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ABSTRACT: The Two-Resistance Mechanism (TRM) attribution method, which was designed

to analyze the urban-rural contrast of temperature, is improved to study the urban-rural contrast

of heat stress, which better represents the human thermal comfort. The improved method can be

applied to diagnosing any heat stress index that is a function of temperature and humidity. As

an example, in this study we use it to analyze the summertime urban-rural contrast of Simplified

Wet Bulb Globe Temperature (SWBGT) simulated by the Geophysical Fluid Dynamics Laboratory

land model coupled with an urban canopy model. We find that the urban-rural contrast of SWBGT

is primarily caused by the lack of evapotranspiration in urban areas during the daytime and the

release of heat storage during the nighttime, with the urban-rural differences in aerodynamic

features playing either positive or negative roles depending on the background climate. Compared

to the magnitude of the urban-rural contrast of temperature, the magnitude of the urban-rural

contrast of SWBGT is damped due to the moisture deficits in urban areas. We further find that the

urban-rural contrast of 2-m air temperature/SWBGT is fundamentally different from that of canopy

air temperature/SWBGT. Turbulent mixing in the surface layer leads to much smaller urban-rural

contrasts of 2-m air temperature/SWBGT than their canopy air counterparts.
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SIGNIFICANCE STATEMENT: Heat leads to serious public health concerns but has an uneven23

effect on urban and rural areas. Our study explains the magnitude and pattern of the simulated24

urban-rural contrast in heat stress at the global scale and improves an attribution method to25

quantify which biophysical processes are mostly responsible for the simulated urban-rural contrast26

in heat stress. We highlight two well-known causes of higher heat stress in cities: the lack of27

evapotranspiration and the stronger release of heat storage. Meanwhile, we draw attention to the28

vegetation types in rural areas, which determine the urban-rural difference in surface roughness and29

significantly affect the urban-rural difference in heat stress. Lastly, we find the urban-rural contrasts30

of 2-m air temperature/SWBGT are largely reduced relative to their canopy air counterparts due to31

the turbulent mixing effect.32

1. Introduction33

Prolonged exposure to heat leads to serious health problems such as heat exhaustion, heatstroke,34

and heart diseases (Matthies et al. 2008). In 2003 and 2010, Europe and Russia experienced35

unprecedented heatwaves, causing around 40,000 and 55,000 deaths, respectively (Robine et al.36

2008; Barriopedro et al. 2011). More recently in June 2021, the Pacific Northwest of the U.S.37

and Canada experienced record-breaking high temperatures far above 104°F, leading to spikes in38

death and sharp increases in hospital visits (World Meterological Organization 2021). Heat is now39

widely recognized as the number one weather killer in the U.S. (National Weather Service 2021).40

Urban residents are often believed to experience higher heat stresses due to the higher tem-41

peratures in cities compared to the surrounding suburban and rural areas, which is known as the42

urban heat island (UHI) effect. Much effort has been made to understanding the influence of43

cities on weather and climate (Howard 1833; Landsberg 1981; Oke 1978; Seto and Shepherd 2009,44

and references therein), especially the UHI effect (Oke 1981, 1982; Yow 2007; Grimmond 2007;45

McCarthy et al. 2010; Oleson 2012). Nowadays it is known that the UHI effect is caused by many46

factors, including the lack of vegetation, the use of man-made materials with large thermal admit-47

tance, the radiative trapping effect of the three-dimensional urban canyon, and the anthropogenic48

heat emissions in cities (Oke et al. 2017). Increasingly sophisticated urban parameterizations have49

been developed to represent urban land surface and hydrological processes in numerical weather50

prediction models, global climate models, and earth system models, allowing the simulation of51
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UHI intensities across time and space (Masson 2000; Kusaka et al. 2001; Oleson et al. 2008b,a;52

Grimmond et al. 2010, 2011; Oleson et al. 2011; Li et al. 2016a,b; Best and Grimmond 2015).53

However, ambient temperature is not the only environmental component of heat stress (Fanger54

1972). When considering the human thermal comfort and heat-related health issues, it is often55

important to also consider humidity because evaporation of sweat is a primary method for the56

human body to dissipate heat (Sherwood and Huber 2010). Although the urban temperature is57

generally higher than the rural temperature, the humidity levels in cities are often lower than those58

in rural areas (Oke et al. 2017), offsetting some of the enhanced heat stresses induced by the59

UHI effects (Chakraborty et al. 2022). Other factors such as radiation and wind speed also play60

important roles (Fanger 1972) and a large number of heat stress indices exist in the literature with61

different assumptions built into them (Anderson et al. 2013; Buzan et al. 2015).62

In the climate modeling literature, a primary focus of previous studies has been quantifying how63

heat stress changes under a warming climate (Willett and Sherwood 2012; Dunne et al. 2013; Zhang64

et al. 2021). Only a handful of studies specifically examined the urban-rural contrast of heat stress65

and how urban and rural heat stresses respond to climate change differently. Based on simulations66

with the Community Climate System Model whose land component, the Community Land Model67

(CLM), includes an urban canopy model (UCM), Fischer et al. (2012) found that the humidity68

deficits offset the enhanced heat stresses in urban areas due to the UHI effects, but only weakly.69

Moreover, they reported that the positive urban-rural contrast of heat stress is most pronounced70

at night and over mid-latitudes and subtropics. Oleson et al. (2015) examined five heat stress71

indices (i.e., the National Weather Service Heat Index, the Apparent Temperature, the SWBGT, the72

Humidex, and the Discomfort Index) over North America using CLM. They highlighted that both73

the present-day urban-rural contrast of heat stress and the climate change impact on heat stress are74

highly dependent on which heat stress index is used and the urban density.75

Different from previous work which largely focused on simulating the urban-rural contrast of76

heat stress in historical and future climates, the goal of this study is to quantify which biophysical77

processes (and their parameterizations) are mostly responsible for the simulated urban-rural contrast78

of heat stress by a global model. The premise is that only by doing so can we explain the magnitude79

and pattern of the simulated urban-rural contrast of heat stress by a model, as well as the differences80

in the simulated results by different models. To accomplish this, we develop an attribution method81
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for the urban-rural contrast of heat stress indices that are functions of temperature and humidity,82

building on a recent method (Rigden and Li 2017) that has been used to attribute the urban-rural83

contrast of temperature (or the UHI intensity). As an example, we apply the improved method to84

analyzing the urban-rural contrast of Simplified Wet Bulb Globe Temperature (SWBGT) simulated85

by the Geophysical Fluid Dynamics Laboratory land model coupled with a UCM.86

Here we note that recent studies reported biases associated with the SWBGT relative to the web-87

bulb globe temperature (WBGT) (Grundstein and Cooper 2018; Kong and Huber 2022) because88

the SWBGT does not consider wind and radiation factors which could vary locally depending89

on the vegetation density and/or land surface type (Middel et al. 2021). Nonetheless, the use of90

SWBGT in this study simply serves as an example to demonstrate how the improved method can91

be applied to analyzing any heat stress indices as long as they are only functions of temperature92

and humidity, including the National Weather Service Heat Index, the Apparent Temperature, the93

Humidex and so on (Anderson et al. 2013). The improved method does not apply to heat stress94

indices that are also functions of wind speed and radiation (e.g., the WBGT and the Discomfort95

Index), the attribution analysis of which is left for future studies.96

The paper is organized as follows: Section 2 describes the model simulations and the attribution97

method; Section 3 discusses the results; Section 4 concludes the study; Section 5 discusses the98

implications.99

2. Methods100

a. Model Simulations101

In this study, we use outputs from an offline global simulation conducted with the Geophysical102

Fluid Dynamics Laboratory (GFDL) land model (LM4.0), which is coupled with a UCM. The103

simulation, at a resolution of 2 by 2.5 degrees, is forced by a 50-year (1949-2000), 3-hourly, 1°104

dataset, which is based on a combination of observational and reanalysis data (Sheffield et al.105

