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Abstract 

We provide a novel method to assess the heat mitigation impacts of greenspace though studying the 1 
mechanisms of ecosystems responsible for benefits and connecting them to heat exposure metrics. We 2 
demonstrate how the ecosystem services framework can be integrated into current practices of 3 
environmental health research using supply/demand state-of-the-art methods of ecological modeling of 4 
urban greenspace. We compared the supply of cooling ecosystem services in Boston measured through 5 
an indicator of high resolution evapotranspiration modeling, with the demand for benefits from cooling 6 
measured as a heat exposure risk score based on exposure, hazard and population character- istics. The 7 
resulting evapotranspiration indicator follows a pattern similar to conventional greenspace indicators 8 
based on vegetation abundance, except in warmer areas such as those with higher levels of impervious 9 
surface. We identified demand-supply mismatch areas across the city of Boston, some coinciding with 10 
affordable housing complexes and long term care facilities. This novel ES-framework provides cross-11 
disciplinary methods to prioritize urban areas where greenspace interventions can have the most impact 12 
based on heat-related demand.  13 
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1. Introduction 14 

Evidence shows that exposure to urban greenspace is associated with a wide array of health benefits 15 

including reduced cardiovascular disease, improved mental health, and reduced mortality (Twohig-16 

Bennett and Jones, 2018; van den Berg et al., 2015). Various pathways have been identified for this 17 

association, such as the capacity of vegetation to regulate temperature, improve air quality, provide 18 

opportunity for physical activity, and reduce mental stress (James et al., 2015). Despite the variety in 19 

pathways, greenspace exposure is often operationalized with a metric of vegetation abundance derived 20 

from satellite imagery such as the Normalized Vegetation Index (NDVI), or the location of certain types 21 

of greenspace (e.g. distance to parks of public gardens) from detailed land use data.  22 

While current NDVI products are among the most accurate and spatially resolved data at the disposal of 23 

the epidemiologist, their application as exposure metric can lead to overlooking the intricate ties 24 

between ecosystems and their physical and social environments that moderate or mediate health 25 

effects. For instance, Leslie et al. (2010) showed that mental health outcomes were more associated 26 

with one’s perception of available greenspace than with measures of vegetation abundance. Relying on 27 

metrics of vegetation abundance or proximity has prevented methods to empirically separate different 28 

pathways and answer how greenspace exposure improves our health (Shanahan et al., 2015). To better 29 

understand if, where, and why greenspace exposure affects health outcomes there is a need for a 30 

holistic framework that can connect health benefits with ecosystem functions and mechanisms relying 31 

on literature from both health and ecological sciences (Zhang et al., 2017). 32 

To distinguish different health effects of greenspace, reduce exposure misclassification, and provide a 33 

more causal narrative of health effects of greenspace, several authors have suggested adopting a 34 

framework of ecosystem services (ES), focusing on vegetation activity relevant to health outcomes 35 

(Bratman et al., 2019; Chiabai et al., 2018; Frumkin et al., 2017; Sandifer et al., 2015; Shanahan et al., 36 

2015). ESs can be defined as “the aspects of ecosystems utilized (actively or passively) to produce 37 

human well-being” (Fisher et al., 2008), and are valued based on the benefits they produce for humans. 38 

Through a focus on quantitatively linking human benefits with functions of the natural environment, the 39 

ES-framework can be seen as a set of definitions and tools that forms a bridge between fields to 40 

promote inter-disciplinary research on the value of nature (Phillipson et al., 2009). This interdisciplinary 41 

approach facilitates incorporating knowledge about ecological mechanisms such as particulate matter 42 

deposition and air filtration (Janhäll, 2015) or ambient cooling (Winbourne et al., 2020; Yunusa et al., 43 

2015) into the domain of health sciences. 44 



In this paper we demonstrate how the ES-framework can be used to integrate state-of-the-art methods 45 

of ecological modeling into current practices of environmental health research focusing on ambient 46 

cooling capacities of urban greenspace and linking it to risk of residential exposure to extreme heat. 47 

Exposure to extreme heat is associated with various health outcomes including increased mortality 48 

(Medina-Ramón and Schwartz, 2007), higher numbers of emergency department-visits (Hess et al., 49 

2014), and adverse pregnancy outcomes (Bekkar et al., 2020). Heat exposure risk is exacerbated in 50 

urban environments where impervious surfaces such as concrete and asphalt absorb solar radiation 51 

causing higher temperatures in urban centers than in surrounding rural areas (Kleerekoper et al., 2012). 52 

Urban greenspace can reduce the this urban heat island (UHI) effect through shading and 53 

evapotranspiration (Winbourne et al., 2020; Yan et al., 2020). 54 

Recently, various research groups have developed various tools and instruments to assess the capacity 55 

of urban greenspace to mitigate urban heat through evapotranspiration and shading. Most notably the 56 

InVEST Urban Cooling Model, developed by the Natural Capital Project includes a land cover based 57 

urban cooling model to estimate the urban cooling capacity of greenspace (Zardo et al., 2017). As one of 58 

the strengths of this model lies in its global applicability, a local model can provide improvement in 59 

terms of modeling the complex interaction between climatological conditions, radiation, and 60 

evapotranspiration (Zawadzka et al., 2021).  In previous work we developed one of the first high 61 

resolution spatially explicit models of urban evapotranspiration (Smith et al., 2021). By comparing 62 

spatially modeled levels of evapotranspiration with a risk assessment of extreme heat exposure, we test 63 

to what extent temperature regulating ecosystem service provides benefits in terms of human health 64 

gains. In doing so we provide one of the first attempt to apply ecosystem services assessments in 65 

