

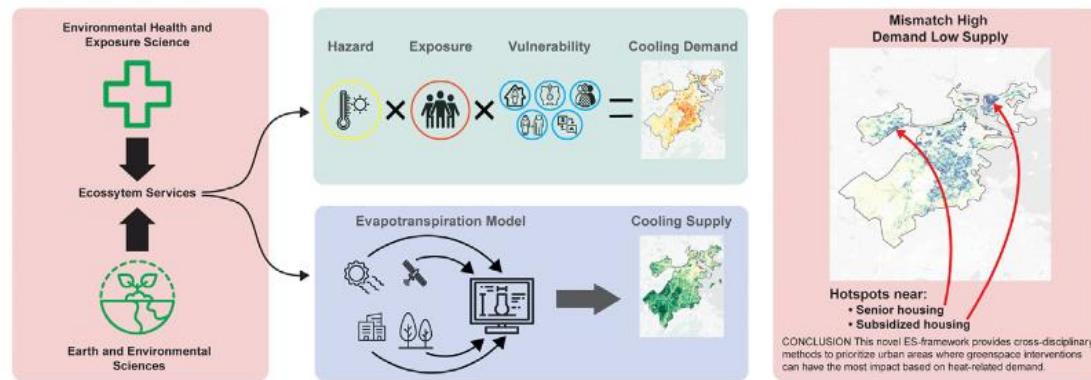
Mapping the health benefits of greenspace against urban heat exposure through an ecosystem services framework

Abstract

1 We provide a novel method to assess the heat mitigation impacts of greenspace though studying the
2 mechanisms of ecosystems responsible for benefits and connecting them to heat exposure metrics. We
3 demonstrate how the ecosystem services framework can be integrated into current practices of
4 environmental health research using supply/demand state-of-the-art methods of ecological modeling of
5 urban greenspace. We compared the supply of cooling ecosystem services in Boston measured through
6 an indicator of high resolution evapotranspiration modeling, with the demand for benefits from cooling
7 measured as a heat exposure risk score based on exposure, hazard and population characteristics. The
8 resulting evapotranspiration indicator follows a pattern similar to conventional greenspace indicators
9 based on vegetation abundance, except in warmer areas such as those with higher levels of impervious
10 surface. We identified demand-supply mismatch areas across the city of Boston, some coinciding with
11 affordable housing complexes and long term care facilities. This novel ES-framework provides cross-
12 disciplinary methods to prioritize urban areas where greenspace interventions can have the most impact
13 based on heat-related demand.

GRAPHICAL ABSTRACT

Mapping the gaps between cooling benefits of urban greenspace and population heat vulnerability



Tiesken, K., Smith, I.A., Jimenez Celsi, J.B., Hutyra, L.R., Fabian, M.P. Mapping the Cooling Health Benefits of Greenspace through an Ecosystem Services Framework. *Science of the Total Environment*, 845(1): 157283, 2022.

1. Introduction

Evidence shows that exposure to urban greenspace is associated with a wide array of health benefits including reduced cardiovascular disease, improved mental health, and reduced mortality (Twohig-Bennett and Jones, 2018; van den Berg et al., 2015). Various pathways have been identified for this association, such as the capacity of vegetation to regulate temperature, improve air quality, provide opportunity for physical activity, and reduce mental stress (James et al., 2015). Despite the variety in pathways, greenspace exposure is often operationalized with a metric of vegetation abundance derived from satellite imagery such as the Normalized Vegetation Index (NDVI), or the location of certain types of greenspace (e.g. distance to parks or public gardens) from detailed land use data.

While current NDVI products are among the most accurate and spatially resolved data at the disposal of the epidemiologist, their application as exposure metric can lead to overlooking the intricate ties between ecosystems and their physical and social environments that moderate or mediate health effects. For instance, Leslie et al. (2010) showed that mental health outcomes were more associated with one's perception of available greenspace than with measures of vegetation abundance. Relying on metrics of vegetation abundance or proximity has prevented methods to empirically separate different pathways and answer *how* greenspace exposure improves our health (Shanahan et al., 2015). To better understand if, where, and why greenspace exposure affects health outcomes there is a need for a holistic framework that can connect health benefits with ecosystem functions and mechanisms relying on literature from both health and ecological sciences (Zhang et al., 2017).

To distinguish different health effects of greenspace, reduce exposure misclassification, and provide a more causal narrative of health effects of greenspace, several authors have suggested adopting a framework of ecosystem services (ES), focusing on vegetation activity relevant to health outcomes (Bratman et al., 2019; Chiabai et al., 2018; Frumkin et al., 2017; Sandifer et al., 2015; Shanahan et al., 2015). ESs can be defined as “the aspects of ecosystems utilized (actively or passively) to produce human well-being” (Fisher et al., 2008), and are valued based on the benefits they produce for humans. Through a focus on quantitatively linking human benefits with functions of the natural environment, the ES-framework can be seen as a set of definitions and tools that forms a bridge between fields to promote inter-disciplinary research on the value of nature (Phillipson et al., 2009). This interdisciplinary approach facilitates incorporating knowledge about ecological mechanisms such as particulate matter deposition and air filtration (Janhäll, 2015) or ambient cooling (Winbourne et al., 2020; Yunusa et al., 2015) into the domain of health sciences.

45 In this paper we demonstrate how the ES-framework can be used to integrate state-of-the-art methods
46 of ecological modeling into current practices of environmental health research focusing on ambient
47 cooling capacities of urban greenspace and linking it to risk of residential exposure to extreme heat.
48 Exposure to extreme heat is associated with various health outcomes including increased mortality
49 (Medina-Ramón and Schwartz, 2007), higher numbers of emergency department-visits (Hess et al.,
50 2014), and adverse pregnancy outcomes (Bekkar et al., 2020). Heat exposure risk is exacerbated in
51 urban environments where impervious surfaces such as concrete and asphalt absorb solar radiation
52 causing higher temperatures in urban centers than in surrounding rural areas (Kleerekoper et al., 2012).
53 Urban greenspace can reduce the this urban heat island (UHI) effect through shading and
54 evapotranspiration (Winbourne et al., 2020; Yan et al., 2020).

55 Recently, various research groups have developed various tools and instruments to assess the capacity
56 of urban greenspace to mitigate urban heat through evapotranspiration and shading. Most notably the
57 InVEST Urban Cooling Model, developed by the Natural Capital Project includes a land cover based
58 urban cooling model to estimate the urban cooling capacity of greenspace (Zardo et al., 2017). As one of
59 the strengths of this model lies in its global applicability, a local model can provide improvement in
60 terms of modeling the complex interaction between climatological conditions, radiation, and
61 evapotranspiration (Zawadzka et al., 2021). In previous work we developed one of the first high
62 resolution spatially explicit models of urban evapotranspiration (Smith et al., 2021). By comparing
63 spatially modeled levels of evapotranspiration with a risk assessment of extreme heat exposure, we test
64 to what extent temperature regulating ecosystem service provides benefits in terms of human health
65 gains. In doing so we provide one of the first attempt to apply ecosystem services assessments in
66 environmental health research.

67 2. Methods

68 2.1.1. Overview

69 We used an ES-approach by comparing the supply of cooling ecosystem services to the demand for
70 health benefits from cooling in Boston, MA. We mapped the supply of temperature regulating ES by
71 modeling the level of evapotranspiration during a local heatwave at a 30m scale of the current
72 vegetation cover of Boston (Smith et al., 2021). While vegetation provides cooling benefits through both
73 shading and evapotranspiration, this analysis focuses on the evapotranspiration mechanism as the
74 daytime urban heat island intensity is primarily driven by variations in the capacity of urban and rural

75 areas to evaporate water (Li et al., 2019). Thus, cooling via evapotranspiration represents a key ES to city
76 residents and spatially co-occurs with shading benefits as well. We estimated the demand for health
77 benefits from heat reduction as a spatial risk assessment of extreme heat exposure multiplying spatial
78 layers of exposure, hazard, and heat vulnerability (Aubrecht and Özceylan, 2013; Tomlinson et al., 2011).
79 We chose to model exposure to extreme heat as we expect the greatest local variation and therefore
80 the highest spatial heterogeneity of potential for health benefits.

81 *2.1.2. Location*

82 Boston is a city located in the Northeast of the United States and has an estimated population size of
83 almost 692,600 people in 2019. Boston has a continental climate of relatively cold winters and hot and
84 humid summers, with average maximum daily temperatures in July of 27°C and an average of 15 days
85 per year of ambient temperatures above 30°C.

86 **2.2. Cooling Demand through Heat Risk Exposure Index**

87 We operationalized the demand for cooling using the following heat risk index equation based on a
88 study by Aubrecht et al. (2013):

$$HRI = HVI_i * P(hwdy)_i * POP_i$$

90 where heat risk exposure index (HRI) at 30 m pixel i is calculated by the probability for local heat wave
91 day conditions ($P(hwdy)$) multiplied by the heat vulnerability index (HVI) multiplied by the population
92 (POP) to account for the level of exposure at pixel i . Equation terms are further detailed below. Pixel
93 resolution was 30m in order to get a fine-scaled distribution of heat risk that can be compared with
94 supply model outputs.

95 *2.2.1. Probability for local heat wave day conditions ($P(hwdy)$)*

96 Extreme heat exposure was assigned by calculating the probability of a local (30 m) heat wave, given
97 evidence that heatwaves impact health more than single days of extreme temperatures (Kent et al.,
98 2014; Madrigano et al., 2015). For spatially explicit ambient temperatures we used PRISM climate data,
99 which consist of daily minimum and maximum temperatures for the United States modeled at 800m
100 resolution using a range of biophysical land characteristics and air temperatures from monitoring
101 stations (PRISM Climate Group, 2019). Daily maximum ambient temperatures at a 30m resolution were
102 calculated by downscaling 800m PRISM maximum daytime temperature data with 30m impervious
103 surface area (ISA) (MassGIS 2019) and time of year based on previously observed relationships where
104 for every day of the year a regression coefficient was provided for ISA's effect on ambient temperature

105 (Wang et al., 2017). Since ISA was not used in the PRISM model, we used a 30m dataset of ISA adjust
106 local temperatures based on ISA. The downscaled temperature (T) at 30m pixel I on the jth day was
107 calculated as:

$$112 \quad T_{i,j} = T_{prism,i,j} + \beta_j ISA_i$$

108 where T_{prism} is the 800m PRISM maximum temperature that corresponds with pixel i on day j, β is a
109 mean-centered coefficient reflecting the effect of impervious surface on ambient temperature for the
110 corresponding month of day j (Wang et al., 2017) and ISA is the impervious surface area at pixel i. The
111 result was a grid of maximum daily ambient temperature at 30 m resolution for June, July and August.

