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ABSTRACT

Relativistic electron scattering by electromagnetic ion cyclotron (EMIC) waves is one of the most effective mechanisms for>1MeV electron
flux depletion in the Earth’s radiation belts. Resonant electron interaction with EMIC waves is traditionally described by quasi-linear diffu-
sion equations, although spacecraft observations often report EMIC waves with intensities sufficiently large to trigger nonlinear resonant
interaction with electrons. An important consequence of such nonlinear interaction is the resonance broadening effect due to high wave
amplitudes. In this study, we quantify this resonance broadening effect in electron pitch-angle diffusion rates. We show that resonance
broadening can significantly increase the pitch-angle range of EMIC-scattered electrons. This increase is especially important for �1 MeV
electrons, where, without the resonance broadening, only those near the loss cone (with low fluxes) can resonate with EMIC waves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101792

I. INTRODUCTION

Relativistic electron scattering by electromagnetic ion cyclotron
(EMIC) waves is one of the most effective mechanisms for electron
losses in the Earth’s radiation belts.12,14,23,52,60,62 For typical EMIC
wave characteristics (see discussion on the definition of such typical
characteristics in Ref. 69), the resonant electron energies are above
�1 MeV for field-aligned electrons (see Refs. 19, 43, 58, and 70), and
even higher for higher pitch-angles (the angle between electron veloc-
ity and background magnetic field). Such an increase in the resonant
energy with pitch-angle implies that EMIC waves cannot scatter the
main population of relativistic electrons (at �1–3 MeV), which are
highly anisotropic with maximum fluxes at�90� pitch-angles (see dis-
cussions in Refs. 34, 40, and 44). Therefore, the overall contribution of
EMIC waves to the net losses of relativistic electrons (i.e., the so-called
electron dropouts29,48) still requires additional investigations, although
their scattering rates can be very large.34,43,60,70

Several mechanisms have been proposed to extend the energy/
pitch-angle range of electrons that can be explained by EMIC wave
scattering. First, the cold plasma dispersion of EMIC waves suggests a

higher wave number around the frequency cutoff of hydrogen, helium,
and oxygen gyrofrequencies,43,57 and, thus, the high-frequency frac-
tion of EMIC spectrum may effectively scatter electrons at moderate
pitch-angles.9,20,61 However, such high-frequency EMIC waves are
rarely observed and do not contribute significantly to the main wave
statistics.34,67 Second, hot plasma effects in the EMIC wave dispersion
relation may potentially extend the pitch-angle range of scattered elec-
trons.9,42,53 For most of observed EMIC waves, however, such hot
plasma effects tend to increase the minimum resonant energy17,19 and,
thus, decrease the resonant pitch-angle range. Third, whistler-mode
waves may contribute to electron scattering from high pitch-angles to
pitch-angles resonating with EMIC waves,40,68 but this mechanism
would require the simultaneous presence of both wave modes (EMIC
and whistlers) along the electron drift path.68 Fourth, very intense
EMIC waves can resonate with electrons nonlinearly,2,26,45,46 and the
phase trapping by field-aligned55 or oblique63 intense EMIC waves
may transport electrons into loss cone from a wider pitch-angle range
than as expected from the quasi-linear model. Fifth, the resonant
pitch-angle range can be extended by the effect of the resonance
width.4,31 The variant of this effect driven by a large wave amplitude
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has been examined for whistler-mode waves15 but not yet quantified for
EMIC waves. Here, we focus on the fourth mechanism and provide the-
oretical descriptions of how it alters electron scattering by EMIC waves.