environmental health research.   66 

2. Methods 67 

2.1.1. Overview 68 

We used an ES-approach by comparing the supply of cooling ecosystem services to the demand for 69 

health benefits from cooling in Boston, MA. We mapped the supply of temperature regulating ES by 70 

modeling the level of evapotranspiration during a local heatwave at a 30m scale of the current 71 

vegetation cover of Boston (Smith et al., 2021). While vegetation provides cooling benefits through both 72 

shading and evapotranspiration, this analysis focuses on the evapotranspiration mechanism as the 73 

daytime urban heat island intensity is primarily driven by variations in the capacity of urban and rural 74 



areas to evaporate water (Li et al., 2019). Thus, cooling via evapotranspiration represents a key ES to city 75 

residents and spatially co-occurs with shading benefits as well. We estimated the demand for health 76 

benefits from heat reduction as a spatial risk assessment of extreme heat exposure multiplying spatial 77 

layers of exposure, hazard, and heat vulnerability (Aubrecht and Özceylan, 2013; Tomlinson et al., 2011). 78 

We chose to model exposure to extreme heat as we expect the greatest local variation and therefore 79 

the highest spatial heterogeneity of potential for health benefits. 80 

2.1.2. Location 81 

Boston is a city located in the Northeast of the United States and has an estimated population size of 82 

almost 692,600 people in 2019. Boston has a continental climate of relatively cold winters and hot and 83 

humid summers, with average maximum daily temperatures in July of 27oC and an average of 15 days 84 

per year of ambient temperatures above 30oC.  85 

2.2. Cooling Demand through Heat Risk Exposure Index 86 

We operationalized the demand for cooling using the following heat risk index equation based on a 87 

study by Aubrecht et al. (2013):  88 

𝐻𝑅𝐼 = 𝐻𝑉𝐼𝑖 ∗  𝑃(ℎ𝑤𝑑𝑎𝑦)𝑖 ∗  𝑃𝑂𝑃𝑖 89 

where heat risk exposure index (HRI) at 30 m pixel i is calculated by the probability for local heat wave 90 

day conditions (P(hwday)) multiplied by the heat vulnerability index (HVI) multiplied by the population 91 

(POP) to account for the level of exposure at pixel i. Equation terms are further detailed below. Pixel 92 

resolution was 30m in order to get a fine-scaled distribution of heat risk that can be compared with 93 

supply model outputs.  94 

2.2.1. Probability for local heat wave day conditions (P(hwday))  95 

Extreme heat exposure was assigned by calculating the probability of a local (30 m) heat wave, given 96 

evidence that heatwaves impact health more than single days of extreme temperatures (Kent et al., 97 

2014; Madrigano et al., 2015). For spatially explicit ambient temperatures we used PRISM climate data, 98 

which consist of daily minimum and maximum temperatures for the United States modeled at 800m 99 

resolution using a range of biophysical land characteristics and air temperatures from monitoring 100 

stations (PRISM Climate Group, 2019). Daily maximum ambient temperatures at a 30m resolution were 101 

calculated by downscaling 800m PRISM maximum daytime temperature data with 30m impervious 102 

surface area (ISA) (MassGIS 2019) and time of year based on previously observed relationships where 103 

for every day of the year a regression coefficient was provided for ISA’s effect on ambient temperature 104 



(Wang et al., 2017). Since ISA was not used in the PRISM model, we used a 30m dataset of ISA adjust 105 

local temperatures based on ISA. The downscaled temperature (T) at 30m pixel I on the jth day was 106 

calculated as:  107 

𝑇𝑖,𝑗  =  𝑇𝑝𝑟𝑖𝑠𝑚,𝑖,𝑗 + 𝛽𝑗 𝐼𝑆𝐴𝑖   112 

where Tprism is the 800m PRISM maximum temperature that corresponds with pixel i on day j,  is a 108 

mean-centered coefficient reflecting the effect of impervious surface on ambient temperature for the 109 

corresponding month of day j (Wang et al., 2017) and ISA is the impervious surface area at pixel i. The 110 

result was a grid of maximum daily ambient temperature at 30 m resolution for June, July and August. 111 

We defined a local heatwave as two consecutive days of maximum daytime temperatures above the 113 

95th percentile in Boston during the months of June, July, and August (Spangler and Wellenius, 2020). To 114 

calculate the probability of a heatwave day at a specific pixel we divided the number of times two 115 

consecutive days the maximum temperature was above the 95th percentile by the total number of 116 

summer days during the months of June, July, and August between the years of 2008 and 2018. Final 117 

calculations resulted in values that could theoretically be between 0 and 1 for each 30 meter pixel, 118 

representing the probability for a local heat wave conditions on a given day in the summer months. 119 

2.2.2. Heat vulnerability Index (HVI) 120 

We built a heat vulnerability index composed from demographic and socio-economic factors that are 121 

correlated with higher heat-related hospitalizations and mortality (Madrigano et al., 2018; Reid et al., 122 

2009; Riley, 2018; Spangler and Wellenius, 2020). We included five dimensions of heat vulnerability at 123 

the census block group level using data from the American Community Survey (ACS) (5-year estimates 124 

2013-2018): 1) age (percentage of people over 65 years); 2) poverty (percentage of people with income 125 

below poverty line minus percentage of people enrolled in higher education to account for students 126 

(Bishaw, 2013)); 3) language-barriers (percentage of people speaking English less than well); 4) 127 

vulnerable living situation (percentage of people older than 65 living alone); and 5) racial minority 128 

composition (percentage of non-white people). We summed the percentages of population of each 129 

variable in census block group in Boston and divided the final score by the highest total value to 130 

calculate a heat vulnerability index ranging from 0 to 1 (Aubrecht and Özceylan, 2013). In absence of 131 

empirical evidence relating these dimensions to health outcomes in Boston, we assumed all five 132 

dimensions had the same relative importance. 133 



2.2.3. Population (Pop) 134 

To estimate the number of people living at each 30m pixel in Boston, we downscaled the Census 2010 135 

population counts by census block to population in buildings by distributing the total count of 136 

population per census block over the surface area of residential buildings (Xie, 2006). We used Open 137 