112 We defined a local heatwave as two consecutive days of maximum daytime temperatures above the
113 95th percentile in Boston during the months of June, July, and August (Spangler and Wellenius, 2020). To
114 calculate the probability of a heatwave day at a specific pixel we divided the number of times two
115 consecutive days the maximum temperature was above the 95th percentile by the total number of
116 summer days during the months of June, July, and August between the years of 2008 and 2018. Final
117 calculations resulted in values that could theoretically be between 0 and 1 for each 30 meter pixel,
118 representing the probability for a local heat wave conditions on a given day in the summer months.

119 *2.2.2. Heat vulnerability Index (HVI)*

120 We built a heat vulnerability index composed from demographic and socio-economic factors that are
121 correlated with higher heat-related hospitalizations and mortality (Madrigano et al., 2018; Reid et al.,
122 2009; Riley, 2018; Spangler and Wellenius, 2020). We included five dimensions of heat vulnerability at
123 the census block group level using data from the American Community Survey (ACS) (5-year estimates
124 2013-2018): 1) age (percentage of people over 65 years); 2) poverty (percentage of people with income
125 below poverty line minus percentage of people enrolled in higher education to account for students
126 (Bishaw, 2013)); 3) language-barriers (percentage of people speaking English less than well); 4)
127 vulnerable living situation (percentage of people older than 65 living alone); and 5) racial minority
128 composition (percentage of non-white people). We summed the percentages of population of each
129 variable in census block group in Boston and divided the final score by the highest total value to
130 calculate a heat vulnerability index ranging from 0 to 1 (Aubrecht and Özceylan, 2013). In absence of
131 empirical evidence relating these dimensions to health outcomes in Boston, we assumed all five
132 dimensions had the same relative importance.

134 2.2.3. *Population (Pop)*
135 To estimate the number of people living at each 30m pixel in Boston, we downscaled the Census 2010
136 population counts by census block to population in buildings by distributing the total count of
137 population per census block over the surface area of residential buildings (Xie, 2006). We used Open
138 Street Map (OpenStreetMap, 2017) to identify all buildings in Boston and filtered out non-residential
139 buildings using parcel level tax data from the Massachusetts Tax Assessor (MassGIS, 2020) and the City
140 of Boston (Boston Assessing Department, 2019). Population per 30m pixel was calculated as the census
141 block population multiplied by the proportion of residential building surface area compared to the total
142 surface area of each census block. We used Census 2010 count data to minimize error within a census
143 unit, since ACS data are not available at the census block level. The population data was log transformed
144 to normalize the distribution.

145 The Heat Risk Index (HRI) was calculated by multiplying $(P(hwdy)) * HVI * POP$ and the final demand
146 map was generated by smoothing the HRI of the neighborhood within a radius of 60m from each 30m
147 pixel to match the radius of cooling ES of evapotranspiration described below.

148 2.3. Cooling Supply from Greenspace: Latent Heat Flux

149 We developed a remote sensing driven evapotranspiration model (Smith et al., 2021) based on a
150 Penman-Monteith formulation that couples a carbon light-use efficiency model, Geostationary
151 Operational Environmental Satellite-16 (GOES-16) radiation (NOAA National Centers for Environmental
152 Information, 2017), Rapid Refresh (RAP) temperature analysis data (Benjamin et al., 2016), impervious
153 surface maps (MassGIS, 2007), Landsat albedo (Trlica et al., 2017) and Landsat enhanced vegetation
154 index (EVI) (Retrieved from Google Earth Engine; Gorelick et al., 2017). Evapotranspiration, measured as
155 latent heat flux (λE ; $W m^{-2}$) was modeled for the City of Boston, MA at hourly time steps and a spatial
156 resolution of 30 meters during a 6-day heatwave event from August 2 – August 7, 2018 where the mean
157 air temperature across the modeling domain was $28.7^{\circ}C$, approximately 25% warmer than the mean
158 2018 6-day rolling average temperature during June, July, and August ($23.0^{\circ}C$).

159 Full description of the evapotranspiration model can be found in Smith et al., (2021). Briefly, the
160 modeling approach consisted of three core equations to estimate latent heat flux contributions from
161 vegetation and did not consider other sources of urban latent heat flux, such as evaporation from lakes
162 or standing water. Vegetation activity was characterized as a function of incoming solar radiation via
163 estimates of net canopy photosynthesis (defined as the difference between the gross ecosystem

164 exchange of CO₂ and canopy respiration of CO₂) produced using the Urban Vegetation Photosynthesis
165 and Respiration Model (Hardiman et al., 2017; Mahadevan et al., 2008) as:

$$166 A_n = \left(\delta \cdot T_{scale} \cdot P_{scale} \cdot W_{scale} \cdot EVI \cdot \frac{1}{1+PAR/PAR_0} \cdot PAR \right) - 0.1 \cdot R_{eco}$$

167 where A_n is net photosynthesis (net assimilation of CO₂; $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$), δ is a plant functional type-
168 specific light-use efficiency ($\mu\text{mol CO}_2 \mu\text{mol PAR}^{-1}$), T_{scale} , P_{scale} , and W_{scale} are dimensionless scaling terms
169 ranging from zero to one describing the influence of air temperature, phenology, and moisture on
170 photosynthesis, EVI is the enhanced vegetation index, PAR is incoming photosynthetically active
171 radiation ($\mu\text{mol m}^{-2} \text{ s}^{-1}$), PAR_0 is the plant functional type-specific optimized half-saturation value (μmol
172 $\text{m}^{-2} \text{ s}^{-1}$), and R_{eco} is ecosystem respiration ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$). Temperate deciduous broadleaf plant
173 functional type parameters from Mahadevan et al. (2008) were applied to characterize vegetation in
174 Boston, MA, consistent with local vegetation surveys (Urban Ecology Institute, 2008). Leaf level
175 respiration is assumed to be 10% of ecosystem respiration (Tang et al., 2008). Air temperature data was
176 adjusted as a function of impervious surface area following the methods described in Wang et al. (2017)
177 and Hardiman et al. (2017).

178 The net photosynthesis estimates from the VPRM are used to estimate stomatal (or surface)
179 conductance, the process governing the land surface's ability to evaporate water, via the Medlyn et al.
180 (2011) stomatal conductance model as:

$$181 g_s = g_0 + 1.6 \cdot \left(1 + \frac{g_1}{\sqrt{D}} \right) \cdot \frac{A_n}{c_s/P_{atm}}$$

182 where g_s is the stomatal conductance ($\mu\text{mol H}_2\text{O m}^{-2} \text{ s}^{-1}$), g_0 is the minimum value of stomatal
183 conductance (100 $\mu\text{mol H}_2\text{O m}^{-2} \text{ s}^{-1}$), g_1 is a plant functional type-specific parameter, D is the vapor
184 pressure deficit (kPa), A_n is the net assimilation of CO₂ ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$), c_s is the atmospheric partial
185 pressure of CO₂ (40.53 Pa), and P_{atm} is the atmospheric pressure (101,325 Pa).

186 Given estimates of surface conductance, latent heat flux is estimated using the Penman-Montieth
187 equation of evapotranspiration (Monteith, 1965) as:

$$188 \lambda E = \frac{\Delta(R_n - G) + \rho_a c_p(D) g_a}{\Delta + \gamma(1 + g_a/g_s)}$$

189 where λ is the latent heat of vaporization of H₂O (2260 J g⁻¹), E is the mass H₂O evaporation rate (g s⁻¹ m⁻²), Δ describes the rate of change of saturation specific humidity with air temperature (Pa K⁻¹), R_n is the

191 net radiation balance of the surface (W m^{-2}), G is the ground heat flux (W m^{-2}), ρ_a is the dry air density
192 (1.275 kg m^{-3}), c_p is the specific heat capacity of air ($1005 \text{ J kg}^{-1} \text{ K}^{-1}$), D is the vapor pressure deficit (Pa), g_a
193 is the atmospheric conductance (m s^{-1}), g_s is the surface conductance (m s^{-1}), and γ is the psychrometric
194 constant (66 Pa K^{-1}). A more detailed description of equation terms and sources is provided in the SI.
195 Latent heat flux estimates were averaged within a radius of 60m for every 30-m pixel to reflect the
196 typical spatial scale of vegetation induced cooling in cities (Ziter et al., 2019).

197 Previous research showed that transpiration levels of vegetation are positively correlated with ambient
198 temperature, meaning that especially during heat waves evapotranspiration may be higher in more
199 urbanized areas (Winbourne et al., 2020). To assess how this indicator differs from traditional vegetation
200 abundance indicators we calculated a bivariate correlation between EVI at 30m resolution and latent
201 heat flux during heat wave conditions at similar resolution.

