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Abstract— Even though extensive studies have developed 
various eco-driving strategies for vehicle platoon to travel 
on urban roads with traffic signals, most of them focus on 
vehicle-level trajectory planning or speed advisory rather 
than real-time platoon-level closed-loop control. In 
addition, majority of existing efforts neglect the traffic 
and vehicle dynamic uncertainties to avoid the modeling 
and solution complexity. To make up these research gaps, 
this study develops a system optimal vehicle platooning 
control for eco-driving (SO-ED), which can guide a mixed 
flow platoon to smoothly run on the urban roads and pass 
the signalized intersections without sudden deceleration 
or red idling. The SO-ED is mathematically implemented 
by a hybrid model predictive control (MPC) system, 
including three MPC controllers and an MINLP platoon 
splitting switching signal. Based on the features of the 
system, this study uses active set method to solve the 
large-scale MPC controllers in real time. The numerical 
experiments validate the merits of the proposed SO-ED 
in smoothing the traffic flow and reducing energy 
consumption and emission at urban signalized 
intersections. 

Keywords— eco-driving, vehicle platoon, model 
predictive control, hybrid control system, signalized 
intersection 

 

I. Introduction 

In recent years, inspired by the rapid advancement of 
connected and autonomous vehicle (CAV) technologies, 
various eco-driving strategies and algorithms have been 
developed for urban traffic intersections, aiming to improve 
traffic safety and efficiency while reducing fuel consumption 
and emission. The schemes of the related studies show two 
main streams: (i) vehicle-level speed advisory, which 
provides offline (1, 2) or online (3) speed advice for 
individual vehicles; (ii) platoon-level eco-driving strategy, 
which develops trajectory planning for the entire platoon as 
a system (4-8). The existing studies (9) showed that the 
platoon-level eco-driving strategies perform better. It thus 
attracts tremendous research interest in literature and also 

motives this effort. Nevertheless, we notice the following 
research gaps and then involve the enhanced features as 
follows.  

First of all, most of the existing eco-driving strategies 
focus on vehicle trajectory planning or speed advice (4-8). 
Although showing improved performance in saving energy 
consumption and reducing emission, this type of planning 
scheme usually cannot adapt to the trajectory derivation due 
to various uncertain factors. Accordingly, many studies work 
on a pure CAV traffic flow (4-6) to reduce uncertainty. In 
addition, most eco-driving algorithms use deterministic 
double-integrator model to capture vehicle movement 
dynamics, ignoring powertrain delay, aerodynamic drag, etc. 
Those simplifications will discount the applicability of those 
approaches in reality. Nevertheless, integrating these 
uncertainties into the eco-driving strategies will lead to 
nonconvexity of control model. Consequently, it brings in 
tremendous difficulty in theoretical analysis and solution 
approach development. This study intends to partially bridge 
this gap by developing a robust model predictive control 
(MPC). 

This study also noticed that most of the existing 
platoon-level eco-driving strategies only optimize the 
leading vehicle’s trajectory while implementing adaptive 
cruise control (ACC) or cooperative adaptive cruise control 
(CACC) for the rest following vehicles (4,6). Clearly, these 
types of eco-driving cannot guarantee platoon’s system 
performance. In view of this issue, this study develops a 
platoon-centered vehicle platooning control scheme to 
overcome this weakness. However, these merits company 
with new challenges, particularly for this study. The platoon-
centered vehicle platooning often involves a large-scale 
optimizer, which must be solved within a control interval (< 
1 second). In addition, existing platoon-centered vehicle 
platooning applies (10) a constant spacing policy to facilitate 
control stability, which leads to low-capacity usage and does 
not fit the urban road scenario. This study thus develops a 
new platoon-centered vehicle platooning control with 
adaptive spacing policy and then uses an active set method 
based on the problem features to address those challenges.
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Furthermore, a long platoon usually cannot completely 
pass the intersection within one green interval. Then, how to 
properly split a long platoon so that those sub-platoons can 
pass intersection sequentially while adapting to the signal 
information represents a common challenge for many eco-
driving strategies. Most of existing splitting schemes in the 
literature (5,6,8) use simple heuristic rules aiming to 
maximize traffic throughputs without considering traffic 
smoothness. This study intends to develop an optimal 
platoon spitting scheme holistically considering traffic 
throughput, smoothness, and energy consumption.  

