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Abstract 15 
Extreme heat represents a growing threat to public health, especially across the densely 16 
populated, developed landscape of cities. Climate adaptation strategies that aim to manage 17 
urban microclimates through purposeful design can reduce the heat exposure of urban 18 
populations, however, it is unclear how the temperature impacts of urban green space and 19 
albedo vary across cities and background climate. This study quantifies the sensitivity of 20 
surface temperature to landcover characteristics tied to two widely used climate adaptation 21 
strategies, urban greening and albedo manipulation (e.g. white roofs), by combining long-term 22 
remote sensing observations of land surface temperature, albedo, and moisture with high-23 
resolution landcover datasets in a spatial regression analysis at the census block scale across 24 
seven United States cities. We find tree cover to have an average cooling impact of -0.089 K 25 
per % cover, which is approximately four times stronger than the average grass cover cooling 26 
impact of -0.021 K per % cover. Variability in the magnitude of grass cover cooling impacts 27 
was primarily a function of vegetation moisture content, with the Land Surface Water Index 28 
(LSWI) explaining 89% of the variability in grass cover cooling impacts across cities. 29 
Variability in tree cover cooling impacts was primarily a function of sunlight  and vegetation 30 
moisture content, with solar irradiance and LSWI explaining 97% of the cooling variability 31 
across cities. Albedo cooling impacts were consistent across cities with an average cooling 32 
impact of -0.187 K per increase of 0.01. While these interventions are broadly effective across 33 
cities, there are critical regional trade-offs between vegetation cooling efficiency, irrigation 34 
requirements, and the temporal duration and evolution of the cooling benefits.  In warm, arid 35 
cities, high albedo surfaces offer multifaceted benefits such as cooling and water conservation, 36 
whereas temperate, mesic cities likely benefit from a combination of strategies, with greening 37 
efforts targeting highly paved neighborhoods. 38 
 39 
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 45 

1. Introduction 46 

In the current era of multifaceted global change, urbanization and anthropogenic climate 47 

forcing are working synergistically to expose much of the Earth’s population to extreme high 48 

temperatures. Between 1995 and 2014, the global average surface temperature was 0.85 °C warmer 49 

than the preindustrial average and is projected to continue warming throughout the 21st century, 50 

with extreme heat events expected to occur more frequently and with greater intensity (IPCC 51 

2021). At the same time, humanity continues to experience an unprecedented shift towards urban 52 

living, with more than half of the global population now living in the built environment of cities 53 

(Grimm et al. 2008) where the combined effects of global warming and urban heat islands (Oke 54 

1982) exacerbate the health risks associated with heat waves (Zhou et al. 2022).  55 

At the nexus of urbanization and climate change lies a growing threat to public health as 56 

moderate and extreme heat exposure is a well-documented contributor to human morbidity and 57 

mortality (Sarofim et al. 2016). In the United States, more deaths are attributed to heat exposure 58 

than to any other natural disaster (Bell et al. 2016). Furthermore, the public health burden of heat 59 

exposure includes a multitude of non-fatal exposure consequences such as adverse pregnancy 60 

outcomes, dehydration, loss of labor productivity, and decreased academic achievement (Bekkar 61 

et al. 2020, Heal & Park 2016; Zivin & Neidell 2014; Park et al. 2020). Heat disproportionately 62 

impacts vulnerable populations such as older adults, outdoor workers, people of color, and 63 

residents of low-income households (Sarofim et al. 2016, US EPA 2021). Thus, in addition to 64 

tackling the global climate crisis, there is an urgent need for cities to consider climate adaptation 65 

strategies promoting equitable, sustainable, and heat resilient urban ecosystems.  66 
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Numerous urban design strategies have been proposed to minimize heat exposure to urban 67 

residents including reduction of anthropogenic heat emissions, access to cooling centers, and 68 

strategic development of wind corridors (Leal Filho et al. 2017). Here we focus on two of the most 69 

common and well-founded urban design strategies, urban greening and the incorporation of high 70 

albedo surfaces such as white roofs, which are intended to manipulate the storage, transformation, 71 

and exchange of incoming solar radiation to reduce surface temperatures in cities. 72 

Urban greening for heat mitigation refers to the expansion of vegetation, particularly trees, to 73 

shade the surface from sunlight and increase evapotranspiration such that more of the incoming 74 

solar energy is transferred to the atmosphere via latent, rather than sensible heat. Variation in the 75 

capacity of urban versus rural surfaces to evaporate water is a primary driver of extreme daytime 76 

urban temperatures (Carlson and Boland 1978; Taha 1997; Li et al. 2019), however, the addition 77 

of greenspace to an otherwise impervious surface-dominated landscape can increase the potential 78 

daytime latent heat flux in cities (Zipper et al. 2017; Winbourne et al. 2020; Smith et al. 2021). 79 

Shading has also been demonstrated to be a prominent cooling mechanism of trees in cities, 80 

particularly on very hot days when soils dry (Rahman et al. 2018). Field studies (Wang et al. 2017; 81 

Ziter et al. 2019) and remote sensing studies (Tiangco et al. 2008) find supporting evidence for 82 

vegetation as an effective heat mitigation measure in cities.  83 

The marginal impact (sometimes called ‘cooling efficiency’; Zhou et al. 2017) of green space 84 

on temperature describes the temperature change associated with a one-unit (e.g. 1% of green 85 

space) increase of vegetated land cover. Quantifying the marginal impacts of land cover on 86 

temperature provides a metric for cities to evaluate the potential for urban greening initiatives to 87 

reduce temperatures. Furthermore, exploring the variability in green space marginal impacts across 88 

cities can elucidate the environmental drivers governing the magnitude of vegetation cooling 89 
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impacts. Numerous studies have quantified the marginal impacts of vegetation on land surface 90 

temperature in United States cities (Weng et al. 2006, Zhou et al. 2011, Myint et al. 2015, Zhou et 91 

al. 2017, Zhang et al. 2019, Wang et al. 2019, Wang et al. 2020, Wang et al. 2022), however, 92 

studies that separate the impact of different forms of green space (e.g. grass cover versus tree 93 

cover) and studies exploring the variability in marginal cooling impacts across cities are limited.  94 

Cool roofs and cool pavements, defined as surfaces with a high albedo, have also been 95 

implemented as a means to alleviate excessive urban heat (e.g. NYC CoolRoofs 2022) by 96 

redirecting the largest influx of energy to the land surface (incoming shortwave radiation; Oke 97 

1988). While there is evidence that cool pavements at the ground level may negatively impact 98 

pedestrian thermal comfort during the daytime (Lynn et al. 2009, Erell et al. 2014, Taleghani et al. 99 

2016), high albedo coatings on rooftops represent a pathway for increasing the surface albedo of 100 

cities while simultaneously avoiding increases in the radiative load of pedestrians. Roofs are a 101 

major facet of the built environment and play an important role in the surface energy balance due 102 

to their direct exposure to the sun and sky. Typical roofing materials tend to be strong absorbers 103 

of solar radiation (Oke et al. 2017) and because they are meant to protect the contents of buildings 104 

from infiltration, they are generally designed to remain dry and divert rainfall to gutters and 105 

drainage pipes. Consequently, the excess available energy fueled by absorption of incoming solar 106 

radiation is almost entirely shed as sensible, rather than latent heat (Oke et al. 2017). Increased 107 

white roof fractions in cities have been demonstrated to be an effective method of reducing surface 108 

and near-surface urban heat islands (Oleson et al. 2010; Jacobsen & Ten Hoeve 2012; Li et al. 109 