Street Map (OpenStreetMap, 2017) to identify all buildings in Boston and filtered out non-residential 138 

buildings using parcel level tax data from the Massachusetts Tax Assessor (MassGIS, 2020) and the City 139 

of Boston (Boston Assessing Department, 2019). Population per 30m pixel was calculated as the census 140 

block population multiplied by the proportion of residential building surface area compared to the total 141 

surface area of each census block. We used Census 2010 count data to minimize error within a census 142 

unit, since ACS data are not available at the census block level. The population data was log transformed 143 

to normalize the distribution.  144 

The Heat Risk Index (HRI) was calculated by multiplying (P(hwday))*HVI*POP and the final demand 145 

map was generated by smoothing the HRI of the neighborhood within a radius of 60m from each 30m 146 

pixel to match the radius of cooling ES of evapotranspiration described below. 147 

2.3. Cooling Supply from Greenspace: Latent Heat Flux 148 

We developed a remote sensing driven evapotranspiration model (Smith et al., 2021) based on a 149 

Penman-Monteith formulation that couples a carbon light-use efficiency model, Geostationary 150 

Operational Environmental Satellite-16 (GOES-16) radiation (NOAA National Centers for Environmental 151 

Information, 2017), Rapid Refresh (RAP) temperature analysis data (Benjamin et al., 2016), impervious 152 

surface maps (MassGIS, 2007), Landsat albedo (Trlica et al., 2017) and Landsat enhanced vegetation 153 

index (EVI) (Retrieved from Google Earth Engine; Gorelick et al., 2017). Evapotranspiration, measured as 154 

latent heat flux (λE; W m-2) was modeled for the City of Boston, MA at hourly time steps and a spatial 155 

resolution of 30 meters during a 6-day heatwave event from August 2 – August 7, 2018 where the mean 156 

air temperature across the modeling domain was 28.7°C, approximately 25% warmer than the mean 157 

2018 6-day rolling average temperature during June, July, and August (23.0°C). 158 

Full description of the evapotranspiration model can be found in Smith et al., (2021). Briefly, the 159 

modeling approach consisted of three core equations to estimate latent heat flux contributions from 160 

vegetation and did not consider other sources of urban latent heat flux, such as evaporation from lakes 161 

or standing water. Vegetation activity was characterized as a function of incoming solar radiation via 162 

estimates of net canopy photosynthesis (defined as the difference between the gross ecosystem 163 



exchange of CO2 and canopy respiration of CO2) produced using the Urban Vegetation Photosynthesis 164 

and Respiration Model (Hardiman et al., 2017; Mahadevan et al., 2008) as: 165 

𝐴𝑛 =  (𝛿 ⋅ 𝑇𝑠𝑐𝑎𝑙𝑒  ⋅  𝑃𝑠𝑐𝑎𝑙𝑒  ⋅  𝑊𝑠𝑐𝑎𝑙𝑒  ⋅ 𝐸𝑉𝐼 ⋅
1

1+ 𝑃𝐴𝑅
𝑃𝐴𝑅0

⁄
 ⋅ 𝑃𝐴𝑅) − 0.1 ∙ 𝑅𝑒𝑐𝑜    166 

where An is net photosynthesis (net assimilation of CO2; μmol CO2 m-2 s-1), 𝛿 is a plant functional type-167 

specific light-use efficiency (μmol CO2 μmol PAR-1), Tscale, Pscale, and Wscale are dimensionless scaling terms 168 

ranging from zero to one describing the influence of air temperature, phenology, and moisture on 169 

photosynthesis, EVI is the enhanced vegetation index, PAR is incoming photosynthetically active 170 

radiation (μmol m-2 s-1), PAR0 is the plant functional type-specific optimized half-saturation value (μmol 171 

m2 s-1), and Reco is ecosystem respiration (μmol CO2 m2 s-1). Temperate deciduous broadleaf plant 172 

functional type parameters from Mahadevan et al. (2008) were applied to characterize vegetation in 173 

Boston, MA, consistent with local vegetation surveys (Urban Ecology Institute, 2008). Leaf level 174 

respiration is assumed to be 10% of ecosystem respiration (Tang et al., 2008). Air temperature data was 175 

adjusted as a function of impervious surface area following the methods described in Wang et al. (2017) 176 

and Hardiman et al. (2017). 177 

The net photosynthesis estimates from the VPRM are used to estimate stomatal (or surface) 178 

conductance, the process governing the land surface’s ability to evaporate water, via the Medlyn et al. 179 

(2011) stomatal conductance model as: 180 

 𝑔𝑠 =  𝑔0 + 1.6 ⋅ (1 +  
𝑔1

√𝐷
) ⋅  

𝐴𝑛
𝑐𝑠

𝑃𝑎𝑡𝑚
⁄

    181 

where gs is the stomatal conductance (μmol H2O m-2 s-1), g0 is the minimum value of stomatal 182 

conductance (100 μmol H2O m-2 s-1), g1 is a plant functional type-specific parameter, D is the vapor 183 

pressure deficit (kPa), An is the net assimilation of CO2
 (μmol CO2 m-2 s-1), cs is the atmospheric partial 184 

pressure of CO2 (40.53 Pa), and Patm is the atmospheric pressure (101,325 Pa). 185 