To enable efficient eco-driving while factoring all the 
enhanced features discussed above, this study develops an 
efficient system optimal platoon-based eco-driving control 
(SO-ED) scheme at signalized intersection. It instructs a 
mixed flow platoon to smoothly and efficiently approach and 
then pass signalized intersections while avoiding red idling 
as much as possible. The development of the SO-ED 
contributes the following methodologies. First of all, this 
SO-ED is modeled as a hybrid MPC system involving three 
MPC controllers, which respectively generate optimal 
control laws for the platoon to approach, split, then pass 
intersection. A mixed integer nonlinear programming 
optimizer (MINLP) is used to determine the optimal platoon 
splitting point and functions as a switching signal to connect 
the MPC controllers in the hybrid system. The MPC 
controllers and the switching signal MINLP together 
mathematically capture the dynamic control process when a 
platoon approaches an intersection, splits into sub-platoons 
and then sequentially passes the intersection during different 
green intervals. We developed an active set method to solve 
the MPC controllers efficiently. Our experiments showed the 
proposed SO-ED can ensure the traffic smoothness and 
significantly reduce the energy consumption and emission at 
the signalized intersection. 

II. Problem Statement  

This study considers a sample mixed-flow platoon 
moving toward a signalized intersection on an urban road in 
Figure 1. The sample platoon follows a leading HDV 0̂. 
Then it contains three sequential platoon segments: a CAV 
platoon segment 𝐶1  including 𝑛  CAVs, a HDV platoon 
segment 𝐻 including 𝑚̂ HDVs, and then a CAV platoon 
segment 𝐶2. Within a CAV platoon, we consider a general 
preceding-and-following communication network topology.  

 
Figure 1. Sample platoon at the signalized intersection 

To mathematically model the proposed study, we use 
notations 𝑥𝑖 , 𝑣𝑖  𝑢𝑖  for ∀𝑖 ∈ 𝐼𝐶 = {1, … , 𝑁}  and 𝑥𝑖̂ , 𝑣𝑖̂ 
𝑢𝑖̂ for ∀𝑖̂ ∈ 𝐼𝐻 = {0̂, 1̂, … , 𝑚̂} to represent the longitudinal 

position, speed, and acceleration of the 𝑖𝑡ℎ CAV and the 𝑖̂𝑡ℎ 
HDV respectively. The platoon control is conducted at 
discrete time steps (indexed by 𝑘 ∈ ℤ+: = {0,1,2, … }) with 
a control time interval 𝜏 > 0. Control inputs 𝑢𝑖  (𝑖 ∈ 𝐼𝐶 ) 
keep constant during an interval 𝜏. For notational simplicity, 
we use 𝑥𝑖(𝑘) , 𝑣𝑖(𝑘)  𝑢𝑖(𝑘)  to substitute 𝑥𝑖(𝜏𝑘) , 𝑣𝑖(𝜏𝑘) 
𝑢𝑖(𝜏𝑘)  hereafter. When the leading platoon segment 𝐶1 
reaches the communication zone, namely 𝑟 distance from 
the traffic signal, it will acquire and receive the real-time 
traffic signal information. This study assumes the traffic 
signal is in green phase when the platoon reaches the 
communication zone. The real-time traffic signal 
information includes green and red phase intervals 𝜏𝑘𝑔/𝜏𝑘𝑟 
as well as the remaining time of the current phase, such as 
the remaining green interval assumed in this study denoted 
by 𝜏𝑘̃𝑔. 