2006). We recycle the first 30-year forcing to the period of 1700-1948 to spin up the model, and the106

simulation covers from 1949 to 2000. In this study, we focus on the summer seasons in 1981-2000,107

which are defined as June, July, and August in the Northern Hemisphere and December, January,108

and February in the Southern Hemisphere. We only analyze grid cells with urban fractions larger109

than 0.1%.110
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A brief description of the model structure is given here. In this modeling system, there can exist111

five different land-use/land-cover types (i.e., natural vegetation, secondary vegetation, grassland,112

pasture, and urban), which will be called tiles hereafter, in a grid cell. Among them, the non-urban113

tiles (i.e., natural vegetation, secondary vegetation, grassland, and pasture) are treated as rural114

tiles. The urban tile includes a roof component and a canyon component. The canyon component115

further includes the pervious ground, the impervious ground, the walls, and the vegetation inside116

the canyon. Detailed parameterizations of physical processes in urban areas, including those117

associated with urban vegetation, can be found in Li et al. (2016a). Validation of the UCM’s118

performance at flux sites can be found in Li et al. (2016a). Large-scale validation of simulated119

urban and rural temperatures can be found in Liao et al. (2021). The fraction of different tiles is120

defined through the land cover input dataset used in the Coupled Model Intercomparison Project121

Phase 6 protocol. Hence, the fraction of the urban land, as well as the fractions of other land types,122

evolves in the simulation period (Li et al. 2016b).123

Both LM4.0 and UCM can be viewed as dual-source models (Bonan 2019) in the sense that the124

vegetation and the soil ground for the rural land (or the building and the canyon floor for the urban125

land) have their own energy budgets and surface temperatures (e.g., 𝑇soil, 𝑇veg, 𝑇building, 𝑇ground in126

Fig. 1a). Note that Fig. 1 is a simplified schematic and is not to scale. The urban canyon for127

example is actually more complicated and is composed of four facets (the wall, the impervious128

surface at the ground, the pervious ground, and the vegetation above the pervious ground). The129

connection between these different surface temperatures is the so-called canopy air temperature130

(𝑇ca), where the sensible and latent heat fluxes from different facets are aggregated and passed to the131

atmospheric model (see Fig. 1a). The canopy air temperature is different from the air temperature132

(denoted as 𝑇𝑎) at the bottom of the atmospheric model, the height of which is usually on the order133

of 20-50 m. The canopy air temperature is also different from the so-called 2-m air temperature134

(𝑇2), which is computed by interpolating the surface-layer temperature profile to 2 meters above135

the displacement height (𝑧𝑑). The 𝑧𝑑 can be regarded as the level at which the mean drag on the136

surface appears to act (Jackson 1981), which is close to zero if there is no canopy (vegetation or137

urban). The value of 𝑧𝑑 can be on the order of 10 meters for tall canopies (Garratt 1994, Table A6).138

Like most other land surface models, the model used here assumes that within the same grid139

cell, urban and rural tiles share the same atmospheric conditions (see Fig. 1a). Hence atmospheric140
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Fig. 1: (a) A schematic of the temperature and humidity definitions. The superscripts 𝑢 and 𝑟
represent urban and rural tiles, respectively. Subscripts ca and 2 represent canopy air and 2 meters
above the displacement height, respectively. SWin, LWin, 𝑇𝑎, 𝑞𝑎, 𝑃 refer to the incoming shortwave
radiation, incoming longwave radiation, the air temperature at the bottom of the atmospheric model,
the specific humidity at the bottom of the atmospheric model, and the pressure, respectively. These
quantities are identical for urban and rural tiles. However, urban and rural tiles have different
sensible (𝐻) and latent heat (𝐿𝐸) fluxes, different canopy air/2-m air temperatures as well as
humidities, and different surface temperatures. (b) A schematic of how the 2-m air temperature
is interpolated between the canopy air temperature and the air temperature at the bottom of the
atmospheric model. Since the displacement heights and roughness lengths are different between
urban and rural tiles, the canopy air and 2-m air temperature and humidity are not necessarily
defined as the same physical height for urban and rural tiles. 𝑟𝑎 refers to the bulk aerodynamic
resistance to convective heat transfer between the canopy air and the bottom of the atmospheric
model, while 𝑟′𝑎 refers to the aerodynamic resistance to convective heat transfer between the 2-m
level and the bottom of the atmospheric model. Although logarithmic temperature profiles are
shown here for schematic purposes, the temperature profiles, in reality, are not always logarithmic
due to thermal stratification.

variables (𝑆𝑊𝑖𝑛, 𝐿𝑊𝑖𝑛, 𝑇𝑎, 𝑞𝑎, and 𝑃) will not contribute to urban-rural differences when urban141

and rural tiles are in the same grid cell. This assumption breaks down when comparing urban and142

rural conditions that are in different grid cells (e.g., in high-resolution simulations) but works for143

our analyses which focus on urban-rural differences in the same grid cell. Recall that the spatial144

resolution of our simulation is 2 by 2.5 degrees. When comparing urban and rural conditions that145

are in different grid cells, this assumption can be relaxed (see an example in Wang and Li (2021)).146

To summarize, 𝑇ca and 𝑇2 are different between urban and rural tiles within the same grid cell while147

𝑇a is identical (Fig. 1).148

Similarly, we define the specific humidity at the bottom of the atmospheric model (𝑞𝑎), the149

canopy air specific humidity (𝑞ca), and also the 2-m specific humidity (𝑞2). We further define heat150

stress indices based on these temperatures and humidities. In this study, we use the SWBGT (W)151
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(Willett and Sherwood 2012; Fischer et al. 2012; Oleson et al. 2015), which is a unitless heat stress152

index calculated from ambient air temperature (𝑇 , 𝐾) and water vapor pressure (𝑒, 𝑃𝑎) as153

𝑊 = 0.567(𝑇 −273.15) +0.00393𝑒 +3.94. (1)

Since the water vapor pressure is related to specific humidity(𝑞, 𝑘𝑔𝑘𝑔−1) and air pressure (𝑃, 𝑃𝑎)154

through 𝑞 = 0.622𝑒/𝑃, the above equation can be also written as155

𝑊 = 0.567(𝑇 −273.15) +0.00632𝑃𝑞 +3.94. (2)

Therefore, due to the different temperatures/humidities defined earlier (see Fig. 1), we have three156

different SWBGTs: one at the bottom of the atmospheric model (W𝑎), which is the same between157

urban and rural tiles; one in the canopy air (Wca), which represents the ambient heat stress within the158

canopy; one at 2 meters above the displacement height (W2), which lies in between the canopy and159

the lowest level of the atmospheric model. Hereafter we refer to 2 meters above the displacement160

height as the 2-m level for simplicity.161

In this study, we are interested in understanding the differences between urban and rural tiles162

in terms of their temperatures and SWBGTs. Since the urban and rural tiles share the same163

atmospheric conditions, the urban-rural contrasts of canopy air and 2-m air temperature and164

SWBGT must be caused by the urban-rural differences in surface biophysical properties such as165

albedo, roughness length, heat capacity, etc. However, these biophysical factors make unequal166

contributions to the urban-rural contrasts of canopy air and 2-m air temperature and SWBGT.167

Quantifying the contribution of each factor requires an attribution method.168

b. The Attribution Method169

1) The Two-Resistance Mechanism (TRM) Method170

The essence of the TRM method (Rigden and Li 2017) is to derive an analytical solution for171

the surface temperature (𝑇𝑠, 𝐾) based on the energy balance equation for a bulk surface, from172

which the sensitivity of 𝑇𝑠 to various biophysical factors can be directly computed. The connection173

between the bulk surface temperature defined in the TRM method and the canopy air and 2-m air174

temperature discussed above will be elaborated on later.175
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Let us start with the energy balance equation for an infinitely thin surface layer that is horizontally176

homogeneous:177

𝑅𝑛 = 𝑆𝑊in(1−𝛼) + 𝜀𝐿𝑊in − 𝜀𝜎𝑇4
s = 𝐻 + 𝐿𝐸 +𝐺, (3)

where 𝑅𝑛 (𝑊𝑚−2) is the net radiation, 𝑆in (𝑊𝑚−2) is the incoming shortwave radiation, 𝐿in178