2014), but have rarely been simultaneously considered with urban greening. 110 

Cities across the United States are recognizing the need for climate adaptation measures (Shi 111 

et al. 2015) and adaptation efforts have expanded substantially in recent years (Easterling et al. 112 
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2018). The adaptive capacity of cities, however, is limited by knowledge gaps in our understanding 113 

of the marginal impacts of tree cover, grass cover, and albedo on temperature dynamics within 114 

cities, the influence of management practices such as irrigation on vegetation cooling efficiency, 115 

and the environmental variables governing the effectiveness of various strategies across cities. The 116 

cooling efficiency of urban design strategies likely varies within and across cities due to 117 

differences in proximate landcover composition and background climates, highlighting the need 118 

for improved understanding of observed greening and albedo cooling impacts.  119 

In situ monitoring of air temperature within cities is generally limited to a relatively small 120 

number of monitoring stations that fail to provide sufficient spatial coverage for urban land use 121 

planning (Zhou et al. 2018). Satellite remote sensing of land surface temperature, however, offers 122 

consistent, repeatable, and spatially comprehensive observations of the urban thermal condition. 123 

This study combines high resolution spatial datasets of landcover with satellite-derived maps of 124 

surface temperature, surface moisture, and albedo to estimate the impact of land cover composition 125 

and albedo on surface temperature at the census block level in seven United States cities using a 126 

spatial regression analysis. The analysis aims to 1) quantify differences in tree versus grass cover 127 

cooling impacts within and across cities, 2) identify environmental drivers governing tree and grass 128 

cover cooling efficiency, 3) explore differences in the marginal cooling impacts of irrigated versus 129 

non-irrigated grass cover in an arid city, and 4) quantify the sensitivity of surface temperature to 130 

albedo across cities. This research deepens our understanding of the joint impacts of urban 131 

greening and albedo on surface temperatures, elucidates climatic drivers of vegetation cooling 132 

potential, and provides important information for city planners hoping to improve heat resiliency 133 

and preparedness for a changing climate through landscape (re)development decisions.  134 

2. Methods 135 
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2.1 Study sites and land cover data 136 

The seven US cities included in the analysis are Boston, Massachusetts; Charlotte, North 137 

Carolina; Chicago, Illinois; Washington, District of Columbia (DC); Durham, North Carolina; San 138 

Diego, California; and San Jose, California (Table 1; Figure 1). Cities were selected due to the 139 

availability of high resolution (< 1 meter), consistent land cover datasets produced by the 140 

University of Vermont Spatial Analysis Laboratory and acquired via the US Department of 141 

Agriculture Research Date Archive (UVM SAL 2012; UVM SAL 2013a; UVM SAL 2013b; UVM 142 

SAL 2016; UVM SAL 2017a; UVM SAL 2017b; UVM SAL 2020). The UVM SAL mapped 143 

seven land cover classes for each city, including tree canopy, shrubs/grass, bare land, water, 144 

buildings, roads, and other paved surfaces (Figure 2A-C). In San Jose, grass was further partitioned 145 

as irrigated and non-irrigated (UVM SAL 2012). Land cover maps were created using a 146 

combination of LiDAR, multispectral orthoimagery from the National Agriculture Imagery 147 

Program, and ancillary GIS data sources. Land cover was mapped using automated object-based 148 

image analysis techniques to group pixels into meaningful objects based on spectral and spatial 149 

properties before a detailed manual review of the dataset was carried out to correct all observable 150 

errors (UVM SAL 2012). Prior to our analysis, a 100-meter buffer surrounding all water bodies 151 

was applied to exclude (mask) the areas immediately surrounding water to minimize misattribution 152 

of landcover impacts on surface temperature due to the presence of water.  153 

2.2 Surface temperature data 154 

Land surface temperature maps (Figure 2J-L) were created with the surface temperature layer 155 

from the Landsat 7 Level 2 Collection 2 Tier 1 Science Product (Masek et al. 2006) which was 156 

acquired and processed with Google Earth Engine (Gorelick et al. 2017). Surface temperature data 157 

is provided at 30-meter spatial resolution with images acquired every 16 days and is estimated 158 
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from Landsat thermal infrared bands using the top-of-atmosphere (TOA) reflectance, TOA 159 

brightness temperature, Advanced Spaceborne Thermal Emission and Reflection Radiometer 160 

(ASTER) emissivity data, ASTER Normalized Difference Vegetation Index (NDVI) data, and 161 

atmospheric geopotential height, specific humidity, and air temperature provided by reanalysis 162 

data. Under ideal clear sky conditions, the root mean square error of the Landsat surface 163 

temperature product has been estimated to be <1 K (Laraby & Schott 2018). To reduce uncertainty 164 

associated with surface temperature estimation, all images with <80% cloud cover collected during 165 

June, July, and August (JJA) of the five years prior to the year depicted by each city’s landcover 166 

map were downloaded, filtered using the C Function of Mask algorithm (CFMASK ; Zhu & 167 

Woodcock 2012) to only include pixels with clear sky conditions, and composited by calculating 168 

the mean pixel surface temperature value across all images to create a raster representative of the 169 

mean JJA clear sky surface temperatures during the sunlit Landsat overpass time across each city. 170 

On average, each pixel had a clear sky observation in 70.7% of images used to create the raster 171 

composites, with 95.0% of pixels having a clear sky observation in at least 50% of images used to 172 

create the raster composites. An inventory of all Landsat images used in this analysis can be found 173 

in SI Table 1. Landsat 7 imagery is used throughout the analysis to ensure consistency in the 174 

sensors used for data collection and to allow for albedo estimation using methods derived for the 175 

Enhanced Thematic Mapper Plus (ETM+) instrument onboard the spacecraft.   176 

2.3 Albedo and moisture data 177 

Broadband shortwave albedo (Figure 2G-I) and the Land Surface Water Index (LSWI; Figure 178 

2D-F) were estimated from the narrowband surface reflectance layers of the Landsat 7 Level 2 179 

Collection 2 Tier 1 Science Product acquired for the same dates and times as the surface 180 

temperature data. Surface reflectance data was atmospherically corrected using the Landsat 181 
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Ecosystem Disturbance Adaptive Processing System (LEDAPS) which generates surface 182 

reflectance estimates from a radiative transfer model with inputs of TOA reflectance, TOA 183 

brightness temperature, and auxiliary data such as water vapor, ozone, geopotential height, aerosol 184 

optical depth, and digital elevation (Masek et al. 2006). Albedo was estimated using the 185 

narrowband to broadband shortwave albedo algorithm developed for the ETM+ instrument in 186 

Liang (2001) and validated in Liang et al. (2003). Surface albedo was estimated as: 187 

𝛼!"#$ = 0.356𝛼% + 0.130𝛼& + 0.373𝛼' + 0.085𝛼( + 0.072𝛼) − 0.0018 (1) 188 

where 𝛼!"#$ is the estimated broadband shortwave surface albedo and 𝛼%, 𝛼&, 𝛼', 𝛼(, and 𝛼) 189 

correspond to the atmospherically-corrected surface reflectance within spectral bands 1 (blue), 3 190 