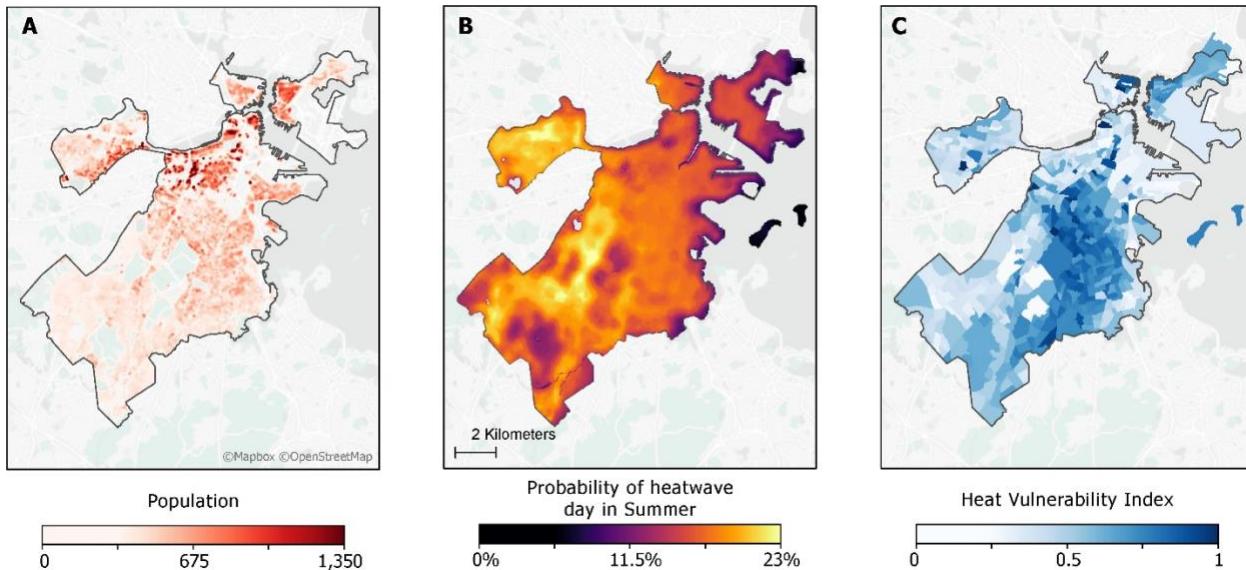
202 2.4. Demand supply comparison

203 A mismatch between low supply and high demand for an ecosystem service indicates a potential for
204 relatively high benefits from additional increase in ecosystem service supply (Burkhard et al., 2012). High
205 cooling demand (high heat exposure risk index) and low cooling supply (low levels of latent heat flux)
206 areas were identified by transforming supply and demand to percentile rank (PR) scores to reduce bias
207 (Schulp et al., 2014). PR scores were calculated excluding pixels where HRI = 0. We multiplied the PR of
208 demand with the inverted PR ($100 - \text{PR}$) of supply and divided it by the maximum possible score (99^2) to
209 generate a map of the share of instances each pixel was designated high demand–low supply out of the
210 9,801 (99^2) possible combinations of percentile thresholds as done previously in Tieskens et al. (2017). A
211 value close to 1 indicates a mismatch regardless of a threshold distinguishing between high and low
212 supply and demand.

213 Additionally, we ran a linear regression model to assess which aspects of the ES demand were related to
214 the ES-supply. The linear model predicted the ES-supply as latent heat flux per census block group in
215 Boston with the five HVI variables, the average heatwave probability, and the total population. To
216 calculate average heat wave probability and latent heat flux per census block group we masked the area
217 of each census block group with the building footprint of residential buildings to only include supply and
218 demand variables at locations of residential heat exposure. To account for multi-collinearity we
219 calculated variation inflation factors (VIF) for each predictor using the CAR package in R software (Fox,
220 John & Weisberg, 2011). As no VIF was higher than 3 we did not exclude any predictor from the model.

221 **3. Results**

222 **3.1. Cooling Demand through Heat Risk Exposure Index**

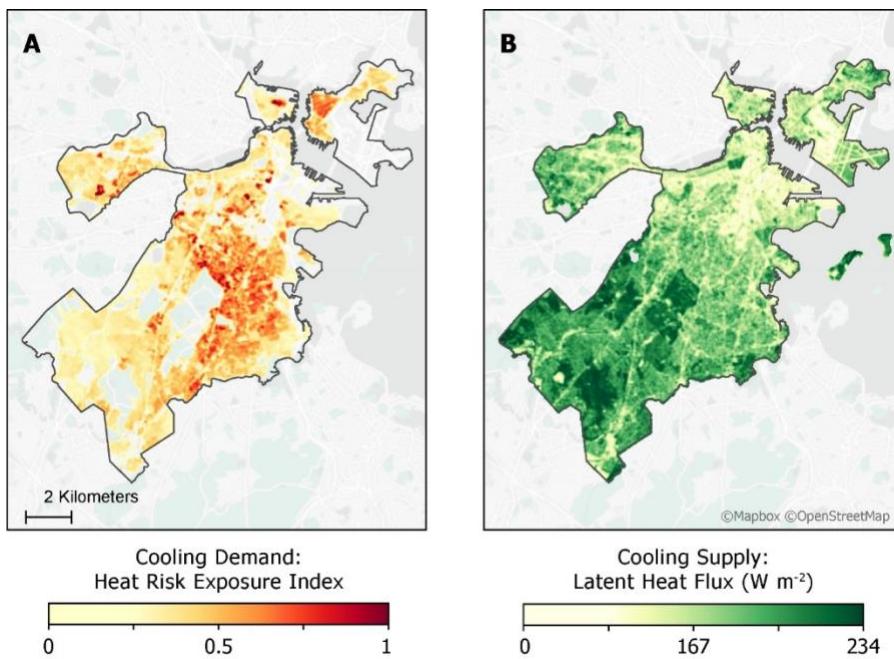


224 *Figure 1 Map of Boston showing: A: Total population at 30m resolution; B: Probability of a summer heatwave day at 30 meter
225 resolution; C: Sociodemographic heat vulnerability index at a block group level*

226 Figure 1 shows the spatial distribution of the three components of the heat risk index (i.e. cooling
227 demand): population, heatwave probability, and heat vulnerability index. The probability of a local heat
228 wave day ranged between 0 and 23%, with the highest values close to the center of Boston (Figure 1B,
229 light yellow areas). Areas with lower probabilities (dark shades in Figure 1B) are found on the harbor
230 islands, coast and in the southwest of the city, which coincides with locations of parks and urban forests.
231 The heat vulnerability index map (Figure 1C) shows a stark difference between neighborhoods. The
232 highest values were found in inner city neighborhoods of Boston, characterized by high percentages of
233 people living below the poverty line and high percentages of racial minorities. In the northwest of the
234 city isolated hotspots were mostly driven by the percentage of people over 65 years living alone.

235 Figure 2A shows the results of the integrated heat exposure risk index map (Figure 2A), showing a clear
236 difference between the south west side of Boston characterized by a relatively low cooling demand with
237 values close to 0 while high demand is concentrated in the north east side of the city, and the centrally
238 located inner cities with values between 0.6 and 1. There are several areas in the city with concentrated

239 pockets of very high demand surrounded by lower demand.



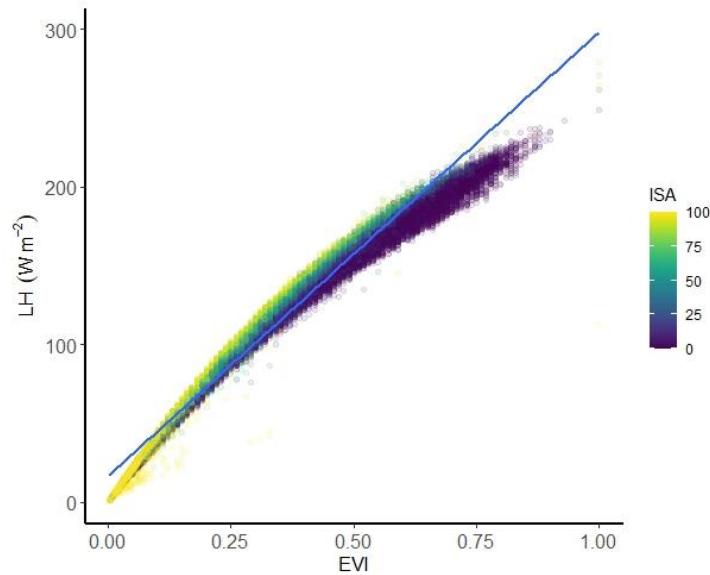
240

241 *Figure 2 Map of Boston at 30 m resolution showing: A) Demand for cooling as heat risk exposure index, and B) Greenspace*
242 *cooling supply as Latent Heat Flux*

243 **3.2. Cooling Supply from Greenspace: Latent Heat Flux**

244 Figure 2B shows an example of the spatial distribution of the cooling supply from greenspace across
245 Boston on a heatwave day at noon. The average supply of greenspace cooling via transpiration was 85.6
246 W m⁻² across the city during the modeling period. We observed substantial spatial heterogeneity in the
247 magnitude of latent heat fluxes with maximum latent heat flux rates found in the more heavily
248 vegetated areas of the city and minimum rates found in the portions of the city with the most
249 impervious surface area (Figure 2B), ranging from 0 – 334.5 W m⁻². A bivariate correlation analysis
250 showed a high correlation between latent heat flux and EVI ($r=0.99$, $p < 0.001$). However, we found a
251 range of latent heat flux estimates for pixels with similar EVI that varied as a function of urbanization as
252 pixels with higher fractions of ISA tend to have warmer temperatures and higher vapor pressure deficits
253 in the atmosphere, ultimately driving increases in transpiration rates.

254 The plot in figure 3 shows that the correlation between latent heat flux and EVI is not completely linear
255 as for both tails of the EVI distribution latent heat flux is lower than predicted by EVI only.