(𝑊𝑚−2) is the incoming longwave radiation, 𝛼 is the surface albedo, 𝜀 is the surface emissivity, 𝜎179

(𝑊𝑚−2𝐾−4) is the Stefan-Boltzmann constant, 𝐻 (𝑊𝑚−2) is the sensible heat flux, 𝐿𝐸 (𝑊𝑚−2) is180

the latent heat flux, and 𝐺 (𝑊𝑚−2) is the ground heat flux or heat storage. 𝐻 and 𝐿𝐸 are further181

parameterized by the resistance concepts (Monteith and Unsworth 2008):182

𝐻 =
𝜌𝑐𝑝

𝑟𝑎
(𝑇s −𝑇𝑎), (4)

183

𝐿𝐸 =
𝜌𝐿𝑣

𝑟𝑎 + 𝑟𝑠
[𝑞∗(𝑇s) − 𝑞𝑎], (5)

where 𝜌 (𝑘𝑔𝑚−3) is the air density, 𝑐𝑝 (𝐽𝑘𝑔−1𝐾−1) is the specific heat of air at constant pressure, 𝐿𝑣184

(𝐽𝑘𝑔−1) is the latent heat of vaporization, 𝑞∗(𝑇s) is the saturated specific humidity at 𝑇s following185

𝑞∗(𝑇s) = 0.622𝑒∗(𝑇s)/𝑃, where 𝑒∗(𝑇s) (𝑃𝑎) is the saturation vapor pressure that can be computed186

from 𝑇𝑠 using the Clausius-Clapeyron relation. 𝑟𝑎 (𝑠𝑚−1) is the aerodynamic resistance, which187

represents the efficiency of convective heat transfer between the surface and the atmosphere and188

is related to wind speed, roughness length, and stability conditions (Garratt 1994). The smaller189

the 𝑟𝑎 is, the more efficient convective heat transfer becomes. 𝑟𝑠 (𝑠𝑚−1) is the surface resistance190

representing how far the surface is away from saturation, which is dependent on the water availability191

and vegetation characteristics (Garratt 1994). The smaller the 𝑟𝑠 is, the closer the surface is to192

saturation.193

Substituting Eqs. 4 and 5 into Eq. 3 and linearizing the emitted longwave radiation term and the194

saturated specific humidity term (Rigden and Li 2017) yield195

𝑇s −𝑇𝑎 =
𝜆0{𝑅∗

𝑛−𝐺 − 𝜌𝐿𝑣
𝑟𝑎+𝑟𝑠 [𝑞

∗(𝑇𝑎) − 𝑞𝑎]}
1+ 𝑓TRM

, (6)

where 𝑅∗
𝑛 = 𝑆𝑊𝑖𝑛 (1−𝛼) +𝜀𝐿𝑊𝑖𝑛−𝜀𝜎𝑇4

𝑎 , 𝑓TRM =
𝑟0
𝑟𝑎
(1+ 𝛿

𝛾
𝑟𝑎

𝑟𝑎+𝑟𝑠 ), 𝛿 =
𝑑𝑒∗

𝑑𝑇
|𝑇𝑎 , 𝛾 =

𝑐𝑝𝑃

0.622𝐿𝑣 , 𝑟0 = 𝜌𝑐𝑝𝜆0,196

𝜆0 =
1

4𝜀𝜎𝑇3
𝑎

.197

9



With Eq. 6, one could study the change in surface temperature (𝑇s) due to changes in any forcing198

or parameter (Liao et al. 2018; Wang et al. 2019, 2020b; Moon et al. 2020). As alluded to earlier,199

we are interested in using Eq. 6 to diagnose the differences between urban and rural tiles within the200

same grid cell simulated by the numerical model. In this case, there are no urban-rural differences201

in terms of 𝑆𝑊𝑖𝑛, 𝐿𝑊𝑖𝑛, 𝑇𝑎, 𝑞𝑎, and 𝑃. We also neglect the urban-rural difference in emissivity due202

to its small role as demonstrated elsewhere (Liao et al. 2018; Wang et al. 2020b). Therefore, we203

attribute the urban-rural difference in surface temperature (Δ𝑇𝑠) to urban-rural differences in the204

albedo, aerodynamic resistance, surface resistance, and ground heat flux via the first-order Taylor205

expansion, as follows:206

Δ𝑇s =
𝜕𝑇s

𝜕𝛼
Δ𝛼+ 𝜕𝑇s

𝜕𝑟𝑎
Δ𝑟𝑎 +

𝜕𝑇s

𝜕𝑟𝑠
Δ𝑟𝑠 +

𝜕𝑇s

𝜕𝐺
Δ𝐺. (7)

Full expressions of the partial derivatives (called the sensitivities hereafter) can be found in the207

Supplementary Materials. The product of the sensitivity and the difference ( 𝜕𝑇s
𝜕𝑋

Δ𝑋) is denoted as208

the contribution of the variable 𝑋 to Δ𝑇s.209

2) Extending the TRM Method to Heat Stress210

In this section, we extend the original TRM method, which was designed to study the urban-rural211

contrast of temperature, to study the urban-rural contrast of heat stress. For a bulk surface, the212

latent heat flux can also be parameterized by the difference between the surface specific humidity213

𝑞s and the atmospheric specific humidity 𝑞𝑎 as214

𝐿𝐸 =
𝜌𝐿𝑣

𝑟𝑎
(𝑞s − 𝑞𝑎). (8)

Here 𝑟𝑠 does not show up in the denominator because the actual specific humidity at the surface215

(𝑞s), instead of the saturated surface specific humidity, is used. Comparing Eq. 8 to Eq. 5 gives216

𝑞s =
𝑟𝑎

𝑟𝑎 + 𝑟𝑠
[𝑞∗(𝑇𝑠) − 𝑞𝑎] + 𝑞𝑎 . (9)

Analogous to the attribution of urban-rural difference in surface temperature, the urban-rural217

difference in the surface specific humidity can be expressed as218

Δ𝑞s =
𝜕𝑞s

𝜕𝛼
Δ𝛼+ 𝜕𝑞s

𝜕𝑟𝑎
Δ𝑟𝑎 +

𝜕𝑞s

𝜕𝑟𝑠
Δ𝑟𝑠 +

𝜕𝑞s

𝜕𝐺
Δ𝐺. (10)
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Furthermore, based on Eq. 2, the urban-rural difference in surface SWBGT can be expressed as219

ΔWs = 0.567Δ𝑇s +0.00632𝑃Δ𝑞s, (11)

where Δ𝑇𝑠 and Δ𝑞𝑠 are from Eq. 7 and Eq. 10, respectively. Namely, the contribution of the generic220

variable 𝑋 to ΔWs can be expressed as (0.567 𝜕𝑇s
𝜕𝑋

+0.00632𝑃 𝜕𝑞s
𝜕𝑋

)Δ𝑋 .221

As mentioned earlier, although this study only analyzes the SWBGT, the methodology can be222

applied to other heat stress indices (e.g., the National Weather Service Heat Index, the Apparent223

Temperature, the Humidex). Some of these indices are functions of relative humidity and/or224

dew point temperature, but since relative humidity and dew point temperature are functions of225

temperature and specific humidity (with given pressure), they pose no additional challenge for this226

method. In general, if a heat stress index (HS) can be expressed as HS = 𝑓 (𝑇, 𝑞), where 𝑓 is a227

known function, its change can thus be linked to changes in 𝑇 and 𝑞 through ΔHS =
𝜕 𝑓

