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Mapping the health benefits of greenspace against urban
heat exposure through an ecosystem services framework

Abstract

We provide a novel method to assess the heat mitigation impacts of greenspace though studying the
mechanisms of ecosystems responsible for benefits and connecting them to heat exposure metrics. We
demonstrate how the ecosystem services framework can be integrated into current practices of
environmental health research using supply/demand state-of-the-art methods of ecological modeling of
urban greenspace. We compared the supply of cooling ecosystem services in Boston measured through
an indicator of high resolution evapotranspiration modeling, with the demand for benefits from cooling
measured as a heat exposure risk score based on exposure, hazard and population character- istics. The
resulting evapotranspiration indicator follows a pattern similar to conventional greenspace indicators
based on vegetation abundance, except in warmer areas such as those with higher levels of impervious
surface. We identified demand-supply mismatch areas across the city of Boston, some coinciding with
affordable housing complexes and long term care facilities. This novel ES-framework provides cross-
disciplinary methods to prioritize urban areas where greenspace interventions can have the most impact
based on heat-related demand.

GRAPHICAL ABSTRACT

Mapping the gaps between cooling benefits of urban greenspace and population heat vulnerability
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1. Introduction

Evidence shows that exposure to urban greenspace is associated with a wide array of health benefits
including reduced cardiovascular disease, improved mental health, and reduced mortality (Twohig-
Bennett and Jones, 2018; van den Berg et al., 2015). Various pathways have been identified for this
association, such as the capacity of vegetation to regulate temperature, improve air quality, provide
opportunity for physical activity, and reduce mental stress (James et al., 2015). Despite the variety in
pathways, greenspace exposure is often operationalized with a metric of vegetation abundance derived
from satellite imagery such as the Normalized Vegetation Index (NDVI), or the location of certain types

of greenspace (e.g. distance to parks of public gardens) from detailed land use data.

While current NDVI products are among the most accurate and spatially resolved data at the disposal of
the epidemiologist, their application as exposure metric can lead to overlooking the intricate ties
between ecosystems and their physical and social environments that moderate or mediate health
effects. For instance, Leslie et al. (2010) showed that mental health outcomes were more associated
with one’s perception of available greenspace than with measures of vegetation abundance. Relying on
metrics of vegetation abundance or proximity has prevented methods to empirically separate different
pathways and answer how greenspace exposure improves our health (Shanahan et al., 2015). To better
understand if, where, and why greenspace exposure affects health outcomes there is a need for a
holistic framework that can connect health benefits with ecosystem functions and mechanisms relying

on literature from both health and ecological sciences (Zhang et al., 2017).

To distinguish different health effects of greenspace, reduce exposure misclassification, and provide a
more causal narrative of health effects of greenspace, several authors have suggested adopting a
framework of ecosystem services (ES), focusing on vegetation activity relevant to health outcomes
(Bratman et al., 2019; Chiabai et al., 2018; Frumkin et al., 2017; Sandifer et al., 2015; Shanahan et al.,
2015). ESs can be defined as “the aspects of ecosystems utilized (actively or passively) to produce
human well-being” (Fisher et al., 2008), and are valued based on the benefits they produce for humans.
Through a focus on quantitatively linking human benefits with functions of the natural environment, the
ES-framework can be seen as a set of definitions and tools that forms a bridge between fields to
promote inter-disciplinary research on the value of nature (Phillipson et al., 2009). This interdisciplinary
approach facilitates incorporating knowledge about ecological mechanisms such as particulate matter
deposition and air filtration (Janhall, 2015) or ambient cooling (Winbourne et al., 2020; Yunusa et al.,

2015) into the domain of health sciences.
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In this paper we demonstrate how the ES-framework can be used to integrate state-of-the-art methods
of ecological modeling into current practices of environmental health research focusing on ambient
cooling capacities of urban greenspace and linking it to risk of residential exposure to extreme heat.
Exposure to extreme heat is associated with various health outcomes including increased mortality
(Medina-Ramén and Schwartz, 2007), higher numbers of emergency department-visits (Hess et al.,
2014), and adverse pregnancy outcomes (Bekkar et al., 2020). Heat exposure risk is exacerbated in
urban environments where impervious surfaces such as concrete and asphalt absorb solar radiation
causing higher temperatures in urban centers than in surrounding rural areas (Kleerekoper et al., 2012).
Urban greenspace can reduce the this urban heat island (UHI) effect through shading and

evapotranspiration (Winbourne et al., 2020; Yan et al., 2020).

Recently, various research groups have developed various tools and instruments to assess the capacity
of urban greenspace to mitigate urban heat through evapotranspiration and shading. Most notably the
INVEST Urban Cooling Model, developed by the Natural Capital Project includes a land cover based
urban cooling model to estimate the urban cooling capacity of greenspace (Zardo et al., 2017). As one of
the strengths of this model lies in its global applicability, a local model can provide improvement in
terms of modeling the complex interaction between climatological conditions, radiation, and
evapotranspiration (Zawadzka et al., 2021). In previous work we developed one of the first high
resolution spatially explicit models of urban evapotranspiration (Smith et al., 2021). By comparing
spatially modeled levels of evapotranspiration with a risk assessment of extreme heat exposure, we test
to what extent temperature regulating ecosystem service provides benefits in terms of human health
gains. In doing so we provide one of the first attempt to apply ecosystem services assessments in

environmental health research.

