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Abstract

Extreme heat represents a growing threat to public health, especially across the densely
populated, developed landscape of cities. Climate adaptation strategies that aim to manage
urban microclimates through purposeful design can reduce the heat exposure of urban
populations, however, it is unclear how the temperature impacts of urban green space and
albedo vary across cities and background climate. This study quantifies the sensitivity of
surface temperature to landcover characteristics tied to two widely used climate adaptation
strategies, urban greening and albedo manipulation (e.g. white roofs), by combining long-term
remote sensing observations of land surface temperature, albedo, and moisture with high-
resolution landcover datasets in a spatial regression analysis at the census block scale across
seven United States cities. We find tree cover to have an average cooling impact of -0.089 K
per % cover, which is approximately four times stronger than the average grass cover cooling
impact of -0.021 K per % cover. Variability in the magnitude of grass cover cooling impacts
was primarily a function of vegetation moisture content, with the Land Surface Water Index
(LSWI) explaining 89% of the variability in grass cover cooling impacts across cities.
Variability in tree cover cooling impacts was primarily a function of sunlight and vegetation
moisture content, with solar irradiance and LSWI explaining 97% of the cooling variability
across cities. Albedo cooling impacts were consistent across cities with an average cooling
impact of -0.187 K per increase of 0.01. While these interventions are broadly effective across
cities, there are critical regional trade-offs between vegetation cooling efficiency, irrigation
requirements, and the temporal duration and evolution of the cooling benefits. In warm, arid
cities, high albedo surfaces offer multifaceted benefits such as cooling and water conservation,
whereas temperate, mesic cities likely benefit from a combination of strategies, with greening
efforts targeting highly paved neighborhoods.

Smith, LA, Fabian, P.M., Hutyra, L.R., Landcover composition and albedo impacts on urban
surface temperature across seven United States cities: Towards optimal climate sensitive
design, Science of the Total Environment, 857: 159663, 2023.
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1. Introduction

In the current era of multifaceted global change, urbanization and anthropogenic climate
forcing are working synergistically to expose much of the Earth’s population to extreme high
temperatures. Between 1995 and 2014, the global average surface temperature was 0.85 °C warmer
than the preindustrial average and is projected to continue warming throughout the 21 century,
with extreme heat events expected to occur more frequently and with greater intensity (IPCC
2021). At the same time, humanity continues to experience an unprecedented shift towards urban
living, with more than half of the global population now living in the built environment of cities
(Grimm et al. 2008) where the combined effects of global warming and urban heat islands (Oke
1982) exacerbate the health risks associated with heat waves (Zhou et al. 2022).

At the nexus of urbanization and climate change lies a growing threat to public health as
moderate and extreme heat exposure is a well-documented contributor to human morbidity and
mortality (Sarofim et al. 2016). In the United States, more deaths are attributed to heat exposure
than to any other natural disaster (Bell et al. 2016). Furthermore, the public health burden of heat
exposure includes a multitude of non-fatal exposure consequences such as adverse pregnancy
outcomes, dehydration, loss of labor productivity, and decreased academic achievement (Bekkar
et al. 2020, Heal & Park 2016; Zivin & Neidell 2014; Park et al. 2020). Heat disproportionately
impacts vulnerable populations such as older adults, outdoor workers, people of color, and
residents of low-income households (Sarofim et al. 2016, US EPA 2021). Thus, in addition to
tackling the global climate crisis, there is an urgent need for cities to consider climate adaptation

strategies promoting equitable, sustainable, and heat resilient urban ecosystems.
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Numerous urban design strategies have been proposed to minimize heat exposure to urban
residents including reduction of anthropogenic heat emissions, access to cooling centers, and
strategic development of wind corridors (Leal Filho et al. 2017). Here we focus on two of the most
common and well-founded urban design strategies, urban greening and the incorporation of high
albedo surfaces such as white roofs, which are intended to manipulate the storage, transformation,
and exchange of incoming solar radiation to reduce surface temperatures in cities.

Urban greening for heat mitigation refers to the expansion of vegetation, particularly trees, to
shade the surface from sunlight and increase evapotranspiration such that more of the incoming
solar energy is transferred to the atmosphere via latent, rather than sensible heat. Variation in the
capacity of urban versus rural surfaces to evaporate water is a primary driver of extreme daytime
urban temperatures (Carlson and Boland 1978; Taha 1997; Li et al. 2019), however, the addition
of greenspace to an otherwise impervious surface-dominated landscape can increase the potential
daytime latent heat flux in cities (Zipper et al. 2017; Winbourne et al. 2020; Smith et al. 2021).
Shading has also been demonstrated to be a prominent cooling mechanism of trees in cities,
particularly on very hot days when soils dry (Rahman et al. 2018). Field studies (Wang et al. 2017;
Ziter et al. 2019) and remote sensing studies (Tiangco et al. 2008) find supporting evidence for
vegetation as an effective heat mitigation measure in cities.

The marginal impact (sometimes called ‘cooling efficiency’; Zhou et al. 2017) of green space
on temperature describes the temperature change associated with a one-unit (e.g. 1% of green
space) increase of vegetated land cover. Quantifying the marginal impacts of land cover on
temperature provides a metric for cities to evaluate the potential for urban greening initiatives to
reduce temperatures. Furthermore, exploring the variability in green space marginal impacts across

cities can elucidate the environmental drivers governing the magnitude of vegetation cooling
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impacts. Numerous studies have quantified the marginal impacts of vegetation on land surface
temperature in United States cities (Weng et al. 2006, Zhou et al. 2011, Myint et al. 2015, Zhou et
al. 2017, Zhang et al. 2019, Wang et al. 2019, Wang et al. 2020, Wang et al. 2022), however,
studies that separate the impact of different forms of green space (e.g. grass cover versus tree
cover) and studies exploring the variability in marginal cooling impacts across cities are limited.

Cool roofs and cool pavements, defined as surfaces with a high albedo, have also been
implemented as a means to alleviate excessive urban heat (e.g. NYC CoolRoofs 2022) by
redirecting the largest influx of energy to the land surface (incoming shortwave radiation; Oke
1988). While there is evidence that cool pavements at the ground level may negatively impact
pedestrian thermal comfort during the daytime (Lynn et al. 2009, Erell et al. 2014, Taleghani et al.
2016), high albedo coatings on rooftops represent a pathway for increasing the surface albedo of
cities while simultaneously avoiding increases in the radiative load of pedestrians. Roofs are a
major facet of the built environment and play an important role in the surface energy balance due
to their direct exposure to the sun and sky. Typical roofing materials tend to be strong absorbers
of solar radiation (Oke et al. 2017) and because they are meant to protect the contents of buildings
from infiltration, they are generally designed to remain dry and divert rainfall to gutters and
drainage pipes. Consequently, the excess available energy fueled by absorption of incoming solar
radiation is almost entirely shed as sensible, rather than latent heat (Oke et al. 2017). Increased
white roof fractions in cities have been demonstrated to be an effective method of reducing surface
and near-surface urban heat islands (Oleson et al. 2010; Jacobsen & Ten Hoeve 2012; Li et al.
2014), but have rarely been simultaneously considered with urban greening.