𝜕𝑇
Δ𝑇 + 𝜕 𝑓

𝜕𝑞
Δ𝑞.228

Furthermore, the attribution method can be further improved to study mixed effects between229

temperature and humidity by using second-order (or higher-order) Taylor expansion (see Chen230

et al. 2020) through ΔHS =
𝜕 𝑓

𝜕𝑇
Δ𝑇 + 𝜕 𝑓

𝜕𝑞
Δ𝑞 + 1

2 [
𝜕2 𝑓
𝜕𝑇2 (Δ𝑇)2 + 𝜕2 𝑓

𝜕𝑞2 (Δ𝑞)2 +2 𝜕2 𝑓
𝜕𝑇𝜕𝑞

Δ𝑇Δ𝑞]. In the present231

study, we only focus on the first-order Taylor expansion while neglecting the second- and higher-232

order terms and the mixed effects, because these terms are usually of smaller magnitude relative233

to the first-order terms. However, they can be important when the assumptions underlying Taylor234

expansion start to break down (e.g., when the urban-rural differences of biophysical factors are no235

longer sufficiently small) or when one is specifically interested in the coupling and interaction of236

the biophysical factors.237

3) Application of the Attribution Method to Diagnosing the Numerical Model Outputs238

We need to address the following three questions before applying the attribution method discussed239

above to diagnosing the numerical model outputs. First, which temperature and SWBGT in the240

numerical model represent the bulk surface temperature (𝑇𝑠) and the bulk surface SWBGT (W𝑠) in241

the attribution method, respectively? Second, at which time scale should the attribution analysis242

be conducted? Third, how to ensure that the attribution method reasonably captures the simulated243

urban-rural differences in 𝑇𝑠 and W𝑠 by the numerical model? In this section, we address these244

three questions.245
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There is no single correct answer to the question of which temperature in the numerical model246

represents (or approximates) the bulk surface temperature (𝑇𝑠) in the attribution method. In our247

opinion, the best approximation for this particular numerical model is the canopy air temperature.248

There are two reasons supporting this argument (with more details presented in the Supplementary249

Materials). First, the total surface sensible heat flux is usually computed based on the difference250

between the canopy air temperature and the air temperature at the bottom of the atmospheric model251

in numerical models such as the LM4.0 and UCM used here. Therefore, from the atmospheric252

model’s perspective, the canopy air temperature is the temperature at which the total surface253

sensible heat flux is generated (or at which the different heat sources on the land are aggregated).254

In other words, the canopy air temperature would be identical to the surface temperature for a255

bulk surface with the same total sensible heat flux and thermal roughness length (Garratt 1994).256

Second, the canopy air temperature agrees reasonably well with the radiative surface temperature257

in our simulation, which can be inferred from the outgoing longwave radiation with the aid of the258

Stefan-Boltzmann law (see Fig. S1 in the Supplementary Materials). This is consistent with the259

findings in Li and Bou-Zeid (2014).260

To proceed, we will use the canopy air temperature (𝑇ca) to approximate𝑇𝑠 in the TRM attribution261

method. Similarly, we also use the canopy air humidity (𝑞ca) to represent 𝑞𝑠 and use the extended262

TRM attribution method (Eq. 11) for analyzing the canopy air SWBGT. The other variables needed263

for the attribution can then be derived. For example, the aerodynamic resistance and the surface264

resistance are inferred using Eqs. 4 and 5, given the simulated 𝑇ca, 𝐻 and 𝐿𝐸 , and the forcing265

variables 𝑇𝑎 and 𝑞𝑎. The albedo is inferred using the outgoing and incoming shortwave radiation,266

and the ground heat flux is a default output. Note that sometimes the inferred 𝑟𝑎 is negative when267

applying the TRM method (or other similar methods such as the Intrinsic Biophysical Mechanism,268

see Chen and Dirmeyer (2016)) to diagnosing numerical model outputs because numerical models269

are often dual- or multi-source models while these attribution methods are designed for a bulk270

surface. The negative 𝑟𝑎 (and also 𝑟𝑠) are removed from our analysis, following previous work271

(Liao et al. 2018; Wang et al. 2020b; Wang and Li 2021).272

In terms of time scales, the default outputs are 3-hourly, consistent with the temporal resolution273

of the forcing. They are first separated into daytime and nighttime data. For simplicity, we assume274

that daytime is when the incoming shortwave radiation is greater than 25 𝑊𝑚−2 and nighttime is275
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when it is less than 25 𝑊𝑚−2. We then average the 3-hourly data to monthly daytime/nighttime276

data and perform the attribution at the monthly scale, following Liao et al. (2020). The attribution277

results are further averaged across 20 summers (1981 to 2000).278

To ensure that the attribution method captures the simulated urban-rural differences in tempera-279

ture and SWBGT by the numerical model, the sensitivities (partial derivatives in e.g., Eq. 7) are280

weighted averages of both urban and rural sensitivities. The weights are calibrated to best match281

the urban-rural differences calculated from the TRM method with those simulated by the numerical282

model, that is, by minimizing the root mean square error, following Liao et al. (2018).283

4) From Canopy Air Temperature/SWBGT to 2-m Air Temperature/SWBGT284

The TRM method discussed above is used to diagnose urban-rural contrasts of canopy air285

temperature/SWBGT. However, it is common to use the 2-m air temperature and SWBGT to286

quantify the near-surface microclimatic conditions in the literature, even though the interpretation of287

‘2-m’ can be ambiguous over tall canopies. Here we extend the TRM method to diagnosing urban-288

rural contrasts of 2-m air temperature and SWBGT. The computation and physical interpretation289

of the 2-m air temperature and SWBGT are detailed in the Supplementary Materials.290

Based on the concept of constant-flux layer, Wang and Li (2021) derived an expression for the291

2-m air temperature 𝑇2, as follows:292

𝑇2 =
𝑟′𝑎
𝑟𝑎

(𝑇ca −𝑇𝑎) +𝑇𝑎, (12)

where 𝑟′𝑎 is the aerodynamic resistance to convective heat transfer between the 2-m level and the293

atmosphere (see the right panel of Fig. 1). With this expression, the sensitivities of 𝑇2 to various294

biophysical factors can be computed. Similarly, one can derive the sensitivities of 2-m specific295

humidity using the bulk parameterization for latent heat flux, and thus the 2-m SWBGT (detailed296

in the Supplementary Materials).297

3. Results298

Fig. 2 and Fig. 3 show the simulated urban-rural differences of canopy air temperature (Δ𝑇ca,299

Fig. 2a, b), canopy air SWBGT (ΔWca, Fig. 2c, d), 2-m air temperature (Δ𝑇2, Fig. 3a, b), and 2-m300

SWBGT (ΔW2, Fig. 3c, d) during the daytime and nighttime, respectively. It is evident that the301
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Fig. 2: Simulated urban-rural contrasts (Δ = urban - rural) of (a) daytime canopy air temperature
(𝑇ca), (b) nighttime canopy air temperature, (c) daytime canopy air SWBGT (Wca), and (d) nighttime
canopy air SWBGT. The green boxes in (a) define the boundary of 11 regions: North America
(NAm), Central America (CAm), South America (SAm), Europe (EU), Western Africa (WAf),
Eastern Africa (WAf), Middle East (ME), North Asia (NAs), Central Asia (CAs), Eastern Asia
(EAs), Australia/New Zealand (ANZ).