(red), 4 (near-infrared), 5 (short-wave infrared), and 7 (mid-infrared) of the ETM+ instrument. 191 

Albedo was estimated for all clear sky pixels in Landsat 7 images collected during JJA of the five 192 

years prior to the year depicted by each city’s landcover map and composited to create a raster of 193 

mean JJA clear sky surface albedo during the sunlit Landsat overpass time across each city.  194 

 We use LSWI to characterize the moisture content of vegetation as a proxy for potential 195 

latent heat flux, as vegetation in water scarce environments likely transpires less than vegetation 196 

with sufficient access to water. LSWI (sometimes referred to as the Land Surface Moisture Index 197 

or Normalized Difference Water Index; Ji et al. 2011) has been demonstrated to be effective in 198 

monitoring vegetation moisture content (Maki et al. 2004; Gu et al. 2008) and was estimated as: 199 

𝐿𝑆𝑊𝐼 = 	*!+	*"
*!$	*"

     (2) 200 

where composites were produced in the same way as the surface temperature and albedo rasters. 201 

2.4 Census block boundaries 202 

Census block geographic boundaries were extracted for each city from the Topologically 203 

Integrated Geographic Encoding and Referencing Database (TIGER; U.S. Census Bureau 2019a). 204 
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Census blocks represent the smallest geographic area for which the U.S. Census Bureau collects 205 

data and are defined as “statistical areas bounded on all sides by visible features, such as streets, 206 

roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, 207 

and county limits, and short line-of-sight extensions of streets and roads” (U.S. Census Bureau 208 

2019b). Census blocks were chosen as the unit of aggregation and analysis for the gridded 209 

landcover, surface temperature, LSWI, and albedo data as they are meaningful units for the scale 210 

of typical (re)development and land use planning projects taken on by cities and so that data from 211 

this analysis can be coupled to other census geographies for pairing with sociodemographic data 212 

collected by the U.S. Census Bureau for future analysis (SI Table 2; SI Figure 2). For each city, 213 

landcover data was aggregated to the census block level by computing the percent of each 214 

landcover type within each census block. Surface temperature, LSWI, and albedo data were 215 

aggregated to the census block level by computing the mean values of all pixels with a pixel 216 

centroid falling within a census block. Census blocks less than 3600 m2 in area were omitted from 217 

the analysis as they are smaller than the native spatial resolution of the Landsat 7 infrared thermal 218 

bands used in the derivation of the surface temperature data product used in this analysis. The 219 

minimum area requirement removed an average of 4.7% of census blocks per city from the 220 

analysis, ranging from 1.1% of census blocks in Durham, up to 10.0% of census blocks in Boston 221 

(SI Table 2).  As this analysis focuses on white roof and greenspace impacts on surface temperature 222 

across developed landscapes, census blocks with less than 1% building cover were also omitted 223 

from the analysis.  224 

2.5 Spatial regression modeling - Spatial Durbin Error Model 225 

To estimate the impact of land cover composition and albedo on surface temperature at the 226 

census block level for each city, we implement a Spatial Durbin Error Model (SDEM; LeSage & 227 
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Pace 2009), which includes spatial lag effects on the independent variables and model error to 228 

estimate direct and indirect impacts of independent variables on the dependent variable at the 229 

census block level. We utilize a spatial autoregressive framework due to spatial autocorrelation in 230 

the temperature data, which may bias the coefficient estimates from a traditional ordinary least 231 

squares regression modeling framework (Lichstein et al. 2002). The SDEM form is: 232 

𝑦 = 𝑋𝛽 +𝑊𝑋𝜃 + 𝑢,      (3) 233 

𝑢 = 𝜆𝑊𝑢 + 𝜀,           234 

𝜀~𝑁(0, 𝜎-)           235 

where 𝑦 is the dependent variable vector (mean surface temperature (K)), 𝑋 is the independent 236 

variable matrix (tree cover (%), grass cover (%), building cover (%), other paved surface cover 237 

(%), and mean albedo (unitless) ), 𝛽 is the regression parameter vector, 𝑊 is a spatial weighting 238 

matrix, 𝜃 is the independent spatial lag parameter vector, 𝑢 is the spatial error, 𝜆 is the spatial 239 

coefficient of the error, and 𝜀 is the error vector of the model. In the San Jose SDEM, grass was 240 

disaggregated in the independent variable matrix into irrigated versus non-irrigated grass cover. 241 

The spatial weighting matrix, 𝑊, was constructed using the variance-stabilizing ‘S-coding’ 242 

scheme described by Tiefelsdorf et al. (1999) to reduce heterogeneity in spatial weights due to 243 

differences in the number and size of neighbors. Direct impacts, represented by 𝛽, describe the 244 

impact of a unit change in the independent variable within a focal unit (in this analysis, within a 245 

census block) on the dependent variable. Indirect impacts, represented by 𝜃, capture spatial 246 

spillover effects and describe the effect of a unit change in the independent variable within the 247 

spatially weighted neighboring observations on the dependent variable of the focal unit.  248 

Bare land cover and road cover were omitted from the SDEMs of all cities to minimize 249 

multicollinearity. We computed the variance inflation factor (VIF) for each independent variable 250 
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within each city-specific SDEM to evaluate the extent to which SDEM impact coefficient 251 

estimates are driven by multicollinearity. We find 31 out of 36 VIFs to be less than five and all 252 

VIFs to be less than ten (SI Table 3), indicating that multicollinearity is not a concern (Kennedy 253 

2018). To test for spatial autocorrelation of SDEM residuals in each city, we conducted a two-254 

sided Moran’s I test on the error of the SDEM finding no evidence of spatial autocorrelation in the 255 

error (SI Table 4). Model validation was conducted for the SDEM of each city by randomly 256 

selecting 70% of census blocks within each city to use as a training dataset, and predicting the 257 

mean surface temperature in a testing dataset composed of the remaining 30% of census blocks as 258 

a function of land cover composition and albedo.  259 

2.6 Sensitivity analysis of greenspace impact drivers 260 

We test the sensitivity of the magnitude of grass cover and tree cover cooling impacts to 261 

vegetation moisture availability and solar irradiance - two environmental drivers that impose limits 262 

on evapotranspirative cooling (Jarvis & McNaughton 1986) - using two ordinary least squares 263 

regression analyses. For tree cover cooling impacts, we fit a linear model of the form: 264 

𝛽./!#,1233 = 𝛼 + 𝛽% × 𝐺𝐻𝐼445 +	𝛽- × 𝐿𝑆𝑊𝐼1233 + 𝜀   (4) 265 

where 𝛽./!#,1233 is the tree cover direct impact (K %-1) estimated by the SDEM of each city, 𝛼 is 266 

the model intercept, 𝛽% is the sensitivity of 𝛽./!#,1233 to 𝐺𝐻𝐼445, 𝛽- is the sensitivity of 𝛽./!#,1233 267 

to 𝐿𝑆𝑊𝐼1233, 𝐺𝐻𝐼445 is the mean daytime JJA clear sky global horizontal irradiance for each city 268 

(W m-2; obtained for the years 2019 - 2020 from the National Solar Radiation Database, 2022), 269 