2. Methods

2.1.1. Overview

We used an ES-approach by comparing the supply of cooling ecosystem services to the demand for
health benefits from cooling in Boston, MA. We mapped the supply of temperature regulating ES by
modeling the level of evapotranspiration during a local heatwave at a 30m scale of the current
vegetation cover of Boston (Smith et al., 2021). While vegetation provides cooling benefits through both
shading and evapotranspiration, this analysis focuses on the evapotranspiration mechanism as the

daytime urban heat island intensity is primarily driven by variations in the capacity of urban and rural



75 areas to evaporate water (Li et al., 2019). Thus, cooling via evapotranspiration represents a key ES to city
76 residents and spatially co-occurs with shading benefits as well. We estimated the demand for health

77  benefits from heat reduction as a spatial risk assessment of extreme heat exposure multiplying spatial
78 layers of exposure, hazard, and heat vulnerability (Aubrecht and Ozceylan, 2013; Tomlinson et al., 2011).
79  We chose to model exposure to extreme heat as we expect the greatest local variation and therefore

80 the highest spatial heterogeneity of potential for health benefits.

81 2.1.2. Location

82 Boston is a city located in the Northeast of the United States and has an estimated population size of
83  almost 692,600 people in 2019. Boston has a continental climate of relatively cold winters and hot and
84 humid summers, with average maximum daily temperatures in July of 27°C and an average of 15 days

85  peryear of ambient temperatures above 30°C.

86 2.2.Cooling Demand through Heat Risk Exposure Index

87 We operationalized the demand for cooling using the following heat risk index equation based on a

88  study by Aubrecht et al. (2013):

90  where heat risk exposure index (HRI) at 30 m pixel i is calculated by the probability for local heat wave
91  day conditions (P(hwday)) multiplied by the heat vulnerability index (HVI) multiplied by the population
92  (POP) to account for the level of exposure at pixel i. Equation terms are further detailed below. Pixel
93 resolution was 30m in order to get a fine-scaled distribution of heat risk that can be compared with

94  supply model outputs.

95  2.2.1. Probability for local heat wave day conditions (P(hwday))
96  Extreme heat exposure was assigned by calculating the probability of a local (30 m) heat wave, given
97 evidence that heatwaves impact health more than single days of extreme temperatures (Kent et al.,
98 2014; Madrigano et al., 2015). For spatially explicit ambient temperatures we used PRISM climate data,
99  which consist of daily minimum and maximum temperatures for the United States modeled at 800m
100 resolution using a range of biophysical land characteristics and air temperatures from monitoring
101  stations (PRISM Climate Group, 2019). Daily maximum ambient temperatures at a 30m resolution were
102 calculated by downscaling 800m PRISM maximum daytime temperature data with 30m impervious
103  surface area (ISA) (MassGIS 2019) and time of year based on previously observed relationships where

104  for every day of the year a regression coefficient was provided for ISA’s effect on ambient temperature
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(Wang et al., 2017). Since ISA was not used in the PRISM model, we used a 30m dataset of ISA adjust
local temperatures based on ISA. The downscaled temperature (T) at 30m pixel | on the jth day was

calculated as:

= Tprismij + Bj ISA;

where Tprism is the 800m PRISM maximum temperature that corresponds with pixel i on day j, B is a

Tl,]
mean-centered coefficient reflecting the effect of impervious surface on ambient temperature for the
corresponding month of day j (Wang et al., 2017) and ISA is the impervious surface area at pixel i. The

result was a grid of maximum daily ambient temperature at 30 m resolution for June, July and August.

We defined a local heatwave as two consecutive days of maximum daytime temperatures above the
95% percentile in Boston during the months of June, July, and August (Spangler and Wellenius, 2020). To
calculate the probability of a heatwave day at a specific pixel we divided the number of times two
consecutive days the maximum temperature was above the 95t percentile by the total number of
summer days during the months of June, July, and August between the years of 2008 and 2018. Final
calculations resulted in values that could theoretically be between 0 and 1 for each 30 meter pixel,

representing the probability for a local heat wave conditions on a given day in the summer months.

2.2.2. Heat vulnerability Index (HVI)

We built a heat vulnerability index composed from demographic and socio-economic factors that are
correlated with higher heat-related hospitalizations and mortality (Madrigano et al., 2018; Reid et al.,
2009; Riley, 2018; Spangler and Wellenius, 2020). We included five dimensions of heat vulnerability at
the census block group level using data from the American Community Survey (ACS) (5-year estimates
2013-2018): 1) age (percentage of people over 65 years); 2) poverty (percentage of people with income
below poverty line minus percentage of people enrolled in higher education to account for students
(Bishaw, 2013)); 3) language-barriers (percentage of people speaking English less than well); 4)
vulnerable living situation (percentage of people older than 65 living alone); and 5) racial minority
composition (percentage of non-white people). We summed the percentages of population of each
variable in census block group in Boston and divided the final score by the highest total value to
calculate a heat vulnerability index ranging from 0 to 1 (Aubrecht and Ozceylan, 2013). In absence of
empirical evidence relating these dimensions to health outcomes in Boston, we assumed all five

dimensions had the same relative importance.
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2.2.3. Population (Pop)

To estimate the number of people living at each 30m pixel in Boston, we downscaled the Census 2010
population counts by census block to population in buildings by distributing the total count of
population per census block over the surface area of residential buildings (Xie, 2006). We used Open
Street Map (OpenStreetMap, 2017) to identify all buildings in Boston and filtered out non-residential
buildings using parcel level tax data from the Massachusetts Tax Assessor (MassGIS, 2020) and the City
of Boston (Boston Assessing Department, 2019). Population per 30m pixel was calculated as the census
block population multiplied by the proportion of residential building surface area compared to the total
surface area of each census block. We used Census 2010 count data to minimize error within a census
unit, since ACS data are not available at the census block level. The population data was log transformed

to normalize the distribution.