In reality, a long platoon may not be able to pass an 
intersection during the current green interval. As a result, the 
platoon needs to split into several sub-platoons to 
sequentially pass the intersection during consecutive traffic 
signal cycles. To make the platoon driving adaptive to this 
scenario, this study develops a mixed integer non-linear 
programming optimizer (MINLP) to find the optimal platoon 
splitting point. It predicts the platoon’s future movements 
and intends to ensure the traffic smoothness while sustaining 
the maximum traffic throughputs. Following the optimal 
platoon splitting point, two different control laws are 
developed to guide the platoon splitting and instruct the first 
sub-platoon 𝐴1 and second sub-platoon 𝐴2 respectively to 
smoothly pass the intersection in the sequential green 
intervals.  

III. Mathematical Model 

This section first introduces vehicle dynamics and 
associated constraints, factoring the uncertainty at each 
control time step 𝑘 ∈ ℤ+. Considering vehicles’ powertrain 
delay and aerodynamic drag are stochastic and time-variant, 
this study adopts the robust double-integrator model in (1) 
and (2) to describe CAV 𝑖’s dynamics, 𝑖 ∈ 𝐼𝐶 .  

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + τ𝑣𝑖(𝑘) +
τ2

2
(𝑢𝑖(𝑘) − ∆𝑢𝑖(𝑘)), 

(1) 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + τ(𝑢𝑖(𝑘) − ∆𝑢𝑖(𝑘)),   (2) 

where ∆𝑢𝑖(𝑘)  factors vehicle’s powertrain delay and 
aerodynamic drag by (3), which was developed by (11).  

 ∆𝑢𝑖(𝑘) = 𝜀𝑖𝑣𝑖(𝑘) + 𝜂𝑖𝑢𝑖(𝑘) − 𝜂𝑖𝑢𝑖(𝑘 − 1) (3) 

The movements of HDVs are described by Newell’s 
car-following model (12) in (4), 

𝑥𝑖̂(𝑘) = 𝑥𝑖̂−1(𝑘 − 𝑡𝑖̂) − 𝑑𝑖̂, 𝑖̂ ∈ 𝐼𝐻 , (4) 

where 𝑡𝑖̂  and 𝑑𝑖̂  represent the time and distance 
displacement of the HDV 𝑖̂. It considers the time-distance 
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trajectory of the following vehicle is essentially the same 
with the leading vehicle except a time and distance 
displacement. 

Furthermore, we consider the CAV control input, speed 
and the safety distance need to satisfy the physical 
constraints shown in (5), (6) and (7) respectively.  

𝑎𝑚𝑖𝑛,𝑖 ≤ 𝑢𝑖(𝑘) ≤ 𝑎𝑚𝑎𝑥,𝑖, (5) 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖(𝑘) ≤ 𝑣𝑚𝑎𝑥 , (6)  

𝑥𝑖−1(𝑘) − 𝑥𝑖(𝑘) ≥ 𝐿𝑖 + 𝛿1𝜏𝑣𝑖(𝑘)

+ 𝛿2𝜏(𝑣𝑖(𝑘) − 𝑣𝑖−1(𝑘)) (7)  

Here 𝑎𝑚𝑎𝑥,𝑖 and 𝑎𝑚𝑖𝑛,𝑖   are used to describe the predefined 
acceleration/deceleration bounds for 𝑖𝑡ℎ  CAV in platoon. 
𝑣𝑚𝑖𝑛  and 𝑣𝑚𝑎𝑥   are the pre-specified bounds on 
longitudinal speed for 𝑖𝑡ℎ  CAV in platoon. Regarding the 
driving safety, an adaptive safe distance is enabled by (7), 
which considers the safe time headway and the speed 
difference between leading and following vehicles to ensure 
the safety and improve the traffic throughputs.  

According to the adaptive safety constraints, this study 
uses the adaptive desired spacing policy in (8), which will be 
used in the objective function of the MPC control. 