The finite resonance width effect (also known as the resonance
broadening) is most important for large-amplitude waves, with the
particle momentum resonant range proportional to the square root of
wave amplitude.32,50 As EMIC waves can be very intense with wave
amplitudes reaching a few percent of the background magnetic
field,24,30,67 the finite resonance effect may significantly expand the
pitch-angle range of scattered electrons. To illustrate this effect, we
analyze relativistic electron pitch-angle distributions collected during
an intense EMIC wave event.11 Figure 1(a) shows electron fluxes vs
pitch-angle a, with the flux normalized to values at a � 90�. For all
energies, there is a clear flux decrease toward the loss-cone (small a)
and anti-loss-cone (a � 180�), and such a flux gradient is likely

formed due to electron scattering by simultaneously observed EMIC
waves. However, the estimated range of resonant pitch-angles (esti-
mated from the cold plasma dispersion using observed wave charac-
teristics) is much narrower than the pitch-angle range with the flux
gradient [see dashed curves in panel (a)]. Therefore, additional mecha-
nisms are needed to explain the observed flux gradients over an
expanded pitch-angle range. We then include the finite resonance
width into the calculation of resonant electron pitch-angles in Fig.
1(b). This effect significantly expands the pitch-angle range: dashed
lines cover almost the entire pitch-angle range exhibiting a flux gradi-
ent. Although Fig. 1 demonstrates the potential importance of the
finite resonance width effect, this event is mostly for illustration pur-
pose. In this study, we theoretically quantify the resonance broadening
effect and show how to include it in EMIC wave diffusion rate calcula-
tions, which have been widely used in radiation belt models. However,
it still needs further validation from a systematic comparison of
EMIC-driven electron pitch-angle distributions from observations and
from theoretical predictions, which is left for future studies. Such a
multi-event comparison will also help reveal contributions from alter-
native mechanisms in shaping the observed electron pitch-angle distri-
butions (e.g., even for the event in Fig. 1, an additional scattering
mechanism, in addition to EMIC waves, is likely operating to cause
the flux depletion around 90�, as resonances with EMIC waves cannot
create such flux minima).

This paper is organized as follows: Sec. II provides the theoretical
framework of evaluating the finite resonance width effect for electrons
resonating with EMIC waves in the inhomogeneous magnetic field;
Sec. III describes how this effect can be incorporated into the diffusion
rate evaluation; Sec. IV discusses the obtained results.

II. BASIC EQUATIONS FORWAVE-PARTICLE
RESONANCE IN INHOMOGENEOUSMAGNETIC FIELD

We start our quantification of the resonance broadening effect
with the Hamiltonian of a relativistic electron (the rest mass is me and
charge is �e) moving in the electromagnetic field given by the vector
potential A ¼ ðAx;A0 þ Ay; 0Þ:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e c
4 þ c2p2z þ ðcpx þ eAxÞ2 þ ðeA0 þ eAyÞ2

q
; (1)

where ðz; pzÞ are the conjugate pair of the field-aligned coordinate and
momentum, ðx; pxÞ are the conjugate pair of the transverse coordinate
and momentum, and A0ðx; zÞ ¼ xB0ðz=RÞ is the vector potential
component of the curvature-free dipole field10 with the spatial scale
R � mec2=eB0. For the background magnetic field B0, we use

B0 ¼ Beq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2k

p
= cos6k, with Beq is the equatorial magnetic field

and k is the magnetic latitude. The relation between z and k is given
by the differential equation dz=dk ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2k

p
cos k, with R

¼ REL, L is the L-shell parameter, and RE is the Earth radius. Vector
potential components for L-mode field-aligned plane waves, Ax;yðz; tÞ,
are given by the following equation:

Ax;y ¼
Bw

k

�cos/; @/=@z ¼ k;

sin/; @/=@t ¼ �x:

(
(2)

Wave amplitude Bw is sufficiently small, so that eBw=kmec2 � 1. For
a fixed wave frequency x, the wave number k is given by the cold
plasma dispersion relation,54

FIG. 1. Pitch-angle distributions of relativistic electrons observed during an EMIC
wave event on 2017-02-16 06:47-06:52 UT. Distributions are collected by the rela-
tivistic electron proton telescope,8 averaged over the EMIC wave interval, and nor-
malized to fluxes at 90� pitch-angle. EMIC wave and background field
characteristics for this interval are wave intensity B2w � 1:053 nT2, wave mean fre-
quency f=fcp ¼ 0:187, plasma frequency to gyrofrequency ration fpe=fce ¼ 31:25,
with 20% of helium and 10% of oxygen (see details in Ref. 11). Solid lines show
observed distributions, whereas dashed lines show the pitch-angle range corre-
sponding to resonant interactions with observed EMIC waves without (a) and with
(b) the resonance broadening effect included.
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kc
x

� �2

¼ 1�
x2

pe

xðxþ XceÞ
�
X3
i¼1

x2
pi

xðx� XciÞ
; (3)

where Xce ¼ eB=mec, xpe is the plasma frequency, and indexes i¼ 1,
2, and 3 are attributed to Hþ, Heþ, and Oþ ions, respectively.