The Heat Risk Index (HRI) was calculated by multiplying (P(hwday))*HVI*POP and the final demand
map was generated by smoothing the HRI of the neighborhood within a radius of 60m from each 30m

pixel to match the radius of cooling ES of evapotranspiration described below.

2.3. Cooling Supply from Greenspace: Latent Heat Flux

We developed a remote sensing driven evapotranspiration model (Smith et al., 2021) based on a
Penman-Monteith formulation that couples a carbon light-use efficiency model, Geostationary
Operational Environmental Satellite-16 (GOES-16) radiation (NOAA National Centers for Environmental
Information, 2017), Rapid Refresh (RAP) temperature analysis data (Benjamin et al., 2016), impervious
surface maps (MassGlS, 2007), Landsat albedo (Trlica et al., 2017) and Landsat enhanced vegetation
index (EVI) (Retrieved from Google Earth Engine; Gorelick et al., 2017). Evapotranspiration, measured as
latent heat flux (AE; W m2) was modeled for the City of Boston, MA at hourly time steps and a spatial
resolution of 30 meters during a 6-day heatwave event from August 2 — August 7, 2018 where the mean
air temperature across the modeling domain was 28.7°C, approximately 25% warmer than the mean

2018 6-day rolling average temperature during June, July, and August (23.0°C).

Full description of the evapotranspiration model can be found in Smith et al., (2021). Briefly, the
modeling approach consisted of three core equations to estimate latent heat flux contributions from
vegetation and did not consider other sources of urban latent heat flux, such as evaporation from lakes
or standing water. Vegetation activity was characterized as a function of incoming solar radiation via

estimates of net canopy photosynthesis (defined as the difference between the gross ecosystem
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exchange of CO, and canopy respiration of CO,) produced using the Urban Vegetation Photosynthesis

and Respiration Model (Hardiman et al., 2017; Mahadevan et al., 2008) as:

1

An = <6 'Tscale : Pscale : Wscale -EVI W
PAR,

-PAR) — 0.1 Rogo

where A, is net photosynthesis (net assimilation of CO,; pmol CO,; m?s?), § is a plant functional type-
specific light-use efficiency (umol CO, umol PAR™), Tscare, Pscale, and Wieqe are dimensionless scaling terms
ranging from zero to one describing the influence of air temperature, phenology, and moisture on
photosynthesis, EV/ is the enhanced vegetation index, PAR is incoming photosynthetically active
radiation (umol m=2s1), PARy is the plant functional type-specific optimized half-saturation value (umol
m? s1), and Rec is ecosystem respiration (umol CO; m? s't). Temperate deciduous broadleaf plant
functional type parameters from Mahadevan et al. (2008) were applied to characterize vegetation in
Boston, MA, consistent with local vegetation surveys (Urban Ecology Institute, 2008). Leaf level
respiration is assumed to be 10% of ecosystem respiration (Tang et al., 2008). Air temperature data was
adjusted as a function of impervious surface area following the methods described in Wang et al. (2017)

and Hardiman et al. (2017).

The net photosynthesis estimates from the VPRM are used to estimate stomatal (or surface)
conductance, the process governing the land surface’s ability to evaporate water, via the Medlyn et al.
(2011) stomatal conductance model as:

An
9= g0+16 -(1+ %) =
atm

where g; is the stomatal conductance (umol H,0 m2s?), go is the minimum value of stomatal
conductance (100 umol H,0 m2 s%), g; is a plant functional type-specific parameter, D is the vapor
pressure deficit (kPa), A, is the net assimilation of CO, (umol CO, m2 s1), ¢, is the atmospheric partial

pressure of CO, (40.53 Pa), and Pg:m is the atmospheric pressure (101,325 Pa).

Given estimates of surface conductance, latent heat flux is estimated using the Penman-Montieth
equation of evapotranspiration (Monteith, 1965) as:

A(Rp —G)+ pacp(D)ga

AE = A+y(+9a/g)

where A is the latent heat of vaporization of H,0 (2260 J g), E is the mass H,O evaporation rate (g s* m-

2), A describes the rate of change of saturation specific humidity with air temperature (Pa K1), R, is the
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net radiation balance of the surface (W m2), G is the ground heat flux (W m2), p, is the dry air density
(1.275 kg m™3), ¢, is the specific heat capacity of air (1005 J kg* K'), D is the vapor pressure deficit (Pa), gq
is the atmospheric conductance (m s2), gs is the surface conductance (m s2), and y is the psychrometric
constant (66 Pa K'1). A more detailed description of equation terms and sources is provided in the SI.
Latent heat flux estimates were averaged within a radius of 60m for every 30-m pixel to reflect the

typical spatial scale of vegetation induced cooling in cities (Ziter et al., 2019).

Previous research showed that transpiration levels of vegetation are positively correlated with ambient
temperature, meaning that especially during heat waves evapotranspiration may be higher in more
urbanized areas (Winbourne et al., 2020). To assess how this indicator differs from traditional vegetation
abundance indicators we calculated a bivariate correlation between EVI at 30m resolution and latent

heat flux during heat wave conditions at similar resolution.

