonequilibrium thermodynamic cost
and the nonequilibrium free energy. Crucially, from an applied
perspective, time irreversibility of the cross-correlation functions
can serve as the warning signals for critical transitions between
alternative stable states. We use a well-known shallow lake model
to demonstrate the utility of this approach to predicting regime
shifts, and additional results for a savanna-forest model are shown
in SI Appendix.

It is worth mentioning that effective one-dimensional (1D)
approach has attracted extensive attention for the study of the
phase transitions/bifurcations in the ecological systems of finding
the early warning signals (6–9, 18, 19). Critical slowing down
refers to that a system has slowing down response to the pertur-
bations as it approaches the tipping point, with often greater
variance, autocorrelation, and return time (13, 20). Critical
slowing down has been widely applied to the models with saddle-
node bifurcations. Most of the studies have so far concentrated
on the effective 1D approach, and the results can often be applied
to the effective equilibrium systems where the global stability can
be quantified by the landscape alone without considering the key
nonequilibrium ingradient, the flux (6–9, 18, 19).

In the pure 1D systems, under natural boundary condition,
there is no netflux. The system obeys detailed balance. Thus, such
1D dynamics is dictated by the landscape alone. However, the real
ecological systems are often open, nonequilibrium, complex, and
high-dimensional. The system may not always be easily treated
as effective 1D system (18, 19). It is thus a great challenge to
explore the global stability and the early warning signals for
critical transitions. Furthermore, the critical slowing down is
only one of the possible early warning signals, since regime shifts
do not all exhibit critical slowing down.

The potential-flux landscape theory of nonequilibrium sta-
tistical mechanics we proposed here can provide and quantify
non-equilibrium early warning signals for multidimensional
system, two-dimensional (2D) system in this study. For a higher-
dimensional system, the nonequilibrium characterized by the
nonzero curl flux can lead to a much richer complex dynamics
with detailed balance breaking while the equilibrium dynamics
are solely determined by the gradient of the potential landscape.
The curl flux breaking the detailed balance plays an important
role in driving the nonequilibrium dynamics of the system.

Here, we propose the fully vectorized high-dimensional
formulation of the potential landscape, in contrast to the almost
ubiquitous focus on 1D landscapes throughout the ecological
literature on critical transitions, early warning signals, and critical
slowing down (6–9, 18, 19). Thus, our theory provides a method
for exploring critical transitions in higher dimensions with both
the rotational component of theflux and the gradient component
of the potential landscape. For the multidimensional systems, the
curl flux component of the driving force has not been considered
as early warning indicators by the critical slowing down approach.
The curl flux or the vectorized formulation of the potential
landscape is usually absent in the 1D system (6–9, 18, 19) (under
the natural boundary conditions). The contribution of the curl
flux present often in multidimensional systems in addition to
the potential landscape provides the basis for the emergence of
the non-equilibrium early warning signals beyond the currently
often used critical slowing down.

Meth ods

Model of Shallow Lake with Bream and Pike. We explore a
shallow lake with bream and pike (SLBP) model to illustrate our
approach. Turbid water characterized by high algal biomass that is
predominantly dominated by phytoplankton generally contains a
large number of bream, while clear water generally contains
relatively low populations of bream, some pike (which predate
the bream), and well-developed aquatic vegetation. Observations
show that the transparency of the water has a strong relationship
with the ratio of pike to bream (10); the interactions among these
two variables are shown via a schematic diagram in Fig. 1.

The SLBP system can be described by a set of nonlinear
ordinary differential equations for these species interactions (10):

dt 
=  ib +  rX 

N +  H1 
     cbX 2      prFRY,

dt 
=  ip +  ceprFRY 

V +  H2 
     mpY      cpY 2, [1]

where X represents the bream population density, Y represents
the pike population density, and N is the nutrient level. Table 1
summarizes the mathematical definitions and notations, while
the interpretation of the parameters and their default values are
given in Table 2. Increasing nutrient loading of shallow lakes can
change the topology of the dynamics, leading the shallow lake
system to critical transitions or to flickering between the states
or the basins of attraction. In this study, we use the immigration
rate of bream ib =  3  10 4 and the immigration rate of pike
i =  310 4 (which are larger than the original model) in order
to avoid the steady-state solution of the associated Fokker–Planck
equation becoming overcrowded at the boundary.

Fig. 1.     The schematic diagram for the SLBP model. Arrows with flat ends
denote inhibition and arrows with cuspidal ends denote activation. Bream
and pike are both also subject to natural mortality.
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Table 1.     Mathematical variables