We substitute wave vector potential components to Hamiltonian
(1) and introduce the magnetic moment Ix as

px ¼ mec

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2IxXce

mec2

s
sin h; x ¼ c

Xce

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2IxXce

mec2

s
cos h

and expand Hamiltonian over the small wave energy eBw=kmec2 � 1
to get1,3

H � mec2cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2IxXce

mec2

r
eBw

kc
sin ð/� hÞ;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pz

mec

� �2

þ 2IxXceðzÞ
mec2

;

s (4)

where ðh; IxÞ are conjugate variables of gyrophase and magnetic
moment

_h ¼ @H
@Ix

¼ Xce

c
:

The resonance condition for Hamiltonian (4) can be written as

_/ � _h ¼ �Xce

c
þ k

pz
mec

� x ¼ 0: (5)

This is the first cyclotron resonance of relativistic electrons and field-
aligned EMIC waves. To estimate the range of resonant pz, i.e., the
finite resonance width, we shall follow the approach proposed in
Refs. 7, 41, and 51 and examine Hamiltonian (4) around the reso-
nance. First, let us introduce w ¼ /� h as a new Hamiltonian vari-
able conjugate to the momentum I. For this reason, we use the
generating function Wðh; z; I; p; tÞ ¼ ð/� hÞI þ pz with new
variables,

w ¼ @W
@I

¼ /� h; Ix ¼
@W
@h

¼ �I;

s ¼ @W
@p

¼ z; pz ¼
@W
@z

¼ kI þ p:
(6)

A new HamiltonianH ¼ H þ @W=@t has the following form:

H ¼ mec2c� xI þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2IXce

mec2

r
eBw

kc
sinw;

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pþ kI

mec

� �2

� 2IXce

mec2

s (7)

with conjugate variables (s, p) and ðw; IÞ. Note that introducing w
leads to a new ~Ix constant because H does not depend on h. Thus, we
set ~Ix ¼ 0, i.e., I ¼ �Ix at the initial moment (note I does not change
in the absence of waves).

The resonance condition in new Hamiltonian variables is

_w ¼ �Xce

c
þ k

pþ kI
mec

� x ¼ 0: (8)

This condition determines the resonant I ¼ IRðs; pÞ

IR ¼ � p
k
þmeXce

k2
þmex

k2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx=kcÞ2Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

p
mc

Xce

kc
� X2

ce

ðkcÞ2

s
:

(9)

Substituting IR to the Lorentz factor (7), we obtain the following reso-
nant energy:

cR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=kcÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

p
mc

Xce

kc
� X2

ce

ðkcÞ2

s
: (10)

Hence, the resonance momentum can be written as

IR ¼ � p
k
þmeXce

k2
þmex

k2
cR: (11)

Expansion of Hamiltonian near the resonance gives

H�mec2cR �xIR þ
1
2
K2 Ix � IRð Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2IRXce

mec2

s
eBw

kcR
sinw; (12)

where

K2 ¼ mec
2@

2c
@I2

����
I¼IR

¼ k2c2 � x2

cRmec2
:

Then, we use the generating function Fðw; s;Pw; ~p; tÞ
¼ ðPw þ IRðs; pð~p; sÞÞÞwþ ~ps to introduce a new variable momen-
tum Pw ¼ I � IR,

~w ¼ @F
@Pw

¼ w; I ¼ @F
@w

¼ Pw þ IR;

~s ¼ @F
@~p

¼ sþ @IR
@~p

w; p ¼ @F
@s

¼ ~p þ @IR
@s

w:

(13)