2.4. Demand supply comparison

A mismatch between low supply and high demand for an ecosystem service indicates a potential for
relatively high benefits from additional increase in ecosystem service supply (Burkhard et al., 2012). High
cooling demand (high heat exposure risk index) and low cooling supply (low levels of latent heat flux)
areas were identified by transforming supply and demand to percentile rank (PR) scores to reduce bias
(Schulp et al., 2014). PR scores were calculated excluding pixels where HRI = 0. We multiplied the PR of
demand with the inverted PR (100 - PR) of supply and divided it by the maximum possible score (992) to
generate a map of the share of instances each pixel was designated high demand—low supply out of the
9,801 (99?) possible combinations of percentile thresholds as done previously in Tieskens et al. (2017). A
value close to 1 indicates a mismatch regardless of a threshold distinguishing between high and low

supply and demand.

Additionally, we ran a linear regression model to assess which aspects of the ES demand were related to
the ES-supply. The linear model predicted the ES-supply as latent heat flux per census block group in
Boston with the five HVI variables, the average heatwave probability, and the total population. To
calculate average heat wave probability and latent heat flux per census block group we masked the area
of each census block group with the building footprint of residential buildings to only include supply and
demand variables at locations of residential heat exposure. To account for multi-collinearity we
calculated variation inflation factors (VIF) for each predictor using the CAR package in R software (Fox,

John & Weisberg, 2011). As no VIF was higher than 3 we did not exclude any predictor from the model.
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3. Results

3.1. Cooling Demand through Heat Risk Exposure Index

2 Kilometers

©Mapbox ©0penStreetMap Gt
_ Probability of heatwave g
Population day in Summer Heat Vulnerability Index
0 675 1,350 0% 11.5% 23% 0 0.5 1

Figure 1 Map of Boston showing: A: Total population at 30m resolution; B: Probability of a summer heatwave day at 30 meter
resolution; C: Sociodemographic heat vulnerability index at a block group level

Figure 1 shows the spatial distribution of the three components of the heat risk index (i.e. cooling
demand): population, heatwave probability, and heat vulnerability index. The probability of a local heat
wave day ranged between 0 and 23%, with the highest values close to the center of Boston (Figure 1B,
light yellow areas). Areas with lower probabilities (dark shades in Figure 1B) are found on the harbor
islands, coast and in the southwest of the city, which coincides with locations of parks and urban forests.
The heat vulnerability index map (Figure 1C) shows a stark differences between neighborhoods. The
highest values were found in inner city neighborhoods of Boston, characterized by high percentages of
people living below the poverty line and high percentages of racial minorities. In the northwest of the

city isolated hotspots were mostly driven by the percentage of people over 65 years living alone.

Figure 2A shows the results of the integrated heat exposure risk index map (Figure 2A), showing a clear
difference between the south west side of Boston characterized by a relatively low cooling demand with
values close to 0 while high demand is concentrated in the north east side of the city, and the centrally

located inner cities with values between 0.6 and 1. There are several areas in the city with concentrated
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pockets of very high demand surrounded by lower demand.
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Figure 2 Map of Boston at 30 m resolution showing: A) Demand for cooling as heat risk exposure index, and B) Greenspace
cooling supply as Latent Heat Flux

3.2. Cooling Supply from Greenspace: Latent Heat Flux

Figure 2B shows an example of the spatial distribution of the cooling supply from greenspace across
Boston on a heatwave day at noon. The average supply of greenspace cooling via transpiration was 85.6
W m<2 across the city during the modeling period. We observed substantial spatial heterogeneity in the
magnitude of latent heat fluxes with maximum latent heat flux rates found in the more heavily
vegetated areas of the city and minimum rates found in the portions of the city with the most
impervious surface area (Figure 2B), ranging from 0 — 334.5 W m2. A bivariate correlation analysis
showed a high correlation between latent heat flux and EVI (r=0.99, p <0.001). However, we found a
range of latent heat flux estimates for pixels with similar EVI that varied as a function of urbanization as
pixels with higher fractions of ISA tend to have warmer temperatures and higher vapor pressure deficits

in the atmosphere, ultimately driving increases in transpiration rates.
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The plot in figure 3 shows that the correlation between latent heat flux and EVI is not completely linear

as for both tails of the EVI distribution latent heat flux is lower than predicted by EVI only.
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3.3. Demand supply comparison

Figure 5A shows the high/low cooling supply/demand comparison across Boston. Areas shaded with a
value between 0.8 and 1 in dark blue have an estimated mismatch of demand and supply in at least 80%
of all possible combination of percentile rank definitions of high demand and low supply. Similar to the
demand distribution (Figure 2A) the comparison shows high values in the inner cities and concentrated
hotspots around Boston. We zoomed in to three different areas in the city to highlight notable
differences and patterns. We found some of the highest concentration for demand for health benefits of
cooling in Brighton, a community home to some of the housing complexes in the city housing older
adults, often living alone. Figure 4B-1 shows that the high demand coincides with the location of these
complexes. Figure 4B-2 shows that this area is also characterized by a relatively high cooling ES supply,
reducing the value of the comparison index in Figure 4A. Figure 4C shows a similarly concentrated
pattern of demand in Chinatown, not driven by high population counts of elderly, but instead by high
population density and a relatively large share of low income families not identifying as white. Here,
high concentrations of demand coincide with the location of several large affordable housing complexes.
Despite the relative proximity of these complexes there is a significant difference in ES supply. Figure 4C-
2 shows that the supply of cooling was low around the two most eastern complexes while the being
higher around the south western complex. The most striking hotspot of ES mismatch appeared in East

Boston (Figure 4D). Despite two affordable housing complexes the high level of demand was spread over