 𝑠𝑖(𝑘) = 𝐿𝑖 + 𝛿1𝜏𝑣𝑖(𝑘) + 𝛿2𝜏(𝑣𝑖(𝑘) − 𝑣𝑖−1(𝑘)) + 𝛿, (8)  

where 𝑠𝑖(𝑘)  represents the desired spacing for CAV 𝑖  at 
step 𝑘 . Positive 𝛿 > 0  is introduced to make the desired 
spacing 𝑠𝑖(𝑘)  slightly larger than the safe car-following 
distance in (7).  

Accordingly, we define the CAV 𝑖’s spacing and speed 
errors in (9) and (10) respectively as follows.  

∆𝑥𝑖(𝑘) =  𝑥𝑖−1(𝑘) − 𝑥𝑖(𝑘) −  𝑠𝑖(𝑘), 𝑖 ∈ 𝐼𝐶 , (9) 

∆𝑣𝑖(𝑘) =  𝑣𝑖−1(𝑘) − 𝑣𝑖(𝑘), 𝑖 ∈ 𝐼𝐶 , (10) 

Next, built upon the spacing and speed error terms in 
(9) and (10), the platoon control dynamics are summarized 
in (11) and (12).  

𝑧(𝑘) ≔ (∆𝑥1(𝑘), … , ∆𝑥𝑁(𝑘))
𝑇

∈ ℝ𝑁 , (11) 

 𝑧′(𝑘) ≔ (∆𝑣1(𝑘), … , ∆𝑣𝑁(𝑘))
𝑇

∈ ℝ𝑁 . (12) 

IV. Hybrid MPC Model 

The SO-ED is modeled as a hybrid MPC system, 
seeking to instruct the movement of a mixed flow platoon so 
that it can approach and then pass a signalized intersection 
smoothly. As shown in Figure 2, the platoon will experience 
three states to go through the intersection, respectively 
guided by three MPC controllers and three switching signals. 
Specifically, state 𝑞0  represents the mixed flow platoon 
approaching the signalized intersection under the guide of 

MPC-𝑞0. Once the platoon enters the communication zone 
of the traffic signal, an MINLP optimizer is started to find 
the optimal platoon splitting point within one control interval 
(1 second), from which the SO-ED triggers the switching 
signal 𝜎0  to split the mixed flow platoon into two sub-
platoons 𝐴1  and 𝐴2 . After that, the SO-ED starts to 
implement 𝑞1  and 𝑞2  MPC controllers (MPC-𝑞1 , MPC-
𝑞2), which respectively guide the movements of sub-platoons 
𝐴1 and 𝐴2 so that they can smoothly pass the intersection 
during the current or future green intervals. When the sub-
platoons 𝐴1 and 𝐴2 passes or reach the intersection,  

 
Figure 2. Hybrid MPC system controller 

A. MPC controller for State 𝒒𝟎  

This study considers the platoon is under a platoon-
based car-following control approaching the intersection. 
Accordingly, we employ the following MPC-𝑞0  in (13) , 
subject to the vehicle dynamics and constraints (1)-(12) 
developed in Section III to conduct CAV trajectory control at 
any step 𝑘 ∈ ℤ+  before the platoon enters the 
communication zone and trigger the signal 𝜎0. If there is no 
vehicle ahead leading the platoon, then the first platoon CAV 
𝑖 = 1  will be served as the leading vehicle and it will 
implement a controller to keep the desired speed. The 
technical details of this controller can be seen in Appendix I. 
Note that the following MPC is conducted at any time step 
𝑘 + 𝑝 , 𝑘 ∈ ℤ+ . We simplify it to 𝑝  hereafter throughout 
this section for simplifying notation purpose.  