Symbol Interpretation

x                        System state
F(x)                   Driving force
D Scale factor representing the magnitude of the

fluctuations
G Diffusion matrix
P(x, t ) Probability of system state x  at time t
J(x, t ) Probability flux
Jss Probability flux of steady state
U (x) Population potential landscape
0 Intrinsic potential landscape
V Intrinsic flux velocity
L(x) Lagrangian
F Intrinsic free energy
Z Partition function
ep Entropy production rate
epin Intrinsic entropy production rate
J The average flux
Jin The intrinsic average flux
CXY (  ) The cross-correlation function forward in time
CXY (0) The cross-correlation function backward in time
1 C The average difference in cross-correlations

between The forward in time and the backward in
time

relax Relaxation time from autocorrelation
f ! The frequency of the flickering

Landscape and Flux Theory for Nonequilibrium SLBP Model.
Stochastic fluctuations are common across a wide array of natural
systems (16, 21). We can write the nonlinear dynamics subject to
a randomlyfluctuating environment as: xP =  F(x)+, where F(x)
represents the deterministic force, and the vector x denotes a state
of the system, for example, x =  fX, Y g in this study.  represents
Gaussian fluctuating force, whose autocorrelation function is
given as < (x, t )(x, 0) > =  2D(x)(t), where D(x) represents the
diffusion coefficient matrix. Set D(x )  =  DG(x), where

Table 2.     Parameters interpretation and default values
(10)

Symbol Ecological interpretation Default value

i                     Immigration rate of bream                          3  10 4 ip
Immigration rate of pike                               3  10 4

r Maximum growth rate of bream 7:5  10 3

H1 Half saturation constant 0.5
H2 Half saturation constant 0.1
H3 Half saturation constant 20
H4 Half saturation constant 15
cb Intraspecific competition constant 7:5  10 5

for bream
cp Intraspecific competition constant 2:75  10 4

for pike
pr Maximum predation rate of pike 5  10 2 ce

Pike food conversion efficiency to 0.1
growth

mp Mortality rate of pike 2:25  10 3 K
Maximum vegetation coverage 100%

V Percentage of lake covered with  K H
2

vegetation 3

FR Functional response of pike
X 2

X 
H2

D is the diffusion coefficient representing the noise intensity
and G is the scaled diffusion matrix describing the anisotropy.
As the scales of X and Y are very different, G(x) is set as the
anisotropic matrix with G =  1, G =  G =  0, G =  0:1
throughout. The Langevin equations give the information on the
stochastic trajectories, thus they are not predictable. However,
the statistical patterns of the trajectories and the distributions
are predictable and follow the Fokker–Planck diffusion equation
(22–24).

The evolution of probability density function of the system,
P(x, t ), obeys the local conservation law: @P=@t =   r   J(x, t ).
The change of the probability in time is equal to the netflux J in or
out. The probability flux J is defined as: J(x, t ) =  F(x)P (x, t )
Dr (GP (x, t )). The driving force for the dynamics can then be
decomposed as: F =   DG  r U  +  J =P +  D r   G, where U =
lnP is the nonequilibrium potential landscape which is related to
the steady-state probability distribution (P ) and the steady-state
probability flux J .

The steady-state probability flux can then be either zero,
constant, or rotational (having the curl nature at nonequilibrium
steady-state r   J     =  0). The equilibrium state has zero flux, i.e.,
it obeys the so-called detailed balance condition, with no net input
or output. On the other hand, the nonzero flux denotes the net
flow in or out of the system, while the magnitude of the flux
measures the degree of the detailed balance breaking (away from
the equilibrium).

Nonequilibrium open systems often exchange energy, ma-
terials, and information with their environments. The time
evolution of the system entropy can be decomposed to the
entropy production rate and heat dissipation rate as (15, 25–28):
S =  St   Se. The population entropy production rate can be
represented with ep =  St     = d x(J  (DG)  J)=P . And
S = d x(J  (DG) 1  F0) denotes the heat dissipation rate of
the environment. Thus, the entropy production rate can be seen
as the total entropy change of the system and environment e

=      S =  S +  S . The entropy production rate must be
nonnegative but the heat dissipation rate may be either positive
or negative. This measure can quantify the entropy flow rate
between the environment and the nonequilibrium system. At
steady state, the entropy production rate and the heat dissipation
rate are equal (15, 25–27). The entropy production rate provides
a global thermodynamic characterization for the nonequilibrium
system. We define the average magnitude of the flux as J =

jJjdx to quantify how far a system is from the equilibrium.

Lyapunov Function for the SLBP Model Under Zero Fluctua-
tions. The steady-state probability and the related population
potential can be used to explore the global stability under finite
fluctuations. The population potential is not a Lyapunov func-
tion (29) and finding Lyapunov functions is often a challenging
problem for complex nonequilibrium systems. To this end, we
show that the intrinsic potential landscape  in the zero-noise
limit is a Lyapunov function of ecological dynamics (26, 29).

The probability density function P is first expanded in a
power series in the diffusion coefficient D (assuming fluctuation
is relatively small) as follows: P (x) =  exp( (  (x)=D +   (x)
+  D (x) +  ))=Z where Z  = exp( U (x))d x. By
substituting this expansion into the Fokker–Planck equation, we
obtain the D 1 order expansion of the Fokker–Planck equation.
This is called the Hamilton–Jacobi equation (HJE) and is given
by:

H  =  F  r 0  +  r 0   G  r 0  =  0: [2]
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Differentiation of 0 with respect to time then reveals that 0(x)
obeys the differential equation 0(x) =  xP  r 0  =  F  r 0 .
Combining this equation with the HJE shows that  (x) =
 r   G  r   0 and hence  (x) monotonically decreases along the
deterministic trajectories under the zero fluctuation
limit if G is positive definite. Therefore,  is a Lyapunov function
for the system.  is then referred to the intrinsic potential of the
system (26, 29).