275  the entire neighborhood. This neighborhood is home to a large community of people identifying as
276  Hispanic/Latino, with relatively high numbers of non-English speakers. Figure 4D-2 shows that the high

277  demand was met with low levels of evapotranspiration throughout the neighborhood.
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279 Figure 4 A: Frequency index of low supply-high demand designation for each combination (992) of percentile definition of low-
280 supply and high-demand. B 1- D 1: zoom in maps showing Cooling Health Benefits Demand. B 2 — D 2: Zoom in maps showing
281 Cooling Supply

282  Alinear model explaining the latent heat flux per census block group with the variables that composed
283  the ES-demand function shows that the percentage of people older 65, the percentage non-white

284  population and the probability for a heatwave were positively correlated with the ES-supply.
285
286

287
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Table 1 Regression coefficients of ordinary least squares linear model explaining latent heat flux with dimensions of heat
vulnerability, heat hazard, and exposure (population).

Estimate Std. Error P-value
Intercept -1.78 10.67 0.87
Percentage living below poverty line -17.95 9.61 0.06
Percentage older than 65 131.09 15.38 <0.001
Percentage older than 65 and living alone -129.17 29.96 <0.001
Percentage speaking English less than well -59.98 11.35 <0.001
Percentage non-white population 27.09 4.11 <0.001
Heat wave probability 420.91 57.07 <0.001
Population 0.00 0.00 0.36

Adjusted R>=0.28

The percentage of people living below the poverty line, the percentage of people being older than 65
and living alone, and the percentage of people speaking English less than well was negatively correlated
with ES-supply. The total number of people living in each census block group was not significantly

correlated with the supply of cooling ecosystem services.

4. Discussion

With this paper we attempted to use the ecosystem services framework to improve understanding of
the health effects of urban greenspace, focusing on heat mitigation. By spatially comparing cooling ES
supply with heat exposure risk, serving as a proxy for demand for health benefits of cooling, we revealed
those areas within the city where additional urban vegetation could provide the highest benefits in
terms of heat related health outcomes. Modeled evapotranspiration as an indicator of greenspace
activity showed a very similar pattern to conventional indicators based on vegetation abundance.
However, we revealed a pattern of stronger cooling potential per tree in more urban areas with higher
impervious surface fractions. Zooming in on several demand-supply mismatch hotspots revealed that

strong concentrations coincided with affordable housing complexes or housing for older adults.

While our study identified areas where supply did not meet the demand for urban cooling, we also
showed that on average the supply of cooling ES was positively correlated with heat hazard and several
dimensions of our HVI including old age and non-white populations. This is an interesting finding as

recent studies exposed systemic racial inequities in terms of greenspace exposure in US cities revealing a
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striking pattern of consistently lower levels of vegetation in neighborhoods with that suffered from
racially discriminatory zoning practices and higher shares of people of color (Nardone et al., 2021). The
reason for the different finding could be that we only accounted for ES-supply of residential cooling and

did not include any vegetation that was not located within 60m of a residential building.

At first sight, the comparison between the proposed indicator of cooling ES services and the common
indicator of EVI may indicate that the potential for exposure misclassification associated with vegetation
abundance indicators is limited (Cf. Nouri et al., 2014). However, we revealed a pattern of stronger
cooling potential per tree in more urban areas with higher impervious surface fractions. This finding
suggests that previous studies that linked reduced heat mortality to greenspace exposure based on
indicators of greenspace abundance (Burkart et al., 2016; Gronlund et al., 2015; Madrigano et al., 2015;
Tan et al., 2007) might have underestimated the cooling effect of greenspace in inner cities with higher
impervious surface area inducing higher local temperatures and by extension higher evapotranspiration.
Inner cities not only report the highest peak temperatures during heatwaves, but often also house a
disadvantaged population of low income minority households suffering from structural racism and social
isolation (Rankin and Quane, 2000; Watson and Wilson, 1988) associated with higher vulnerability to
extreme heat exposure (Aubrecht and Ozceylan, 2013; Gronlund et al., 2015; Reid et al., 2009).

The effect of greenspace on heat related health outcomes has been recognized and analyzed in many
previous studies (see Markevych et al., 2017; Tomlinson et al., 2011; Twohig-Bennett and Jones, 2018).
Likewise, the effect of vegetation on urban temperatures has been the topic of many ecological and
environmental studies (Adams and Smith, 2014; Gallo et al., 1993; Hu and Li, 2020). Yet, the connection
between these two fields has been limited. We used the ES-framework to connect the work done in
these two broad fields. The heat risk index can be a starting point for ecosystem services mapping
studies to incorporate public health methods for more accurate operationalization of health benefits.
The heat vulnerability index proposed in this paper could, for instance, be a great addition to the widely
used InVEST urban cooling model that currently relies on a linear relationship between temperature and
mortality to estimate potential health benefits from urban cooling (Hamel et al., 2021). Moreover, the
explicitly urban evapotranspiration modeling presented here (and further explained in Smith et al.
(2021)) is one of the first mechanistic evapotranspiration models explicitly designed for urban context
and can provide hourly outputs. This mechanistic model can be used to improve current cooling models

such as the InVEST Urban cooling Model that estimates evapotranspiration directly from land cover.
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Within the public health field, the evapotranspiration modeling can function as an example of metric of
greenspace exposure that explicitly models greenspace activity rather than abundance to separate
different pathways from greenspace to health effect and increase causal understanding of health effects
of greenspace. The framework presented here can be applied to various other pathways that link
greenspace to health framed as ecosystem services, including particulate matter deposition (Hofman et
al., 2013), or noise mitigation (Peng et al., 2014). Each of these services can have several separate
independent health effects that each depend on supply, environment, and beneficiaries. Whereas
current practice in epidemiology often bundles all potential ecosystem health benefits in a single
indicator of vegetation abundance, further application of the ES framework can leverage existing
knowledge and expertise of ecosystem functions that could to a more explicit and accurate
representation of the health benefits of urban greenspace exposure. The comparison of supply and
demand, a very common ES tool, provided a relatively simple method to connect the products from

different fields to provide an output that could directly inform urban planning decisions.