MPC-𝒒𝟎 

𝐌𝐢𝐧 Γ(𝑢(𝑝)) = ∑{
1

2
[𝑧𝑇(𝑝)𝑄𝑧𝑧(𝑝) + (𝑧′(𝑝))𝑇𝑄𝑧′𝑧′(𝑝)]

𝑃

𝑝=1

+
𝜏2

2
𝜔1‖𝑢(𝑝 − 1)‖2

2} 

(13)  

Subject to, for 𝑝 ∈ 𝑃: 

Constraints in (1)-(12),  

where 𝑄𝑧 ≔ diag(α1, … , α𝑛)  and 𝑄𝑧′ ≔ diag(𝛽1, … , 𝛽𝑛) 
are diagonal matrices; 𝛼𝑖 > 0  and 𝛽𝑖 > 0  are penalty 
weights of the spacing and speed errors for each CAV 𝑖 =
1, ⋯ , 𝑛.  Note that this platoon-based car-following control 
is different from the existing system optimal vehicle 
platooning approach. It considers the control uncertainties as 
well as adaptive desired spacing policy for adapting to the 
urban traffic environment better. Using MPC-𝑞0, when the 
platoon enters the traffic signal communication zone, we 
assume the current traffic signal phase is green. 
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B. Switching signal 𝝈𝟎 MINLP 

Once a platoon enters the communication zone of traffic 
signal and triggers the splitting, we will use an optimizer to 
find the optimal splitting point within one control interval so 
that the successive MPC control (𝑞1  and 𝑞2 ) can conduct 
motion control to optimally split the platoon into two sub-
platoons 𝐴1  and 𝐴2  from the splitting point, and then 
guide them to sequentially pass the intersection during the 
consecutive green intervals. This section focuses on 
developing this optimizer, which is the switching signal 𝜎0 
in the hybrid system for finding optimal splitting point. To 
do that, we introduce binary variable 𝑦𝑖 ∈ {0,1}, 𝑖 ∈ 𝐼𝑐 =
{1,2, … , 𝑛, 𝑛 + 1, … 𝑁, 𝑁 + 1} to describe the location of the 
platoon splitting point around CAVs in the platoon. For 
example, 𝑦𝑖∗ = 1 if the platoon splits immediately ahead of 
the CAV 𝑖∗  and 𝑦𝑖∗ = 0  otherwise, 𝑖∗ ∈ 𝐼𝑐  . Note that we 
only split the platoon ahead of a CAV since HDV is not under 
trajectory control.  

Equation (14) below formally presents the binary 
variable constraints, restricting only one platoon splitting 
point exist in the mixed flow platoon since each time we split 
a platoon into two parts 𝐴1 and 𝐴2, and make sure 𝐴1 can 
pass the intersection during the current green phase.  

 ∑ 𝑦𝑖
𝑖∈𝐼𝑐

= 1; 𝑦𝑖 ∈ {0,1} (14) 

Given the first sub-platoon segment 𝐴1 is ensured to 
pass the intersection in the current remaining green phase, 
namely within next 𝑘̃𝑔 time steps. Then, given the platoon 
is split before CAV 𝑖 , then the last CAV 𝑖 − 1  in sub-
platoon 𝐴1  should pass the intersection before time step 
𝑝 = 𝑘̃𝑔. We present this consideration in (15) below. Note 
that the position of the signal is considered as longitude 
coordinate 0. 

 𝑥𝑖−1(𝑘̃𝑔) ≥ −𝑀(1 − 𝑦𝑖),     𝑖 ∈ 𝐼𝑐  (15) 

On the other side, we regulate that the second sub-
platoon segment 𝐴2 cannot go through the intersection until 
the end of the red interval at time step 𝑝 = 𝑘̃𝑔 + 𝑘𝑟 . We 
describe this requirement in (16), where 𝑀 > 0  is a big 
given positive number.  

𝑥𝑖(𝑘̃𝑔 + 𝑘𝑟) ≤ 𝑀(1 − 𝑦𝑖),      𝑖 ∈ 𝐼𝑐   (16) 

To split the platoon into two sub-platoons, we should 
enlarge the inter-vehicle spacing at the splitting point and 
consequently the speed difference at the platoon splitting 
point will also get larger. Accordingly, we modify the 
measures of spacing and speed errors at the platoon splitting 
point in the 𝜎0 Optimizer by (17) and (18).  