Cities across the United States are recognizing the need for climate adaptation measures (Shi

et al. 2015) and adaptation efforts have expanded substantially in recent years (Easterling et al.
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2018). The adaptive capacity of cities, however, is limited by knowledge gaps in our understanding
of the marginal impacts of tree cover, grass cover, and albedo on temperature dynamics within
cities, the influence of management practices such as irrigation on vegetation cooling efficiency,
and the environmental variables governing the effectiveness of various strategies across cities. The
cooling efficiency of urban design strategies likely varies within and across cities due to
differences in proximate landcover composition and background climates, highlighting the need
for improved understanding of observed greening and albedo cooling impacts.

In situ monitoring of air temperature within cities is generally limited to a relatively small
number of monitoring stations that fail to provide sufficient spatial coverage for urban land use
planning (Zhou et al. 2018). Satellite remote sensing of land surface temperature, however, offers
consistent, repeatable, and spatially comprehensive observations of the urban thermal condition.
This study combines high resolution spatial datasets of landcover with satellite-derived maps of
surface temperature, surface moisture, and albedo to estimate the impact of land cover composition
and albedo on surface temperature at the census block level in seven United States cities using a
spatial regression analysis. The analysis aims to 1) quantify differences in tree versus grass cover
cooling impacts within and across cities, 2) identify environmental drivers governing tree and grass
cover cooling efficiency, 3) explore differences in the marginal cooling impacts of irrigated versus
non-irrigated grass cover in an arid city, and 4) quantify the sensitivity of surface temperature to
albedo across cities. This research deepens our understanding of the joint impacts of urban
greening and albedo on surface temperatures, elucidates climatic drivers of vegetation cooling
potential, and provides important information for city planners hoping to improve heat resiliency
and preparedness for a changing climate through landscape (re)development decisions.

2. Methods
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2.1 Study sites and land cover data

The seven US cities included in the analysis are Boston, Massachusetts; Charlotte, North
Carolina; Chicago, Illinois; Washington, District of Columbia (DC); Durham, North Carolina; San
Diego, California; and San Jose, California (Table 1; Figure 1). Cities were selected due to the
availability of high resolution (< 1 meter), consistent land cover datasets produced by the
University of Vermont Spatial Analysis Laboratory and acquired via the US Department of
Agriculture Research Date Archive (UVM SAL 2012; UVM SAL 2013a; UVM SAL 2013b; UVM
SAL 2016; UVM SAL 2017a; UVM SAL 2017b; UVM SAL 2020). The UVM SAL mapped
seven land cover classes for each city, including tree canopy, shrubs/grass, bare land, water,
buildings, roads, and other paved surfaces (Figure 2A-C). In San Jose, grass was further partitioned
as irrigated and non-irrigated (UVM SAL 2012). Land cover maps were created using a
combination of LiDAR, multispectral orthoimagery from the National Agriculture Imagery
Program, and ancillary GIS data sources. Land cover was mapped using automated object-based
image analysis techniques to group pixels into meaningful objects based on spectral and spatial
properties before a detailed manual review of the dataset was carried out to correct all observable
errors (UVM SAL 2012). Prior to our analysis, a 100-meter buffer surrounding all water bodies
was applied to exclude (mask) the areas immediately surrounding water to minimize misattribution
of landcover impacts on surface temperature due to the presence of water.

2.2 Surface temperature data

Land surface temperature maps (Figure 2J-L) were created with the surface temperature layer
from the Landsat 7 Level 2 Collection 2 Tier 1 Science Product (Masek et al. 2006) which was
acquired and processed with Google Earth Engine (Gorelick et al. 2017). Surface temperature data

is provided at 30-meter spatial resolution with images acquired every 16 days and is estimated
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from Landsat thermal infrared bands using the top-of-atmosphere (TOA) reflectance, TOA
brightness temperature, Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) emissivity data, ASTER Normalized Difference Vegetation Index (NDVI) data, and
atmospheric geopotential height, specific humidity, and air temperature provided by reanalysis
data. Under ideal clear sky conditions, the root mean square error of the Landsat surface
temperature product has been estimated to be <1 K (Laraby & Schott 2018). To reduce uncertainty
associated with surface temperature estimation, all images with <80% cloud cover collected during
June, July, and August (JJA) of the five years prior to the year depicted by each city’s landcover
map were downloaded, filtered using the C Function of Mask algorithm (CFMASK ; Zhu &
Woodcock 2012) to only include pixels with clear sky conditions, and composited by calculating
the mean pixel surface temperature value across all images to create a raster representative of the
mean JJA clear sky surface temperatures during the sunlit Landsat overpass time across each city.
On average, each pixel had a clear sky observation in 70.7% of images used to create the raster
composites, with 95.0% of pixels having a clear sky observation in at least 50% of images used to
create the raster composites. An inventory of all Landsat images used in this analysis can be found
in SI Table 1. Landsat 7 imagery is used throughout the analysis to ensure consistency in the
sensors used for data collection and to allow for albedo estimation using methods derived for the
Enhanced Thematic Mapper Plus (ETM+) instrument onboard the spacecraft.

2.3 Albedo and moisture data

Broadband shortwave albedo (Figure 2G-I) and the Land Surface Water Index (LSWI; Figure
2D-F) were estimated from the narrowband surface reflectance layers of the Landsat 7 Level 2
Collection 2 Tier 1 Science Product acquired for the same dates and times as the surface

temperature data. Surface reflectance data was atmospherically corrected using the Landsat
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Ecosystem Disturbance Adaptive Processing System (LEDAPS) which generates surface
reflectance estimates from a radiative transfer model with inputs of TOA reflectance, TOA
brightness temperature, and auxiliary data such as water vapor, ozone, geopotential height, aerosol
optical depth, and digital elevation (Masek et al. 2006). Albedo was estimated using the
narrowband to broadband shortwave albedo algorithm developed for the ETM+ instrument in
Liang (2001) and validated in Liang et al. (2003). Surface albedo was estimated as:

agrms+ = 0.356a; + 0.130a3 + 0.373a, + 0.085a5 + 0.072a, — 0.0018 (1)
where agry 4 1s the estimated broadband shortwave surface albedo and a4, a3, a4, @5, and a5
correspond to the atmospherically-corrected surface reflectance within spectral bands 1 (blue), 3
(red), 4 (near-infrared), 5 (short-wave infrared), and 7 (mid-infrared) of the ETM+ instrument.
Albedo was estimated for all clear sky pixels in Landsat 7 images collected during JJA of the five
years prior to the year depicted by each city’s landcover map and composited to create a raster of
mean JJA clear sky surface albedo during the sunlit Landsat overpass time across each city.