Given estimates of surface conductance, latent heat flux is estimated using the Penman-Montieth 186 

equation of evapotranspiration (Monteith, 1965) as: 187 

𝜆𝐸 =  
∆(𝑅𝑛 −𝐺)+ 𝜌𝑎𝑐𝑝(𝐷)𝑔𝑎

∆+ 𝛾(1+ 
𝑔𝑎

𝑔𝑠
⁄ )

  188 

where λ is the latent heat of vaporization of H2O (2260 J g-1), E is the mass H2O evaporation rate (g s-1 m-189 

2), Δ describes the rate of change of saturation specific humidity with air temperature (Pa K-1), Rn is the 190 



net radiation balance of the surface (W m-2), G is the ground heat flux (W m-2), ρa is the dry air density 191 

(1.275 kg m-3), cp is the specific heat capacity of air (1005 J kg-1 K-1), D is the vapor pressure deficit (Pa), ga 192 

is the atmospheric conductance (m s-1), gs is the surface conductance (m s-1), and γ is the psychrometric 193 

constant (66 Pa K-1). A more detailed description of equation terms and sources is provided in the SI. 194 

Latent heat flux estimates were averaged within a radius of 60m for every 30-m pixel to reflect the 195 

typical spatial scale of vegetation induced cooling in cities (Ziter et al., 2019). 196 

Previous research showed that transpiration levels of vegetation are positively correlated with ambient 197 

temperature, meaning that especially during heat waves evapotranspiration may be higher in more 198 

urbanized areas (Winbourne et al., 2020). To assess how this indicator differs from traditional vegetation 199 

abundance indicators we calculated a bivariate correlation between EVI at 30m resolution and latent 200 

heat flux during heat wave conditions at similar resolution.  201 

2.4. Demand supply comparison 202 

A mismatch between low supply and high demand for an ecosystem service indicates a potential for 203 

relatively high benefits from additional increase in ecosystem service supply (Burkhard et al., 2012). High 204 

cooling demand (high heat exposure risk index) and low cooling supply (low levels of latent heat flux) 205 

areas were identified by transforming supply and demand to percentile rank (PR) scores to reduce bias 206 

(Schulp et al., 2014). PR scores were calculated excluding pixels where HRI = 0. We multiplied the PR of 207 

demand with the inverted PR (100 - PR) of supply and divided it by the maximum possible score (992) to 208 

generate a map of the share of instances each pixel was designated high demand–low supply out of the 209 

9,801 (992) possible combinations of percentile thresholds as done previously in Tieskens et al. (2017). A 210 

value close to 1 indicates a mismatch regardless of a threshold distinguishing between high and low 211 

supply and demand.  212 

Additionally, we ran a linear regression model to assess which aspects of the ES demand were related to 213 

the ES-supply.  The linear model predicted the ES-supply as latent heat flux per census block group in 214 

Boston with the five HVI variables, the average heatwave probability, and the total population. To 215 

calculate average heat wave probability and latent heat flux per census block group we masked the area 216 

of each census block group with the building footprint of residential buildings to only include supply and 217 

demand variables at locations of residential heat exposure. To account for multi-collinearity we 218 

calculated variation inflation factors (VIF) for each predictor using the CAR package in R software (Fox, 219 

John & Weisberg, 2011). As no VIF was higher than 3 we did not exclude any predictor from the model.  220 



3. Results 221 

3.1. Cooling Demand through Heat Risk Exposure Index 222 

 223 

Figure 1 Map of Boston showing: A: Total population at 30m resolution; B: Probability of a summer heatwave day at 30 meter 224 
resolution; C: Sociodemographic heat vulnerability index at a block group level  225 

Figure 1 shows the spatial distribution of the three components of the heat risk index (i.e. cooling 226 

demand): population, heatwave probability, and heat vulnerability index. The probability of a local heat 227 

wave day ranged between 0 and 23%, with the highest values close to the center of Boston (Figure 1B, 228 

light yellow areas). Areas with lower probabilities (dark shades in Figure 1B) are found on the harbor 229 

islands, coast and in the southwest of the city, which coincides with locations of parks and urban forests. 230 

The heat vulnerability index map (Figure 1C) shows a stark differences between neighborhoods. The 231 

highest values were found in inner city neighborhoods of Boston, characterized by high percentages of 232 

people living below the poverty line and high percentages of racial minorities. In the northwest of the 233 

city isolated hotspots were mostly driven by the percentage of people over 65 years living alone. 234 

Figure 2A shows the results of the integrated heat exposure risk index map (Figure 2A), showing a clear 235 

difference between the south west side of Boston characterized by a relatively low cooling demand with 236 

values close to 0 while high demand is concentrated in the north east side of the city, and the centrally 237 

located inner cities with values between 0.6 and 1. There are several areas in the city with concentrated 238 



pockets of very high demand surrounded by lower demand. 239 

 240 

Figure 2 Map of Boston at 30 m resolution showing: A) Demand for cooling as heat risk exposure index, and B) Greenspace 241 
cooling supply as Latent Heat Flux 242 

3.2. Cooling Supply from Greenspace: Latent Heat Flux  243 

Figure 2B shows an example of the spatial distribution of the cooling supply from greenspace across 244 

Boston on a heatwave day at noon. The average supply of greenspace cooling via transpiration was 85.6 245 