𝐿𝑆𝑊𝐼1233 is the mean LSWI of all 30-meter x 30-meter Landsat pixels that contain more than 25% 270 

tree cover (unitless), and 𝜀 is the model error. Significant model coefficients of a similar magnitude 271 

were observed across pixel tree cover thresholds ranging from 5% to 95%. We choose 25% as the 272 
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threshold for tree and grass cover in the sensitivity analysis as it restricts the analysis to only 273 

include pixels where tree or grass cover is a dominant land cover type. 274 

For grass cover cooling impacts, we did not observe a significant relationship between 275 

𝛽./!#,62788 and 𝐺𝐻𝐼445. Therefore, we fit a linear model of the form: 276 

𝛽./!#,62788 = 𝛼 + 𝛽 × 𝐿𝑆𝑊𝐼62788 + 𝜀    (5) 277 

where 𝛽./!#,62788 is the grass cover direct impact (K %-1) estimated by the SDEM of each city, 𝛼 278 

is the model intercept, 𝛽 is the sensitivity of 𝛽./!#,62788 to 𝐿𝑆𝑊𝐼62788, 𝐿𝑆𝑊𝐼62788 is the mean 279 

LSWI of all 30-meter x 30-meter Landsat pixels that contain more than 25% grass cover (unitless), 280 

and 𝜀 is the model error. All modeling and statistical testing were conducted using R version 4.1 281 

(R Core Team 2022).  282 

3. Results 283 

3.1 Model evaluation and validation 284 

We find strong agreement between the observed versus predicted surface temperature 285 

estimates (Figure 3). The SDEMs capture much of the variance in surface temperature with out-286 

of-sample R2 values ranging from 0.51 in the San Jose SDEM to 0.89 in the Charlotte SDEM 287 

(Figure 3). We find no evidence of substantial bias in SDEM predictions of surface temperature 288 

with all regression slopes close to one (range of 0.97 - 1.07) and intercepts close to zero (range of 289 

-30.15 - 8.58). Further, we find evidence of strong predictive power across all city-specific SDEMs 290 

with an average out-of-sample root mean square error of 1.36 K across all cities, which is equal to 291 

just 6.0% of the range of observed surface temperature values across all cities (300.97 K – 323.62 292 

K; Figure 3). 293 

3.2 Impact estimates 294 



 13 

The direct impact coefficients were highly significant (p < 0.001) across all cities for each 295 

independent variable included in the SDEMs (Figure 4A; Table 2). Tree cover had a negative 296 

(cooling) direct impact on surface temperature in each city, ranging from -0.051 K %-1 in Chicago 297 

to -0.123 K %-1 in Durham. Grass cover had a negative direct impact in all cities except for San 298 

Jose, where irrigated grass cover was distinguished from non-irrigated grass cover. We found a 299 

positive (warming) direct impact of non-irrigated grass cover of 0.022 K %-1 in San Jose versus a 300 

negative direct impact of irrigated grass cover of -0.018 K %-1, suggesting that irrigated grass cover 301 

has a stronger cooling impact than non-irrigated grass cover in arid cities. The mean direct impact 302 

of tree cover on surface temperature (-0.089 K %-1) was approximately four times stronger than 303 

the mean direct impact of grass cover (-0.021 K %-1), providing evidence that urban surface 304 

temperatures are more sensitive to tree cover than grass cover (Figure 4A) during the daytime. We 305 

estimate significant spatial spillover effects of tree cover, where indirect impacts describe the 306 

effect of a unit change in tree cover within the spatially weighted neighboring observations on the 307 

surface temperature of a focal census block, with negative indirect impacts of tree cover observed 308 

across all seven cities (Figure 4B) with a mean indirect impact of -0.047 K %-1. In contrast, 309 

significant negative indirect impacts of grass cover were only observed in three cities and were 310 

more than 90% weaker than the indirect impacts of tree cover with an average indirect impact of 311 

just -0.004 K %-1 (Table 2; Figure 4B). 312 

Both building cover and other paved cover had significant positive direct impacts on 313 

surface temperature, however, the positive impacts of building cover and other paved cover were 314 

weaker than the negative impact of tree cover in each city. Additionally, we found less variability 315 

in the building cover and other paved cover direct impacts (σ = 0.014 K %-1 and 0.007 K %-1, 316 

respectively) than grass cover (σ = 0.024 K %-1) and tree cover (σ = 0.024 K %-1) direct impacts. 317 
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We find solar irradiance and vegetation moisture content to be strong controls on the magnitude 318 

of tree cover direct impacts.  319 

Mean JJA global horizontal solar irradiance and the mean LSWI of Landsat pixels 320 

containing more than 25% tree cover explain 97% of the variance in tree cover direct impacts 321 

(Figure 5A), suggesting that the magnitude of tree cover cooling impacts is a function of solar 322 

radiation intensity and vegetation moisture availability. We observe the strongest direct grass cover 323 

impacts in the cities with the highest vegetation moisture content, with the mean LSWI of Landsat 324 

pixels containing more than 25% grass cover explaining 89% of the variance in grass cover direct 325 

impacts (Figure 5B), highlighting that the sensitivity of surface temperature to grass cover is 326 

largely a function of moisture availability.  327 

Albedo was found to impose a strong negative direct impact on surface temperature of a 328 

similar magnitude across all cities (Figure 4A) with an average direct impact of -0.187 K per 329 

albedo increase of 0.01 (unitless). Furthermore, albedo was found to impose significant, but 330 

weaker, indirect effects (Figure 4B) on surface temperature in six out of seven cities with an 331 

average indirect impact of -0.085 K per albedo increase of 0.01. The marginal impacts of tree cover 332 

and albedo estimated here support both urban greening and integration of high albedo surfaces as 333 

effective ways to reduce surface temperatures, however, we find large discrepancies in the range 334 

of typical observed values of albedo versus tree cover within and across cities (Figure 6). Tree 335 

cover values were more variable than albedo values with a coefficient of variation of tree cover at 336 

the census block level of 0.69 compared to a coefficient of variation of albedo at the census block 337 

level of 0.13.  338 

4. Discussion 339 

4.1 Urban greenspace impacts on surface temperature 340 
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While we have long known that vegetation and albedo impact temperature, this study advances 341 

our understanding of the marginal cooling impacts of urban green space and albedo across 342 

developed landscapes that vary in land cover composition and background climate. We identify 343 

significant differences in both the cooling efficiency of tree versus grass cover and the cooling 344 

efficiency of irrigated versus non-irrigated grass cover in an arid city. Furthermore, we leverage 345 

differences in vegetation moisture content and mean solar irradiance to gain insights into the 346 

drivers of vegetation cooling potential within and across cities. We expand upon existing studies 347 

of urban vegetation cooling efficiency that primarily focus on trees or vegetation as a whole by 348 

separating grass effects from tree effects. Grass cover comprises up to 24.8% of land area in the 349 

cities investigated here, and is more abundant than tree cover in three of the seven cities 350 

investigated here (Figure 1), pointing to the importance of understanding the cooling effects from 351 

each vegetation type.  352 

The magnitude of marginal cooling impacts of vegetation reported here (mean of -0.089 K %-353 

1 and -0.021 K %-1 for tree and grass cover, respectively) is consistent with previous studies. In a 354 

literature review conducted by Wang et al. (2020), reported urban vegetation cooling efficiency 355 

values range from -0.029 K %-1 to -0.318 K %-1 with an average value of -0.081 K %-1. Wang et 356 

al. (2020) found the marginal cooling impacts of tree cover across 118 United States cities to range 357 

from -0.040 K %-1 to -0.574 K %-1 but did not quantify grass cover cooling impacts. While this 358 

study quantifies the marginal cooling impacts of vegetation during mean JJA daytime conditions, 359 

there is evidence that the sensitivity of land surface temperature to vegetation cover increases 360 

during heat waves. Wang et al. (2019) found stronger average marginal cooling impacts (-0.202 K 361 