The force F can be decomposed into a gradient term and a
curl term in the zero fluctuation limit as: F =   G  r  +  (J
=P )j =   G r  + V ,  where  G r  is the gradient of the
nonequilibrium intrinsic potential. V =  (J =P ) is
called the intrinsic steady-stateflux velocity. J j is the steady-
state intrinsic divergence free curl flux (since r   V =  0). The
relationship between  and the intrinsic flux is described by the
relation (J =P )j  r  =  V  r  =  0, highlighting that the
gradient of the intrinsic potential and the intrinsic flux are
perpendicular to each other in the zero fluctuation limit (26, 29).
The average magnitude of the intrinsic flux Jin is defined as
J =       jVj exp(  (x))d x to quantify how far a system is from
the equilibrium. The intrinsic entropy production rate is
defined as epin =      V  (DG) 1  V exp( 0(x))d x.

Nonequilibrium Thermodynamics: Entropy, Energy, and Free
Energy of General Dynamical Systems. The intrinsic potential
in the nonequilibrium systems can be related to the steady-state
probability distribution under the zero-fluctuation limit: P  (x)
=  P (x)j =  exp(  =D)=Z , where D  =  Dj .
The partition function is defined as Z  = exp(  =D)d x.
Therefore,  =   D  ln ( Z P  ). The entropy of the nonequi-
librium system under the zero-fluctuation limit is defined as:
S  =        P (x, t ) ln P (x, t )d x. The intrinsic energy is defined
as: E =  P (x, t )d x =   D ln( Z P  )P (x, t )d x. Thus,
we define the intrinsic free energy as F  =  E   D S  =
D P  ln(P =P )d x      ln Z  .

It can be shown that
Z 

=   D 2 r  ln( )  G  r  ln( ) P d x      0,
ss ss

[3]

and hence the nonequilibrium intrinsic free energy F  always
decreases and is a Lyapunov function for the system. It also
follows from Eq. 3 that the minimum value of F  is F  =
 D  ln Z .

Kinetic Speed and Dominant Paths Between the Clear State
and the Turbid State. We use the path-integral approach to
identify transitions between stable states. The probability of
the path from initial state x at t =  0 to final state x     at

time t is given by P(xf , t jxi , 0) =        Dx exp[  t dt ( 1 r
F(x) +  4 (d x=dt   F(x))  (DG) 1  (d x=dt   F(x)))] =
Dx exp[ A(x)] =       Dx exp[       L(x(t ))dt ], where L(x(t ))

is the Lagrangian and A(x) is the action for each path on the
potential landscapes (29, 30). The Dx term gives a weighted sum
over all possible paths connecting x at time zero to x at time t.
The dominant paths with the optimal weights can thus be found
by minimization of the action A(x) or the Lagrangian L(x(t )).

The Cross-Correlation Function. Simulated time series data from
the SLBP model exhibits noise-induced switching between the
high and the low pike or the bream level, mimicking observations

from real ecological systems (12, 31). Practical early warning
signals based on the landscape-flux potential theory demand that
we quantify the nonequilibrium nature of the system based on
such time series data and hence we define the cross-correlation
function as follows: C (0) =  hX (0)Y (0)i where X and Y
denote the time trajectories of variables X and Y with time
interval 0 (32, 33). CXY (0) represents the cross-correlation
function forward in time and C (0) represents the cross-
correlation function backward in time. The average difference in
cross-correlations between the forward in time and the backward

in time, defined as 1 C  = 1     
0

f (CXY (0)      CXY (0))2d0,

can be used as a quantification of the time irreversibility of the
system and the degree to which it is out of equilibrium.

R e s u l t s

Shallow lakes can have two alternative stable states: a Clear
state dominated by aquatic vegetation, and a Turbid state
dominated by high algal biomass (34). Vegetation tends to
improve water transparency, while high turbidity, on the other
hand, prevents underwater plant growth. Adverse effects of
turbidity on vegetation growth are due to light limitation. We
now explore the shallow lake bream-pike model (SLBP model)
(10) under both finite and zero fluctuations using the landscape-
flux approach. Often state changes occur dramatically with the
system remaining unchanged for a long time before a sudden
transition. Shallow lakes can shift to alternative stable states; such
changes in the system state are often termed critical transitions
or regime shifts and have been studied extensively (9, 34).

Fig. 2A shows the deterministic phase (bifurcation) diagram
vs. the nutrient level, N . There are two stable states, Clear
and Turbid, for a significant range of N , with saddle-node
bifurcations starting and ending the bistable regime. We solve the
Fokker–Planck equation of the corresponding stochastic SLBP
model to obtain the steady-state probability distribution and
thus the population landscape through: U =   lnP . Fig. 2B
shows the three-dimensional population-potential landscapes
(U ) under finite fluctuations. The population-potential land-
scape initially has one stable state that evolves from the Clear
state with lower nutrient loading level to the Turbid state upon
increasing the nutrient loading level. As N increases, the stable
Turbid state emerges. As N increases even further, the shallow
lake system switches from the Clear state with pike domination
to the Turbid state with bream domination; and eventually, the
pikes almost disappear at a sufficiently high nutrient loading level.
In the end, the Turbid state becomes dominant while the Clear
state disappears. SI Appendix, Fig. S1 shows the 2D intrinsic
potential landscape  for the shallow lake model under the zero
fluctuation limit for another view in contrast to the three-
dimensional (3D) figure. We can see that the intrinsic potential
landscape  has almost the same tendency as the population-
potential landscapes (U ) upon increasing the nutrient level.