We use LSWI to characterize the moisture content of vegetation as a proxy for potential
latent heat flux, as vegetation in water scarce environments likely transpires less than vegetation
with sufficient access to water. LSWI (sometimes referred to as the Land Surface Moisture Index
or Normalized Difference Water Index; Ji et al. 2011) has been demonstrated to be effective in

monitoring vegetation moisture content (Maki et al. 2004; Gu et al. 2008) and was estimated as:

LSw] = 2=5% 2)

as+ as
where composites were produced in the same way as the surface temperature and albedo rasters.
2.4 Census block boundaries
Census block geographic boundaries were extracted for each city from the Topologically

Integrated Geographic Encoding and Referencing Database (TIGER; U.S. Census Bureau 2019a).
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Census blocks represent the smallest geographic area for which the U.S. Census Bureau collects
data and are defined as “statistical areas bounded on all sides by visible features, such as streets,
roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township,
and county limits, and short line-of-sight extensions of streets and roads” (U.S. Census Bureau
2019b). Census blocks were chosen as the unit of aggregation and analysis for the gridded
landcover, surface temperature, LSWI, and albedo data as they are meaningful units for the scale
of typical (re)development and land use planning projects taken on by cities and so that data from
this analysis can be coupled to other census geographies for pairing with sociodemographic data
collected by the U.S. Census Bureau for future analysis (SI Table 2; SI Figure 2). For each city,
landcover data was aggregated to the census block level by computing the percent of each
landcover type within each census block. Surface temperature, LSWI, and albedo data were
aggregated to the census block level by computing the mean values of all pixels with a pixel
centroid falling within a census block. Census blocks less than 3600 m? in area were omitted from
the analysis as they are smaller than the native spatial resolution of the Landsat 7 infrared thermal
bands used in the derivation of the surface temperature data product used in this analysis. The
minimum area requirement removed an average of 4.7% of census blocks per city from the
analysis, ranging from 1.1% of census blocks in Durham, up to 10.0% of census blocks in Boston
(SITable 2). As this analysis focuses on white roof and greenspace impacts on surface temperature
across developed landscapes, census blocks with less than 1% building cover were also omitted
from the analysis.

2.5 Spatial regression modeling - Spatial Durbin Error Model

To estimate the impact of land cover composition and albedo on surface temperature at the

census block level for each city, we implement a Spatial Durbin Error Model (SDEM; LeSage &
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Pace 2009), which includes spatial lag effects on the independent variables and model error to
estimate direct and indirect impacts of independent variables on the dependent variable at the
census block level. We utilize a spatial autoregressive framework due to spatial autocorrelation in
the temperature data, which may bias the coefficient estimates from a traditional ordinary least
squares regression modeling framework (Lichstein et al. 2002). The SDEM form is:
y =X +WX0 + u, (3)
u=AWu+s,
e~N(0,02%)
where y is the dependent variable vector (mean surface temperature (K)), X is the independent
variable matrix (tree cover (%), grass cover (%), building cover (%), other paved surface cover
(%), and mean albedo (unitless) ), f is the regression parameter vector, W is a spatial weighting
matrix, 6 is the independent spatial lag parameter vector, u is the spatial error, 4 is the spatial
coefficient of the error, and ¢ is the error vector of the model. In the San Jose SDEM, grass was
disaggregated in the independent variable matrix into irrigated versus non-irrigated grass cover.
The spatial weighting matrix, W, was constructed using the variance-stabilizing ‘S-coding’
scheme described by Tiefelsdorf et al. (1999) to reduce heterogeneity in spatial weights due to
differences in the number and size of neighbors. Direct impacts, represented by [, describe the
impact of a unit change in the independent variable within a focal unit (in this analysis, within a
census block) on the dependent variable. Indirect impacts, represented by 8, capture spatial
spillover effects and describe the effect of a unit change in the independent variable within the
spatially weighted neighboring observations on the dependent variable of the focal unit.
Bare land cover and road cover were omitted from the SDEMs of all cities to minimize

multicollinearity. We computed the variance inflation factor (VIF) for each independent variable
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within each city-specific SDEM to evaluate the extent to which SDEM impact coefficient
estimates are driven by multicollinearity. We find 31 out of 36 VIFs to be less than five and all
VIFs to be less than ten (SI Table 3), indicating that multicollinearity is not a concern (Kennedy
2018). To test for spatial autocorrelation of SDEM residuals in each city, we conducted a two-
sided Moran’s I test on the error of the SDEM finding no evidence of spatial autocorrelation in the
error (SI Table 4). Model validation was conducted for the SDEM of each city by randomly
selecting 70% of census blocks within each city to use as a training dataset, and predicting the
mean surface temperature in a testing dataset composed of the remaining 30% of census blocks as
a function of land cover composition and albedo.

2.6 Sensitivity analysis of greenspace impact drivers

We test the sensitivity of the magnitude of grass cover and tree cover cooling impacts to
vegetation moisture availability and solar irradiance - two environmental drivers that impose limits
on evapotranspirative cooling (Jarvis & McNaughton 1986) - using two ordinary least squares
regression analyses. For tree cover cooling impacts, we fit a linear model of the form:

Bspemtree = @ + 1 X GHIjjp + By X LSW iy + € 4)
where Bspeum tree 18 the tree cover direct impact (K %) estimated by the SDEM of each city, « is
the model intercept, 5 is the sensitivity of Bspgp tree 10 GHIjj4, B is the sensitivity of Bspeu eree
to LSWliyree, GHI;j4 1s the mean daytime JJA clear sky global horizontal irradiance for each city
(W m; obtained for the years 2019 - 2020 from the National Solar Radiation Database, 2022),
LSW 1. is the mean LSWI of all 30-meter x 30-meter Landsat pixels that contain more than 25%
tree cover (unitless), and ¢ is the model error. Significant model coefficients of a similar magnitude

were observed across pixel tree cover thresholds ranging from 5% to 95%. We choose 25% as the
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threshold for tree and grass cover in the sensitivity analysis as it restricts the analysis to only
include pixels where tree or grass cover is a dominant land cover type.
For grass cover cooling impacts, we did not observe a significant relationship between

Bspem,grass and GHI;; 4. Therefore, we fit a linear model of the form:

ﬁSDEM,grass =a+p X LSWIgrass t+e (5)

where Bspem, grass 18 the grass cover direct impact (K %) estimated by the SDEM of each city, a
is the model intercept, B is the sensitivity of Bsppm, grass t0 LSWlgrass, LSWgrqss is the mean
LSWI of all 30-meter x 30-meter Landsat pixels that contain more than 25% grass cover (unitless),
and ¢ is the model error. All modeling and statistical testing were conducted using R version 4.1
(R Core Team 2022).