As one of the first attempts to explicitly link health related environmental exposure benefits to functions
of urban vegetation through an ecosystem services framework, the empirical findings have some
limitations. The representation of cooling demand in this paper was based on health risk assessment
modeling and showed innovation by modeling heat exposure risk at the residential building level for the
entire city of Boston, while incorporating fine scale resolution daily ambient temperature data. Heat
vulnerability was calculated by weighting the five vulnerability dimensions equally which may under or
overestimate their importance. However, the equation can easily be adapted to a different weighting
scheme or incorporate locally important vulnerability dimensions. Moreover, the ACS based
vulnerability indicator did not include factors that relate ambient temperature to indoor exposure such
as the availability of indoor temperature regulation and insulation. Additionally, we did not include non-
residential heat exposures in this analysis. Workplace and transportation heat stress in the US is
relatively understudied, but could potentially fuel further health disparities due to differences between
outside workplaces and air conditioned spaces (Acharya et al., 2018; Gubernot et al., 2014). Mapping of
both demand for benefits and supply of ES, like in this study, often relies on modeling techniques that
introduce potential error and bias with every assumption (Schagner et al., 2013). Future studies could
build on the framework outlined in this paper to connect the supply of ES-services to spatially explicit
health outcomes. However, health outcomes such as heat-related emergency department visits or
mortality are very rarely available at fine spatial resolution and when available are at state level (e.g.

Kingsley et al., 2016) or zip code level (e.g. Shi et al., 2015).
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We used a model that has been validated with field studies and incorporated the most recent insights in
urban evapotranspiration modeling (Smith et al., 2021). Ongoing developments outside the realm of
environmental health studies can further improve the cooling indicator proposed here by incorporating
additional factors that have been proven to affect cooling ecosystem services. These factors include
differentiation on types of greenspace such as grass, shrubs, and trees, the differences in service
provision of different species (Ballinas and Barradas, 2016), spatial patterns of greenspace (Kong et al.,
2014), or the other characteristics of the built environment that can enhance the cooling effect of
greenspace such as green roofs, air conditioning, or the albedo effects of different types of pavements
(Li et al., 2014; Winbourne et al., 2020). Further climatological modeling and including the effect of
shading on ambient temperature could eventually lead to an indicator expressed in the change of
ambient temperature in degrees Celsius during heat wave temperatures needed to predict the exact

effect of greenspace on heat-related health outcomes.

5. Conclusion

We provided an indicator of exposure to heat reducing ES of urban greenspace by applying a model
rooted in ecological theory and based on open data. While the resulting indicator follows a pattern
similar to conventional indicators based on vegetation abundance, our modeling efforts highlighted key
differences in the importance of urban context for the delivery of cooling ES. In addition, the
evapotranspiration modeling applied to this area showed that evapotranspiration increases with rising
temperatures, meaning that similar greenspace provides more cooling ES in warmer areas, such as those
with higher levels of impervious surface (i.e. UHI). Comparing our indicator of cooling ES supply with an
indicator of heat exposure risk serving as a proxy for demand for health benefits of cooling revealed
those areas within the city where additional urban vegetation could provide the highest benefits in
terms of heat related health outcomes. A focus on ecosystem services instead of vegetation abundance

can greatly improve the understanding and application of health benefits of urban greenspace.
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616  Detailed description of modeling process, terms, and data sources
617

618  Step 1) Characterize vegetation activity via estimates of net photosynthesis using the Urban Vegetation

619  Photosynthesis and Respiration model (VPRM)
620

621 Here, photosynthesis is defined as the gross ecosystem exchange (GEE) of carbon dioxide (CO;) between
622  the biosphere and the atmosphere. Estimates are derived at an hourly temporal resolution and 30m x
623  30m spatial resolution. GEE (umol CO; m? s?) is estimated as a function of incoming photosynthetically
624  active radiation (PAR) using the methods, equations, and parameters derived in Mahadevan et al. (2008)

625  and Hardiman et al. (2017) as:
626

1
627 GEE = 6 - Tseate - Pscate * Wscate - EVI - - PAR

e PR g,

628  where Tscole, Pscale, and Wiscqie are dimensionless scaling terms ranging from zero to one describing the
629 influence of air temperature, phenology, and moisture on photosynthesis. PAR is photosynthetically
630  active radiation (umol m?s). § and and PAR, are plant functional type-specific parameters describing
631  the light-use efficiency (umol CO, umol PAR?) and half-saturation value (umol m? s) of GEE as a

632  function of PAR. EVI is the Enhanced Vegetation Index.

633

634 Tscale Captures the impact of air temperature on vegetation activity and scales estimates of GEE as:

(T - Tmin)(T - Tmax)
(T - Tmin)(T - Tmax) - (T - Topt)z

635 Tscate =

636  Where T is the air temperature, Tmin is the minimum temperature for photosynthesis, Tmax is the
637 maximum temperature for photosynthesis, and T, is the optimal temperature for photosynthesis. To
638 account for persistent stomatal activity in vegetation in Boston at the heatwave temperatures

639 experienced during the modeling period (Winbourne et al. 2020), Ts.qe Was set to 1 for any temperature
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664

greater than 20°C. For temperatures less than 20°C, Tmin was set to 0°C, T,p: was set to 20°C, and Trmax

was set to 40°C (default optimized parameters for deciduous broadleaf trees; Mahadevan et al. 2008).