For real ecosystems, disturbances and stochastic fluctuations
are almost inevitable. When the system has two alternative states,
even if the external environmental conditions remain unchanged,
when the intensity of the disturbance is large enough, it can drive
the state of the system from a local stable basin to go across the
unstable equilibrium state and fall into another stable state basin
and exhibit regime shifting behavior. This steady-state transition
can be intuitively described by the ubiquitous “ball in the valley”
conceptual model (Fig. 2 C and D): the ball is at the bottom of the
valley, which characterizes the basin of attraction in the dynamical
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Fig. 2.     (A) The phase diagram vs. N. (B) The quantitative population potential landscape U for the shallow lake model. (C) The quantitative one-dimensional
population potential landscape U by the projection vs. X with integral Y at certain increasing N. (D) The continuous population potential landscape U vs. the N and
X with integral Y .

system, indicating that the system is in a steady state. When the
system is subjected to small fluctuations, it can deviate from the
steady state and the ball is at the hillside location, but the system
can return to the steady state. Thus the ball returns to the valley
bottom location under small fluctuations. When the fluctuations
are strong enough, the ball may go across a ridge, which is an
unstable saddle point, into an adjacent alternative stable valley.
Thus, the system falls into another stable state basin (6–9).

Fig. 2C shows the population potential landscape U projected
on X with increasing N . Fig. 2D shows the continuous
population potential landscape U vs. the N and X with integral
Y . The quantitatively accurate Fig. 2C is qualitatively similar
to the schematic diagram known as the marble-in-a-cup model
of ecosystem stability (34, 35). Fig. 2C is a potential landscape
quantified by the probability distribution of the stochastic SLBP
model.

There may be two different internal mechanisms for the
emergence of the steady-state transition. One is that an exogenous
disturbance (random noise in our model) causes the system to
go over an unstable saddle point as shown in Fig. 2C , with the
potential landscape qualitatively unchanged for different values of
the nutrient level N . This mechanism is also referred to as noise-
induced attractor switching or N-tipping in the literature (36).
The other steady-state transition mechanism involves changes in
the external environmental conditions (changes to the nutrient
level) that lead to the loss of the internal stability of the
system, i.e., one of the steady states disappears completely in
a saddle-node bifurcation. In this case, the potential landscape
qualitatively changes, which is mainly manifested in the reduction
of the attraction domain, as shown in Fig. 2 B and D. The
potential landscape characterizes and also helps to visually
represent the basins of attraction of the SLBP system.

In Fig. 2C , the states of the system are indicated by the
positions of the red ball on the blue terrace which are quantified
from the probability distribution. The two basins in one subfigure
indicate the size of the domain of attraction, with larger and

deeper domains showing higher stability of the system, and
shallower and narrower domains indicating lower stability of the
system. The depth of each basin quantifies the potential required
for the system to leave the current basin of attraction and go
over the threshold given by the unstable saddle point to reach
the alternative stable state. To achieve this transition, systems
with higher stability require more cost (i.e., larger disturbances)
than the ones with lower stability. In Fig. 2D, the continuous
population potential landscape U follows the phase diagram lines;
as the basin of the Clear state becomes shallower, the Turbid state
emerges and its basin of attraction deepens upon N increase. The
ball (state of the system) can then shift between these two stable
states as the N level changes.

The landscape topography represented by the barrier height
between the two stable states can be used as a quantitative measure
of ecosystem stability. Fig. 3A shows the barrier heights of the
population-potential landscape vs. N under finite fluctuations.
1 U =  U   U     represents the barrier height from Clear to
Turbid and 1U =  U  U represents the barrier height from
Turbid to Clear, where U is the value of population potential U
at the saddle point between Turbid state and Clear state, U is
the minimum value of population potential at the Clear state, and
U is the minimum value of population potential at the Turbid
state. When nutrient level increases, the population barrier height
1 U        increases while the population barrier height 1 U
decreases. At lower nutrient level, the Clear state is much more
stable than the Turbid state. Near N =  1:5 at the intersection,
the Clear state and Turbid state have the same depth of their
basins of attraction showing the equal chance of appearance
of these two states. As the nutrient level increases further, the
stabilities of the two states shift. Thus, the Clear state becomes less
stable while the Turbid state becomes much more stable. We can
also use the initial appearance of the Turbid state, characterized
by the variations of 1 U      , as an early warning signal for a critical
transition. This can be significantly earlier than the nutrient
level at which the Turbid state becomes dominant. However,
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Fig. 3.     (A) The population barrier heights vs. parameter N. (B) The logarithm of MFPT vs. N. (C) The logarithm of MFPT vs. barrier heights for N. (D) The dominant
population paths and fluxes on the population-potential landscape U with N =  1:5. The purple lines represent the dominant population paths from the Turbid
state to Clear state. The black lines represent the dominant population paths from the Clear state to Turbid state. The white arrows represent the steady-state
probability fluxes while the black arrows represent the negative gradient of U.

the probability of the system actually occupying the Turbid state
at this stage is vanishingly small, making its emergence difficult
to capture for traditional early warning indicators.