3. Results

3.1 Model evaluation and validation

We find strong agreement between the observed versus predicted surface temperature
estimates (Figure 3). The SDEMs capture much of the variance in surface temperature with out-
of-sample R? values ranging from 0.51 in the San Jose SDEM to 0.89 in the Charlotte SDEM
(Figure 3). We find no evidence of substantial bias in SDEM predictions of surface temperature
with all regression slopes close to one (range of 0.97 - 1.07) and intercepts close to zero (range of
-30.15 - 8.58). Further, we find evidence of strong predictive power across all city-specific SDEMs
with an average out-of-sample root mean square error of 1.36 K across all cities, which is equal to
just 6.0% of the range of observed surface temperature values across all cities (300.97 K — 323.62
K; Figure 3).

3.2 Impact estimates

12
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The direct impact coefficients were highly significant (p < 0.001) across all cities for each
independent variable included in the SDEMs (Figure 4A; Table 2). Tree cover had a negative
(cooling) direct impact on surface temperature in each city, ranging from -0.051 K %! in Chicago
to -0.123 K %! in Durham. Grass cover had a negative direct impact in all cities except for San
Jose, where irrigated grass cover was distinguished from non-irrigated grass cover. We found a
positive (warming) direct impact of non-irrigated grass cover of 0.022 K %! in San Jose versus a
negative direct impact of irrigated grass cover of -0.018 K %!, suggesting that irrigated grass cover
has a stronger cooling impact than non-irrigated grass cover in arid cities. The mean direct impact
of tree cover on surface temperature (-0.089 K %) was approximately four times stronger than
the mean direct impact of grass cover (-0.021 K %), providing evidence that urban surface
temperatures are more sensitive to tree cover than grass cover (Figure 4A) during the daytime. We
estimate significant spatial spillover effects of tree cover, where indirect impacts describe the
effect of a unit change in tree cover within the spatially weighted neighboring observations on the
surface temperature of a focal census block, with negative indirect impacts of tree cover observed
across all seven cities (Figure 4B) with a mean indirect impact of -0.047 K %!. In contrast,
significant negative indirect impacts of grass cover were only observed in three cities and were
more than 90% weaker than the indirect impacts of tree cover with an average indirect impact of
just -0.004 K %! (Table 2; Figure 4B).

Both building cover and other paved cover had significant positive direct impacts on
surface temperature, however, the positive impacts of building cover and other paved cover were
weaker than the negative impact of tree cover in each city. Additionally, we found less variability
in the building cover and other paved cover direct impacts (¢ = 0.014 K %! and 0.007 K %!,

respectively) than grass cover (o = 0.024 K %) and tree cover (o = 0.024 K %) direct impacts.
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We find solar irradiance and vegetation moisture content to be strong controls on the magnitude
of tree cover direct impacts.

Mean JJA global horizontal solar irradiance and the mean LSWI of Landsat pixels
containing more than 25% tree cover explain 97% of the variance in tree cover direct impacts
(Figure 5A), suggesting that the magnitude of tree cover cooling impacts is a function of solar
radiation intensity and vegetation moisture availability. We observe the strongest direct grass cover
impacts in the cities with the highest vegetation moisture content, with the mean LSWI of Landsat
pixels containing more than 25% grass cover explaining 89% of the variance in grass cover direct
impacts (Figure 5B), highlighting that the sensitivity of surface temperature to grass cover is
largely a function of moisture availability.

Albedo was found to impose a strong negative direct impact on surface temperature of a
similar magnitude across all cities (Figure 4A) with an average direct impact of -0.187 K per
albedo increase of 0.01 (unitless). Furthermore, albedo was found to impose significant, but
weaker, indirect effects (Figure 4B) on surface temperature in six out of seven cities with an
average indirect impact of -0.085 K per albedo increase of 0.01. The marginal impacts of tree cover
and albedo estimated here support both urban greening and integration of high albedo surfaces as
effective ways to reduce surface temperatures, however, we find large discrepancies in the range
of typical observed values of albedo versus tree cover within and across cities (Figure 6). Tree
cover values were more variable than albedo values with a coefficient of variation of tree cover at
the census block level of 0.69 compared to a coefficient of variation of albedo at the census block
level of 0.13.

4. Discussion

4.1 Urban greenspace impacts on surface temperature

14
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While we have long known that vegetation and albedo impact temperature, this study advances
our understanding of the marginal cooling impacts of urban green space and albedo across
developed landscapes that vary in land cover composition and background climate. We identify
significant differences in both the cooling efficiency of tree versus grass cover and the cooling
efficiency of irrigated versus non-irrigated grass cover in an arid city. Furthermore, we leverage
differences in vegetation moisture content and mean solar irradiance to gain insights into the
drivers of vegetation cooling potential within and across cities. We expand upon existing studies
of urban vegetation cooling efficiency that primarily focus on trees or vegetation as a whole by
separating grass effects from tree effects. Grass cover comprises up to 24.8% of land area in the
cities investigated here, and is more abundant than tree cover in three of the seven cities
investigated here (Figure 1), pointing to the importance of understanding the cooling effects from
each vegetation type.

The magnitude of marginal cooling impacts of vegetation reported here (mean of -0.089 K %"
T'and -0.021 K %! for tree and grass cover, respectively) is consistent with previous studies. In a
literature review conducted by Wang et al. (2020), reported urban vegetation cooling efficiency
values range from -0.029 K %! to -0.318 K %! with an average value of -0.081 K %!. Wang et
al. (2020) found the marginal cooling impacts of tree cover across 118 United States cities to range
from -0.040 K %! to -0.574 K %! but did not quantify grass cover cooling impacts. While this
study quantifies the marginal cooling impacts of vegetation during mean JJA daytime conditions,
there is evidence that the sensitivity of land surface temperature to vegetation cover increases
during heat waves. Wang et al. (2019) found stronger average marginal cooling impacts (-0.202 K
%) than those observed in this study during heat waves in six United States cities, along with a

significant relationship between mean land surface temperature and marginal cooling impact,
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highlighting the potential for heat mitigation from urban greening strategies under projected future
increases in extreme heat.