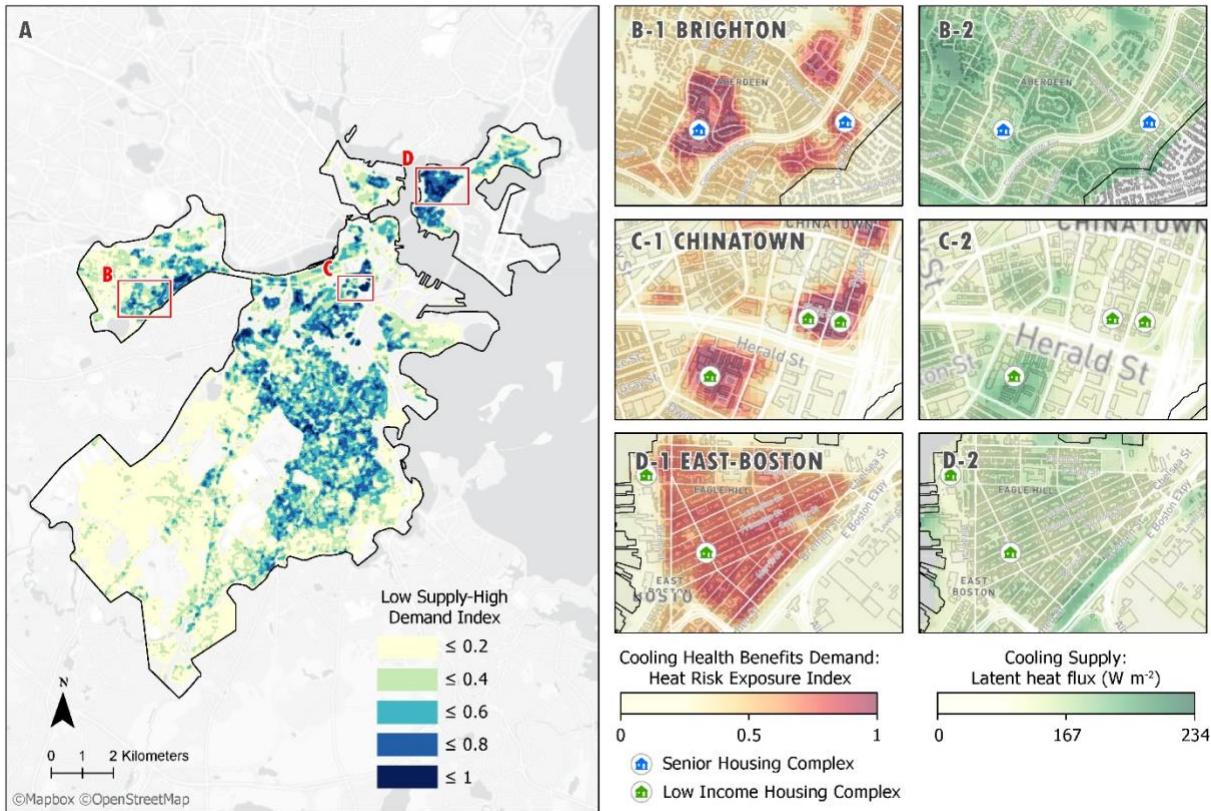


256

257 3.3. Demand supply comparison

258 Figure 5A shows the high/low cooling supply/demand comparison across Boston. Areas shaded with a
259 value between 0.8 and 1 in dark blue have an estimated mismatch of demand and supply in at least 80%
260 of all possible combination of percentile rank definitions of high demand and low supply. Similar to the
261 demand distribution (Figure 2A) the comparison shows high values in the inner cities and concentrated
262 hotspots around Boston. We zoomed in to three different areas in the city to highlight notable
263 differences and patterns. We found some of the highest concentration for demand for health benefits of
264 cooling in Brighton, a community home to some of the housing complexes in the city housing older
265 adults, often living alone. Figure 4B-1 shows that the high demand coincides with the location of these
266 complexes. Figure 4B-2 shows that this area is also characterized by a relatively high cooling ES supply,
267 reducing the value of the comparison index in Figure 4A. Figure 4C shows a similarly concentrated
268 pattern of demand in Chinatown, not driven by high population counts of elderly, but instead by high
269 population density and a relatively large share of low income families not identifying as white. Here,
270 high concentrations of demand coincide with the location of several large affordable housing complexes.
271 Despite the relative proximity of these complexes there is a significant difference in ES supply. Figure 4C-
272 2 shows that the supply of cooling was low around the two most eastern complexes while the being
273 higher around the south western complex. The most striking hotspot of ES mismatch appeared in East
274 Boston (Figure 4D). Despite two affordable housing complexes the high level of demand was spread over

275 the entire neighborhood. This neighborhood is home to a large community of people identifying as
276 Hispanic/Latino, with relatively high numbers of non-English speakers. Figure 4D-2 shows that the high
277 demand was met with low levels of evapotranspiration throughout the neighborhood.



278

279 *Figure 4 A: Frequency index of low supply-high demand designation for each combination (99²) of percentile definition of low-
280 supply and high-demand. B 1–D 1: zoom in maps showing Cooling Health Benefits Demand. B 2 – D 2: Zoom in maps showing
281 Cooling Supply*

282 A linear model explaining the latent heat flux per census block group with the variables that composed
283 the ES-demand function shows that the percentage of people older 65, the percentage non-white
284 population and the probability for a heatwave were positively correlated with the ES-supply.

285

286

287

288 *Table 1 Regression coefficients of ordinary least squares linear model explaining latent heat flux with dimensions of heat*
289 *vulnerability, heat hazard, and exposure (population).*

	Estimate	Std. Error	P-value
Intercept	-1.78	10.67	0.87
Percentage living below poverty line	-17.95	9.61	0.06
Percentage older than 65	131.09	15.38	< 0.001
Percentage older than 65 and living alone	-129.17	29.96	< 0.001
Percentage speaking English less than well	-59.98	11.35	< 0.001
Percentage non-white population	27.09	4.11	< 0.001
Heat wave probability	420.91	57.07	< 0.001
Population	0.00	0.00	0.36

Adjusted $R^2 = 0.28$

290

291 The percentage of people living below the poverty line, the percentage of people being older than 65
292 and living alone, and the percentage of people speaking English less than well was negatively correlated
293 with ES-supply. The total number of people living in each census block group was not significantly
294 correlated with the supply of cooling ecosystem services.

295 4. Discussion

296 With this paper we attempted to use the ecosystem services framework to improve understanding of
297 the health effects of urban greenspace, focusing on heat mitigation. By spatially comparing cooling ES
298 supply with heat exposure risk, serving as a proxy for demand for health benefits of cooling, we revealed
299 those areas within the city where additional urban vegetation could provide the highest benefits in
300 terms of heat related health outcomes. Modeled evapotranspiration as an indicator of greenspace
301 activity showed a very similar pattern to conventional indicators based on vegetation abundance.
302 However, we revealed a pattern of stronger cooling potential per tree in more urban areas with higher
303 impervious surface fractions. Zooming in on several demand-supply mismatch hotspots revealed that
304 strong concentrations coincided with affordable housing complexes or housing for older adults.

305 While our study identified areas where supply did not meet the demand for urban cooling, we also
306 showed that on average the supply of cooling ES was positively correlated with heat hazard and several
307 dimensions of our HVI including old age and non-white populations. This is an interesting finding as
308 recent studies exposed systemic racial inequities in terms of greenspace exposure in US cities revealing a

309 striking pattern of consistently lower levels of vegetation in neighborhoods with that suffered from
310 racially discriminatory zoning practices and higher shares of people of color (Nardone et al., 2021). The
311 reason for the different finding could be that we only accounted for ES-supply of residential cooling and
312 did not include any vegetation that was not located within 60m of a residential building.

313 At first sight, the comparison between the proposed indicator of cooling ES services and the common
314 indicator of EVI may indicate that the potential for exposure misclassification associated with vegetation
315 abundance indicators is limited (Cf. Nouri et al., 2014). However, we revealed a pattern of stronger
316 cooling potential per tree in more urban areas with higher impervious surface fractions. This finding
317 suggests that previous studies that linked reduced heat mortality to greenspace exposure based on
318 indicators of greenspace abundance (Burkart et al., 2016; Gronlund et al., 2015; Madrigano et al., 2015;
319 Tan et al., 2007) might have underestimated the cooling effect of greenspace in inner cities with higher
320 impervious surface area inducing higher local temperatures and by extension higher evapotranspiration.
321 Inner cities not only report the highest peak temperatures during heatwaves, but often also house a
322 disadvantaged population of low income minority households suffering from structural racism and social
323 isolation (Rankin and Quane, 2000; Watson and Wilson, 1988) associated with higher vulnerability to
324 extreme heat exposure (Aubrecht and Özceylan, 2013; Gronlund et al., 2015; Reid et al., 2009).

325 The effect of greenspace on heat related health outcomes has been recognized and analyzed in many
326 previous studies (see Markevych et al., 2017; Tomlinson et al., 2011; Twohig-Bennett and Jones, 2018).
327 Likewise, the effect of vegetation on urban temperatures has been the topic of many ecological and
328 environmental studies (Adams and Smith, 2014; Gallo et al., 1993; Hu and Li, 2020). Yet, the connection
329 between these two fields has been limited. We used the ES-framework to connect the work done in
330 these two broad fields. The heat risk index can be a starting point for ecosystem services mapping
331 studies to incorporate public health methods for more accurate operationalization of health benefits.
332 The heat vulnerability index proposed in this paper could, for instance, be a great addition to the widely
333 used InVEST urban cooling model that currently relies on a linear relationship between temperature and
334 mortality to estimate potential health benefits from urban cooling (Hamel et al., 2021). Moreover, the
335 explicitly urban evapotranspiration modeling presented here (and further explained in Smith et al.
336 (2021)) is one of the first mechanistic evapotranspiration models explicitly designed for urban context
337 and can provide hourly outputs. This mechanistic model can be used to improve current cooling models
338 such as the InVEST Urban cooling Model that estimates evapotranspiration directly from land cover.

339 Within the public health field, the evapotranspiration modeling can function as an example of metric of
340 greenspace exposure that explicitly models greenspace activity rather than abundance to separate
341 different pathways from greenspace to health effect and increase causal understanding of health effects
342 of greenspace. The framework presented here can be applied to various other pathways that link
343 greenspace to health framed as ecosystem services, including particulate matter deposition (Hofman et
344 al., 2013), or noise mitigation (Peng et al., 2014). Each of these services can have several separate
345 independent health effects that each depend on supply, environment, and beneficiaries. Whereas
346 current practice in epidemiology often bundles all potential ecosystem health benefits in a single
347 indicator of vegetation abundance, further application of the ES framework can leverage existing
348 knowledge and expertise of ecosystem functions that could to a more explicit and accurate
349 representation of the health benefits of urban greenspace exposure. The comparison of supply and
350 demand, a very common ES tool, provided a relatively simple method to connect the products from
351 different fields to provide an output that could directly inform urban planning decisions.