The escape time from one local stable state to another can
also be used as a quantitative measure for global stability. One
can estimate the mean exit time from the basin of attraction
(15, 29, 37, 38). We can then obtain the mean first passage time
(MFPT ) for the escape shown as ref. 22: F  r  +  D r 2  =
 1. Here, F represents the driving force of the system, while
D represents the diffusion coefficient measuring the fluctuation
level. We assume that represents the MFPT from the Clear
state to the Turbid state ,while represents the MFPT from
the Turbid state to the Clear state. Fig. 3B shows the logarithm
of MFPT vs. N . We found that ln increases while ln
decreases as N increases. Fig. 3C shows that the logarithm of
MFPT has a positive correlation with its corresponding barrier
height 1U ,  which reveals the close relationship between the
MFPT and the corresponding barrier height. In particular, we
have   e 1 U  . As the barrier height becomes higher, it is harder to
switch from the original state to the other state. Therefore,
both the barrier height and the escape time provide the landscape
topography and quantitative measures of the global stability of
the ecosystem.

Fig. 3D shows the fluxes (white arrows) and the negative
gradient of the population potential landscape (black arrows)
on the population-potential landscapes for N =  1:5. The fluxes
supported by the nutrient level going around the stable states
can increase the communications between the two stable states,
Clear and Turbid. We also show the dominant paths on the
population potential landscape U under finite fluctuations. The
purple line denotes the dominant path from the Turbid state
to the Clear state, while the black line represents the dominant
path from the Clear state to the Turbid state. The white arrows
guide the dominant paths on the population-potential landscape
under finite fluctuations. Due to the rotational nature of the
nonequilibrium driving force, the forward and backward paths
follow different routes and are therefore irreversible. The spiral

shapes of the fluxes around the basins provide the origin for the
nature of nonequilibrium dynamics. This can generate instability
and create possible new states.

Fig. 4A shows the phase diagram for the SLBP model again
for comparison purposes. Fig. 4B shows the population entropy
production rate ep (black squares) and the population average
flux J (red circles) vs. N . As the N increases, both the J and
e increase first and then decrease, undergoing significant
changes near the left deterministic saddle-node bifurcation at the
transition N =  1:34 (purple dashed lines). This is the nutrient
level at which Clear state is dominant and the Turbid state
first appears. The right deterministic saddle-node bifurcation
is near N =  3:038 (cyan dashed lines) in Fig. 4B, where the
Turbid state is dominant and the Clear state disappears. The
sharp peaks of the J and the e are distinct near the transition
N =  1:34 at the initial appearance of the Turbid state. In
fact, the nonzero rotational flux breaks the detailed balance and
provides a direct quantitative measurement of the degree to which
the system is out of equilibrium (14–17, 39, 40). Thus, the
nonequilibrium influences on the dynamics are dictated by the
flux. While the gradient of the landscape tends to maintain
the stability of the points attractors, the flux (being purely
rotational) tends to destabilize the point attractor. This provides
a dynamical origin for the instability of the current attractor
and the possible bifurcation and phase transition. The flux is
also closely related to the entropy production rate and thus gives
rise to the thermodynamic cost for realizing the nonequilibrium
bifurcation and phase transition. Therefore, we expect that the
rotational flux characterizing the “nonequilibriumness” of the
system plays the key role in the emergence of nonequilibrium
states, bifurcations, and phase transitions. This suggests that
rotational flux can provide the dynamic source for bifurcation
or phase transition, while entropy production gives rise to the
thermodynamic source for bifurcation or phase transition in
nonequilibrium systems. Thus, the origin of instability and new
state formation can be identified, and the onset of the critical
transition can potentially be predicted.

6 of 10      https://doi.org/10.1073/pnas.2218663120 pnas.org
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Fig. 4.     (A) The phase diagram vs. N. (B) The population entropy production
rate (black squares), the population average flux (red circles), the average
change of the forward and backward in time cross-correlation function (blue
triangles) and the free energy (green stars) vs. N. The purple dashed line is at
N =  1:34, while the cyan dashed line is at N =  3:038. (C) The relaxation time
of the autocorrelations for state Clear ( ) (blue squares) vs. N. The
frequency of the flickering from Clear to Turbid (f!CT ) (red circles) vs. N.