W m-2 across the city during the modeling period. We observed substantial spatial heterogeneity in the 246 

magnitude of latent heat fluxes with maximum latent heat flux rates found in the more heavily 247 

vegetated areas of the city and minimum rates found in the portions of the city with the most 248 

impervious surface area (Figure 2B), ranging from 0 – 334.5 W m-2. A bivariate correlation analysis 249 

showed a high correlation between latent heat flux and EVI (r=0.99, p <0.001). However, we found a 250 

range of latent heat flux estimates for pixels with similar EVI that varied as a function of urbanization as 251 

pixels with higher fractions of ISA tend to have warmer temperatures and higher vapor pressure deficits 252 

in the atmosphere, ultimately driving increases in transpiration rates.  253 



The plot in figure 3 shows that the correlation between latent heat flux and EVI is not completely linear 254 

as for both tails of the EVI distribution latent heat flux is lower than predicted by EVI only. 255 

 256 

3.3. Demand supply comparison 257 

Figure 5A shows the high/low cooling supply/demand comparison across Boston. Areas shaded with a 258 

value between 0.8 and 1 in dark blue have an estimated mismatch of demand and supply in at least 80% 259 

of all possible combination of percentile rank definitions of high demand and low supply. Similar to the 260 

demand distribution (Figure 2A) the comparison shows high values in the inner cities and concentrated 261 

hotspots around Boston. We zoomed in to three different areas in the city to highlight notable 262 

differences and patterns. We found some of the highest concentration for demand for health benefits of 263 

cooling in Brighton, a community home to some of the housing complexes in the city housing older 264 

adults, often living alone. Figure 4B-1 shows that the high demand coincides with the location of these 265 

complexes. Figure 4B-2 shows that this area is also characterized by a relatively high cooling ES supply, 266 

reducing the value of the comparison index in Figure 4A. Figure 4C shows a similarly concentrated 267 

pattern of demand in Chinatown, not driven by high population counts of elderly, but instead by high 268 

population density and a relatively large share of low income families not identifying as white. Here, 269 

high concentrations of demand coincide with the location of several large affordable housing complexes. 270 

Despite the relative proximity of these complexes there is a significant difference in ES supply. Figure 4C-271 

2 shows that the supply of cooling was low around the two most eastern complexes while the being 272 

higher around the south western complex. The most striking hotspot of ES mismatch appeared in East 273 

Boston (Figure 4D). Despite two affordable housing complexes the high level of demand was spread over 274 

 



the entire neighborhood. This neighborhood is home to a large community of people identifying as 275 

Hispanic/Latino, with relatively high numbers of non-English speakers. Figure 4D-2 shows that the high 276 

demand was met with low levels of evapotranspiration throughout the neighborhood. 277 

 278 

Figure 4 A: Frequency index of low supply-high demand designation for each combination (992) of percentile definition of low-279 
supply and high-demand. B 1– D 1: zoom in maps showing Cooling Health Benefits Demand. B 2 – D 2: Zoom in maps showing 280 
Cooling Supply  281 

A linear model explaining the latent heat flux per census block group with the variables that composed 282 

the ES-demand function shows that the percentage of people older 65, the percentage non-white 283 

population and the probability for a heatwave were positively correlated with the ES-supply.  284 

 285 

 286 

 287 



Table 1 Regression coefficients of ordinary least squares linear model explaining latent heat flux with dimensions of heat 288 
vulnerability, heat hazard, and exposure (population). 289 

 
Estimate Std. Error P-value 

Intercept -1.78 10.67 0.87 

Percentage living below poverty line -17.95 9.61 0.06 

Percentage older than 65 131.09 15.38 < 0.001 

Percentage older than 65 and living alone -129.17 29.96 < 0.001 

Percentage speaking English less than well -59.98 11.35 < 0.001 

Percentage non-white population 27.09 4.11 < 0.001 

Heat wave probability 420.91 57.07 < 0.001 

Population 0.00 0.00 0.36 

Adjusted R2 = 0.28 
   

 290 

The percentage of people living below the poverty line, the percentage of people being older than 65 291 

and living alone, and the percentage of people speaking English less than well was negatively correlated 292 

with ES-supply.  The total number of people living in each census block group was not significantly 293 

correlated with the supply of cooling ecosystem services.  294 

4. Discussion 295 

With this paper we attempted to use the ecosystem services framework to improve understanding of 296 

the health effects of urban greenspace, focusing on heat mitigation. By spatially comparing cooling ES 297 

supply with heat exposure risk, serving as a proxy for demand for health benefits of cooling, we revealed 298 

those areas within the city where additional urban vegetation could provide the highest benefits in 299 

terms of heat related health outcomes. Modeled evapotranspiration as an indicator of greenspace 300 

activity showed a very similar pattern to conventional indicators based on vegetation abundance. 301 

However, we revealed a pattern of stronger cooling potential per tree in more urban areas with higher 302 

impervious surface fractions. Zooming in on several demand-supply mismatch hotspots revealed that 303 

strong concentrations coincided with affordable housing complexes or housing for older adults.  304 

While our study identified areas where supply did not meet the demand for urban cooling, we also 305 

showed that on average the supply of cooling ES was positively correlated with heat hazard and several 306 

dimensions of our HVI including old age and non-white populations. This is an interesting finding as 307 

recent studies exposed systemic racial inequities in terms of greenspace exposure in US cities revealing a 308 



striking pattern of consistently lower levels of vegetation in neighborhoods with that suffered from 309 

racially discriminatory zoning practices and higher shares of people of color (Nardone et al., 2021). The 310 

reason for the different finding could be that we only accounted for ES-supply of residential cooling and 311 

did not include any vegetation that was not located within 60m of a residential building.  312 

At first sight, the comparison between the proposed indicator of cooling ES services and the common 313 

indicator of EVI may indicate that the potential for exposure misclassification associated with vegetation 314 

abundance indicators is limited (Cf. Nouri et al., 2014). However, we revealed a pattern of stronger 315 

cooling potential per tree in more urban areas with higher impervious surface fractions. This finding 316 

suggests that previous studies that linked reduced heat mortality to greenspace exposure based on 317 

indicators of greenspace abundance (Burkart et al., 2016; Gronlund et al., 2015; Madrigano et al., 2015; 318 