352 As one of the first attempts to explicitly link health related environmental exposure benefits to functions
353 of urban vegetation through an ecosystem services framework, the empirical findings have some
354 limitations. The representation of cooling demand in this paper was based on health risk assessment
355 modeling and showed innovation by modeling heat exposure risk at the residential building level for the
356 entire city of Boston, while incorporating fine scale resolution daily ambient temperature data. Heat
357 vulnerability was calculated by weighting the five vulnerability dimensions equally which may under or
358 overestimate their importance. However, the equation can easily be adapted to a different weighting
359 scheme or incorporate locally important vulnerability dimensions. Moreover, the ACS based
360 vulnerability indicator did not include factors that relate ambient temperature to indoor exposure such
361 as the availability of indoor temperature regulation and insulation. Additionally, we did not include non-
362 residential heat exposures in this analysis. Workplace and transportation heat stress in the US is
363 relatively understudied, but could potentially fuel further health disparities due to differences between
364 outside workplaces and air conditioned spaces (Acharya et al., 2018; Gubernot et al., 2014). Mapping of
365 both demand for benefits and supply of ES, like in this study, often relies on modeling techniques that
366 introduce potential error and bias with every assumption (Schägner et al., 2013). Future studies could
367 build on the framework outlined in this paper to connect the supply of ES-services to spatially explicit
368 health outcomes. However, health outcomes such as heat-related emergency department visits or
369 mortality are very rarely available at fine spatial resolution and when available are at state level (e.g.
370 Kingsley et al., 2016) or zip code level (e.g. Shi et al., 2015).

371 We used a model that has been validated with field studies and incorporated the most recent insights in
372 urban evapotranspiration modeling (Smith et al., 2021). Ongoing developments outside the realm of
373 environmental health studies can further improve the cooling indicator proposed here by incorporating
374 additional factors that have been proven to affect cooling ecosystem services. These factors include
375 differentiation on types of greenspace such as grass, shrubs, and trees, the differences in service
376 provision of different species (Ballinas and Barradas, 2016), spatial patterns of greenspace (Kong et al.,
377 2014), or the other characteristics of the built environment that can enhance the cooling effect of
378 greenspace such as green roofs, air conditioning, or the albedo effects of different types of pavements
379 (Li et al., 2014; Winbourne et al., 2020). Further climatological modeling and including the effect of
380 shading on ambient temperature could eventually lead to an indicator expressed in the change of
381 ambient temperature in degrees Celsius during heat wave temperatures needed to predict the exact
382 effect of greenspace on heat-related health outcomes.

383 5. Conclusion

384 We provided an indicator of exposure to heat reducing ES of urban greenspace by applying a model
385 rooted in ecological theory and based on open data. While the resulting indicator follows a pattern
386 similar to conventional indicators based on vegetation abundance, our modeling efforts highlighted key
387 differences in the importance of urban context for the delivery of cooling ES. In addition, the
388 evapotranspiration modeling applied to this area showed that evapotranspiration increases with rising
389 temperatures, meaning that similar greenspace provides more cooling ES in warmer areas, such as those
390 with higher levels of impervious surface (i.e. UHI). Comparing our indicator of cooling ES supply with an
391 indicator of heat exposure risk serving as a proxy for demand for health benefits of cooling revealed
392 those areas within the city where additional urban vegetation could provide the highest benefits in
393 terms of heat related health outcomes. A focus on ecosystem services instead of vegetation abundance
394 can greatly improve the understanding and application of health benefits of urban greenspace.

395

396 References

397 Acharya, P., Boggess, B., Zhang, K., 2018. Assessing heat stress and health among construction workers
398 in a changing climate: A review. *Int. J. Environ. Res. Public Health* 15, 247.
399 <https://doi.org/10.3390/ijerph15020247>

400 Adams, M.P., Smith, P.L., 2014. A systematic approach to model the influence of the type and density of

401 vegetation cover on urban heat using remote sensing. *Landsc. Urban Plan.* 132, 47–54.
402 <https://doi.org/https://doi.org/10.1016/j.landurbplan.2014.08.008>

403 Aubrecht, C., Özceylan, D., 2013. Identification of heat risk patterns in the U.S. National Capital Region
404 by integrating heat stress and related vulnerability. *Environ. Int.* 56, 65–77.
405 <https://doi.org/10.1016/j.envint.2013.03.005>

406 Ballinas, M., Barradas, V.L., 2016. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico
407 City: A Simple Phenomenological Model. *J. Environ. Qual.* 45, 157–166.
408 <https://doi.org/10.2134/jeq2015.01.0056>

409 Bekkar, B., Pacheco, S., Basu, R., DeNicola, N., 2020. Association of Air Pollution and Heat Exposure With
410 Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review. *JAMA Netw. Open*
411 3, e208243–e208243. <https://doi.org/10.1001/jamanetworkopen.2020.8243>

412 Benjamin, S.G., Weygandt, S.S., Brown, J.M., Hu, M., Alexander, C.R., Smirnova, T.G., Olson, J.B., James,
413 E.P., Dowell, D.C., Grell, G.A., Lin, H., Peckham, S.E., Smith, T.L., Moninger, W.R., Kenyon, J.S.,
414 Manikin, G.S., 2016. A North American Hourly Assimilation and Model Forecast Cycle: The Rapid
415 Refresh. *Mon. Weather Rev.* 144, 1669–1694. <https://doi.org/10.1175/MWR-D-15-0242.1>

416 Bishaw, A., 2013. Examining the Effect of Off-Campus College Students on Poverty Rates SEHSD 2013-17.
417 U.S. Census Bur.

418 Boston Assessing Department, 2019. Massachusetts Property Classification System Occupancy Codes
419 [WWW Document]. URL https://www.cityofboston.gov/images_documents/MA_OCCcodes_tcm3-16189.pdf

421 Bratman, G.N., Anderson, C.B., Berman, M.G., Cochran, B., de Vries, S., Flanders, J., Folke, C., Frumkin,
422 H., Gross, J.J., Hartig, T., Kahn, P.H., Kuo, M., Lawler, J.J., Levin, P.S., Lindahl, T., Meyer-Lindenberg,
423 A., Mitchell, R., Ouyang, Z., Roe, J., Scarlett, L., Smith, J.R., van den Bosch, M., Wheeler, B.W.,
424 White, M.P., Zheng, H., Daily, G.C., 2019. Nature and mental health: An ecosystem service
425 perspective. *Sci. Adv.* 5, eaax0903. <https://doi.org/10.1126/sciadv.aax0903>

426 Burkart, K., Meier, F., Schneider, A., Breitner, S., Canário, P., Alcoforado, M.J., Scherer, D., Endlicher, W.,
427 2016. Modification of heat-related mortality in an elderly urban population by vegetation (Urban
428 green) and proximity to water (Urban blue): Evidence from Lisbon, Portugal. *Environ. Health
429 Perspect.* 124, 927–934. <https://doi.org/10.1289/ehp.1409529>

430 Burkhard, B., Kroll, F., Nedkov, S., Müller, F., 2012. Mapping ecosystem service supply, demand and
431 budgets. *Ecol. Indic.* 21, 17–29. <https://doi.org/10.1016/j.ecolind.2011.06.019>

432 Chiabai, A., Quiroga, S., Martinez-Juarez, P., Higgins, S., Taylor, T., 2018. The nexus between climate
433 change, ecosystem services and human health: Towards a conceptual framework. *Sci. Total
434 Environ.* 635, 1191–1204. <https://doi.org/10.1016/j.scitotenv.2018.03.323>

435 Fisher, B., Turner, K., Zylstra, M., Brouwer, R., De Groot, R., Farber, S., Ferraro, P., Green, R., Hadley, D.,
436 Harlow, J., Jefferiss, P., Kirkby, C., Morling, P., Mowatt, S., Naidoo, R., Paavola, J., Strassburg, B., Yu,
437 D., Balmford, A., 2008. Ecosystem services and economic theory: Integration for policy-relevant
438 research. *Ecol. Appl.* 18, 2050–2067. <https://doi.org/10.1890/07-1537.1>

439 Fox, John & Weisberg, S., 2011. *An R Companion to Applied Regression*, Third. ed. Sage, Thousand Oaks
440 {CA}.

441 Frumkin, H., Bratman, G.N., Breslow, S.J., Cochran, B., Kahn, P.H., Lawler, J.J., Levin, P.S., Tandon, P.S.,
442 Varanasi, U., Wolf, K.L., Wood, S.A., 2017. Nature contact and human health: A research agenda.
443 *Environ. Health Perspect.* 125, 75001. <https://doi.org/10.1289/EHP1663>

444 Gallo, K.P., McNab, A.L., Karl, T.R., Brown, J.F., Hood, J.J., Tarpley, J.D., 1993. The use of a vegetation
445 index for assessment of the urban heat island effect. *Int. J. Remote Sens.* 14, 2223–2230.
446 <https://doi.org/10.1080/01431169308954031>

447 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine:
448 Planetary-scale geospatial analysis for everyone. *Remote Sens. Environ.* 202, 18–27.
449 <https://doi.org/https://doi.org/10.1016/j.rse.2017.06.031>

450 Gronlund, C.J., Berrocal, V.J., White-Newsome, J.L., Conlon, K.C., O'Neill, M.S., 2015. Vulnerability to
451 extreme heat by socio-demographic characteristics and area green space among the elderly in
452 Michigan, 1990–2007. *Environ. Res.* 136, 449–461. <https://doi.org/10.1016/j.envres.2014.08.042>

453 Gubernot, D.M., Anderson, G.B., Hunting, K.L., 2014. The epidemiology of occupational heat exposure in
454 the United States: a review of the literature and assessment of research needs in a changing
455 climate. *Int. J. Biometeorol.* 58, 1779–1788. <https://doi.org/10.1007/s00484-013-0752-x>

456 Hamel, P., Guerry, A.D., Polasky, S., Han, B., Douglass, J.A., Hamann, M., Janke, B., Kuiper, J.J., Levrel, H.,
457 Liu, H., Lonsdorf, E., McDonald, R.I., Nootenboom, C., Ouyang, Z., Remme, R.P., Sharp, R.P.,
458 Tardieu, L., Viguié, V., Xu, D., Zheng, H., Daily, G.C., 2021. Mapping the benefits of nature in cities
459 with the InVEST software. *npj Urban Sustain.* 1, 25. <https://doi.org/10.1038/s42949-021-00027-9>

460 Hardiman, B.S., Wang, J.A., Hutyra, L.R., Gately, C.K., Getson, J.M., Friedl, M.A., 2017. Accounting for
461 urban biogenic fluxes in regional carbon budgets. *Sci. Total Environ.* 592, 366–372.
462 <https://doi.org/10.1016/j.scitotenv.2017.03.028>