According to the critical slowing down theory, under gradual
changes in the external environmental conditions, the ecosystem
will show critical slowing when it approaches the right bifurcation
point (Fig. 2A); this is characterized by a smaller area of attraction
and flatter landscape, as shown in Fig. 2C (Left attractor). The
Clear state basin of attraction with N =  1:6 has a smaller
width and lower depth. The left Clear basins in Fig. 2C with
N =  1:7 or N =  3:0 are even smaller and shallower, both
of which are markers of critical slowing down. At this time,
the “resilience” of the system decreases, and the risk of the
system switching to another steady state increases (9). Thus,
the critical slowing down has been suggested as a way to capture
the switching at tipping points for a saddle-node bifurcation,
which can be characterized by the slower recovery from the
perturbations, increasing autocorrelation and increased variance
(9). After a system in equilibrium is subjected to an external
transient disturbance, it will return to its original equilibrium
state after a certain period of time, called the relaxation time; this
relaxation time is the time it takes for the system to adapt itself
to the changes in the environment. We show the relaxation time
from autocorrelation in Fig. 4C (blue squares). We can clearly
see that the relaxation time has a sharp increase near the right
bifurcation N =  3:038 with small fluctuations. Upon external
perturbation, it takes much longer time to return to its original
equilibrium state near the right bifurcation N =  3:038.

The flickering frequency is the number of state transitions per
unit time. For example, f represents the number of transitions
from the Clear state to the Turbid state per unit time. We also
show the frequency of the flickering from Clear to Turbid ( f ! C T  )
in Fig. 4C (red circles) with fluctuation strength D =  1 10 4.

We can see that the frequency of the flickering f increases
sharply as the N increases. This can be understood since the basin
of attraction of the state Clear becomes shallower and less stable.
The system then has a larger chance or frequency to flicker to the
state Turbid. The frequency of theflickering is a well-known early
warning signal from previous studies (8, 41). The tipping points
derived from both the critical slowing down and the frequency of
the flickering are near the bifurcation for the SLBP model when
the clear water state becomes flat (unstable) and in the mean
time, the turbid water state becomes dominant (9, 10). Critical
slowing down is an indicator that the Clear state is losing its
resilience and the potential landscape of Clear state has a small
basin of attraction, while the Turbid state becomes dominant.
However, the real transition can occur far from this bifurcation
point due to largerfluctuations and the critical slowing down near
this bifurcation may not begin early enough to give a practically
useful warning of the impending regime shift. We propose to use
the J and e to quantify the driving force of the nonequilibrium
dynamics and thermodynamic costs and thereby serve as earlier
warning signals than those employed in the extant literature.

The flux and the entropy production are not easy to directly
extract from experimentally obtained real-time data. For practical
purposes, one can study the time irreversibility of the time series
to quantify the “nonequilibriumness” of the system, reflecting the
degree of the flux and the entropy production. The biomass time
series can be obtained from the observation in the experiments,
for example, the time series of the bream population or the pike
population. The data simulated from the Langevin equation
shown in SI Appendix, Fig. S2A mimics the experimentally
obtained real-time series. We show the long-time trajectories
of X and Y in the stochastic SLBP model with the noise-induced
attractor switching between Clear and Turbid.

SI Appendix, Fig. S2B shows the two-point cross-correlations
forward and backward in time and highlights significant differ-
ences between C (0) and C (0). The differences between
forward and backward in time cross-correlation are shown
directly in SI Appendix, Fig. S2C, which confirms the time
irreversibility of the underlying system.

The average difference in cross-correlations between the
forward in time and the backward in time 1 C  is shown in
Fig. 4B (blue triangles) for our SLBP model, which can be
used as a quantification of the time irreversibility. CXY (0) and C

(0) are equal to each other with zero flux, corresponding to
the time reversibility of the system at equilibrium (33). Since
time irreversibility is directly related to the degree of the
detailed balance breaking (32, 33, 42), the cross-correlation
difference measures the degree of nonequilibriumness and also
reflects the strength of the flux. However, the flux is not easy to
quantify directly from the experiments. Therefore, the difference
in cross-correlations forward and backward in time among
the experimentally observed real-time traces of the observables
provides a practical way to quantify the nonequilibrium driving
force of the system. 1C increases significantly near the left saddle-
node bifurcation regime. A steep fall in 1 C  is noticeable near
the left bifurcation at N =  1:34 (purple dashed line), where the
Turbid state initially appears. This provides a practical method
from the observed temporal trajectory of the shallow lake system
to give earlier warning signals at the beginning of the appearance
of the Turbid state at N =  1:34, which is far before the
bifurcation representing the dominance of the Turbid state at
N =  3:038.

Fig. 4B (green stars) shows the nonequilibrium intrinsic free
energy F  vs. N . Although the free energy is continuous, the
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slope of the free energy changes significantly near the transition
point around N =  1:34 (purple dashed line). Thus, the intrinsic
free energy can also serve as an early warning signal for potential
regime shift, far before bifurcation for the dominance of the
Turbid state at N =  3:038 (cyan dashed line).

The critical slowing down theory generally applies to con-
tinuous second-order phase transitions, but is less suitable for
exploring discontinuous or first-order phase transitions. Here,
the nonequilibrium driving force in terms of the flux, the
thermodynamic cost in terms of the e , the intrinsic free energy,
and the time irreversibility all give rise to early warning signals
which are far earlier than the predictions from currently available
methods. Therefore, they can provide a feasible method for
predicting bifurcations/phase transition to avoid catastrophic
regime shifts. In the SLBP model, we study here, we predict the
switch from the regime in which the Clear state is dominant to
that in which the Turbid state dominates at the initial appearance
of the Turbid state, rather than near the N level where the Turbid
state is becoming dominant. This leads to much earlier warning
signals than previous investigations have uncovered (6–8).