Fig. 3: Simulated urban-rural contrasts (Δ = urban - rural) of (a) daytime 2-m air temperature (𝑇2),
(b) nighttime 2-m air temperature, (c) daytime 2-m SWBGT (W2) and (d) nighttime 2-m SWBGT.

simulated urban-rural contrasts show large differences between daytime and nighttime, as well as302

strong spatial variabilities. We will first focus on understanding the general patterns in the daytime303

and nighttime results (Sections 3.a-3.c), and then discuss the spatial variability (Section 3.d).304
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For Δ𝑇ca and ΔWca, the most striking feature is that some regions exhibit negative values in305

the daytime, such as Central America, West Africa, and Central Asia. As proposed elsewhere306

(Carnahan and Larson 1990), the urban heat sink could occur during the daytime when urban307

surfaces have greater heat absorption and rural areas have dry, bare soil with low thermal inertia308

and low evaporative cooling. At night, Δ𝑇ca and ΔWca are mostly positive. By comparing the309

results for Δ𝑇ca and Δ𝑊ca, one can see that Δ𝑊ca is smaller than Δ𝑇ca, especially in areas with310

positive values of both. This is due to the humidity deficits in urban areas, namely, urban areas are311

generally hotter but drier, as alluded to earlier. Hence the enhanced heat stresses in the urban areas312

by the positive UHI effects are partially offset by the humidity deficits.313

Comparing Fig. 3 (a, b) to Fig. 2 (a, b) reveals thatΔ𝑇2 has similar spatial patterns asΔ𝑇ca but with314

much smaller magnitude and with more negative values during the daytime. The smaller magnitude315

of Δ𝑇2 than Δ𝑇ca is due to the role of turbulent mixing. In the surface layer (between the land316

model and the lowest level of the atmospheric model), turbulent eddies transport mass, momentum,317

and heat from the surface to the atmosphere or vice versa (Stull 1988). The turbulent transport318

is responsible for the logarithmic profiles under neutral conditions (or the profiles described by319

Monin-Obukhov similarity theory under thermally stratified conditions) in the surface layer, as320

illustrated in Fig. 1b. Although urban land has biophysical properties that are different from321

those of rural land and thus the surface conditions differ between the urban and rural land, such322

differences become smaller as the urban and rural fluxes become mixed and eventually disappear323

when the fluxes reach the lowest level of the atmospheric model.324

With the turbulent mixing effects and the humidity deficits in urban areas, the daytime ΔW2325

(Fig. 3c) turns into negative worldwide. Although the nighttime ΔW2 (Fig. 3d) remains positive,326

the mixing effects cause its magnitude to be smaller than ΔWca.327

We should highlight that Δ𝑇2 and ΔW2 are not necessarily fair indicators of near-surface air328

temperature and heat stress differences between urban and rural areas, because 𝑇2 and W2 are329

defined at 2 meters above the displacement height and the urban displacement height is often much330

larger than the rural counterpart except for forests (Oke et al. 2017). As a result, the height at which331

the 2-m air temperature is defined is usually different between urban and rural areas. We did not332

correct the definition of the ‘2-m’ level to be consistent with the literature, but we note that some333

models try to correct such effects by computing new temperature/humidity variables at 2 meters334
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above the ground (Meili et al. 2020) and other models such as CLM have the 2-m air temperature335

defined differently for urban and rural areas. In CLM (Oleson et al. 2013), 𝑇𝑐𝑎 is assigned to336

the 2-m air temperature directly for urban areas while for rural areas the 2-m air temperature is337

defined at 2 meters above the displacement height and interpolated between 𝑇𝑐𝑎 and 𝑇𝑎. This partly338

explains why our results of Δ𝑇2 are different from those from CLM (Oleson et al. 2011).339

Perhaps what is more meaningful is the comparison between the daytime and nighttime results.340

For 𝑇ca and Wca, the urban-rural contrasts are stronger during the daytime; while for 𝑇2 and W2,341

the urban-rural contrasts are stronger during the nighttime. This is consistent with previous work342

showing that the surface UHI is often stronger during the daytime, while the near-surface UHI343

tends to be stronger at night (Oke et al. 2017; Stewart et al. 2021; Venter et al. 2021).344

It is important to stress that the aim of this study is not to validate the results shown in Fig. 2345

and Fig. 3. Instead, the goal is to quantify the contributions of different biophysical factors to346

the simulated Δ𝑇ca, ΔWca, Δ𝑇2, and ΔW2 using the improved TRM attribution method. In the347

following, we first present the sensitivities of 𝑇ca, Wca, 𝑇2, and W2 to biophysical factors, followed348

by the urban-rural differences in biophysical factors. The products of the sensitivities and the349

urban-rural differences, which represent the contributions of different biophysical factors, are then350

presented. Lastly, the regionally averaged attributions are shown to highlight the spatial variability.351

a. Sensitivities to Biophysical Factors352

1) Sensitivities of Heat Stress at the Canopy Air Level353

As the first step, we calculate the sensitivities of canopy air temperature (𝑇ca) and canopy air354

SWBGT (Wca) to biophysical factors (namely, albedo, aerodynamic resistance, surface resistance,355

and heat storage) based on the formulae presented in the Supplementary Materials. Because the356

results of𝑇ca and Wca are similar in terms of the global patterns, we only present the results for Wca357

here (Fig. 4) while the sensitivities of 𝑇ca to biophysical factors can be found in the Supplementary358

Materials (see Fig. S2).359

First, the sensitivity of Wca to albedo is negative worldwide during the daytime and is close to zero360

at night, as shown in Fig. 4(a, b). Intuitively, the larger the surface albedo, the more solar radiation361

is reflected and the lower the 𝑇ca, as well as the Wca, which explains the negative sensitivity in the362

daytime. Fig. 4(c, d) present the sensitivity of canopy air heat stress to aerodynamic resistance363
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Fig. 4: The sensitivities of canopy air SWBGT to (a, b) albedo (𝜕Wca/𝜕𝛼), (c, d) aerodynamic
resistance (𝜕Wca/𝜕𝑟𝑎), (e, f) surface resistance (𝜕Wca/𝜕𝑟𝑠), and (g, h) heat storage (𝜕Wca/𝜕𝐺)
during daytime (left column) and nighttime (right column).

(𝜕Wca/𝜕𝑟𝑎). It is clear that 𝜕Wca/𝜕𝑟𝑎 is positive worldwide in the day while is much smaller at364

night. As discussed in Liao et al. (2020), the positive sensitivity during the daytime implies that365

when the land surface becomes less efficient in transferring sensible heat to the lower atmosphere366

(i.e., when 𝑟𝑎 increases), Wca tends to increase. Fig. 4e shows a positive signal of 𝜕Wca/𝜕𝑟𝑠 globally367

during the daytime, indicating that Wca increases as the land surface becomes less efficient in using368

energy for evapotranspiration (i.e., when 𝑟𝑠 increases). This effect is understandably small during369

the nighttime (see Fig. 4f) as photosynthesis stops. Lastly, Fig. 4(g, h) show the sensitivity of370

Wca to heat storage (𝜕Wca/𝜕𝐺) during the daytime and nighttime, respectively. Note that the371
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Fig. 5: The sensitivities of 2-m SWBGT to (a, b) aerodynamic resistance (𝜕W2/𝜕𝑟𝑎), and (c, d) 2-m
aerodynamic resistance (𝜕W2/𝜕𝑟′𝑎) during daytime (left column) and nighttime (right column).

ground heat flux is defined to be positive downward and negative upward. Therefore, the fact that372

more ground heat flux goes downward to deeper soil layers (or built materials) during the daytime373

means a decrease in canopy air temperature and heat stress, leading to negative daytime 𝜕Wca/𝜕𝐺.374

Conversely, the fact that more ground heat flux goes upward to the surface during the night means375

an increase in canopy air temperature and heat stress, also leading to negative nighttime 𝜕Wca/𝜕𝐺.376