The SDEM results reported here corroborate the notion that incorporating vegetation into
developed landscapes can reduce surface temperatures, however, different mechanisms of cooling
between tree cover and grass cover result in a stronger local cooling impact of tree cover than grass
cover with a stronger cooling spillover, indirect impact of trees on the surrounding area. Trees cool
the surface via shading (Yu et al. 2020) and evapotranspiration (Rahman et al. 2017), whereas
grass primarily cools the surface via evapotranspiration. Therefore, when evapotranspiration
efficiency is constrained by moisture availability, the cooling potential of grassy surfaces is
expected to decline while the primary cooling mechanism of tree cover is expected to shift towards
shading. At the 60 m native spatial resolution of the Landsat 7 infrared thermal bands used in this
analysis, it is unlikely that the stronger cooling impacts of tree cover versus grass cover observed
here are resultant from shade effects alone. Instead, it is possible that the stronger tree cover
cooling impacts are a function of increased evapotranspiration associated with the high leaf area
index and increased exposure to the sun and sky of broadleaf trees prevalent in cities (Pataki et al.
2011) compared to shorter statured grasses and shrubs. The impact coefficients and relationship
between tree cover direct impacts, solar irradiance, and moisture availability (Figure 5A) reported
here imply that tree canopy expansion is likely a more effective climate adaptation strategy in
cities at a lower latitude with adequate precipitation or irrigation to sustain evapotranspiration.
Despite variability in the magnitude of tree cover impacts observed across cities, we find evidence
of tree cover expansion as an effective heat mitigation strategy across all cities included in the

analysis.
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In considering regions to implement canopy expansion measures within cities, the strongest
cooling impacts may be realized in neighborhoods with a higher fraction of impervious surface
area, with adequate space for canopy expansion, due to the thermal properties and moisture
availability of the surfaces underlying the canopy (Rahman et al. 2020). Our results suggest that
canopy expansion over paved surfaces has a larger impact than canopy expansion over grassy
surfaces due to the compounded effect of reduced surface temperatures from each additional
fraction of canopy plus surface temperature reductions resultant from decreased pavement area.
The thermal admittance of anthropogenic construction materials with a low water holding capacity
typically found below highly urbanized canopies (e.g. asphalt, concrete, and brick) is often lower
than that of saturated natural materials than can readily store water (Oke 1987; Thornes and Shao
1991; Crevier and Delage 2001). Materials with a lower thermal admittance are characterized by
a lower heat storage capacity and therefore shed large amounts of sensible heat, resulting in high
daytime surface temperatures. Rahman et al. (2019) demonstrate the influence of surfaces
underlying tree canopies, finding that in Munich, Germany, a unit increase in the leaf area index
of trees above the surface results in a 3 K decrease in the surface temperature of grassy surfaces
compared to a 6 K decrease in the surface temperature of asphalt. Critically, the existing land cover
composition represents an important consideration in climate-sensitive design strategies that focus
on urban greening.

In addition to land cover composition, we find a strong influence of the regional moisture
regime on the cooling potential of grass cover. Arid cities that lack a reliable supply of water via
precipitation during the summer months, such as San Jose and San Diego (Table 1), require
irrigation to realize the cooling effects of grass cover which can strain local water supplies. In the

southwestern United States, more than one-third of regional water supplies can be used to irrigate
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urban landscapes (Devitt et al. 2008). In cities located in dry climates, urban greening strategies
that focus on tree canopy expansion are likely to reduce heat exposure more than strategies that
treat all vegetation, including grass, as equal, while simultaneously reducing water consumption.
Wynne and Devitt (2020) found that in the arid climate of Las Vegas, Nevada, irrigated tree-
dominated landscapes had lower water use rates than similar areas dominated by irrigated
turfgrass. In contrast, cities located in mesic climates with a consistent supply of precipitation
during the summer months can achieve considerable surface temperature reductions from grass
cover alone. For example, we find the direct impact of grass cover in the mesic city of Boston (-
0.058 K %) to be 73% of the direct impact of tree cover in Boston (-0.079 K %!; Table 2),
whereas the direct impact of grass cover in San Diego (-0.007 K %) is only 7.4% of the direct
impact of tree cover (-0.094 K %!; Table 2). These findings point to the importance of moving
beyond simple greenness indices, such as NDVI, that are commonly used to characterize urban
greenspace, towards metrics that better capture the form and function of urban vegetation and
associated differences in ecosystem service provisions.

4.2 Trade-offs of urban greening and albedo manipulation

This analysis points to both urban greening and the incorporation of high albedo surfaces as
effective ways to combat high surface temperatures. Efforts to improve heat resiliency through
climate sensitive design should consider the trade-offs of potential adaptation strategies. Rooftops
are a common target for the installation of reflective surfaces and account for up to 25% of the
total landcover in the seven cities investigated here (Figure 1), with buildings accounting for more
area than tree canopy in Chicago, San Diego, and San Jose, highlighting the adoption of white
roofs as a potentially high impact intervention for improved thermal comfort via albedo increases.

White roof adoption offers a low-cost, easy to implement, heat mitigation option with long-term
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net savings compared to traditional dark roofs (Sproul et al. 2014). Moreover, white roofs offer
additional environmental benefits via energy savings and reduced greenhouse gas emissions
associated with reduced cooling demand during the summer months (Giordano et al. 2019). The
cooling services associated with white roofs are realized immediately following implementation,
but deteriorate over time as pollutants and dirt accumulate on the roof surface (Figure 7). An
average decrease in rooftop albedo of 0.15 may be expected within the first year of white roof
adoption, with a continued gradual decline in subsequent years (Bretz & Akbari 1997).

In contrast, the financial cost (Vogt et al. 2015) and greenhouse gas emissions associated with
the planting, irrigation, maintenance, and disposal of city trees can be high (Kendall and
McPherson 2011) and require trees to survive for several decades to attain carbon neutrality (Petri
et al. 2016). However, while cool pavements/white roofs singularly benefit public health via
thermal regulation, urban vegetation has been demonstrated to provide a suite of co-benefits to
public health and well-being (Markevych et al. 2017). Urban greenspace decreases exposure to
other environmental stressors such as noise (van Renterghem et al. 2015) and air pollution
(Escobedo et al. 2011), reduces psychophysiological stress (Hartig et al. 2014), encourages
physical activity (Almanza et al. 2012), and facilitates social cohesion (Weinstein et al. 2015).
Over time, the ecosystem services associated with urban greening are enhanced as larger trees cast
more shade and transpire more water than smaller trees (Figure 7).