Critical slowing down can identify the second bifurcation
where the “bad” (turbid) attractor state for the ecological system
becomes dominant and the “good” (current clear water) attractor
state for the ecological system becomes flat (the right saddle node
bifurcation), while it will miss the first bifurcation where the
“good” (current) attractor state is dominant (the left saddle node
bifurcation in the phase diagram) and the “bad” attractor state has
just appeared and is shallow. This is because critical slowing down
emerges only when the landscape around the “good” (current)
attractor state becomesflat. When the second bifurcation emerges
where the “bad” attractor state dominates, the “good” (current)
attractor state where the system currently resides flattens, leading
to the appearance of critical slowing down. However, when
the “good” (current) state is near the first bifurcation point, it
becomes dominant against others, but the associated landscape
around it is not flat at all. Therefore, one does not anticipate
any critical slowing down around this point. Thus, the critical
slowing down cannot be used to predict the first bifurcation
when the “good” (current) attractor state is dominant. The non-
equilibrium landscape-flux warning signals which appear near the
first bifurcation are much earlier than the critical slowing down
indicators emerging near second bifurcation where the “bad”
attractor becomes dominant and the basin of attraction of the
“good” steady state flattens.

Our results for early warning signals apply to multidimensional
dynamical systems, but we now consider a 1D dynamical system
to illustrate how our approach performs in this special case. For
1D dynamical system with natural boundary conditions, detailed
balance is preserved and the steady-state probability flux is zero.
Thus the system is in equilibrium and the entropy production
rate is also zero. In this case, the time series is reversible in time
and the nonequilibrium indicators we employed previously are no
longer effective. One must then rely on the other indicators of an
impending regime shift, such as critical slow down or flickering.

In the SLBP model, if one assumes that Y changes at a
time scale much faster than that of X , so that it quickly
reaches the steady state, the system dynamics are effective 1D
along the slow observable X . In other words, in the limit
of total separation of time scales between the two dynamic
variables, we may set dY =dt =  0 so that we can solve for Y
as a function of X . The effective 1D steady-state flux is then
J(x) =  J(X, Y ) =  J(X, f (X )). Thus, the effective 1D population
entropy production is given by:

Fig. 5.     (A) The effective one-dimensional population production rate ep1d
and the effective one dimensional average flux N vs. N. (B) The effective
one-dimensional three-point correlation function C3 vs. N.

ep1d (X, Y ) =  ep1d (X, f (X ))

= dX (J(X, f (X ))  (DG) 1  J(X, f (X )))=Pss:

The effective 1D average flux is given by:

J1d (X, Y ) =  J1d (X, f (X ))
Z

= dX dY jJ(X, Y )j = dX jJ(X, f (X ))j:

The normalized entropy production rate e and J average
flux for the SLBP model are shown in Fig. 5A. We can see that
both the e and J have the peaks near the left bifurcation.
They are both consistent with the predictions in 2D case. This is
likely due to the fact that every Y =  f (X ) line at each parameter
N in the XY space always passes through the maximum location
of the steady-state probability (equivalent to the minimum of
the basins potential on the landscapes) since the maximum of
the probability is around dX =dt =  0 and dY =dt =  0. When
N is around N =  1:5, the Y =  f (X ) passes through two
local maximum of the probability (dX =dt =  0 and dY =dt =  0
have two stable solutions). Near N =  1:5 with these two equal
basins, the landscape gradient is close to zero and thus does
not contribute to the flux. The flux then can be approximated
as J =  F(X, Y =  f (X ))P . The flux is therefore directly
related to the steady-state probability at around N =  1:5 near
these two potential basins or probability peaks. The steady-state
probability peaks lead to the flux peaks and then the peaks of
the e and J at around N =  1:5. Therefore, we can see
that the predictions of early warning indicators are powerful and
adaptive for both high-dimensional and effective 1D dynamical
systems, which is better than the critical slow down prediction at
around N =  3:038.

The cross-correlation can only be calculated from the trajec-
tories involving two different observables, but for an effective
1D case, this is clearly no longer possible. Thus, we use the
time irreversibility of the three-point auto-correlation function
C  = <  X ()X (0)X (00) >  to reflect the degree of detailed
balance breaking in the system. The three-point auto-correlation
function C3 has a peak around N =  1 in Fig. 5B, indicating
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that the time irreversibility of the effective 1D three-point
auto-correlation function can also be used as an early warning
signal indicator which is beyond the current critical slow down
prediction near the bifurcation at N =  3:038. Therefore, even for
an effectively 1D system, indicators based on the landscape-flux
potential theory provide robust early warning signals of regime
shifts.

We also consider an extreme case when the fluctuations are
negligible and can be neglected. We show the intrinsic barrier
heights, the intrinsic J and intrinsic e (SI Appendix, Fig. S3),
and intrinsic paths on potential landscape (SI Appendix, Fig. S4)
under zero fluctuation limit for the deterministic dynamics in
SI Appendix, which have almost the same tendencies with the
results under finite fluctuations. We show the relaxation time
from autocorrelation and flickering frequency in (SI Appendix,
Fig. S5). We also discuss the hysteresis loop in shallow lake
in (SI Appendix, Fig. S6). We have also shown another well-
known forest-savanna model as an example of illustration for our
landscape and flux theory in providing the early warning signals
and predicting the tipping points of the ecological systems in
(SI Appendix, Figs. S7 and S8).