%-1) than those observed in this study during heat waves in six United States cities, along with a 362 

significant relationship between mean land surface temperature and marginal cooling impact, 363 
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highlighting the potential for heat mitigation from urban greening strategies under projected future 364 

increases in extreme heat. 365 

The SDEM results reported here corroborate the notion that incorporating vegetation into 366 

developed landscapes can reduce surface temperatures, however, different mechanisms of cooling 367 

between tree cover and grass cover result in a stronger local cooling impact of tree cover than grass 368 

cover with a stronger cooling spillover, indirect impact of trees on the surrounding area. Trees cool 369 

the surface via shading (Yu et al. 2020) and evapotranspiration (Rahman et al. 2017), whereas 370 

grass primarily cools the surface via evapotranspiration. Therefore, when evapotranspiration 371 

efficiency is constrained by moisture availability, the cooling potential of grassy surfaces is 372 

expected to decline while the primary cooling mechanism of tree cover is expected to shift towards 373 

shading. At the 60 m native spatial resolution of the Landsat 7 infrared thermal bands used in this 374 

analysis, it is unlikely that the stronger cooling impacts of tree cover versus grass cover observed 375 

here are resultant from shade effects alone. Instead, it is possible that the stronger tree cover 376 

cooling impacts are a function of increased evapotranspiration associated with the high leaf area 377 

index and increased exposure to the sun and sky of broadleaf trees prevalent in cities (Pataki et al. 378 

2011) compared to shorter statured grasses and shrubs. The impact coefficients and relationship 379 

between tree cover direct impacts, solar irradiance, and moisture availability (Figure 5A) reported 380 

here imply that tree canopy expansion is likely a more effective climate adaptation strategy in 381 

cities at a lower latitude with adequate precipitation or irrigation to sustain evapotranspiration. 382 

Despite variability in the magnitude of tree cover impacts observed across cities, we find evidence 383 

of tree cover expansion as an effective heat mitigation strategy across all cities included in the 384 

analysis.  385 
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In considering regions to implement canopy expansion measures within cities, the strongest 386 

cooling impacts may be realized in neighborhoods with a higher fraction of impervious surface 387 

area, with adequate space for canopy expansion, due to the thermal properties and moisture 388 

availability of the surfaces underlying the canopy (Rahman et al. 2020). Our results suggest that 389 

canopy expansion over paved surfaces has a larger impact than canopy expansion over grassy 390 

surfaces due to the compounded effect of reduced surface temperatures from each additional 391 

fraction of canopy plus surface temperature reductions resultant from decreased pavement area. 392 

The thermal admittance of anthropogenic construction materials with a low water holding capacity 393 

typically found below highly urbanized canopies (e.g. asphalt, concrete, and brick) is often lower 394 

than that of saturated natural materials than can readily store water (Oke 1987; Thornes and Shao 395 

1991; Crevier and Delage 2001). Materials with a lower thermal admittance are characterized by 396 

a lower heat storage capacity and therefore shed large amounts of sensible heat, resulting in high 397 

daytime surface temperatures. Rahman et al. (2019) demonstrate the influence of surfaces 398 

underlying tree canopies, finding that in Munich, Germany, a unit increase in the leaf area index 399 

of trees above the surface results in a 3 K decrease in the surface temperature of grassy surfaces 400 

compared to a 6 K decrease in the surface temperature of asphalt. Critically, the existing land cover 401 

composition represents an important consideration in climate-sensitive design strategies that focus 402 

on urban greening.  403 

In addition to land cover composition, we find a strong influence of the regional moisture 404 

regime on the cooling potential of grass cover. Arid cities that lack a reliable supply of water via 405 

precipitation during the summer months, such as San Jose and San Diego (Table 1), require 406 

irrigation to realize the cooling effects of grass cover which can strain local water supplies. In the 407 

southwestern United States, more than one-third of regional water supplies can be used to irrigate 408 
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urban landscapes (Devitt et al. 2008). In cities located in dry climates, urban greening strategies 409 

that focus on tree canopy expansion are likely to reduce heat exposure more than strategies that 410 

treat all vegetation, including grass, as equal, while simultaneously reducing water consumption. 411 

Wynne and Devitt (2020) found that in the arid climate of Las Vegas, Nevada, irrigated tree-412 

dominated landscapes had lower water use rates than similar areas dominated by irrigated 413 

turfgrass. In contrast, cities located in mesic climates with a consistent supply of precipitation 414 

during the summer months can achieve considerable surface temperature reductions from grass 415 

cover alone. For example, we find the direct impact of grass cover in the mesic city of Boston (-416 

0.058 K %-1) to be 73% of the direct impact of tree cover in Boston (-0.079 K %-1; Table 2), 417 

whereas the direct impact of grass cover in San Diego (-0.007 K %-1) is only 7.4% of the direct 418 

impact of tree cover (-0.094 K %-1; Table 2). These findings point to the importance of moving 419 

beyond simple greenness indices, such as NDVI, that are commonly used to characterize urban 420 

greenspace, towards metrics that better capture the form and function of urban vegetation and 421 

associated differences in ecosystem service provisions.  422 

4.2 Trade-offs of urban greening and albedo manipulation 423 

This analysis points to both urban greening and the incorporation of high albedo surfaces as 424 

effective ways to combat high surface temperatures. Efforts to improve heat resiliency through 425 

climate sensitive design should consider the trade-offs of potential adaptation strategies. Rooftops 426 

are a common target for the installation of reflective surfaces and account for up to 25% of the 427 

total landcover in the seven cities investigated here (Figure 1), with buildings accounting for more 428 

area than tree canopy in Chicago, San Diego, and San Jose, highlighting the adoption of white 429 

roofs as a potentially high impact intervention for improved thermal comfort via albedo increases. 430 

White roof adoption offers a low-cost, easy to implement, heat mitigation option with long-term 431 
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net savings compared to traditional dark roofs (Sproul et al. 2014). Moreover, white roofs offer 432 

additional environmental benefits via energy savings and reduced greenhouse gas emissions 433 

associated with reduced cooling demand during the summer months (Giordano et al. 2019). The 434 

cooling services associated with white roofs are realized immediately following implementation, 435 

but deteriorate over time as pollutants and dirt accumulate on the roof surface (Figure 7). An 436 

average decrease in rooftop albedo of 0.15 may be expected within the first year of white roof 437 

adoption, with a continued gradual decline in subsequent years (Bretz & Akbari 1997).  438 

In contrast, the financial cost (Vogt et al. 2015) and greenhouse gas emissions associated with 439 

the planting, irrigation, maintenance, and disposal of city trees can be high (Kendall and 440 

McPherson 2011) and require trees to survive for several decades to attain carbon neutrality (Petri 441 

et al. 2016). However, while cool pavements/white roofs singularly benefit public health via 442 

thermal regulation, urban vegetation has been demonstrated to provide a suite of co-benefits to 443 

public health and well-being (Markevych et al. 2017). Urban greenspace decreases exposure to 444 

other environmental stressors such as noise (van Renterghem et al. 2015) and air pollution 445 