The smallness of the second terms in expressions of new variables
ð~s; ~pÞ allows us to expand the Lorentz termmec2cR � xIR as follows:

mec
2cRðs; pÞ � xIRðs; pÞ
� mec

2cRð~s; ~pÞ � xIRð~s; ~pÞ

�mec
2 @cR

@s
@IR
@~p

wþ @cR
@p

@IR
@s

w

� �
� mec

2cRð~s; ~pÞ � xIRð~s; ~pÞ þmec
2 IR; cRf gw:

New Hamiltonian

~H � mec
2cR � xIR þ

1
2
K2P2

w þ Awþ B sinw (14)

can be separated into two parts ~H ¼ KþHW: K ¼ mec2cR �xIR
describes the slow particle motion in the (s, p) plane and

Hw ¼ 1
2
K2P2

w þ Awþ B sinw (15)

describes fast particle oscillations around the resonance.3,7,41,51

Coefficients of Hw depend on (s, p) and change along electron
trajectories,
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B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2IRXce

mec2

s
eBw

kcR

and

A
mec2

¼ IR; cRf g ¼ @IR
@s

@cR
@p

� @cR
@s

@IR
@p

¼ � @ lnXce

@s
1
kcR

1

1� ðx=kcÞ2

� pR
mec

Xce

kc
þ kIR
mec

Xce

kc
þ @ ln k
@ lnXce

pR
mec

� �2
( )

;

where pR ¼ meðxcR þ XceÞ=k.
Hamiltonian H does not depend on time, and, thus, any change

of I should correspond to change of energy: mec2Dc ¼ xDI. From
equations of motion

DI ¼ �
ðþ1

�1

@H
@w

dt ¼ �2
ðw	

�1

@H
@w

@t
@w

dw

¼ �
ffiffiffiffiffiffi
2
K2

r ðw	

�1

B cosw dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hw � Aw� B sinw

p ; (16)

where w	 ¼ w	ðHwÞ is the phase value at the resonance for a given
Hw (see Fig. 2). Function DIðHwÞ is periodic with a period of 2p. The
width of the resonance is DIðHwÞ averaged overHw,

hDIi ¼ � 1
2p

ffiffiffi
2

p

K

ð2p
0
dh

ðw	

�1

B cosw dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� Aw� B sinw

p : (17)

This expression can be written as7

hDIi ¼ 1
p

ffiffiffiffiffiffi
2B
K2

r
f

A
B

� �
; (18)

where f ðA=BÞ is the area surrounded by the separatrix

f ¼
ðwmax

wX

dw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
B
ðwX � wÞ þ ðsinwX � sinwÞ

r
: (19)

The integration limits, wX and wmax, are shown in Fig. 2. Profile of
the f ðA=BÞ function and analytical fitting of this function are shown
in Fig. 3. Note that wX ¼ arccosðA=BÞ and for A=B ! 0, we have

f ¼
Ð 2p
0 dw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinw

p
¼ 4

ffiffiffi
2

p
.

The resonance width in terms of DI can be rewritten to the reso-
nance width in energy

mec
2hDci ¼ x

p

ffiffiffiffiffiffi
2B
K2

r
f

A
B

� �
(20)

and in pitch-angle

hDaeqi ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2aeq þ

Xce;eq

x
2hDci
ðc2 � 1Þ

s
� aeq

� 2hDci
ðc2 � 1Þ sin ð2aeqÞ

Xce;eq

x
; (21)

where aeq and mec2ðc� 1Þ are the initial equatorial pitch-angle and
energy.

Combining Eqs. (18), (20), and (21) with the fitting of f function
(see Fig. 3), we plot the resonant pitch-angle width for several typical
wave characteristics. Figure 4 shows that Daeq maximizes at low ener-
gies, where the effect of the resonance broadening should be most
important because of the narrow pitch-angle range of electrons satisfy-
ing the exact resonant condition with EMIC waves [see Fig. 1(a)]. The
resonance width Daeq can reach 25�, which will allow EMIC waves to
scatter the main (trapped) electron population well outside the pitch-
angle range of quasi-linear diffusion rates.22,23,40,43 Note that the reso-
nance width in energy, Dc, is proportional to the wave frequency x,
i.e., for static magnetic field perturbations with x ¼ 0, there is no
energy change at the resonance and the resonance width Dc ! 0 with