Co n c l u s i o n  a n d  D i s c u s s i o n

Stability and dynamics are crucial to understanding the structure
and function of ecological systems. In this study, we use a
landscape and flux approach from statistical physics to explore
the global stability and quantification of ecological systems,
using a shallow-water lake model as an illustrative example. This
approach and the associated methods can be used to explore
general complex ecological systems, both from the modeling
and data-driven perspectives. The dynamics of ecological systems
subject to random forcing are determined by both the gradient
of the potential landscape and the rotational flux (which breaks
the detailed balance condition for equilibrium systems when it is
nonzero). We uncover both the population potential landscapes
under finite fluctuations and the intrinsic potential landscapes
under zero fluctuations limit, which can be used to quantify the
stability and robustness of ecological systems.

We considered a simple well-known shallow lake ecological
model with two species, bream and pike. Two alternative stable
states, the Clear and Turbid states, emerge in this model. We
explored several crucial physical measurements to quantify the
stability and robustness of the shallow lake system. Barrier
heights (as the potential difference) quantify the difficulty of state
switching, giving rise to the landscape topography measure of the
global stability. Mean first passage time, the characterization of
escape time from one stable to the alternative one, quantifies the
length of time for the state switching giving rise to the kinetic
measure of the global stability.

In Fig. 4B, we observe sharp changes in several key physical
quantities related to the degree to which the system is out
of equilibrium around the left saddle-node bifurcation (where
the Turbid state emerges). The average flux represents the
nonequilibrium driving force, while the entropy production
rate represents the thermodynamic cost. This indicates that
flux and entropy production rate can identify the dynamic and
thermodynamic sources for the bifurcation of the shallow lake
ecosystem, respectively. A generalized free energy can provide a
global quantitative description for the nonequilibrium system in
analogy to the equilibrium system. These measurements can all

be used to give quantitative early warning signals for the critical
phase transitions from the dominance of the Clear state to the
dominance of the Turbid state for the shallow lake ecological
system. The average differences between the cross-correlation
forward and backward in time from the time series of the system
quantifies the time irreversibility of the system. It can be used as
a practical early warning signal directly from the observational
real-time traces for the initial appearance of the Turbid state
at left saddle-node bifurcation (N =  1:34), far earlier than
the appearance of the dominance of the Turbid state at the
right saddle-node bifurcation (N =  3:038). This can provide
a primary practical marker for predicting the bifurcation of the
system directly from the experimental time series observations.
Given the types and quality of data typically available for
ecological systems, it is less clear how certain theoretical indicators
highlighted above, such as the entropy production rate, can
be readily applied in real-world scenarios. However, different
concepts of entropy have been introduced to study transitions in
biological applications, such as in gene expression data (43, 44),
and it may be possible to apply similar ideas in the present context
if sufficiently resolved data are available.

Understanding dimensionality, and where dimensionality
reduction is possible, is crucial for exploring the mechanism
of critical transition (45). Our potential-flux landscape theory
is broadly suitable for higher-dimensional systems and avoids
some pitfalls of methods that require effectively 1D dynamics
for best results. We can obtain the steady-state probability by
directly solving the Fokker–Planck equation for 2D or 3D
systems (16, 46) and also use the self-consistent mean field
method to solve the Fokker–Planck equation or use the stochastic
Langevin equations to obtain the steady-state probability for
even higher-dimensional systems (16, 46). It is also possible to
quantify the pathways, the MFPT, and the indicators of the early
warning signals for addressing the stability and dynamics for
high-dimensional systems, which appear to be more powerful for
the ecological systems considered here than the early warning
signal indicators from the effective 1D approaches (greater
variance, autocorrelation, and relaxation time). Although we
only considered models with saddle-node bifurcations in this
work, the potential-flux landscape theory has been used to study
other types of bifurcations in other applied fields; for example,
pitchfork bifurcations in multilocus evolution (47) and Hopf
bifurcations in game theory and evolution (14, 26). It has been
shown that slowing down of recovery rates can occur only very
close to a threshold for Hopf bifurcations (48), further motivating
the investigation of the non-equilibrium early warning indicators
proposed here for applications to ecological systems with cyclic
dynamics.

The dominant paths that are calculated by the path integral
method do not follow the expected steepest descent gradient path
as in equilibrium system. The forward and backward dominant
paths separate from each other and their irreversibility is due to
the nonzero flux. These results can help us to design more stable
ecological systems. It may also help to design effective strategies or
interventions for lake management. The observed critical transi-
tions and bifurcations have been empirically observed repeatedly
in lakes, savanna and forest, climate, or ocean circulation (1, 8).
The landscape and flux theory can potentially be used to predict
the tipping points and transitions in many complex systems much
earlier beyond the previous studies (6–9). Further research on
early warning signals can not only improve the existing theory
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but also provide practical and effective guidance for the protection
and management of complex and socially valued ecosystems.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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