(Escobedo et al. 2011), reduces psychophysiological stress (Hartig et al. 2014), encourages 446 

physical activity (Almanza et al. 2012), and facilitates social cohesion (Weinstein et al. 2015). 447 

Over time, the ecosystem services associated with urban greening are enhanced as larger trees cast 448 

more shade and transpire more water than smaller trees (Figure 7).  449 

4.3 Potential public health applications 450 

Surface temperature observations offer several advantages over air temperature observations 451 

in assessing the urban thermal condition. Air temperature observations are commonly made at 452 

relatively few discrete locations with multiple sensors across a city or are estimated via a coarse 453 

resolution gridded reanalysis product. In contrast, remote sensing measurements of surface 454 
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temperature offer long-term, high-resolution observations using the same sensor with global 455 

coverage. Thus, surface temperature can expand opportunities to identify localized modifiable 456 

drivers of heat exposure (e.g., vegetation and albedo), and characterize fine scale heat exposure 457 

disparities and associated health risks. Limitations of surface temperature observations include 458 

uncertainty due to cloud cover, trade-offs between spatial and temporal resolution, and 459 

discrepancies between surface and air temperature (Zhou et al. 2018), where air temperature is 460 

more closely related to public health than surface temperature. Currently the health effects 461 

literature is primarily based on measured or perceived air temperature (Anderson et al. 2013), with 462 

limited studies linking surface temperature to health (Smargiassi et al. 2009, Kestens et al. 2011). 463 

Surface temperature is largely a function of the incoming solar energy, moisture availability, 464 

and thermal properties of the surface material. The air temperature felt by humans, however, 465 

experiences temperature change via the convective transport of sensible heat from surrounding 466 

surfaces, net radiation changes where urban pollutants, aerosols, and humidity absorb and emit 467 

energy, and advection of heat from adjacent air parcels. Thus, the surface temperature imposes a 468 

strong control on air temperature, but the dependence of air temperature on other factors such as 469 

wind speed, aerodynamic roughness, and the temperature of large-scale air masses precludes the 470 

simple prediction of air temperature from surface temperature alone (Venter et al. 2021).  471 

Surface temperature observations may also be informative for identifying neighborhoods 472 

susceptible to prolonged exposure events that persist overnight as the thermal emissions of the 473 

surface become a primary driver of air temperature at night (Ibsen et al. 2022) when solar radiation 474 

inputs cease and turbulent mixing subsides. Extended periods of heat exposure exacerbate 475 

physiological stress on the human body and can increase the risk of negative heat-related health 476 

outcomes (WHO 2018). The City of Boston (2022) reports that in neighborhoods with the highest 477 
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average surface temperature, the associated air temperature can remain over 32 °C overnight 478 

during heat waves, with daytime air temperatures reaching up to 41 °C.  479 

Marginalized communities tend to experience more heat exposure than other communities in 480 

warm countries (Park et al. 2015) highlighting a critical need to target disproportionalities in heat 481 

exposure observed across communities in the deployment of climate-sensitive infrastructure. Hsu 482 

et al. (2021) find that at the census tract level in the United States, the average person of color is 483 

exposed to warmer surface temperatures than non-Hispanic white populations in 97% of the 175 484 

largest urbanized areas in the country, with similar relationships observed when comparing 485 

households below the US Census Bureau’s poverty threshold to those at more than twice the 486 

poverty threshold. Tieskens et al. (2022) find substantial spatial variability in residential demand 487 

for cooling as a function of heat exposure and population characteristics at the census tract level 488 

in Boston, MA, pointing to the importance of spatially comprehensive assessment of cooling 489 

strategies. We choose to conduct our analysis at the census block level to accommodate 490 

aggregation of temperature, land cover, and albedo data to the census block group or census tract 491 

level for future pairing with sociodemographics and health in studies of exposure disparities and 492 

vulnerability. 493 

Overall, the methods described in this paper facilitate modeling of land surface temperature 494 

changes due to fine scale vegetation and albedo interventions, providing the opportunity to 495 

evaluate the impact of these interventions on exposure disparities and health studies in future 496 

projects.  497 

4.4 Winter impacts 498 

The cooling impacts reported here describe temperature reductions observed during summer 499 

months. Much less attention has been given to the wintertime urban heat island effect, but the 500 
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implementation of climate sensitive urban design choices may produce unforeseen consequences 501 

during colder periods in temperate climates. The wintertime urban heat island effect has been 502 

shown to potentially reduce cold-related mortality by up to 15% (Macintyre et al. 2021a). 503 

Deciduous trees that lose their leaves in the winter allow for solar radiation to penetrate the canopy 504 

and reach the surface, resulting in warmer wintertime temperatures. White roofs continue to reflect 505 

wintertime radiation away from the surface, resulting in lower wintertime temperatures (He et al. 506 

2020a), increased building heating costs at higher latitudes (Oleson et al. 2010), and uncertain 507 

impacts on wintertime mortality. Macintyre et al (2021b) project that the summertime health 508 

benefits of white roofs will increase throughout the 21st century in the United Kingdom, with 509 

insignificant changes in the impact of white roofs on cold-related mortality. In contrast, He et al. 510 

(2020b) estimate that in the Greater Boston area, 0.21% of deaths attributed to summertime heat 511 

exposure may be avoided through the implementation of white roofs, compared to 0.096% of 512 

wintertime deaths associated with exposure to extreme cold temperatures attributed to cool roof 513 

impacts on wintertime temperatures.  514 

5. Conclusion 515 

We estimate strong, significant cooling impacts of tree cover and albedo on surface 516 

temperatures at the census block scale across seven United States cities. We find tree cover cooling 517 

impacts increase at lower latitudes and in more mesic climates. We find evidence of grass as a 518 

cooling mechanism with a smaller impact than tree cover that is largely controlled by moisture 519 

availability. The impact coefficients and drivers identified here offer valuable information to city 520 

planners working to incorporate the most effective climate sensitive design strategies that promote 521 

heat resiliency given the current land cover composition and background climate. For example, in 522 

arid cities with low latent heat flux efficiency and a reduced capacity to maintain healthy 523 
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vegetation without irrigation, cool roofs and cool pavements offer a way to cool the city surface 524 

without consuming excess water resources. Conversely, in mesic temperate climates with ample 525 

precipitation, cities would likely benefit from the incorporation of both urban greening and white 526 

roof adoption, where tree cover benefits may be more impactful in neighborhoods characterized 527 

by high impervious surface fractions.   528 
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Figure & Table Captions 861 
 862 
 863 
 864 

City Latitude (°) JJA Air Temperature (°C) JJA Precipitation (mm) 

Boston 42.4 22.0 263.9 

Charlotte 35.2 25.8 306.7 

Chicago 41.9 23.4 293.4 

DC 38.9 24.0 304.3 

Durham 36.0 24.4 372.6 

San Diego 32.7 19.7 3.8 

San Jose 37.3 20.5 5.8 

Table 1. Mean summer (June, July, and August) air temperature (°C) and mean annual summer 865 
cumulative precipitation (mm) between 1991 and 2020 for the seven cities included in the 866 
analysis (National Centers for Environmental Information, 2022). 867 
 868 
 869 
 870 
 871 
 872 