 ∆𝑥𝑖(𝑝) =  𝑥𝑖−1(𝑝) − 𝑥𝑖(𝑝) −  𝑠𝑖(𝑝) − 𝑦𝑖 ∗ 𝒟 (17) 

 ∆𝑣𝑖(𝑝) =  𝑣𝑖−1(𝑝) − 𝑣𝑖(𝑝) − 𝑦𝑖 ∗ 𝒟′ (18) 

where parameters 𝒟  and in 𝒟′  represent the estimated 
platoon splitting spacing and speed difference between two 
sub-platoons 𝐴1 and 𝐴2. Finally, we summarize the signal 
𝜎0 Optimizer as follows. 

Signal 𝝈𝟎 MINLP  

     𝐌𝐢𝐧  𝐽(𝑢, 𝑦) = 𝐽1(𝑢, 𝑦) + 𝜔2𝐽2(𝑢, 𝑦) (19) 

Subject to, for 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼: 

Constraints in (1)-(8), (11)- (12), (14)-(18),  

where  

𝐽1(𝑢, 𝑦) = ∑ {
1

2
[𝑧𝑇(𝑝)𝑄𝑧𝑧(𝑝) + (𝑧′(𝑝))

𝑇
𝑄𝑧′𝑧′(𝑝)]

𝑃=𝑘̃𝑔+𝑘𝑟

𝑝=1

+
𝜏2

2
𝜔1‖𝑢(𝑝 − 1)‖2

2} 

 

 𝐽2(𝑢, 𝑦) = − ∑ 𝑖 ∗ 𝑦𝑖

𝑖∈𝐼𝑐∪{𝑛+1}

  

The objective function 𝐽  in (19) makes a tradeoff 
between the traffic smoothness and traffic throughputs by 
tuning weight 𝜔2. The first component 𝐽1(𝑢, 𝑦) promotes 
traffic smoothness in the next 𝑃 = 𝑘̃𝑔 + 𝑘𝑟 steps, whereas 
the second component  𝐽2(𝑢, 𝑦)  considers maximizing the 
traffic throughputs. Overall, the signal 𝜎0  MINLP will 
figure out the optimal platoon splitting point by predicting 
future platoon control and movements, subject to safety and 
platoon splitting constraints. It aims to improve the traffic 
smoothness and efficiency while facilitating the platoon 
splitting.  

C. MPC controller for State 𝒒𝟏  

We next develop the MPC model for state 𝑞1 (MPC-
𝑞1). It guides the leading sub-platoon 𝐴1 to smoothly pass 
the intersection in the current green interval. To do that, we 
denote the CAV set in the sub-platoon 𝐴1 by the notation 
𝐴1̂ . Then the sub-platoon 𝐴1  should pass the intersection 
within the remaining green interval. Accordingly, we have 
the following constraint in (20) derived from the (15).  

 𝑥𝑖∗−1(𝑃) ≥ 0, (20) 

where 𝑖∗  represents the optimal platoon splitting point 
determined by the signal 𝜎0 Optimizer. 𝑃 is the MPC-𝑞1 
prediction horizon, where 𝑃 = 𝑘̃𝑔, 𝑘̃𝑔 − 1, … , 1  as the 
control proceeds. Below we summarize the optimizer of 
MPC-𝑞1 at each time step during the green interval. 
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MPC-𝒒𝟏 

 𝐌𝐢𝐧 Γ(𝑢) = ∑ {
1

2
[𝑧𝑇(𝑝)𝑄𝑧𝑧(𝑝) + (𝑧′(𝑝))

𝑇
𝑄𝑧′𝑧′(𝑝)]

𝑃

𝑝=1

+
𝜏2

2
𝜔1‖𝑢(𝑝 − 1)‖2

2} 
(21)  

Subject to, for 𝑖 ∈ 𝐴1̂, 𝑝 ∈ 𝑃, 𝑃 = 𝑘̃𝑔, 𝑘̃𝑔 − 1, … ,1:  

Constraints in (1)-(12), (20).  