Although 𝜕Wca/𝜕𝐺 is negative for both daytime and nighttime, the magnitude of 𝜕Wca/𝜕𝐺 at night377

is larger than that in the day, showing a stronger effect of heat release on canopy air temperature378

and heat stress at night than that of heat storage during the day.379

2) Sensitivities of Heat Stress at the 2-m Level380

Similarly, we examine the sensitivity of W2 to albedo, surface resistance, and heat storage (see381

Fig. S3 in the supplementary materials). Compared to the results for Wca, the sensitivities of382

W2 to albedo, surface resistance, and heat storage show very similar patterns but have a smaller383

magnitude, because these sensitivities are simply their counterparts for Wca multiplied by the factor384

𝑟′𝑎/𝑟𝑎, which is smaller than unity (see Eqs. S17 to S20 in the Supplementary Materials).385

The more complicated sensitivities are those to 𝑟𝑎 (i.e., aerodynamic resistance between the386

surface and the atmosphere) and 𝑟′𝑎 (i.e., aerodynamic resistance between the 2-m level and the387

atmosphere). Fig. 5a shows that during the daytime the sensitivity of W2 to aerodynamic resistance388
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(𝜕W2/𝜕𝑟𝑎) is negative. This is contrary to the positive 𝜕Wca/𝜕𝑟𝑎 (see Fig. 5c). That is because389

when it is less efficient in transferring heat from the surface (or more precisely the height at which390

the canopy air temperature is defined) to the atmosphere (i.e., 𝑟𝑎 increases), the air temperature391

and heat stress in the canopy increase while the air temperature and heat stress at the 2-m level392

decrease. However, if it is less efficient in transferring heat from the 2-m level to the atmosphere393

(i.e., 𝑟′𝑎 increases), the 2-m air temperature and heat stress increase, which explains the positive394

𝜕W2/𝜕𝑟′𝑎 during the daytime (Fig. 5c). It should be also pointed out that 𝜕W2/𝜕𝑟′𝑎 is of larger395

magnitude than 𝜕W2/𝜕𝑟𝑎, indicating that W2 is more affected by changes in 𝑟′𝑎 than in 𝑟𝑎. During396

the nighttime, 𝜕W2/𝜕𝑟𝑎 is very heterogeneous at the global scale and 𝜕W2/𝜕𝑟′𝑎 is weakly positive397

(Fig. 5b, d).398

b. Urban-Rural Differences in Biophysical Factors399

We further compare the urban-rural differences in five biophysical factors. Fig. 6(a, b) show400

a negative contrast in albedo over most regions except for the western edge of South America,401

Equatorial Africa, the Mediterranean region, and West Asia. The negative albedo differences imply402

that the urban land is parameterized with a smaller albedo than the rural land in the numerical403

model, while the positive albedo differences indicate the opposite. Although the radiative trapping404

effect tends to reduce the albedo of urban land, urban land does not always have a smaller albedo405

than rural land, and the urban-rural albedo differences depend on the characteristics of urban and406

rural land (e.g., urban form, rural vegetation type) (Oke et al. 2017). Our results here also reflect407

this.408

The daytime contrast of aerodynamic resistance (𝑟𝑎) shows strong spatial variability, which is409

highly related to the rural vegetation type. For example, in arid regions (i.e., Central America,410

Middle East, and Central Asia), rural land is characterized by vegetation of low height such as411

shrubs, sage brushes, and grasses, which makes it less efficient for rural land to transfer sensible heat412

to the atmosphere than urban land. Therefore, the urban-rural contrast in aerodynamic resistance413

(Δ𝑟𝑎) in drier regions tends to be negative, as opposed to more humid regions where rural land has414

taller vegetation and thus might have smaller 𝑟𝑎 than adjacent urban land (i.e., positive in Fig. 6c).415

At night, Δ𝑟𝑎 shows a negative signal almost everywhere, particularly in densely populated regions416

(e.g., Eastern North America, Eastern South America, Europe, East, and Southeast Asia), indicating417
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Fig. 6: The contrasts between urban and rural areas (Δ = urban - rural) in (a, b) albedo (𝛼), (c,
d) aerodynamic resistance (𝑟𝑎), (e, f) surface resistance (𝑟𝑠), (g, h) heat storage (𝐺) and (i, j) 2-m
aerodynamic resistance (𝑟′𝑎) during daytime (left column) and nighttime (right column). Note that
the 𝑟′𝑎 is only relevant for the attribution of 2-m air temperature and 2-m SWBGT in Fig. 3.

that cities are more efficient in transferring heat from the surface to the lower atmosphere at night.418

This is consistent with the stronger release of ground heat storage in urban areas, creating more419
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unstable stratification in the urban surface layer. In contrast, convective heat transfer is less efficient420

with the existence of a stable surface layer in rural areas. Previous field studies have confirmed421

a near-neutral or slightly unstable boundary layer in cities while a stable boundary layer in rural422

areas during nighttime (Uno et al. 1992; Dupont et al. 1999).423

The daytime contrast in surface resistance (𝑟𝑠) is found to be positive almost everywhere (Fig. 6e),424

indicating that it is much harder for urban areas to produce evapotranspiration than rural areas. The425

nighttime Δ𝑟𝑠 is much smaller than the daytime counterpart and can be quite uncertain due to the426

small latent heat flux at night (Fig. 6f). The urban-rural contrast in heat storage (Δ𝐺) is positive427

during the daytime and negative during the nighttime (Fig. 6g, h). This is caused by the larger428

thermal admittance of surface materials in cities, which allows urban surfaces to store more heat429

during the day and thus release more heat at night (Oke et al. 2017; Grimmond and Oke 1999).430

The extra factor that only appears in the attribution of urban-rural contrasts of 2-m air temperature431

and SWBGT is the 2-m layer aerodynamic resistance (𝑟′𝑎). We find that Δ𝑟′𝑎, being negative, is432

weaker than Δ𝑟𝑎 during the daytime (see Figs. 6i and 6c), implying that most of the resistance433

to convective heat transfer during the daytime lies between the surface and the 2-m level. This434

is because the size of turbulent eddies responsible for heat transfer scales with the distance from435

the surface (Katul et al. 2011; Li 2021). Between the surface and the 2-m level, the eddies are436

smaller and thus heat transfer is less efficient than their counterparts between the 2-m level and the437

atmosphere. During the night, the magnitude ofΔ𝑟′𝑎 increases andΔ𝑟′𝑎 is similar toΔ𝑟𝑎 (see Figs. 6j438

and 6d), suggesting that most of the resistance to convective heat transfer during the nighttime lies439

between the 2-m level and the atmosphere. In other words, the 2-m level becomes decoupled from440

the atmosphere due to the stable stratification, leading to stronger Δ𝑟′𝑎.441

c. Contributions of Biophysical Factors442

By multiplying the sensitivities (Fig. 4) and the urban-rural differences (Fig. 6), the contributions443

from these biophysical factors to the urban-rural contrast of canopy air SWBGT (ΔWca) are444

computed, as shown in Fig. 7. In the same way, we quantify the contributions to the urban-445

rural contrasts of 2-m SWBGT (W2) (see Fig. 8), canopy air temperature (𝑇ca) (see Fig. S5446

in the Supplementary Materials), and 2-m air temperature (𝑇2) (see Fig. S4 and Fig. S6 in the447

Supplementary Materials).448
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Fig. 7: The contributions to ΔWca from (a, b) albedo ( 𝜕Wca
𝜕𝛼

Δ𝛼), (c, d) aerodynamic resistance
( 𝜕Wca
𝜕𝑟𝑎

Δ𝑟𝑎), (e, f) surface resistance ( 𝜕Wca
𝜕𝑟𝑠

Δ𝑟𝑠) and (g, h) heat storage ( 𝜕Wca
𝜕𝐺

Δ𝐺) during daytime
(left column) and nighttime (right column).