873 
Figure 1. Map: Location of the seven cities included in the analysis. Numbers in the parentheses 874 
of the map legend represent the mean albedo of each city. Inset: Percent of each land cover 875 
type’s contribution to total land area in each city sorted left-to-right by percent tree cover.   876 
 877 
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878 
Figure 2. A-C: Land cover composition maps for Boston (2019), Charlotte (2012), and San Jose 879 
(2011). D-F: Five-year mean land surface water index (LSWI; unitless) raster composites for 880 
Boston (2015 – 2019), Charlotte (2008 – 2012), and San Jose (2007 – 2011). G-I: Five-year 881 
mean albedo (unitless) raster composites for Boston, Charlotte, and San Jose. J-L: Five-year 882 
mean land surface temperature (LST; K) raster composites for Boston, Charlotte, and San Jose. 883 
Land cover, LSWI, albedo, and LST data for Chicago, DC, Durham, and San Diego can be found 884 
in SI Figure 1. 885 
 886 
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887 
Figure 3. Observed LST (K) of the census blocks included within the testing datasets versus the 888 
predicted LST (K) of the census blocks in the testing dataset for all cities included in the 889 
analysis. N denotes the size of the testing dataset for each city. 890 
 891 
 892 
 893 
 894 
 895 
 896 
 897 
 898 
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899 
Figure 4. A: Direct impact coefficients estimated for each independent variable by each city-900 
specific SDEM. *Irrigated grass cover in San Jose is designated by an open circle. Tree, grass, 901 
building, and paved cover coefficients should be interpreted as the change in surface temperature 902 
resultant from a one unit change in the percent land cover within a census block. Albedo 903 
coefficients should be interpreted as the change in surface temperature resultant from a 0.01 904 
increase in the albedo within a census block. B: Indirect impact coefficients estimated for each 905 
independent variable by each city-specific SDEM. *Irrigated grass cover in San Jose is 906 
designated by an open circle. Tree, grass, building, and paved cover coefficients should be 907 
interpreted as the change in surface temperature resultant from a one unit change in the spatially 908 
weighted percent land cover in neighboring census blocks. Albedo coefficients should be 909 
interpreted as the change in surface temperature resultant from a 0.01 increase in the spatially 910 
weighted albedo of neighboring census blocks. All error bars represent 95% confidence intervals. 911 
 912 
 913 
 914 
 915 
 916 
 917 
 918 
 919 
 920 
 921 
 922 
 923 
 924 
 925 
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Table 2. Model intercepts, spatial error coefficients, and direct/indirect impact coefficients 926 
estimated for each independent variable by each city-specific SDEM, where irrigated grass cover 927 
in San Jose is designated by the italicized text. *** indicates statistical significance where p < 928 
0.001, ** indicates statistical significance where p < 0.01,  * indicates statistical significance where 929 
p < 0.05. 930 
 931 
 932 
 933 
 934 
 935 

Direct Impacts and Intercepts  
City Tree % Grass % Building % Other Paved % Albedo/100 Intercept 

Boston -0.079 *** -0.058 *** 0.021 *** 0.013 *** -0.189 *** 315.6 *** 
Charlotte -0.113 *** -0.032 *** 0.056 *** 0.033 *** -0.219 *** 318.9 *** 
Chicago -0.051*** -0.015 *** 0.027 *** 0.016 *** -0.178 *** 314.5 *** 
DC -0.086 *** -0.020 *** 0.023 *** 0.026 *** -0.182 *** 316.3 *** 
Durham -0.123 *** -0.042 *** 0.044 *** 0.028 *** -0.193 *** 317.1 *** 
San Diego -0.094 *** -0.007 *** 0.035 *** 0.020 *** -0.167 *** 318.7 *** 
San Jose -0.074 *** 0.022 *** /-0.018 *** 0.050 *** 0.026 *** -0.181 *** 317.0 *** 

Indirect Impacts and Spatial Error Coefficients  
City Tree % Grass % Building % Other Paved % Albedo/100 λ 

Boston -0.052 *** -0.022 * 0.0005 0.009 -0.107 *** 0.78 *** 
Charlotte -0.014 * 0.007 0.043 *** 0.027 *** -0.099 *** 0.61 *** 
Chicago -0.056 *** -0.011 *** 0.019 *** 0.020 *** -0.086 *** 0.89 *** 
DC -0.060 *** 0.01 0.020 * 0.021 * -0.011  0.76 *** 
Durham -0.032 *** -0.0007 0.028 * 0.030 ** -0.152 *** 0.60 *** 
San Diego -0.073 *** 0.002  0.001 -0.009* -0.060 *** 0.80 *** 
San Jose -0.042 *** -0.003  /-0.014 * 0.014 * 0.015** -0.079 *** 0.76 *** 
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936 
Figure 5. A: Tree cover direct impacts (K %-1) estimated from the SDEM for each city versus 937 
tree cover direct impacts (K %-1) estimated by a linear regression model predicting tree cover 938 
direct impacts as a function of mean JJA global horizontal irradiance  (GHI; W m-2) and LSWI 939 
(unitless). B: Grass cover direct impacts (K %-1) estimated from the SDEM for each city versus 940 
grass cover direct impacts (K %-1) estimated by a linear regression model predicting grass cover 941 
direct impacts as a function of LSWI (unitless). *For San Jose, irrigated grass cover is designated 942 
by an open circle and non-irrigated grass cover is designated by a closed circle. All error bars 943 
represent 95% confidence intervals. 944 
 945 
 946 
 947 
 948 
 949 
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950 
Figure 6. A: Kernel density distribution of albedo at the census block level for each city 951 
included in the analysis. B: Kernel density distribution of tree cover (%) at the census block level 952 
for each city included in the analysis. 953 
 954 
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955 
Figure 7. Conceptualization of the temporal evolution of cooling benefits provided by trees 956 
versus white roofs (Adapted from data and figures in Bretz & Akbari 1997 and Vogt et al. 2015). 957 
  958 
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Supplemental Information 959 
 960 
 961 

 962 

 963 

 964 
SI Figure 1. A-D: Land cover composition maps for Chicago (2010), DC (2011), Durham (2015), and San Diego (2017). E-H: 965 
Five-year mean land surface water index (LSWI; unitless) raster composites for Chicago (2006 – 2010), DC (2007 – 2011), 966 
Durham (2011 - 2015), and San Diego (2013 – 2017). I-L: Five-year mean albedo (unitless) raster composites for Chicago, DC, 967 
Durham, and San Diego. M-P: Five-year mean land surface temperature (LST; K) composites for Chicago, DC, Durham, and San 968 
Diego. 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 
 977 
 978 
 979 
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 980 
 981 
SI Table 1. Inventory of Landsat images used to create the five-year JJA clear sky raster composites of surface temperature, 982 
albedo, and LSWI. 983 

City Year Images 
Boston (n = 23 images) 2015 LE07_012031_20150617,  

LE07_012031_20150703,  
LE07_012031_20150719,  
LE07_012031_20150804,  
LE07_012031_20150820 

 2016 LE07_012031_20160619,  
LE07_012031_20160721,  
LE07_012031_20160806, 
LE07_012031_20160822 

 2017 LE07_012031_20170622,  
LE07_012031_20170708,  
LE07_012031_20170809,  
LE07_012031_20170825 

 2018 LE07_012031_20180609,  
LE07_012031_20180625,  
LE07_012031_20180711,  
LE07_012031_20180727,  
LE07_012031_20180828 