Pscale captures the impact of leaf age on vegetation activity. In this exercise, the modeling period

occurred after full leaf expansion and prior to the onset of senescence, therefore, Py Was set to 1.

Wicale captures the impact of moisture availability on vegetation activity and scales GEE as:

1+ LSWI

Wscate = ————a—
seale ™ 1 4 LSWax

Where LSWI! is the Land Surface Water Index and LSW/nax is the maximum LSW/ observed for a given
pixel during the growing season. LSWI has been proven to effectively monitor vegetation water content
(Gu et al. 2008, Xiao et al. 2005, and Maki et al. 2004) and is sensitive to decreases in moisture

availability in ecosystems that senesce during drought periods, such as those in Boston, MA.

Estimates of ecosystem respiration are required to determine net canopy assimilation rates of CO» (A,

umol CO; m? st) and is estimated as:

Reco =T a+pf

Where T is the air temperature (°C), a is the sensitivity of Recoto T, and 8 is the minimum value that Rec
can take on (umol CO,; m2 s). In this application, a is set to 0.127 and 8 is set to 0.25 (Mahadevan et al.
2008). Leaf respiration typically accounts for 8-12% of ecosystem respiration (Tang et al. 2008) and is

approximated to be 10% of R.c.. Therefore, net photosynthesis of the canopy is estimated as:

Ap = GEE — 0.1+ R,
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Driver data for the VPRM come from a range of remote-sensing and modeling products. LSW/ and EV/
are retrieved every eight days over the course of the year from the Landsat 7 and Landsat 8 Tier 1

Surface Reflectance products and are calculated as:

(NIR — R)
(NIR + 6R — 7.5B + 1)

EVI = 2.5( )

where NIR, R, and B correspond to the surface reflectance measured from the near-infrared, red, and

blue bands on the specific Landsat sensor, and:

(NIR — SWIR)

LSWI = ——— 2
(NIR + SWIR)

where SWIR corresponds to the surface reflectance measured from the shortwave infrared band on the
specific Landsat sensor. Daily EVI and LSWI/ are estimated via interpolation using a spline function and

the surface reflectance images.

PAR data come from measurements of incoming shortwave radiation (SW; W m2) from the
Geostationary Operational Environmental Satellite (GOES) 16 at a spatial resolution of 0.05° x 0.05° and
hourly temporal resolution. PAR (umol m? s1)is approximated to be SW / 0.505. Air temperature data
come from the Rapid Refresh analysis product at a spatial resolution of 13km x 13km and temporal
resolution of one hour. For 30m x 30m pixels with impervious surface area greater than 0, air
temperature is adjusted as a linear function of impervious surface area and hour of year using the

coefficients derived in Wang et al. (2017) and methods described in Hardiman et al. (2017).

Step 2) Estimate surface conductance of water vapor as a function of net photosynthesis
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Surface conductance at 30m x 30m spatial resolution and hourly temporal resolution is estimated using

the Medlyn stomatal conductance model (2011) as:

gS=g0+1.6'(1+% 'csAn

/Patm

(6)

where g;s is the surface conductance (umol H,0 m2s?), go is the minimum surface conductance (100 umol
H,O m2 s1), g1 is a unitless plant functional type dependent parameter, D is the vapor pressure deficit
(kPa), A, is net photosynthesis (umol CO; m2 s1), ¢, is the partial pressure of CO, (40.53 Pa), and Pt is
the atmospheric pressure (101325 Pa). In this analysis, the plant functional type parameters for
temperature deciduous broadleaf trees were selected. Pu:m and ¢s are held constant due to little sensitivity
of model outputs to variations in their values. D is calculated from RAP temperature and relative humidity
at a height of 2m aboveground, where values are adjusted to account for urban heat and dry islands as a
linear function of impervious surface area and hour of year using the coefficients derived in Wang et al.

(2017).

Step 3) Input surface conductance estimates into Penman-Monteith equation to estimate latent heat flux

Latent heat flux (AE; W m2) is estimated at 30m x 30m spatial resolution and hourly temporal resolution

is estimated using the Penman-Monteith model of evapotranspiration (1965) as:

A(Rp —G)+ pacp(D)ga

AE = A+y(a+94/g)

where A is the latent heat of vaporization of H,0 (2260 J g), E is the mass H,O evaporation rate (g s* m-
2), A describes the rate of change of saturation specific humidity with air temperature (Pa K1), R, is the
net radiation balance of the surface (W m2), G is the ground heat flux (W m2), py is the dry air density
(1.275 kg m3), ¢, is the specific heat capacity of air (1005 J kg* K'), D is the vapor pressure deficit (Pa), gq
is the atmospheric conductance (m s), gs is the surface conductance (m s!), and y is the psychrometric

constant (66 Pa K1).
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A is calculated following the methods described in Allen et al. (1998) as:

4098 [0.6108 exp (%)]

(T + 237.3)2

A=

Where T is the impervious surface area adjusted air temperature from the RAP product. R, is estimated

to be:

R,=(1— a)Kl+L! — (eaT¢+ (1 — &)L 1)