463 Hess, J.J., Saha, S., Luber, G., 2014. Summertime Acute Heat Illness in U.S. Emergency Departments from
464 2006 through 2010: Analysis of a Nationally Representative Sample. *Environ. Health Perspect.* 122,
465 1209–1215. <https://doi.org/10.1289/ehp.1306796>

466 Hofman, J., Stokkaer, I., Snaeuwaert, L., Samson, R., 2013. Spatial distribution assessment of particulate
467 matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited
468 particles. *Environ. Pollut.* 183, 123–132. <https://doi.org/10.1016/j.envpol.2012.09.015>

469 Hu, L., Li, Q., 2020. Greenspace, bluespace, and their interactive influence on urban thermal
470 environments. *Environ. Res. Lett.* 15, 34041. <https://doi.org/10.1088/1748-9326/ab6c30>

471 James, P., Banay, R.F., Hart, J.E., Laden, F., 2015. A Review of the Health Benefits of Greenness. *Curr.*
472 *Epidemiol. Reports* 2, 131–142. <https://doi.org/10.1007/s40471-015-0043-7>

473 Janhäll, S., 2015. Review on urban vegetation and particle air pollution – Deposition and dispersion.
474 *Atmos. Environ.* 105, 130–137. <https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.01.052>

475 Kent, S.T., McClure, L.A., Zaitchik, B.F., Smith, T.T., Gohlke, J.M., 2014. Heat waves and health outcomes
476 in Alabama (USA): The importance of heat wave definition. *Environ. Health Perspect.* 122, 151–
477 158. <https://doi.org/10.1289/ehp.1307262>

478 Kingsley, S.L., Eliot, M.N., Gold, J., Vanderslice, R.R., Wellenius, G.A., 2016. Current and projected heat-
479 related morbidity and mortality in Rhode Island. *Environ. Health Perspect.* 124, 460–467.
480 <https://doi.org/10.1289/ehp.1408826>

481 Kleerekoper, L., Van Esch, M., Salcedo, T.B., 2012. How to make a city climate-proof, addressing the
482 urban heat island effect. *Resour. Conserv. Recycl.* 64, 30–38.
483 <https://doi.org/10.1016/j.resconrec.2011.06.004>

484 Kong, F., Yin, H., James, P., Hutyra, L.R., He, H.S., 2014. Effects of spatial pattern of greenspace on urban
485 cooling in a large metropolitan area of eastern China. *Landsc. Urban Plan.* 128, 35–47.
486 <https://doi.org/10.1016/j.landurbplan.2014.04.018>

487 Leslie, E., Sugiyama, T., Ierodiaconou, D., Kremer, P., 2010. Perceived and objectively measured
488 greenness of neighbourhoods: Are they measuring the same thing? *Landsc. Urban Plan.* 95, 28–33.
489 <https://doi.org/https://doi.org/10.1016/j.landurbplan.2009.11.002>

490 Li, D., Bou-Zeid, E., Oppenheimer, M., 2014. The effectiveness of cool and green roofs as urban heat
491 island mitigation strategies. *Environ. Res. Lett.* 9, 55002. <https://doi.org/10.1088/1748-9326/9/5/055002>

493 Li, D., Liao, W., Rigden, A.J., Liu, X., Wang, D., Malyshev, S., Shevliakova, E., 2019. Urban heat island:
494 Aerodynamics or imperviousness? *Sci. Adv.* 5, eaau4299. <https://doi.org/10.1126/sciadv.aau4299>

495 Madrigano, J., Ito, K., Johnson, S., Kinney, P.L., Matte, T., 2015. A case-only study of vulnerability to heat
496 wave-related mortality in New York City (2000–2011). *Environ. Health Perspect.* 123, 672–678.
497 <https://doi.org/10.1289/ehp.1408178>

498 Madrigano, J., Lane, K., Petrovic, N., Ahmed, M., Blum, M., Matte, T., 2018. Awareness, risk perception,
499 and protective behaviors for extreme heat and climate change in New York City. *Int. J. Environ.*
500 *Res. Public Health.* <https://doi.org/10.3390/ijerph15071433>

501 Mahadevan, P., Wofsy, S.C., Matross, D.M., Xiao, X., Dunn, A.L., Lin, J.C., Gerbig, C., Munger, J.W., Chow,
502 V.Y., Gottlieb, E.W., 2008. A satellite-based biosphere parameterization for net ecosystem CO₂
503 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). *Global Biogeochem. Cycles*
504 22. <https://doi.org/10.1029/2006GB002735>

505 Markevych, I., Schoierer, J., Hartig, T., Chudnovsky, A., Hystad, P., Dzhambov, A.M., de Vries, S.,
506 Triguero-Mas, M., Brauer, M., Nieuwenhuijsen, M.J., Lupp, G., Richardson, E.A., Astell-Burt, T.,
507 Dimitrova, D., Feng, X., Sadeh, M., Standl, M., Heinrich, J., Fuertes, E., 2017. Exploring pathways
508 linking greenspace to health: Theoretical and methodological guidance. *Environ. Res.*
509 <https://doi.org/10.1016/j.envres.2017.06.028>

510 MassGIS, 2020. Standardized Assessor Parcels.

511 MassGIS, 2007. MassGIS Data: Impervious Surface 2005. Boston.

512 Medina-Ramón, M., Schwartz, J., 2007. Temperature, temperature extremes, and mortality: A study of
513 acclimatisation and effect modification in 50 US cities. *Occup. Environ. Med.* 64, 827–833.
514 <https://doi.org/10.1136/oem.2007.033175>

515 Monteith, J.L., 1965. Evaporation and environment., in: *Symposia of the Society for Experimental*
516 *Biology.* Cambridge University Press (CUP) Cambridge, pp. 205–234.

517 Nardone, A., Rudolph, K.E., Morello-Frosch, R., Casey, J.A., 2021. Redlines and greenspace: The
518 relationship between historical redlining and 2010 greenspace across the United States. *Environ.*
519 *Health Perspect.* 129, 1–9. <https://doi.org/10.1289/EHP7495>

520 NOAA National Centers for Environmental Information, 2017. GOES-R Calibration Working Group and
521 GOES-R Series Program: NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances
522 [WWW Document].

523 Nouri, H., Beecham, S., Anderson, S., Nagler, P., 2014. High Spatial Resolution WorldView-2 Imagery for
524 Mapping NDVI and Its Relationship to Temporal Urban Landscape Evapotranspiration Factors.
525 *Remote Sens.* . <https://doi.org/10.3390/rs6010580>

526 OpenStreetMap, 2017. Contributors. Planet dump retrieved from <https://planet.osm.org>.

527 Peng, J., Bullen, R., Kean, S., 2014. The effects of vegetation on road traffic noise, in: INTERNOISE 2014 -
528 43rd International Congress on Noise Control Engineering: Improving the World Through Noise
529 Control. Institute of Noise Control Engineering, pp. 600–609.

530 Phillipson, J., Lowe, P., Bullock, J.M., 2009. Navigating the social sciences: Interdisciplinarity and ecology:
531 Guest Editorial. *J. Appl. Ecol.* 46, 261–264. <https://doi.org/10.1111/j.1365-2664.2009.01625.x>

532 PRISM Climate Group, 2019. PRISM 800m ambient temperatures [WWW Document].

533 Rankin, B.H., Quane, J.M., 2000. Neighborhood poverty and the social isolation of inner-city African
534 American families. *Soc. Forces* 79, 139–164. <https://doi.org/10.1093/sf/79.1.139>

535 Reid, C.E., O'Neill, M.S., Gronlund, C.J., Brines, S.J., Brown, D.G., Diez-Roux, A. V., Schwartz, J., 2009.
536 Mapping community determinants of heat vulnerability. *Environ. Health Perspect.* 117, 1730–1736.
537 <https://doi.org/10.1289/ehp.0900683>

538 Riley, A.R., 2018. Neighborhood Disadvantage, Residential Segregation, and Beyond—Lessons for
539 Studying Structural Racism and Health. *J. Racial Ethn. Heal. Disparities* 5, 357–365.
540 <https://doi.org/10.1007/s40615-017-0378-5>

541 Sandifer, P.A., Sutton-Grier, A.E., Ward, B.P., 2015. Exploring connections among nature, biodiversity,
542 ecosystem services, and human health and well-being: Opportunities to enhance health and
543 biodiversity conservation. *Ecosyst. Serv.* 12, 1–15. <https://doi.org/10.1016/j.ecoser.2014.12.007>

544 Schägner, J.P., Brander, L., Maes, J., Hartje, V., 2013. Mapping ecosystem services' values: Current
545 practice and future prospects. *Ecosyst. Serv.* 4, 33–46.
546 <https://doi.org/https://doi.org/10.1016/j.ecoser.2013.02.003>

547 Schulp, C.J.E., Lautenbach, S., Verburg, P.H., 2014. Quantifying and mapping ecosystem services:
548 Demand and supply of pollination in the European Union. *Ecol. Indic.* 36, 131–141.
549 <https://doi.org/10.1016/j.ecolind.2013.07.014>

550 Shanahan, D.F., Lin, B.B., Bush, R., Gaston, K.J., Dean, J.H., Barber, E., Fuller, R.A., 2015. Toward
551 improved public health outcomes from urban nature. *Am. J. Public Health* 105, 470–477.
552 <https://doi.org/10.2105/AJPH.2014.302324>

553 Shi, L., Kloog, I., Zanobetti, A., Liu, P., Schwartz, J.D., 2015. Impacts of temperature and its variability on
554 mortality in New England. *Nat. Clim. Chang.* 5, 988–991. <https://doi.org/10.1038/nclimate2704>

555 Smith, I.A., Winbourne, J.B., Tieskens, K.F., Jones, T.S., Bromley, F.L., Li, D., Hutyra, L.R., 2021. A Satellite-
556 Based Model for Estimating Latent Heat Flux From Urban Vegetation. *Front. Ecol. Evol.* 9.
557 <https://doi.org/10.3389/fevo.2021.695995>

558 Spangler, K.R., Wellenius, G.A., 2020. Spatial patterns of recent US summertime heat trends:

559 Implications for heat sensitivity and health adaptations. *Environ. Res. Commun.* 2, 035002.
560 <https://doi.org/10.1088/2515-7620/ab7abb>