Tan et al., 2007) might have underestimated the cooling effect of greenspace in inner cities with higher 319 

impervious surface area inducing higher local temperatures and by extension higher evapotranspiration. 320 

Inner cities not only report the highest peak temperatures during heatwaves, but often also house a 321 

disadvantaged population of low income minority households suffering from structural racism and social 322 

isolation (Rankin and Quane, 2000; Watson and Wilson, 1988) associated with higher vulnerability to 323 

extreme heat exposure (Aubrecht and Özceylan, 2013; Gronlund et al., 2015; Reid et al., 2009).  324 

The effect of greenspace on heat related health outcomes has been recognized and analyzed in many 325 

previous studies (see Markevych et al., 2017; Tomlinson et al., 2011; Twohig-Bennett and Jones, 2018). 326 

Likewise, the effect of vegetation on urban temperatures has been the topic of many ecological and 327 

environmental studies (Adams and Smith, 2014; Gallo et al., 1993; Hu and Li, 2020). Yet, the connection 328 

between these two fields has been limited.  We used the ES-framework to connect the work done in 329 

these two broad fields. The heat risk index can be a starting point for ecosystem services mapping 330 

studies to incorporate public health methods for more accurate operationalization of health benefits. 331 

The heat vulnerability index proposed in this paper could, for instance, be a great addition to the widely 332 

used InVEST urban cooling model that currently relies on a linear relationship between temperature and 333 

mortality to estimate potential health benefits from urban cooling (Hamel et al., 2021). Moreover, the 334 

explicitly urban evapotranspiration modeling presented here (and further explained in Smith et al. 335 

(2021)) is one of the first mechanistic evapotranspiration models explicitly designed for urban context 336 

and can provide hourly outputs. This mechanistic model can be used to improve current cooling models 337 

such as the InVEST Urban cooling Model that estimates evapotranspiration directly from land cover.  338 



Within the public health field, the evapotranspiration modeling can function as an example of metric of 339 

greenspace exposure that explicitly models greenspace activity rather than abundance to separate 340 

different pathways from greenspace to health effect and increase causal understanding of health effects 341 

of greenspace. The framework presented here can be applied to various other pathways that link 342 

greenspace to health framed as ecosystem services, including particulate matter deposition (Hofman et 343 

al., 2013), or noise mitigation (Peng et al., 2014). Each of these services can have several separate 344 

independent health effects that each depend on supply, environment, and beneficiaries. Whereas 345 

current practice in epidemiology often bundles all potential ecosystem health benefits in a single 346 

indicator of vegetation abundance, further application of the ES framework can leverage existing 347 

knowledge and expertise of ecosystem functions that could to a more explicit and accurate 348 

representation of the health benefits of urban greenspace exposure. The comparison of supply and 349 

demand, a very common ES tool, provided a relatively simple method to connect the products from 350 

different fields to provide an output that could directly inform urban planning decisions.  351 

As one of the first attempts to explicitly link health related environmental exposure benefits to functions 352 

of urban vegetation through an ecosystem services framework, the empirical findings have some 353 

limitations. The representation of cooling demand in this paper was based on health risk assessment 354 

modeling and showed innovation by modeling heat exposure risk at the residential building level for the 355 

entire city of Boston, while incorporating fine scale resolution daily ambient temperature data. Heat 356 

vulnerability was calculated by weighting the five vulnerability dimensions equally which may under or 357 

overestimate their importance. However, the equation can easily be adapted to a different weighting 358 

scheme or incorporate locally important vulnerability dimensions. Moreover, the ACS based 359 

vulnerability indicator did not include factors that relate ambient temperature to indoor exposure such 360 

as the availability of indoor temperature regulation and insulation. Additionally, we did not include non-361 

residential heat exposures in this analysis. Workplace and transportation heat stress in the US is 362 

relatively understudied, but could potentially fuel further health disparities due to differences between 363 

outside workplaces and air conditioned spaces (Acharya et al., 2018; Gubernot et al., 2014). Mapping of 364 

both demand for benefits and supply of ES, like in this study, often relies on modeling techniques that 365 

introduce potential error and bias with every assumption (Schägner et al., 2013). Future studies could 366 

build on the framework outlined in this paper to connect the supply of ES-services to spatially explicit 367 

health outcomes. However, health outcomes such as heat-related emergency department visits or 368 

mortality are very rarely available at fine spatial resolution and when available are at state level (e.g. 369 

Kingsley et al., 2016) or zip code level (e.g. Shi et al., 2015).  370 



We used a model that has been validated with field studies and incorporated the most recent insights in 371 

urban evapotranspiration modeling (Smith et al., 2021). Ongoing developments outside the realm of 372 

environmental health studies can further improve the cooling indicator proposed here by incorporating 373 

additional factors that have been proven to affect cooling ecosystem services. These factors include 374 

differentiation on types of greenspace such as grass, shrubs, and trees, the differences in service 375 

provision of different species (Ballinas and Barradas, 2016), spatial patterns of greenspace (Kong et al., 376 

2014), or the other characteristics of the built environment that can enhance the cooling effect of 377 

greenspace such as green roofs, air conditioning, or the albedo effects of different types of pavements 378 