Before discussing the attribution results, we first use the numerical model simulated ΔWca (or449

Δ𝑇ca) to evaluate the TRM method by comparing the numerical model simulated results to the sum450

of the contributions from all biophysical components in the TRM method. It can be seen that the451

TRM attribution method is able to capture the numerical model simulation results with small root452

mean square errors (see Fig. S7 and Fig. S8 in the Supplementary Materials). Nevertheless, at453

the 2-m level, the TRM-modeled ΔW2 and Δ𝑇2 become more scattered compared to the simulated454

ones, which suggests that the extension of the TRM attribution method to the 2-m level introduces455
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Fig. 8: The contributions to ΔW2 from (a, b) albedo ( 𝜕W2
𝜕𝛼

Δ𝛼), (c, d) aerodynamic resistance
( 𝜕W2
𝜕𝑟𝑎

Δ𝑟𝑎), (e, f) surface resistance ( 𝜕W2
𝜕𝑟𝑠

Δ𝑟𝑠), (g, h) heat storage ( 𝜕W2
𝜕𝐺

Δ𝐺), and (i, j) 2-m aerody-
namic resistance ( 𝜕W2

𝜕𝑟 ′𝑎
Δ𝑟′𝑎) during daytime (left column) and nighttime (right column).

more uncertainties. This is not too surprising considering that the magnitudes of ΔW2 and Δ𝑇2 are456

smaller than their canopy air counterparts.457

23



Now let’s turn to the general patterns of the attribution results (Fig. 7). Here we use the same458

color bar for all the factors in order to highlight their relative magnitude. During the daytime,459

albedo plays the least role in ΔWca among all biophysical factors (see Fig. 7a, b). That is because460

the model prescribes a very small urban-rural difference in albedo, which is on the order of 10−2
461

(see Fig. 6a,b). Other factors show stronger effects. Specifically, surface resistance contributes462

positively while heat storage contributes negatively during the daytime (see Fig. 7e, g), due to the463

combining effect of the large sensitivities (Fig. 4) and the large urban-rural differences in terms of464

these two factors (Fig. 6). Daytime effects of aerodynamic resistance are more complex with strong465

spatial variability (Fig. 7c). At night, aerodynamic resistance and ground heat storage dominate466

the urban-rural difference in the canopy air SWBGT, with negative and positive contributions,467

respectively (Fig. 7d,h). Albedo and surface resistance has negligible effects at night (see Fig. 7b,468

f). The effect of ground storage shows a similar magnitude between day and night while others are469

weaker at night than during the day.470

Furthermore, by comparing the results of ΔWca (Fig. 7) and Δ𝑇ca (Fig. S5), it is evident that the471

general patterns are similar but the effects of all four biophysical factors on ΔWca are reduced in472

terms of the magnitude due to the humidity deficits in cities. In particular, surface resistance is473

the most dampened component such that the magnitude of the contribution of surface resistance to474

ΔWca is around 25% of that to Δ𝑇ca. Closer inspection reveals that the magnitude of the sensitivity475

of Wca to 𝑟𝑠 is about 25% of the sensitivity of Tca to 𝑟𝑠. This result is again due to the fact that476

while the lack of evapotranspiration makes urban areas hotter, it also makes urban areas drier and477

hence slightly offsets the increase in ΔWca when compared to the increase in Δ𝑇ca.478

At the 2-m level, results for albedo, surface resistance, and ground storage (see Fig. 8) exhibit479

much smaller magnitude than those at the canopy air level due to turbulent mixing. During the480

daytime, the main contributors are surface resistance (positive) and ground storage (negative) and481

there are no significant contributions of albedo and aerodynamic resistance. Nevertheless, it is482

worth noting that aerodynamic resistance makes the opposite contributions to ΔW2 and ΔWca (c.f.,483

Fig. 8 and Fig. 7). This is because the sensitivity of W2 to 𝑟𝑎 has an opposite sign as the sensitivity484

of Wca to 𝑟𝑎 as discussed in Section 3.a. As for the 2-m aerodynamic resistance (𝑟′𝑎) (see Fig. 8i,485

j), it consistently exerts negative effects due to that the majority of regions displays negative urban-486

rural difference in 𝑟′𝑎 (as in Fig. 6i, j). As a result, the negative contribution from ground storage487
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Fig. 9: Regional averages of urban-rural contrasts of (a, b) canopy air temperature (Δ𝑇ca) and 2-m
air temperature (Δ𝑇2), (c, d) canopy air SWBGT (ΔWca) and 2-m SWBGT (ΔW2) during daytime
(left column) and nighttime (right column). The error bars are the standard error and indicate the
spatial variability.

(Fig. 8g) together with the negative contribution from the 2-m aerodynamic resistance causes a488

negative daytime ΔW2 (see Fig. 3c). During the night, only ground storage (positive) and the 2-m489

aerodynamic resistance (negative) play a role in ΔW2 (see Fig. 8h, j).490

d. Regionally-averaged Attributions of Δ𝑇ca, Δ𝑇2, ΔWca, and ΔW2491

Because the urban-rural differences in temperature and SWBGT display an evident dependence492

on geographic locations (see Figs. 2, 3), in this section results are analyzed in the manner of493

regional averages. Region boundaries are defined in a similar way as McCarthy et al. (2010) (see494

Fig. 2a with the region abbreviations defined in the caption). Fig. 9 shows the regional averages495

of Δ𝑇ca, Δ𝑇2, ΔWca, and ΔW2 during the daytime and nighttime. Comparing the upper panels496

against the lower ones, the similarity between the averaged urban-rural contrasts of temperature497

and SWBGT shows up clearly over all regions. The regional averages of daytime Δ𝑇ca and ΔWca498

are positive except in the Middle East, Central America, Central Asia, and West Africa, due to the499

reasons discussed at the beginning of this section. During the nighttime, all regions but the Middle500

East show positive values of Δ𝑇ca and ΔWca. In terms of the 2-m air temperature and SWBGT, the501
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Fig. 10: Regionally-averaged attribution results for urban-rural contrasts of canopy air SWBGT
(ΔWca) and 2-m SWBGT (ΔW2) over (a, b) North America (NAm), (c,d) Central America (CAm),
(e,f) South America (SAm), and (g,h) Middle East (ME) during daytime (left column) and nighttime
(right column). ΔWca and ΔW2 are represented by yellow and brown bars over daytime and by blue
and dark blue bars over nighttime. GFDL represents the simulatedΔWca andΔW2 by the numerical
model. TRM represents the sum of the four contributions calculated from the TRM method. 𝛼, 𝑟𝑎,
𝑟𝑠, 𝐺, and 𝑟′𝑎 represent the contributions from albedo, aerodynamic resistance between the surface
and the atmosphere, surface resistance, heat storage, and aerodynamic resistance between the 2-m
level and the atmosphere, respectively. The error bars are the standard error and indicate the spatial
variability..

regional averages of Δ𝑇2 and ΔW2 mostly vanish during the day except for Central America and502

West Africa while exhibiting weakly positive signals at night. Note that the error bars are very large503

especially for regions with negative Δ𝑇2 and ΔW2, indicating significant spatial variability within504

each region. After case-by-case investigations of all 11 regions, we select North America, Central505

America, South America, and the Middle East to highlight four distinctive regional patterns of the506
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urban-rural differences in heat stress and their attributions (Fig. 10). The results for the urban-rural507

differences in temperature are presented in Fig. S9 in the Supplementary Materials.508

Starting off from the canopy air level, in North America, surface resistance (𝑟𝑠) is the leading cause509

of the positiveΔ𝑇ca during the daytime (Fig. S9a), indicating the dominant role of evapotranspiration510

in controlling the urban-rural differences in canopy air temperature in this region. Such results511

are consistent with the finding of previous studies that the relationship between surface UHI and512

background climate is largely explained by evapotranspiration (Li et al. 2019; Manoli et al. 2019).513