4.3 Potential public health applications

Surface temperature observations offer several advantages over air temperature observations
in assessing the urban thermal condition. Air temperature observations are commonly made at
relatively few discrete locations with multiple sensors across a city or are estimated via a coarse

resolution gridded reanalysis product. In contrast, remote sensing measurements of surface
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temperature offer long-term, high-resolution observations using the same sensor with global
coverage. Thus, surface temperature can expand opportunities to identify localized modifiable
drivers of heat exposure (e.g., vegetation and albedo), and characterize fine scale heat exposure
disparities and associated health risks. Limitations of surface temperature observations include
uncertainty due to cloud cover, trade-offs between spatial and temporal resolution, and
discrepancies between surface and air temperature (Zhou et al. 2018), where air temperature is
more closely related to public health than surface temperature. Currently the health effects
literature is primarily based on measured or perceived air temperature (Anderson et al. 2013), with
limited studies linking surface temperature to health (Smargiassi et al. 2009, Kestens et al. 2011).

Surface temperature is largely a function of the incoming solar energy, moisture availability,
and thermal properties of the surface material. The air temperature felt by humans, however,
experiences temperature change via the convective transport of sensible heat from surrounding
surfaces, net radiation changes where urban pollutants, aerosols, and humidity absorb and emit
energy, and advection of heat from adjacent air parcels. Thus, the surface temperature imposes a
strong control on air temperature, but the dependence of air temperature on other factors such as
wind speed, aerodynamic roughness, and the temperature of large-scale air masses precludes the
simple prediction of air temperature from surface temperature alone (Venter et al. 2021).

Surface temperature observations may also be informative for identifying neighborhoods
susceptible to prolonged exposure events that persist overnight as the thermal emissions of the
surface become a primary driver of air temperature at night (Ibsen et al. 2022) when solar radiation
inputs cease and turbulent mixing subsides. Extended periods of heat exposure exacerbate
physiological stress on the human body and can increase the risk of negative heat-related health

outcomes (WHO 2018). The City of Boston (2022) reports that in neighborhoods with the highest
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average surface temperature, the associated air temperature can remain over 32 °C overnight
during heat waves, with daytime air temperatures reaching up to 41 °C.

Marginalized communities tend to experience more heat exposure than other communities in
warm countries (Park et al. 2015) highlighting a critical need to target disproportionalities in heat
exposure observed across communities in the deployment of climate-sensitive infrastructure. Hsu
et al. (2021) find that at the census tract level in the United States, the average person of color is
exposed to warmer surface temperatures than non-Hispanic white populations in 97% of the 175
largest urbanized areas in the country, with similar relationships observed when comparing
households below the US Census Bureau’s poverty threshold to those at more than twice the
poverty threshold. Tieskens et al. (2022) find substantial spatial variability in residential demand
for cooling as a function of heat exposure and population characteristics at the census tract level
in Boston, MA, pointing to the importance of spatially comprehensive assessment of cooling
strategies. We choose to conduct our analysis at the census block level to accommodate
aggregation of temperature, land cover, and albedo data to the census block group or census tract
level for future pairing with sociodemographics and health in studies of exposure disparities and
vulnerability.

Overall, the methods described in this paper facilitate modeling of land surface temperature
changes due to fine scale vegetation and albedo interventions, providing the opportunity to
evaluate the impact of these interventions on exposure disparities and health studies in future
projects.

4.4 Winter impacts

The cooling impacts reported here describe temperature reductions observed during summer

months. Much less attention has been given to the wintertime urban heat island effect, but the
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implementation of climate sensitive urban design choices may produce unforeseen consequences
during colder periods in temperate climates. The wintertime urban heat island effect has been
shown to potentially reduce cold-related mortality by up to 15% (Macintyre et al. 2021a).
Deciduous trees that lose their leaves in the winter allow for solar radiation to penetrate the canopy
and reach the surface, resulting in warmer wintertime temperatures. White roofs continue to reflect
wintertime radiation away from the surface, resulting in lower wintertime temperatures (He et al.
2020a), increased building heating costs at higher latitudes (Oleson et al. 2010), and uncertain
impacts on wintertime mortality. Macintyre et al (2021b) project that the summertime health
benefits of white roofs will increase throughout the 21% century in the United Kingdom, with
insignificant changes in the impact of white roofs on cold-related mortality. In contrast, He et al.
(2020b) estimate that in the Greater Boston area, 0.21% of deaths attributed to summertime heat
exposure may be avoided through the implementation of white roofs, compared to 0.096% of
wintertime deaths associated with exposure to extreme cold temperatures attributed to cool roof
impacts on wintertime temperatures.

S. Conclusion

We estimate strong, significant cooling impacts of tree cover and albedo on surface
temperatures at the census block scale across seven United States cities. We find tree cover cooling
impacts increase at lower latitudes and in more mesic climates. We find evidence of grass as a
cooling mechanism with a smaller impact than tree cover that is largely controlled by moisture
availability. The impact coefficients and drivers identified here offer valuable information to city
planners working to incorporate the most effective climate sensitive design strategies that promote
heat resiliency given the current land cover composition and background climate. For example, in

arid cities with low latent heat flux efficiency and a reduced capacity to maintain healthy
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vegetation without irrigation, cool roofs and cool pavements offer a way to cool the city surface
without consuming excess water resources. Conversely, in mesic temperate climates with ample
precipitation, cities would likely benefit from the incorporation of both urban greening and white
roof adoption, where tree cover benefits may be more impactful in neighborhoods characterized
by high impervious surface fractions.
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Figure & Table Captions

City Latitude (°) | JJA Air Temperature (°C) JJA Precipitation (mm)
Boston 42.4 22.0 263.9
Charlotte 35.2 25.8 306.7
Chicago 41.9 23.4 293.4
DC 38.9 24.0 304.3
Durham 36.0 24.4 372.6
San Diego 32.7 19.7 3.8
San Jose 37.3 20.5 5.8