561 Tan, J., Zheng, Y., Song, G., Kalkstein, L.S., Kalkstein, A.J., Tang, X., 2007. Heat wave impacts on mortality
562 in Shanghai, 1998 and 2003. *Int. J. Biometeorol.* 51, 193–200. <https://doi.org/10.1007/s00484-006-0058-3>

564 Tang, J., Bolstad, P. V., Desai, A.R., Martin, J.G., Cook, B.D., Davis, K.J., Carey, E. V., 2008. Ecosystem
565 respiration and its components in an old-growth forest in the Great Lakes region of the United
566 States. *Agric. For. Meteorol.* 148, 171–185. <https://doi.org/10.1016/j.agrformet.2007.08.008>

567 Tieskens, K.F., Schulp, C.J.E., Levers, C., Lieskovský, J., Kuemmerle, T., Plieninger, T., Verburg, P.H., 2017.
568 Characterizing European cultural landscapes: Accounting for structure, management intensity and
569 value of agricultural and forest landscapes. *Land use policy* 62, 29–39.
570 <https://doi.org/10.1016/j.landusepol.2016.12.001>

571 Tomlinson, C.J., Chapman, L., Thornes, J.E., Baker, C.J., 2011. Including the urban heat island in spatial
572 heat health risk assessment strategies: a case study for Birmingham, UK. *Int. J. Health Geogr.* 10,
573 42. <https://doi.org/10.1186/1476-072X-10-42>

574 Trlica, A., Hutyra, L.R., Schaaf, C.L., Erb, A., Wang, J.A., 2017. Albedo, Land Cover, and Daytime Surface
575 Temperature Variation Across an Urbanized Landscape. *Earth's Futur.* 5, 1084–1101.
576 <https://doi.org/10.1002/2017EF000569>

577 Twohig-Bennett, C., Jones, A., 2018. The health benefits of the great outdoors: A systematic review and
578 meta-analysis of greenspace exposure and health outcomes. *Environ. Res.* 166, 628–637.
579 <https://doi.org/10.1016/j.envres.2018.06.030>

580 Urban Ecology Institute, 2008. *State of the Urban Forest: A Summary of the Extent and Condition of
581 Boston's Urban Forest.* Newton, MA.

582 van den Berg, M., Wendel-Vos, W., van Poppel, M., Kemper, H., van Mechelen, W., Maas, J., 2015.
583 Health benefits of green spaces in the living environment: A systematic review of epidemiological
584 studies. *Urban For. Urban Green.* 14, 806–816. <https://doi.org/10.1016/j.ufug.2015.07.008>

585 Wang, J.A., Hutyra, L.R., Li, D., Friedl, M.A., 2017. Gradients of atmospheric temperature and humidity
586 controlled by local urban land-use intensity in Boston. *J. Appl. Meteorol. Climatol.* 56, 817–831.
587 <https://doi.org/10.1175/JAMC-D-16-0325.1>

588 Watson, B.C., Wilson, W.J., 1988. *The Truly Disadvantaged: The Inner City, The Underclass, and Public
589 Policy.*, The Journal of Negro Education. University of Chicago Press.
590 <https://doi.org/10.2307/2295455>

591 Winbourne, J.B., Jones, T.S., Garvey, S.M., Harrison, J.L., Wang, L., Li, D., Templer, P.H., Hutyra, L.R.,
592 2020. Tree Transpiration and Urban Temperatures: Current Understanding, Implications, and
593 Future Research Directions. *Bioscience* 70, 576–588. <https://doi.org/10.1093/biosci/biaa055>

594 Xie, Z., 2006. A framework for interpolating the population surface at the residential-housing-unit level.
595 *GIScience Remote Sens.* 43, 233–251. <https://doi.org/10.2747/1548-1603.43.3.233>

596 Yan, C., Guo, Q., Li, H., Li, L., Qiu, G.Y., 2020. Quantifying the cooling effect of urban vegetation by
597 mobile traverse method: A local-scale urban heat island study in a subtropical megacity. *Build.
598 Environ.* 169, 106541. <https://doi.org/10.1016/j.buildenv.2019.106541>

599 Yunusa, I.A.M., Eamus, D., Taylor, D., Whitley, R., Gwenzi, W., Palmer, A.R., Li, Z., 2015. Partitioning of
600 turbulent flux reveals contrasting cooling potential for woody vegetation and grassland during heat
601 waves. *Q. J. R. Meteorol. Soc.* 141, 2528–2537. [https://doi.org/https://doi.org/10.1002/qj.2539](https://doi.org/10.1002/qj.2539)

602 Zardo, L., Geneletti, D., Pérez-Soba, M., Van Epen, M., 2017. Estimating the cooling capacity of green
603 infrastructures to support urban planning. *Ecosyst. Serv.* 26, 225–235.
604 <https://doi.org/https://doi.org/10.1016/j.ecoser.2017.06.016>

605 Zawadzka, J.E., Harris, J.A., Corstanje, R., 2021. Assessment of heat mitigation capacity of urban
606 greenspaces with the use of InVEST urban cooling model, verified with day-time land surface
607 temperature data. *Landsc. Urban Plan.* 214, 104163.
608 <https://doi.org/https://doi.org/10.1016/j.landurbplan.2021.104163>

609 Zhang, L., Tan, P.Y., Diehl, J.A., 2017. A conceptual framework for studying urban green spaces effects on
610 health. *J. Urban Ecol.* 3. <https://doi.org/10.1093/jue/jux015>

611 Ziter, C.D., Pedersen, E.J., Kucharik, C.J., Turner, M.G., 2019. Scale-dependent interactions between tree
612 canopy cover and impervious surfaces reduce daytime urban heat during summer. *Proc. Natl.*
613 *Acad. Sci. U. S. A.* 116, 7575–7580. <https://doi.org/10.1073/pnas.1817561116>

614

615

Mapping the health benefits of greenspace against urban heat exposure through an ecosystem services framework

Supplementary Material

Koen F. Tieskens

Department of Environmental Health, Boston University School of Public Health

Boston, MA, 02118, USA

E-mail: tieskens@bu.edu

Ian A. Smith

Department of Earth and Environment, Boston University

Boston, MA 02215, USA

Raquel B. Jimenez Celsi

Department of Environmental Health, Boston University School of Public Health

Boston, MA, 02118, USA

Lucy R. Hutyra

Department of Earth and Environment, Boston University

Boston, MA 02215, USA

M. Patricia Fabian

Department of Environmental Health, Boston University School of Public Health

Boston, MA, 02118, USA

Keywords: Climate change; Heat exposure; heat vulnerability; urban greenspace; ecosystem services; evapotranspiration modeling

616 **Detailed description of modeling process, terms, and data sources**

617

618 *Step 1) Characterize vegetation activity via estimates of net photosynthesis using the Urban Vegetation*
619 *Photosynthesis and Respiration model (VPRM)*

620

621 Here, photosynthesis is defined as the gross ecosystem exchange (GEE) of carbon dioxide (CO₂) between
622 the biosphere and the atmosphere. Estimates are derived at an hourly temporal resolution and 30m x
623 30m spatial resolution. GEE (μmol CO₂ m² s⁻¹) is estimated as a function of incoming photosynthetically
624 active radiation (PAR) using the methods, equations, and parameters derived in Mahadevan et al. (2008)
625 and Hardiman et al. (2017) as:

626

627

$$GEE = \delta \cdot T_{scale} \cdot P_{scale} \cdot W_{scale} \cdot EVI \cdot \frac{1}{1 + \frac{PAR}{PAR_0}} \cdot PAR$$

628 where T_{scale} , P_{scale} , and W_{scale} are dimensionless scaling terms ranging from zero to one describing the
629 influence of air temperature, phenology, and moisture on photosynthesis. PAR is photosynthetically
630 active radiation (μmol m² s⁻¹). δ and PAR_0 are plant functional type-specific parameters describing
631 the light-use efficiency (μmol CO₂ μmol PAR⁻¹) and half-saturation value (μmol m² s⁻¹) of GEE as a
632 function of PAR . EVI is the Enhanced Vegetation Index.

633

634 T_{scale} captures the impact of air temperature on vegetation activity and scales estimates of GEE as:

635

$$T_{scale} = \frac{(T - T_{min})(T - T_{max})}{(T - T_{min})(T - T_{max}) - (T - T_{opt})^2}$$

636 Where T is the air temperature, T_{min} is the minimum temperature for photosynthesis, T_{max} is the
637 maximum temperature for photosynthesis, and T_{opt} is the optimal temperature for photosynthesis. To
638 account for persistent stomatal activity in vegetation in Boston at the heatwave temperatures
639 experienced during the modeling period (Winbourne et al. 2020), T_{scale} was set to 1 for any temperature

640 greater than 20°C. For temperatures less than 20°C, T_{min} was set to 0°C, T_{opt} was set to 20°C, and T_{max}
641 was set to 40°C (default optimized parameters for deciduous broadleaf trees; Mahadevan et al. 2008).

642

643 P_{scale} captures the impact of leaf age on vegetation activity. In this exercise, the modeling period
644 occurred after full leaf expansion and prior to the onset of senescence, therefore, P_{scale} was set to 1.

645

646 W_{scale} captures the impact of moisture availability on vegetation activity and scales GEE as:

647

$$648 \quad W_{scale} = \frac{1 + LSWI}{1 + LSWI_{max}}$$

649

650 Where $LSWI$ is the Land Surface Water Index and $LSWI_{max}$ is the maximum $LSWI$ observed for a given
651 pixel during the growing season. $LSWI$ has been proven to effectively monitor vegetation water content
652 (Gu et al. 2008, Xiao et al. 2005, and Maki et al. 2004) and is sensitive to decreases in moisture
653 availability in ecosystems that senesce during drought periods, such as those in Boston, MA.