(Li et al., 2014; Winbourne et al., 2020). Further climatological modeling and including the effect of 379 

shading on ambient temperature could eventually lead to an indicator expressed in the change of 380 

ambient temperature in degrees Celsius during heat wave temperatures needed to predict the exact 381 

effect of greenspace on heat-related health outcomes.  382 

5. Conclusion 383 

We provided an indicator of exposure to heat reducing ES of urban greenspace by applying a model 384 

rooted in ecological theory and based on open data. While the resulting indicator follows a pattern 385 

similar to conventional indicators based on vegetation abundance, our modeling efforts highlighted key 386 

differences in the importance of urban context for the delivery of cooling ES. In addition, the 387 

evapotranspiration modeling applied to this area showed that evapotranspiration increases with rising 388 

temperatures, meaning that similar greenspace provides more cooling ES in warmer areas, such as those 389 

with higher levels of impervious surface (i.e. UHI). Comparing our indicator of cooling ES supply with an 390 

indicator of heat exposure risk serving as a proxy for demand for health benefits of cooling revealed 391 

those areas within the city where additional urban vegetation could provide the highest benefits in 392 

terms of heat related health outcomes. A focus on ecosystem services instead of vegetation abundance 393 

can greatly improve the understanding and application of health benefits of urban greenspace.  394 

 395 
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Detailed description of modeling process, terms, and data sources 616 

 617 

Step 1) Characterize vegetation activity via estimates of net photosynthesis using the Urban Vegetation 618 

Photosynthesis and Respiration model (VPRM) 619 

 620 

Here, photosynthesis is defined as the gross ecosystem exchange (GEE) of carbon dioxide (CO2) between 621 

the biosphere and the atmosphere. Estimates are derived at an hourly temporal resolution and 30m x 622 

30m spatial resolution. GEE (μmol CO2 m2 s-1) is estimated as a function of incoming photosynthetically 623 

active radiation (PAR) using the methods, equations, and parameters derived in Mahadevan et al. (2008) 624 

and Hardiman et al. (2017) as: 625 

 626 

𝐺𝐸𝐸 =  𝛿 ⋅ 𝑇𝑠𝑐𝑎𝑙𝑒  ⋅  𝑃𝑠𝑐𝑎𝑙𝑒  ⋅  𝑊𝑠𝑐𝑎𝑙𝑒  ⋅ 𝐸𝑉𝐼 ⋅
1

1 +  𝑃𝐴𝑅
𝑃𝐴𝑅0

⁄
 ⋅ 𝑃𝐴𝑅 627 

where Tscale, Pscale, and Wscale are dimensionless scaling terms ranging from zero to one describing the 628 

influence of air temperature, phenology, and moisture on photosynthesis. PAR is photosynthetically 629 

active radiation (μmol m2 s-1). 𝛿 and and PAR0  are plant functional type-specific parameters describing 630 

the light-use efficiency (μmol CO2 μmol PAR-1) and half-saturation value (μmol m2 s-1) of GEE as a 631 

function of PAR. EVI is the Enhanced Vegetation Index.  632 

 633 

Tscale captures the impact of air temperature on vegetation activity and scales estimates of GEE as: 634 

𝑇𝑠𝑐𝑎𝑙𝑒 =  
(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥)

(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥) − (𝑇 − 𝑇𝑜𝑝𝑡)2 635 

Where T is the air temperature, Tmin is the minimum temperature for photosynthesis, Tmax is the 636 

maximum temperature for photosynthesis, and Topt is the optimal temperature for photosynthesis. To 637 

account for persistent stomatal activity in vegetation in Boston at the heatwave temperatures 638 

experienced during the modeling period (Winbourne et al. 2020), Tscale was set to 1 for any temperature 639 



greater than 20°C. For temperatures less than 20°C, Tmin was set to 0°C, Topt was set to 20°C, and Tmax 640 

was set to 40°C (default optimized parameters for deciduous broadleaf trees; Mahadevan et al. 2008). 641 

 642 

Pscale captures the impact of leaf age on vegetation activity. In this exercise, the modeling period 643 

occurred after full leaf expansion and prior to the onset of senescence, therefore, Pscale was set to 1. 644 

 645 

Wscale captures the impact of moisture availability on vegetation activity and scales GEE as: 646 

 647 

𝑊𝑠𝑐𝑎𝑙𝑒 =
1 + 𝐿𝑆𝑊𝐼

1 + 𝐿𝑆𝑊𝐼𝑚𝑎𝑥
 648 

 649 

Where LSWI is the Land Surface Water Index and LSWImax is the maximum LSWI observed for a given 650 

pixel during the growing season. LSWI has been proven to effectively monitor vegetation water content 651 

(Gu et al. 2008, Xiao et al. 2005, and Maki et al. 2004) and is sensitive to decreases in moisture 652 

availability in ecosystems that senesce during drought periods, such as those in Boston, MA. 653 

 654 

Estimates of ecosystem respiration are required to determine net canopy assimilation rates of CO2 (An; 655 

μmol CO2 m2 s-1) and is estimated as: 656 

 657 

𝑅𝑒𝑐𝑜 = 𝑇 ∙ 𝛼 + 𝛽 658 

Where T is the air temperature (°C), α is the sensitivity of Reco to T, and β is the minimum value that Reco 659 

can take on (μmol CO2 m-2 s-1). In this application, α is set to 0.127 and β is set to 0.25 (Mahadevan et al. 660 

2008). Leaf respiration typically accounts for 8-12% of ecosystem respiration (Tang et al. 2008) and is 661 

approximated to be 10% of Reco. Therefore, net photosynthesis of the canopy is estimated as: 662 

 663 

𝐴𝑛 = 𝐺𝐸𝐸 − 0.1 ∙ 𝑅𝑒𝑐𝑜  664 



 665 

Driver data for the VPRM come from a range of remote-sensing and modeling products. LSWI and EVI 666 

are retrieved every eight days over the course of the year from the Landsat 7 and Landsat 8 Tier 1 667 