Table 1. Mean summer (June, July, and August) air temperature (°C) and mean annual summer
cumulative precipitation (mm) between 1991 and 2020 for the seven cities included in the
analysis (National Centers for Environmental Information, 2022).
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Figure 1. Map: Location of the seven cities included in the analysis. Numbers in the parentheses
of the map legend represent the mean albedo of each city. Inset: Percent of each land cover
type’s contribution to total land area in each city sorted left-to-right by percent tree cover.
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Figure 2. A-C: Land cover composition maps for Boston (2019), Charlotte (2012), and San Jose
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(2011). D-F: Five-year mean land surface water index (LSWI; unitless) raster composites for
Boston (2015 —2019), Charlotte (2008 — 2012), and San Jose (2007 — 2011). G-I: Five-year
mean albedo (unitless) raster composites for Boston, Charlotte, and San Jose. J-L: Five-year
mean land surface temperature (LST; K) raster composites for Boston, Charlotte, and San Jose.
Land cover, LSWI, albedo, and LST data for Chicago, DC, Durham, and San Diego can be found

in SI Figure 1.
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Figure 3. Observed LST (K) of the census blocks included within the testing datasets versus the
predicted LST (K) of the census blocks in the testing dataset for all cities included in the
analysis. N denotes the size of the testing dataset for each city.
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Figure 4. A: Direct impact coefficients estimated for each independent variable by each city-
specific SDEM. *Irrigated grass cover in San Jose is designated by an open circle. Tree, grass,
building, and paved cover coefficients should be interpreted as the change in surface temperature

resultant from a one unit change in the percent land cover within a census block. Albedo

coefficients should be interpreted as the change in surface temperature resultant from a 0.01
increase in the albedo within a census block. B: Indirect impact coefficients estimated for each
independent variable by each city-specific SDEM. *Irrigated grass cover in San Jose is
designated by an open circle. Tree, grass, building, and paved cover coefficients should be
interpreted as the change in surface temperature resultant from a one unit change in the spatially
weighted percent land cover in neighboring census blocks. Albedo coefficients should be
interpreted as the change in surface temperature resultant from a 0.01 increase in the spatially
weighted albedo of neighboring census blocks. All error bars represent 95% confidence intervals.
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Direct Impacts and Intercepts

City Tree % Grass % Building % Other Paved % Albedo/100 Intercept
Boston -0.079 *** | -0.058 *** 0.021 *** 0.013 **x* -0.189 *** | 315.6 ***
Charlotte | -0.113 *** | -0.032 *** 0.056 *** 0.033 #*x* -0.219 *** | 318.9 ***
Chicago -0.051%%* | -0.015 *** 0.027 *** 0.016 *** -0.178 **% | 3145 ***
DC -0.086 *** | -0.020 *** 0.023 #*x* 0.026 *** -0.182 *** | 316.3 ***
Durham -0.123 #** | (0,042 *** 0.044 #*x* 0.028 *** -0.193 *** | 317.] ***
San Diego | -0.094 *** | -0.007 *** 0.035 *** 0.020 *** -0.167 *** | 318.7 ***
San Jose -0.074 *** | 0.022 ¥** /-0.018 *** | 0.050 *** 0.026 *** -0.181 *** | 317.0 ***

Indirect Impacts and Spatial Error Coefficients

City Tree % Grass % Building % Other Paved % Albedo/100 A
Boston -0.052 *** | -0.022 * 0.0005 0.009 -0.107 **% | (.78 ***
Charlotte | -0.014 * 0.007 0.043 #*x* 0.027 *** -0.099 *** | (.61 ***
Chicago -0.056 *** | -0.011 *** 0.019 **x* 0.020 *** -0.086 *** | (.89 ***
DC -0.060 *** | 0.01 0.020 * 0.021 * -0.011 0.76 ***
Durham -0.032 *** | -0.0007 0.028 * 0.030 ** -0.152 **% | (.60 ***
San Diego | -0.073 *** | 0.002 0.001 -0.009* -0.060 *** | (.80 ***
San Jose -0.042 *** | -0.003 /-0.014 * 0.014 * 0.015%* -0.079 *** | (.76 ***

926  Table 2. Model intercepts, spatial error coefficients, and direct/indirect impact coefficients
927  estimated for each independent variable by each city-specific SDEM, where irrigated grass cover
928 in San Jose is designated by the italicized text. *** indicates statistical significance where p <
929  0.001, ** indicates statistical significance where p <0.01, * indicates statistical significance where
930 p<0.05.
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Figure 5. A: Tree cover direct impacts (K %-1) estimated from the SDEM for each city versus
tree cover direct impacts (K %-1) estimated by a linear regression model predicting tree cover
direct impacts as a function of mean JJA global horizontal irradiance (GHI; W m-2) and LSWI
(unitless). B: Grass cover direct impacts (K %-1) estimated from the SDEM for each city versus
grass cover direct impacts (K %-1) estimated by a linear regression model predicting grass cover
direct impacts as a function of LSWI (unitless). *For San Jose, irrigated grass cover is designated
by an open circle and non-irrigated grass cover is designated by a closed circle. All error bars
represent 95% confidence intervals.
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951  Figure 6. A: Kernel density distribution of albedo at the census block level for each city

952  included in the analysis. B: Kernel density distribution of tree cover (%) at the census block level
953  for each city included in the analysis.
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Figure 7. Conceptualization of the temporal evolution of cooling benefits provided by trees
versus white roofs (Adapted from data and figures in Bretz & Akbari 1997 and Vogt et al. 2015).
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959  Supplemental Information
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965 SI Figure 1. A-D: Land cover composition maps for Chicago (2010), DC (2011), Durham (2015), and San Diego (2017). E-H:
966 Five-year mean land surface water index (LSWI; unitless) raster composites for Chicago (2006 —2010), DC (2007 — 2011),

967 Durham (2011 - 2015), and San Diego (2013 —2017). I-L: Five-year mean albedo (unitless) raster composites for Chicago, DC,
968 Durham, and San Diego. M-P: Five-year mean land surface temperature (LST; K) composites for Chicago, DC, Durham, and San
969 Diego.
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980
981

982 SI Table 1. Inventory of Landsat images used to create the five-year JJA clear sky raster composites of surface temperature,
983 albedo, and LSWI.

City Year Images

Boston (n = 23 images) 2015 LEO7 012031 20150617,
LEO7 012031 20150703,
LEO7 012031 20150719,
LEO7 012031 20150804,
LEO7 012031 20150820

2016 LEO7_012031_20160619,
LEO7 012031 20160721,
LEO7_012031_20160806,
LEO7 012031 20160822

2017 LE07 012031 20170622,
LE07_012031 20170708,
LE07_012031 20170809,
LE07 012031 20170825

2018 LEO7_012031_20180609,
LEO7_012031_20180625,
LEO7 012031 20180711,
LEO7_012031_20180727,
LEO7 012031 20180828

2019 LE07 012031 20190612,
LE07_012031 20190628,
LE07_012031_20190730,
LE07_012031 20190815,
LE07 012031 20190831

Charlotte (n = 22 images) 2008 LEO7 017036 20080616,
LEO7 017036 _20080702,
LEO7 017036 20080718,
LEO7 017036 _20080803,
LEO7 017036 20080819