FIG. 2. Phase portrait for HamiltonianHw in the ðw; PwÞ plane.
FIG. 3. Function f ðA=BÞ and its analytical fitting of f ¼ 4

ffiffiffi
2

p
ð1

�jA=Bj0:9Þexp ð�jA=BjÞ.
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a finite Daeq, see discussions in Ref. 65. Therefore, for EMIC waves
with x=Xce;eq � 1, the energy change Dc (and the resonance width)
is negligibly small.2,45

III. ROLE OF RESONANCE BROADENING IN ELECTRON
PITCH-ANGLE DIFFUSION

Determining the resonance width as a function of wave charac-
teristics, electron energy, and pitch-angle, we can include the reso-
nance broadening effect into diffusion rate calculations. We start with
the local (at equator) pitch-angle diffusion for field-aligned EMIC
waves with truncated Gaussian spectra ð ~W ðxÞ / exp �½x� xm
2=

�
dx2gÞ propagating in a proton-electron plasma,58

Daa ¼
Xce

c
� 2R
�dx

ðx2
x1

dx gðx � xrÞ
xð1� xÞ
ð2� xÞ e� ðx�xmÞ=dx½ 
2

� �
; (22)

where x ¼ x=Xci, Xci is the proton gyrofrequency, x1 and x2 are lower
and upper cutoff frequencies, xr is the normalized resonance frequency
for a given equatorial electron pitch-angle and energy, R ¼ ðBw=B0Þ2
is the normalized wave intensity, and � ¼

ffiffiffi
p

p
erfð1Þ � 1:49. In

the classical formulation of the quasi-linear diffusion rate,33 function
g ¼ dðx � xrÞ is the Dirac delta function. In Refs. 15 and 31, the finite
resonance width can be included into the diffusion rate evaluations by
changing g to

gðxÞ ¼ 2Dxð Þ�1
; jxj < Dx;

0; jxj � Dx;

(
(23)

where the resonance width in frequency is determined from the local
resonance condition,

Dx ¼ k
@k=@x

� � c
c2 � 1

Dcþ tan aDa
� �

:

Figure 5(a) shows local (equatorial) diffusion rates with g ¼ dðx � xrÞ
(solid lines) and with g given by Eq. (23) (dashed lines). The resonance
broadening effect is most clearly seen as an extension of the pitch-
angle range with a finite diffusion rate.

Equations (18), (20), and (21) determine the resonance width at
the resonant latitude for a given energy and equatorial pitch-angle.
Therefore, Daeq and Dx vary with latitudes, and we can incorporate
the resonance broadening effect into the bounce-averaged diffusion
rate,38

hDaeqaeqi ¼
1
s

ðkm
0

Daa
cos a
cos2aeq

cos7kdk; (24)

where Daa ¼ Daaðc; aeq; kÞ, and we use the dipole magnetic field

model with sin2a ¼ sin2aeq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2k

p
= cos6k. The normalized

bounce period is s � 1:3� 0:56 sin aeq (see, e.g., Ref. 49).
Figure 5(b) shows bounce averaged diffusion rates without (solid

curves) and with (dashed curves) the resonance broadening effect.
There is a clear extension of the resonance pitch-angle range to higher
pitch-angles due to the finite Da. This effect should be most important
for low resonant energies, where the exact resonant condition only
allows scattering of near loss-cone electrons.

IV. DISCUSSION AND CONCLUSIONS

In this study, we quantify the resonance broadening effect for
EMIC waves resonating with relativistic electrons. The basic idea of the

FIG. 4. The resonance width in equatorial pitch-angles as a function of aeq;mec2ðc� 1Þ for different wave frequencies and L-shells. (a)–(d) The case of electron-proton
plasma; (e) the case for parameters from Fig. 5; parameters for case (f) are from Fig. 1.
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resonance broadening involves the effect of charged particle motion
in resonance with waves of a finite amplitude Bw=B0 (see Refs. 32, 47,
and 50). Although the perturbation theory requires Bw=B0 to be
small, the resonance width �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bw=B0

p
may provide an important

widening of the resonant energy, pitch-angle ranges for specific
plasma populations. The best example is the resonance broadening
for whistler-mode waves resonating with large pitch-angle electrons,
where the finite resonance width allows scattering of nominally non-
resonant equatorial electrons.15,16 Energies of electrons resonating
with EMIC waves are generally higher than 1MeV, and for lower
resonant energies, only field-aligned electrons can be scattered.34,43