Surface Reflectance products and are calculated as: 668 

 669 

𝐸𝑉𝐼 = 2.5(
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 6𝑅 − 7.5𝐵 + 1)
) 670 

 671 

where NIR, R, and B correspond to the surface reflectance measured from the near-infrared, red, and 672 

blue bands on the specific Landsat sensor, and: 673 

 674 

𝐿𝑆𝑊𝐼 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 675 

 676 

where SWIR corresponds to the surface reflectance measured from the shortwave infrared band on the 677 

specific Landsat sensor. Daily EVI and LSWI are estimated via interpolation using a spline function and 678 

the surface reflectance images. 679 

 680 

PAR data come from measurements of incoming shortwave radiation (SW; W m-2) from the 681 

Geostationary Operational Environmental Satellite (GOES) 16 at a spatial resolution of 0.05° x 0.05° and 682 

hourly temporal resolution. PAR (μmol m2 s-1) is approximated to be SW / 0.505. Air temperature data 683 

come from the Rapid Refresh analysis product at a spatial resolution of 13km x 13km and temporal 684 

resolution of one hour. For 30m x 30m pixels with impervious surface area greater than 0, air 685 

temperature is adjusted as a linear function of impervious surface area and hour of year using the 686 

coefficients derived in Wang et al. (2017) and methods described in Hardiman et al. (2017). 687 

Step 2) Estimate surface conductance of water vapor as a function of net photosynthesis 688 

 689 



Surface conductance at 30m x 30m spatial resolution and hourly temporal resolution is estimated using 690 

the Medlyn stomatal conductance model (2011) as: 691 

𝑔𝑠 = 𝑔0 + 1.6 ⋅ (1 +
𝑔1

𝐷
) ⋅

𝐴𝑛
𝑐𝑠

𝑃𝑎𝑡𝑚
⁄

 (6) 692 

where gs is the surface conductance (μmol H2O m-2 s-1), g0 is the minimum surface conductance (100 μmol 693 

H2O m-2 s-1), g1 is a unitless plant functional type dependent parameter, D is the vapor pressure deficit 694 

(kPa), An is net photosynthesis (μmol CO2 m-2 s-1), cs is the partial pressure of CO2 (40.53 Pa), and Patm is 695 

the atmospheric pressure (101325 Pa). In this analysis, the plant functional type parameters for 696 

temperature deciduous broadleaf trees were selected. Patm and cs are held constant due to little sensitivity 697 

of model outputs to variations in their values. D is calculated from RAP temperature and relative humidity 698 

at a height of 2m aboveground, where values are adjusted to account for urban heat and dry islands as a 699 

linear function of impervious surface area and hour of year using the coefficients derived in Wang et al. 700 

(2017). 701 

 702 

Step 3) Input surface conductance estimates into Penman-Monteith equation to estimate latent heat flux 703 

 704 

Latent heat flux (λE; W m-2) is estimated at 30m x 30m spatial resolution and hourly temporal resolution 705 

is estimated using the Penman-Monteith model of evapotranspiration (1965) as: 706 

 707 

𝜆𝐸 =  
∆(𝑅𝑛 −𝐺)+ 𝜌𝑎𝑐𝑝(𝐷)𝑔𝑎

∆+ 𝛾(1+ 
𝑔𝑎

𝑔𝑠
⁄ )

  708 

 709 

where λ is the latent heat of vaporization of H2O (2260 J g-1), E is the mass H2O evaporation rate (g s-1 m-710 

2), Δ describes the rate of change of saturation specific humidity with air temperature (Pa K-1), Rn is the 711 

net radiation balance of the surface (W m-2), G is the ground heat flux (W m-2), ρa is the dry air density 712 

(1.275 kg m-3), cp is the specific heat capacity of air (1005 J kg-1 K-1), D is the vapor pressure deficit (Pa), ga 713 

is the atmospheric conductance (m s-1), gs is the surface conductance (m s-1), and γ is the psychrometric 714 

constant (66 Pa K-1). 715 

 716 



Δ is calculated following the methods described in Allen et al. (1998) as: 717 

 718 

∆ =
4098 [0.6108 exp (

17.27𝑇
𝑇 + 237.3)]

(𝑇 + 237.3)2  719 

Where T is the impervious surface area adjusted air temperature from the RAP product. Rn is estimated 720 

to be: 721 

 722 

𝑅𝑛 = (1 −  𝛼)𝐾 ↓ +𝐿 ↓  − (𝜀𝜎𝑇𝑠
4 + (1 −  𝜀)𝐿 ↓) 723 

Where 𝛼 is the 30m x 30m albedo (Trlica et al. 2017), 𝐾 ↓ is incoming shortwave radiation (W m-2; 724 

acquired from GOES-16), 𝐿 ↓ is incoming longwave radiation (W m-2; acquired from GOES-16), 𝜀 is the 725 

surface emissivity (Estimated to be 0.95 in urban areas; Oke 2017), 𝜎 is the Stefan-Boltzman constant 726 

(5.67 x 10-8 W m-2 K-4), and 𝑇𝑠
  is the surface temperature (K; acquired from RAP temperature at ground 727 

surface). G is approximated as 10% of Rn. The dry air density (ρa) and specific heat capacity of air (cp) are 728 

held constant as the model outputs show little sensitivity to variations in their values. The aerodynamic 729 

conductance (ga) is estimated to be 0.033 m s-1 as the Penman-Monteith equation is not sensitive to 730 

variation in aerodynamic conductance in the range of 0.010 – 0.033 m s-1 and typical measured values in 731 

cities have been found to fall within this range (Ballinas et al. 2016, Chen et al. 2011, Grimmond & Oke 732 

1999). 733 

 734 
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