2009 LEO7_017036_20090603,
LEO7_017036_20090619,
LEO7_017036_20090721,
LEO7_017036_20090806,
LEO7 017036 _20090822

2010 LEO7_017036_20100606,
LEO7_017036_20100622,
LEO7_017036_20100708,
LEO7_017036_20100724,
LEO7 017036 _20100809

2011 LE07 017036 20110609,
LE07 017036 20110625,
LE07 017036 20110711,
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LEO7_017036_20110727,
LEO7 017036 20110828

2012

LEO7_017036_20120627,
LEO7 017036 _20120729,

Chicago (n = 20 images)

2006

LEO7_023031_20060605,
LEO7_023031_20060707,
LEO7_023031_20060723,
LEO7 023031 20060824

2007

LEO7_023031_20070608,
LEO7_023031_20070710,
LEO7_023031_20070726,
LEO7 023031 20070811,

2008

LEO7_023031_20080610,
LEO7_023031_20080626,
LEO7_023031_20080728,
LEO7_023031_20080813,
LEO7 023031 20080829

2009

LEO7_023031_20090715,
LEO7 023031 20090731,

2010

LEO7_023031_20100616,
LEO7_023031_20100702,
LEO7_023031_20100718,
LEO7_023031_20100803,
LEO7 023031 20100819

DC (n = 21 images)

2007

LEO7_015033_20070616,
LEO7_015033_20070702,
LEO7_015033_20070718,
LEO7 015033 20070803,

2008

LEO7_015033_20080602,
LEO7_015033_20080618,
LEO7_015033_20080704,
LEO7_015033_20080720,
LEO7 015033 20080821

2009

LEO7_015033_20090707,
LEO7_015033_20090808,
LEO7 015033 20090824

2010

LEO7_015033_20100608,
LEO7_015033 20100824,
LEO7_015033_20100726,
LEO7 015033 20100811,
LEO7 015033 20100827

2011

LEO7_015033 20110611,
LEO7_015033 20110713,
LEO7_015033 20110729,
LEO7 015033 20110830

Durham (n = 22 images)

2011

LEO7 016035 20110602,
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LEO7_016035_20110618,
LEO7_016035_20110720,
LEO7 016035 20110821

2012

LEO7_016035_20120604,
LEO7_016035_20120620,
LEO7_016035_20120706,
LEO7 016035 20120823

2013

LEO7_016035_20130623,
LEO7_016035_20130810,
LEO7 016035 20130826

2014

LEO7_016035_20140610,
LEO7_016035_20140626,
LEO7_016035_20140712,
LEO7_016035_20140728,
LEO7_016035_20140813,
LEO7 016035 20140829

2015

LEO7_016035_20150613,
LEO7_016035_20150629,
LEO7_016035_20150715,
LEO7_016035_20150731,
LEO7 016035 20150816

San Diego (n = 28 images)

2013

LEO7_040037_20130615,
LEO7_040037_20130701,
LEO7_040037_20130717,
LEO7_040037_20130802,
LEO7 040037 20130818

2014

LEO7_040037_20140602,
LEO7_040037_20140618,
LEO7_040037_20140704,
LEO7_040037_20140720,
LEO7_040037_20140805,
LEO7 040037 20140821

2015

LEO7_040037_20150605,
LEO7_040037_20150621,
LEO7_040037_20150707,
LEO7_040037_20150723,
LEO7_040037_20150808,
LEO7 040037 20150824

2016

LEO7_040037_20160623,
LEO7_040037_20160709,
LEO7_040037_20160725,
LEO7_040037_20160810,
LEO7 040037 20160826

2017

LEO7_040037_20170610,
LEO7_040037_20170626,
LEO7 040037 20170712,
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984
985
986
987
988
989
990
991

LEO7_040037_20170728,
LEO7_040037_20170813,
LEO7 040037 20170829

San Jose (n = 25 images)

2007

LEO7_044034 20070611,
LEO7_044034 20070627,
LEO7_044034 20070713,
LEO7_044034 20070729,
LEO7_044034 20070814,
LEO7 044034 20070830

2008

LEO7_044034 20080629,
LEO7_044034 20080715,
LEO7_044034 20080731,
LEO7 044034 20080816

2009

LEO7_044034_20090616,
LEO7_044034_20090702,
LEO7_044034 20090718,
LEO7_044034_20090803,
LEO7 044034 20090819

2010

LEO7_044034 20100603,
LEO7_044034 20100619,
LEO7_044034_20100705,
LEO7_044034 20100721,
LEO7 044034 20100822

2011

LEO7_044034 20110622,
LEO7_044034 20110708,
LEO7_044034 20110724,
LEO7_044034 20110809,
LEO7 044034 20110825
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992
993
994
995
996
997

998

999
1000
1001
1002
1003
1004

1063

1007

SI Table 2. Summary of census blocks filtered from the analysis due to the minimum area requirement (3600 m?).

City Census blocks Census blocks Median area of
with >1% with > 1% census blocks in
building cover | building cover analysis (m?)
and > 3600 m?

Boston 5285 4755 12687
Charlotte 7532 7366 40930
Chicago 20083 19594 20427

DC 4910 4641 16437
Durham 2721 2690 32451
San Diego 12134 11322 13547
San Jose 7395 7020 24938

Boston, MA

; ‘7 fD 2.5' Bkm

Charlotte, NC

30 5 10km

SI Figure 2. Census blocks included in the SDEM analysis for each city after application of water, area, and landcover filters.
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1008 SI Table 3. Variance inflation factor (VIF) of all variables included in each city-specific SDEM where the VIF for irrigated grass
1009 cover in San Jose is designated by italicized text.

City Tree % Grass % Building % Other Paved %  Albedo

Boston 3.67 2.51 4.79 3.03 1.07

Charlotte 9.56 5.22 3.15 5.62 1.24

Chicago 2.32 2.19 2.28 292 1.14

DC 5.55 292 4.23 3.49 1.39

Durham 7.00 291 2.20 3.97 1.42

San Diego 1.96 2.38 1.85 2.79 1.21

San Jose 1.87 2.08/1.50 2.06 2.05 1.32
1010
1011
1012
1013

1014 SI Table 4. Moran’s [ statistic quantifying the correlation of SDEM residuals and spatially-lagged SDEM residuals, and the
1015 associated p-values for a two-sided Moran’s I test conducted on the SDEM residuals for each city. P-values > 0.05 indicate no
1016 significant spatial autocorrelation of SDEM residuals.

City Moran’s I Statistic p-value

Boston -0.0003 0.99

Charlotte -0.005 0.48

Chicago 0.005 0.16

DC -0.010 0.24

Durham -0.001 0.97

San Diego -0.002 0.74

San Jose -0.011 0.14
1017
1018
1019
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