For daytime Wca (Fig. 10a), the contribution of surface resistance remains strong but aerodynamic514

resistance plays an equally important role. Heat storage (𝐺) has a strong negative effect (Fig. S9a515

and Fig. 10a). When the negative contribution of heat storage exceeds the positive contribution of516

surface resistance, daytime urban-rural contrasts of 𝑇ca and Wca become negative, as in the case517

of Central America (Fig. S9c and Fig. 10c) and other regions with negative temperature/SWBGT518

differences (not shown). Close inspection reveals that the numerical model prescribes very large519

thermal admittance for urban roofs in these regions (Jackson et al. 2010; Oleson et al. 2011;520

Oleson and Feddema 2020; Wang et al. 2020a). Since the capability of a surface in storing heat is521

largely governed by thermal admittance, this explains why these regions have very strong negative522

contributions from heat storage during the daytime.523

In South America (Fig. S9e and Fig. 10e), the positive effect from aerodynamic resistance (𝑟𝑎) to524

Δ𝑇ca and ΔWca becomes very large and even exceeds that from surface resistance in terms of ΔWca525

during the daytime, which leads to positive Δ𝑇ca and ΔWca. In contrast, aerodynamic resistance526

(𝑟𝑎) makes a large negative contribution in the Middle East (Fig. S9g and Fig. 10g), causing Δ𝑇ca527

and ΔWca to be negative. These results are broadly consistent with recent work on the spatial528

variability of daytime surface UHI (Zhao et al. 2014; Li et al. 2019; Manoli et al. 2019). Cities in529

humid climates (South America) are often surrounded by forests, which might convect heat more530

efficiently than buildings. Hence aerodynamic resistance makes a positive contribution to daytime531

Δ𝑇ca and ΔWca. On the other hand, in dry regions (Middle East) rural areas are characterized532

by short vegetation and deserts and cities can have a higher convection efficiency, as discussed in533

Section 3.b. As a result, the contribution from aerodynamic resistance becomes strongly negative534

and the positive contribution from surface resistance is weak in these dry regions, which therefore535

causes negative daytime Δ𝑇ca and ΔWca.536

27



During the night, the attribution results are more consistent across different regions (e.g., North537

America, Central America, and South America), characterized by a dominant positive contribution538

from the ground heat storage and thus positive Δ𝑇ca and ΔWca (see Fig. S9b,d,f and Fig. 10b,d,f).539

However, in the Middle East, the negative effect of aerodynamic resistance exceeds the positive540

effect of heat storage release, resulting in negative Δ𝑇ca and ΔWca.541

Concerning the 2-m level results, the urban-rural contrast of all variables becomes nearly zero542

during the day regardless of regions as a result of strong mixing (Fig. S9a, c, e, g and Fig. 10a, c,543

e, g). Similar to what was found in Venter et al. (2021) and Stewart et al. (2021), the magnitude544

of the simulated Δ𝑇ca (which is closer to the surface UHI in the observations) far exceeds that of545

Δ𝑇2 (which is closer to the near-surface UHI in the observations). At night the primary heat source546

of the near atmosphere comes from heat storage accumulated in the daytime (Oke et al. 2017;547

Grimmond and Oke 1999). As a result, these 4 regions have slightly positive Δ𝑇2 and ΔW2 during548

the night, with a magnitude much less than their canopy air counterparts.549

4. Conclusions550

In this study, we develop a methodology to quantify the physical processes contributing to the551

urban-rural difference in heat stress based on the Two-Resistance Mechanism (TRM) method.552

The improved TRM method is applied to diagnosing urban-rural contrast of canopy air temper-553

ature/SWBGT simulated by the GFDL LM4.0 coupled with a UCM. Results indicate that con-554

tributions of the four biophysical factors (albedo, aerodynamic resistance, surface resistance, and555

ground heat flux or heat storage) to the urban-rural differences in canopy air SWBGT (ΔWca) vary556

diurnally and geographically. The urban-rural contrasts of canopy air SWBGT (ΔWca) and canopy557

air temperature (Δ𝑇ca) share similarity, but the magnitude of ΔWca is smaller due to moisture558

deficits in cities.559

We further apply the attribution framework to study four different regions (North America,560

Central America, South America, and the Middle East). In North America, surface resistance561

makes a stronger contribution than ground heat flux during the daytime, while it is the opposite562

in Central America. Aerodynamic resistance can make positive (e.g., North America and South563

America), negligible (e.g., Central America), or negative (e.g., Middle East) contributions during564

the daytime. The nighttime results are more consistent across geographic regions with mostly565
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positive urban-rural differences in temperatures and heat stresses due to the strongly positive566

contributions from heat storage. Only in the Middle East does the negative contribution of567

aerodynamic resistance overweight the positive contribution from ground heat flux at night.568

We also extend the method to studying the 2-m air temperature/SWBGT. A new biophysical569

factor, the 2-m level aerodynamic resistance (𝑟′𝑎), is introduced in the attribution framework.570

Overall, ΔW2 and Δ𝑇2 share similar patterns as ΔWca and Δ𝑇ca, respectively, but with much571

smaller magnitude due to turbulent mixing in the surface layer.572

5. Discussions573

This study has several implications that are important to appreciate. First, the methodology574

to quantitatively attribute urban-rural differences in heat stress is generic and can be applied to575

any heat stress index that is a function of temperature and humidity. Therefore, it allows for576

the intercomparison of different heat stress indices as well as the intercomparison of different577

numerical models. However, we caution that this method is not applicable to heat indices that are578

also functions of radiation and wind speed. Further development of attribution methods for more579

complicated heat stress indices is still needed.580

Second, the traditional definition of 2-m air temperature and heat stress does not necessarily581

facilitate a clean comparison between urban and rural thermal conditions. Since urban areas often582

have a much larger displacement height, the so-called ‘2-m’ air temperature (and heat stress)583

correspond to a higher physical height in urban areas than in rural areas. This might partly explain584

why the model yields negative daytime urban-rural differences in heat stress. Some models try to585

correct such effects in an ad-hoc way but it remains unclear what constitutes a clean comparison in586

numerical models that do not resolve the temperature/humidity profiles within the urban canopy.587

Third, the attribution method used in this study highlights two well-known causes of the positive588

urban-rural differences in temperatures and heat stresses: the lack of evapotranspiration (a daytime589

effect) and the stronger release of heat storage (a nighttime effect). However, the daytime urban-590

rural contrasts of canopy air temperature and heat stress are found to be negative in places where591

urban areas are surrounded by short vegetation (e.g., arid regions) so that urban areas have lower592

aerodynamic resistances and in places where urban materials have very large thermal admittance.593

These factors have been less studied but are physically possible. They highlight that it is critical594
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for numerical models to prescribe the correct roughness lengths and thermal properties to capture595

the urban-rural contrasts of temperature and heat stress.596

Fourth, while the attribution method can shed many insights, applying it to diagnosing numerical597

model outputs should proceed with caution. The attribution method is developed for a bulk surface.598

However, numerical models often treat urban (and rural) areas as having multiple heat sources and599

sinks. As a result, it is not straightforward to construct a bulk surface temperature using numerical600

model outputs. Extending the TRM attribution method to the 2-m level is more challenging.601

As the magnitude of simulated urban-rural differences in temperature and heat stress at the 2-m602

level is smaller, the TRM modeled urban-rural differences in temperature and heat stress at the603

2-m level are more scattered. Moreover, some parameters needed by the attribution method and604

inferred from numerical model outputs (e.g., aerodynamic resistance) might become physically605

meaningless (e.g., aerodynamic resistance is negative). The current practice is to simply discard606

such data. Further developments of attribution methods are needed to verify the consequence of607

the such practice.608

Last but not least, it’s worth noting that the attribution method, as a diagnostic method, does not609

provide any information regarding the validity of the numerical model results against real-world610

observations. Validation against observations is outside the scope of this study but is critical for611

establishing confidence in the numerical model results.612
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