However, fluxes of these relativistic electrons are strongly anisotropic,
with the main population at higher pitch-angles, not reachable for the
exact resonance with EMIC waves.22,34,40,68 The resonance broaden-
ing effect extends the pitch-angle range of scattered electrons and
allows EMIC wave to contribute to losses of the main electron popu-
lation. It is worth noting that our results have been obtained for field-
aligned EMIC waves but may be generalized to oblique waves using
the same Hamiltonian approach.1,7 The main difference for oblique
waves will be the presence of multiple cyclotron resonances, including
Landau resonance, which is particularly important for equatorial
electrons.63

An important characteristic controlling the efficiency of the reso-
nance broadening is the ratio of background magnetic field gradient
and wave intensity, i.e., ratio A/B in Fig. 3. For cases with jA=Bj < 1,
the wave intensity is sufficiently high to create a finite resonance width,

FIG. 5. Local (equatorial) (a) and bounce-averaged (b) diffusion rates without (solid)
and with (dashed) the resonance broadening effect included. Wave and background
system parameters are taken from the diffusion rate calculation example in Ref. 56.

FIG. 6. Percentage of EMIC waves resonating with electrons in the regime of
jA=Bj < 1, i.e., with a finite resonance width. Wave statistics at L 2 ½4; 6
 from
Ref. 67 has been used. Panel (a) shows results for H-band EMIC waves in purely
proton plasma, and panel (b) shows results for He-band EMIC waves in plasma
with 20% of Heþ ions.
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and the same inequality means that electrons resonate with EMIC
waves nonlinearly64 with phase trapping and phase bunching
effects.2,27,28,35,36 Nonlinear resonant effects can be suppressed by the
wave modulation,5,25,59,66 but anyway, the resonance broadening effect
will lead to a wide range of electron diffusive scattering.15,31 Therefore,
to evaluate the contribution of the resonance broadening to the elec-
tron diffusive scattering by EMIC waves, we will investigate the occur-
rence rate of jA=Bj < 1 for observed wave and background plasma
characteristics. We use EMIC wave statistics from Ref. 67 and evaluate
for each event (22s of wave spectrum measurements satisfying the cri-
teria for EMIC waves13) the wave intensity ðBw=B0Þ2, plasma fre-
quency to gyrofrequency ratio, and L-shell. Then, for a given initial
energy and pitch-angle, we find the resonant latitude (under the
approximation of a dipole magnetic field) and evaluate jA=Bj. We
examine this for H-band and He-band waves separately, with purely
proton plasma for H-band and 20% of Heþ ions for He-band waves
(see Ref. 37). Figure 6 shows that about 10% of EMIC waves may sup-
port the resonance broadening for> 2MeV, aeq 2 ½30; 70
� electrons
for both wave bands. For �1 MeV electrons resonating with EMIC
around aeq < 20�, the percentage of waves supporting the resonance
broadening decreases to below 3%. Note that we use 1s averaged wave
intensity from the dataset in 67, whereas the instantaneous wave inten-
sity for short wave-packets may be a factor of �10 larger, which will
increase the percentage of electron–EMIC wave interactions with the
resonance broadening. Overall, Fig. 6 demonstrates that the resonance
broadening effect should extend the pitch-angle range of electron scat-
tering for a significant fraction of observed EMIC waves.

In conclusion, we have quantified the resonance broadening
effect for EMIC waves resonating with relativistic electrons. Our model
provides the resonance width equation [through the function f ðA=BÞ
from Fig. 3] that can be incorporated into diffusion rate calculations.
The main result of such generalized diffusion rate equations is the
extension of the pitch-angle range of electrons scattered by EMIC
waves. This effect can be especially important for �1 MeV electrons
around the minimum resonant energy. Further incorporation of the
resonance broadening effect into radiation belt models18,21,23,39 should
improve simulation of relativistic electron losses during geomagneti-
cally active conditions when most intense EMIC waves are observed.
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