 2019 LE07_012031_20190612,  
LE07_012031_20190628,  
LE07_012031_20190730,  
LE07_012031_20190815,  
LE07_012031_20190831 

Charlotte (n = 22 images) 2008 LE07_017036_20080616,  
LE07_017036_20080702,  
LE07_017036_20080718,  
LE07_017036_20080803,  
LE07_017036_20080819 

 2009 LE07_017036_20090603,  
LE07_017036_20090619,  
LE07_017036_20090721,  
LE07_017036_20090806,  
LE07_017036_20090822 

 2010 LE07_017036_20100606,  
LE07_017036_20100622,  
LE07_017036_20100708,  
LE07_017036_20100724,  
LE07_017036_20100809 

 2011 LE07_017036_20110609,  
LE07_017036_20110625,  
LE07_017036_20110711,  
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LE07_017036_20110727,  
LE07_017036_20110828 

 2012 LE07_017036_20120627,  
LE07_017036_20120729,  

Chicago (n = 20 images) 2006 LE07_023031_20060605,  
LE07_023031_20060707,  
LE07_023031_20060723,  
LE07_023031_20060824 

 2007 LE07_023031_20070608,  
LE07_023031_20070710,  
LE07_023031_20070726,  
LE07_023031_20070811,  

 2008 LE07_023031_20080610,  
LE07_023031_20080626,  
LE07_023031_20080728,  
LE07_023031_20080813, 
LE07_023031_20080829 

 2009 LE07_023031_20090715,  
LE07_023031_20090731,  

 2010 LE07_023031_20100616,  
LE07_023031_20100702,  
LE07_023031_20100718,  
LE07_023031_20100803,  
LE07_023031_20100819 

DC (n = 21 images) 2007 LE07_015033_20070616,  
LE07_015033_20070702,  
LE07_015033_20070718,  
LE07_015033_20070803,  

 2008 LE07_015033_20080602,  
LE07_015033_20080618,  
LE07_015033_20080704,  
LE07_015033_20080720,  
LE07_015033_20080821 

 2009 LE07_015033_20090707,  
LE07_015033_20090808,  
LE07_015033_20090824 

 2010 LE07_015033_20100608,  
LE07_015033_20100824,  
LE07_015033_20100726,  
LE07_015033_20100811,  
LE07_015033_20100827 

 2011 LE07_015033_20110611,  
LE07_015033_20110713,  
LE07_015033_20110729,  
LE07_015033_20110830 

Durham (n = 22 images) 2011 LE07_016035_20110602,  
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LE07_016035_20110618,  
LE07_016035_20110720,  
LE07_016035_20110821 

 2012 LE07_016035_20120604,  
LE07_016035_20120620,  
LE07_016035_20120706,  
LE07_016035_20120823 

 2013 LE07_016035_20130623,  
LE07_016035_20130810,  
LE07_016035_20130826 

 2014 LE07_016035_20140610,  
LE07_016035_20140626,  
LE07_016035_20140712,  
LE07_016035_20140728,  
LE07_016035_20140813, 
LE07_016035_20140829 

 2015 LE07_016035_20150613,  
LE07_016035_20150629,  
LE07_016035_20150715,  
LE07_016035_20150731,  
LE07_016035_20150816 

San Diego (n = 28 images) 2013 LE07_040037_20130615,  
LE07_040037_20130701,  
LE07_040037_20130717,  
LE07_040037_20130802,  
LE07_040037_20130818 

 2014 LE07_040037_20140602,  
LE07_040037_20140618,  
LE07_040037_20140704,  
LE07_040037_20140720,  
LE07_040037_20140805, 
LE07_040037_20140821 

 2015 LE07_040037_20150605,  
LE07_040037_20150621,  
LE07_040037_20150707,  
LE07_040037_20150723,  
LE07_040037_20150808, 
LE07_040037_20150824 

 2016 LE07_040037_20160623,  
LE07_040037_20160709,  
LE07_040037_20160725,  
LE07_040037_20160810,  
LE07_040037_20160826 

 2017 LE07_040037_20170610,  
LE07_040037_20170626,  
LE07_040037_20170712,  
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LE07_040037_20170728,  
LE07_040037_20170813, 
LE07_040037_20170829 

San Jose (n = 25 images) 2007 LE07_044034_20070611,  
LE07_044034_20070627,  
LE07_044034_20070713,  
LE07_044034_20070729,  
LE07_044034_20070814, 
LE07_044034_20070830 

 2008 LE07_044034_20080629,  
LE07_044034_20080715,  
LE07_044034_20080731,  
LE07_044034_20080816 

 2009 LE07_044034_20090616,  
LE07_044034_20090702,  
LE07_044034_20090718,  
LE07_044034_20090803,  
LE07_044034_20090819 

 2010 LE07_044034_20100603,  
LE07_044034_20100619,  
LE07_044034_20100705,  
LE07_044034_20100721,  
LE07_044034_20100822 

 2011 LE07_044034_20110622,  
LE07_044034_20110708,  
LE07_044034_20110724,  
LE07_044034_20110809,  
LE07_044034_20110825 

 984 
 985 
 986 
 987 
 988 
 989 
 990 
 991 
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 992 

 993 

 994 

 995 

 996 

SI Table 2. Summary of census blocks filtered from the analysis due to the minimum area requirement (3600 m2).  997 

City Census blocks 
with >1% 

building cover 

Census blocks 
with > 1% 

building cover 
and > 3600 m2 

Median area of 
census blocks in 
analysis (m2) 

Boston 5285 4755 12687 
Charlotte 7532 7366 40930 
Chicago 20083 19594 20427 
DC 4910 4641 16437 

Durham 2721 2690 32451 
San Diego 12134 11322 13547 
San Jose 7395 7020 24938 

 998 
 999 
 1000 
 1001 
 1002 
 1003 
 1004 

 1005 
SI Figure 2. Census blocks included in the SDEM analysis for each city after application of water, area, and landcover filters. 1006 

 1007 
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SI Table 3. Variance inflation factor (VIF) of all variables included in each city-specific SDEM where the VIF for irrigated grass 1008 
cover in San Jose is designated by italicized text.  1009 

City Tree % Grass % Building % Other Paved % Albedo 
Boston 3.67 2.51 4.79 3.03 1.07 
Charlotte 9.56 5.22 3.15 5.62 1.24 
Chicago 2.32 2.19 2.28 2.92 1.14 
DC 5.55 2.92 4.23 3.49 1.39 

Durham 7.00 2.91 2.20 3.97 1.42 
San Diego 1.96 2.38 1.85 2.79 1.21 
San Jose 1.87 2.08/1.50 2.06 2.05 1.32 

 1010 
 1011 
 1012 
 1013 
SI Table 4. Moran’s I statistic quantifying the correlation of SDEM residuals and spatially-lagged SDEM residuals, and the 1014 
associated p-values for a two-sided Moran’s I test conducted on the SDEM residuals for each city. P-values > 0.05 indicate no 1015 
significant spatial autocorrelation of SDEM residuals. 1016 

City Moran’s I Statistic p-value 
Boston -0.0003 0.99 
Charlotte -0.005 0.48 
Chicago 0.005 0.16 
DC -0.010 0.24 

Durham -0.001 0.97 
San Diego -0.002 0.74 
San Jose -0.011 0.14 

 1017 
 1018 
 1019 