654

655 Estimates of ecosystem respiration are required to determine net canopy assimilation rates of CO_2 (A_n ;
656 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) and is estimated as:

657

$$658 \quad R_{eco} = T \cdot \alpha + \beta$$

659 Where T is the air temperature ($^{\circ}\text{C}$), α is the sensitivity of R_{eco} to T , and β is the minimum value that R_{eco}
660 can take on ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$). In this application, α is set to 0.127 and β is set to 0.25 (Mahadevan et al.
661 2008). Leaf respiration typically accounts for 8-12% of ecosystem respiration (Tang et al. 2008) and is
662 approximated to be 10% of R_{eco} . Therefore, net photosynthesis of the canopy is estimated as:

663

$$664 \quad A_n = GEE - 0.1 \cdot R_{eco}$$

665

666 Driver data for the VPRM come from a range of remote-sensing and modeling products. *LSWI* and *EVI*
667 are retrieved every eight days over the course of the year from the Landsat 7 and Landsat 8 Tier 1
668 Surface Reflectance products and are calculated as:

669

670
$$EVI = 2.5 \left(\frac{(NIR - R)}{(NIR + 6R - 7.5B + 1)} \right)$$

671

672 where *NIR*, *R*, and *B* correspond to the surface reflectance measured from the near-infrared, red, and
673 blue bands on the specific Landsat sensor, and:

674

675
$$LSWI = \frac{(NIR - SWIR)}{(NIR + SWIR)}$$

676

677 where *SWIR* corresponds to the surface reflectance measured from the shortwave infrared band on the
678 specific Landsat sensor. Daily *EVI* and *LSWI* are estimated via interpolation using a spline function and
679 the surface reflectance images.

680

681 *PAR* data come from measurements of incoming shortwave radiation (SW; $W\ m^{-2}$) from the
682 Geostationary Operational Environmental Satellite (GOES) 16 at a spatial resolution of $0.05^\circ \times 0.05^\circ$ and
683 hourly temporal resolution. *PAR* ($\mu\text{mol m}^2\ \text{s}^{-1}$) is approximated to be $SW / 0.505$. Air temperature data
684 come from the Rapid Refresh analysis product at a spatial resolution of 13km x 13km and temporal
685 resolution of one hour. For 30m x 30m pixels with impervious surface area greater than 0, air
686 temperature is adjusted as a linear function of impervious surface area and hour of year using the
687 coefficients derived in Wang et al. (2017) and methods described in Hardiman et al. (2017).

688 *Step 2) Estimate surface conductance of water vapor as a function of net photosynthesis*

689

690 Surface conductance at 30m x 30m spatial resolution and hourly temporal resolution is estimated using
691 the Medlyn stomatal conductance model (2011) as:

692

$$g_s = g_0 + 1.6 \cdot (1 + \frac{g_1}{D}) \cdot \frac{A_n}{c_s/P_{atm}} \quad (6)$$

693 where g_s is the surface conductance ($\mu\text{mol H}_2\text{O m}^{-2} \text{s}^{-1}$), g_0 is the minimum surface conductance (100 $\mu\text{mol H}_2\text{O m}^{-2} \text{s}^{-1}$), g_1 is a unitless plant functional type dependent parameter, D is the vapor pressure deficit (kPa), A_n is net photosynthesis ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$), c_s is the partial pressure of CO_2 (40.53 Pa), and P_{atm} is the atmospheric pressure (101325 Pa). In this analysis, the plant functional type parameters for temperature deciduous broadleaf trees were selected. P_{atm} and c_s are held constant due to little sensitivity of model outputs to variations in their values. D is calculated from RAP temperature and relative humidity at a height of 2m aboveground, where values are adjusted to account for urban heat and dry islands as a linear function of impervious surface area and hour of year using the coefficients derived in Wang et al. (2017).

702

703 *Step 3) Input surface conductance estimates into Penman-Monteith equation to estimate latent heat flux*

704

705 Latent heat flux (λE ; W m^{-2}) is estimated at 30m x 30m spatial resolution and hourly temporal resolution
706 is estimated using the Penman-Monteith model of evapotranspiration (1965) as:

707

708

$$\lambda E = \frac{\Delta(R_n - G) + \rho_a c_p(D) g_a}{\Delta + \gamma(1 + g_a/g_s)}$$

709

710 where λ is the latent heat of vaporization of H_2O (2260 J g^{-1}), E is the mass H_2O evaporation rate ($\text{g s}^{-1} \text{ m}^{-2}$), Δ describes the rate of change of saturation specific humidity with air temperature (Pa K^{-1}), R_n is the net radiation balance of the surface (W m^{-2}), G is the ground heat flux (W m^{-2}), ρ_a is the dry air density (1.275 kg m^{-3}), c_p is the specific heat capacity of air (1005 $\text{J kg}^{-1} \text{ K}^{-1}$), D is the vapor pressure deficit (Pa), g_a is the atmospheric conductance (m s^{-1}), g_s is the surface conductance (m s^{-1}), and γ is the psychrometric constant (66 Pa K^{-1}).

716

717 Δ is calculated following the methods described in Allen et al. (1998) as:

718

719

$$\Delta = \frac{4098 \left[0.6108 \exp \left(\frac{17.27T}{T + 237.3} \right) \right]}{(T + 237.3)^2}$$

720 Where T is the impervious surface area adjusted air temperature from the RAP product. R_n is estimated
721 to be:

722

723

$$R_n = (1 - \alpha)K \downarrow + L \downarrow - (\varepsilon\sigma T_s^4 + (1 - \varepsilon)L \downarrow)$$

724 Where α is the 30m x 30m albedo (Trlica et al. 2017), $K \downarrow$ is incoming shortwave radiation (W m^{-2} ;
725 acquired from GOES-16), $L \downarrow$ is incoming longwave radiation (W m^{-2} ; acquired from GOES-16), ε is the
726 surface emissivity (Estimated to be 0.95 in urban areas; Oke 2017), σ is the Stefan-Boltzman constant
727 ($5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$), and T_s is the surface temperature (K; acquired from RAP temperature at ground
728 surface). G is approximated as 10% of R_n . The dry air density (ρ_a) and specific heat capacity of air (c_p) are
729 held constant as the model outputs show little sensitivity to variations in their values. The aerodynamic
730 conductance (g_a) is estimated to be 0.033 m s^{-1} as the Penman-Monteith equation is not sensitive to
731 variation in aerodynamic conductance in the range of $0.010 - 0.033 \text{ m s}^{-1}$ and typical measured values in
732 cities have been found to fall within this range (Ballinas et al. 2016, Chen et al. 2011, Grimmond & Oke
733 1999).

734

735 **References**

736

737 Allen R, Pereira L, Smith M. 1998. Crop Evapotranspiration. Guidelines for Computing Crop Water
738 Requirements. In FAO Irrigation and Drainage Paper (Vol. 56).

739

740 Ballinas M, Barradas VL. 2016. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico
741 City: A Simple Phenomenological Model. J Environ Qual 45:157–166; doi:10.2134/jeq2015.01.0056.

742

743 Chen L, Zhang Z, Li Z, Tang J, Caldwell P, Zhang W. 2011. Biophysical control of whole tree transpiration
744 under an urban environment in Northern China. *Journal of Hydrology* 402:388-400.
745 doi:10.1016/j.jhydrol.2011.03.034

746

747 Grimmond CS, Oke TR. 1999. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface
748 Form. *Journal of Applied Meteorology* 38:1262-1292. doi:10.1175/1520-0450(1999)038

749 Gu Y, Hunt E, Wardlow B, Basara JB, Brown JF, Verdin JP. 2008. Evaluation of MODIS NDVI and NDWI for
750 Vegetation Drought Monitoring Using Oklahoma Mesonet Soil Moisture Data. *Geophysical*
751 *Research Letters* 35:L22401.

752 Hardiman BS, Wang JA, Hutyra LR, Gately CK, Getson JM, Friedl MA. 2017. Accounting for urban biogenic
753 fluxes in regional carbon budgets. *Sci Total Environ* 592:366–372;
754 doi:10.1016/j.scitotenv.2017.03.028.

755

756 Mahadevan P, Wofsy SC, Matross DM, Xiao X, Dunn AL, Lin JC, et al. 2008. A satellite-based biosphere
757 parameterization for net ecosystem CO₂ exchange: Vegetation Photosynthesis and Respiration
758 Model (VPRM). *Global Biogeochem Cycles* 22; doi:10.1029/2006GB002735.

759 Maki M, Ishihara M, Tamura M. 2004. Estimation of Leaf Water Status to Monitor the Risk of Forest Fires
760 by Using Remotely Sensed Imagery. *Remote Sensing of Environment* 90: 441–450.

761 Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, Angelis PD,
762 Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling
763 stomatal conductance. *Global Change Biology*, 17: 2134–2144. doi:10.1111/j.1365-
764 2486.2010.02375.x

765

766 Monteith JL. 1965. Evaporation and environment. *Symp Soc Exp Biol* 19: 205–234.

767

768 Oke, T., Mills, G., Christen, A., & Voogt, J. (2017). *Urban Climates*. Cambridge: Cambridge University

769 Press. doi: 10.1017/9781139016476

770

771 Tang J, Bolstad P V., Desai AR, Martin JG, Cook BD, Davis KJ, et al. 2008. Ecosystem respiration and its
772 components in an old-growth forest in the Great Lakes region of the United States. Agric For
773 Meteorol 148:171–185; doi:10.1016/j.agrformet.2007.08.008.

774

775 Trlica A, Hutyra LR, Schaaf CL, Erb A, Wang JA. 2017. Albedo, Land Cover, and Daytime Surface
776 Temperature Variation Across an Urbanized Landscape. Earth's Futur 5:1084–1101;
777 doi:10.1002/2017EF000569.

778

779 Urban Ecology Institute. State of the Urban Forest: A Summary of the Extent and Condition of Boston's
780 Urban Forest. 2008.

781

782 Wang JA, Hutyra LR, Li D, Friedl MA. 2017. Gradients of atmospheric temperature and humidity
783 controlled by local urban land-use intensity in Boston. J Appl Meteorol Climatol 56:817–831;
784 doi:10.1175/JAMC-D-16-0325.1.

785

786 Winbourne JB, Jones TS, Garvey SM, Harrison JL, Wang L, Li D, et al. 2020. Tree Transpiration and Urban
787 Temperatures: Current Understanding, Implications, and Future Research Directions. Bioscience

788 Xiao X, Boles S., Liu J., Zhuang D., Frolking S., Li C., Salas W., Moore III B. 2005. Mapping Paddy Rice
789 Agriculture in Southern China Using Multi-Temporal MODIS Images. Remote Sensing of Environment 95:
790 480–492.

791