Where a is the 30m x 30m albedo (Trlica et al. 2017), K | is incoming shortwave radiation (W m%;
acquired from GOES-16), L | is incoming longwave radiation (W m%; acquired from GOES-16), ¢ is the
surface emissivity (Estimated to be 0.95 in urban areas; Oke 2017), ¢ is the Stefan-Boltzman constant
(5.67 x 108 W m2 K*), and Ty is the surface temperature (K; acquired from RAP temperature at ground
surface). G is approximated as 10% of R,. The dry air density (pa) and specific heat capacity of air (c,) are
held constant as the model outputs show little sensitivity to variations in their values. The aerodynamic
conductance (gq) is estimated to be 0.033 m s as the Penman-Monteith equation is not sensitive to
variation in aerodynamic conductance in the range of 0.010 — 0.033 m s and typical measured values in
cities have been found to fall within this range (Ballinas et al. 2016, Chen et al. 2011, Grimmond & Oke
1999).

References

Allen R, Pereira L, Smith M. 1998. Crop Evapotranspiration. Guidelines for Computing Crop Water

Requirements. In FAO Irrigation and Drainage Paper (Vol. 56).

Ballinas M, Barradas VL. 2016. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico
City: A Simple Phenomenological Model. J Environ Qual 45:157-166; doi:10.2134/jeq2015.01.0056.



742

743
744
745

746

747

748

749
750
751

752
753
754

755

756
757
758

759
760

761
762
763
764

765

766

767

768

Chen L, Zhang Z, Li Z, Tang J, Caldwell P, Zhang W. 2011. Biophysical control of whole tree transpiration
under an urban environment in Northern China. Journal of Hydrology 402:388-400.

doi:10.1016/j.jhydrol.2011.03.034

Grimmond CS, Oke TR. 1999. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface

Form. Journal of Applied Meteorology 38:1262-1292. doi:10.1175/1520-0450(1999)038

Gu Y, Hunt E, Wardlow B, Basara JB, Brown JF, Verdin JP. 2008. Evaluation of MODIS NDVI and NDW!I for
Vegetation Drought Monitoring Using Oklahoma Mesonet Soil Moisture Data. Geophysical
Research Letters 35:L22401.

Hardiman BS, Wang JA, Hutyra LR, Gately CK, Getson JM, Friedl MA. 2017. Accounting for urban biogenic
fluxes in regional carbon budgets. Sci Total Environ 592:366—372;
doi:10.1016/j.scitotenv.2017.03.028.

Mahadevan P, Wofsy SC, Matross DM, Xiao X, Dunn AL, Lin JC, et al. 2008. A satellite-based biosphere
parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration

Model (VPRM). Global Biogeochem Cycles 22; doi:10.1029/2006GB002735.

Maki M, Ishiahra M, Tamura M. 2004. Estimation of Leaf Water Status to Monitor the Risk of Forest Fires
by Using Remotely Sensed Imagery. Remote Sensing of Environment 90: 441-450.

Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, Angelis PD,
Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling
stomatal conductance. Global Change Biology, 17: 2134-2144. d0i:10.1111/j.1365-
2486.2010.02375.x

Monteith JL. 1965. Evaporation and environment. Symp Soc Exp Biol 19: 205-234.

Oke, T., Mills, G., Christen, A., & Voogt, J. (2017). Urban Climates. Cambridge: Cambridge University



769

770

771
772
773

774

775
776
777

778

779
780

781

782
783
784

785

786
787

788
789
790

791

Press. doi: 10.1017/9781139016476

Tang J, Bolstad P V., Desai AR, Martin JG, Cook BD, Davis KJ, et al. 2008. Ecosystem respiration and its
components in an old-growth forest in the Great Lakes region of the United States. Agric For

Meteorol 148:171-185; doi:10.1016/j.agrformet.2007.08.008.

Trlica A, Hutyra LR, Schaaf CL, Erb A, Wang JA. 2017. Albedo, Land Cover, and Daytime Surface
Temperature Variation Across an Urbanized Landscape. Earth’s Futur 5:1084-1101;

doi:10.1002/2017EF000569.

Urban Ecology Institute. State of the Urban Forest: A Summary of the Extent and Condition of Boston’s

Urban Forest. 2008.

Wang JA, Hutyra LR, Li D, Friedl MA. 2017. Gradients of atmospheric temperature and humidity
controlled by local urban land-use intensity in Boston. J Appl Meteorol Climatol 56:817-831;
doi:10.1175/JAMC-D-16-0325.1.

Winbourne JB, Jones TS, Garvey SM, Harrison JL, Wang L, Li D, et al. 2020. Tree Transpiration and Urban

Temperatures: Current Understanding, Implications, and Future Research Directions. Bioscience

Xiao X, Boles S., Liu J., Zhuang D., Frolking S., Li C., Salas W., Moore IIl B. 2005. Mapping Paddy Rice
Agriculture in Southern China Using Multi-Temporal MODIS Images. Remote Sensing of Environment 95:
480-492.



	1. Introduction
	2. Methods
	2.1.1. Overview
	2.1.2. Location
	2.2. Cooling Demand through Heat Risk Exposure Index
	2.2.1. Probability for local heat wave day conditions (P(hwday))
	2.2.2. Heat vulnerability Index (HVI)
	2.2.3. Population (Pop)

	2.3. Cooling Supply from Greenspace: Latent Heat Flux
	2.4. Demand supply comparison

	3. Results
	3.1. Cooling Demand through Heat Risk Exposure Index
	3.3. Demand supply comparison

	4. Discussion
	5. Conclusion
	References