Overall, MPC-𝑞1 regulates the trajectory control of the 
leading sub-platoon 𝐴1 and guide it to pass the intersection 
during the current green interval while ensuring the platoon’s 
system performance and traffic smoothness.  

D. MPC controller for State 𝒒𝟐  

We last develop the MPC controller for state 𝑞2 
(MPC-𝑞2). It instructs the latter sub-platoon 𝐴2 to reach the 
intersection economically and smoothly by reducing or even 
avoiding the red idling. We denote the CAV set in the sub-
platoon 𝐴2 by the notation 𝐴2̂. Then we present the CAVs’ 
trajectory control at each step as follows in (22).  

MPC-𝒒𝟐 

𝐌𝐢𝐧  Γ(𝑢) = ∑ {
1

2
[𝑧𝑇(𝑝)𝑄𝑧𝑧(𝑝) + (𝑧′(𝑝))

𝑇
𝑄𝑧′𝑧′(𝑝)]

𝑃

𝑝=1

+
𝜏2

2
𝜔1‖𝑢(𝑝 − 1)‖2

2} 
(22) 

 for 𝑖 ∈ 𝐴2̂, 𝑝 ∈ 𝑃, 𝑃 =  𝑘̃𝑔 + 𝑘𝑟 , 𝑘̃𝑔 + 𝑘𝑟 − 1, … , 1:  

Subject to Constraints in Equations (1)- (12), (23)  

𝑥𝑖∗(𝑃) ≤ 0 (23) 

Where 𝑃 = 𝑘̃𝑔 + 𝑘𝑟 , 𝑘̃𝑔 + 𝑘𝑟 − 1, … , 1  as the control 
proceeds. Equation (23) is derived from (16). It regulates that 
the sub-platoon 𝐴2 cannot pass the intersection until the red 
interval runs out. Overall, MPC-𝑞2 describes the trajectory 
control of the latter sub-platoon 𝐴2 and guide it to reach the 
intersection at the beginning of the next green interval. It 
aims to ensure the traffic throughputs and smoothness.  

V. Solution Approach 

To implement the hybrid MPC system above, we need 
to solve these MPC controllers and the signal optimizer 
MINLP efficiently within a control time interval (<1 sec) to 
ensure the control continuity. The long prediction horizon of 
these MPC controllers further leads to large-scale 
optimization problems and consequently poses tremendous 
difficulty in developing efficient numerical solvers. This 
section thus uses efficient optimization algorithms to solve 
the MPC-𝑞0, MPC-𝑞1, MPC-𝑞2 and the signal 𝜎0 MINLP 
in the hybrid MPC system. Specifically, the MINLP 

 
1  Given an optimization problem, an inequality constraint 
𝑔(𝑥) ≥ 0 is called active at 𝑥 if 𝑔(𝑥) = 0 and inactive at 

optimizer can be efficiently solved by the distributed branch 
and bound algorithm developed in (13). Then, we mainly 
focus on developing an active set algorithm (AS) to quickly 
solve the MPC controllers by taking advantage the unique 
features of this problem. Below we present the technical 
details of the active set algorithm.  

The active set method is an important algorithm in 
optimization, as it determines which constraints will affect 
the final results of the optimization (14). The active method 
is widely used particularly in the optimization-based control 
problems because many control problems involve extensive 
redundant inequality constraints. Using active set method 
will remove these redundant inequality constraints and 
simplify the optimization problem. This study noticed that 
most of the constraints in the MPC controllers are inequality 
constraints, such as constraints in (5)-(7). Further, the 
experiments indicated that majority of the inequality 
constraints of the MPC controllers are not active 1  under 
normal traffic conditions. Using these problem features, this 
study considers using active set algorithm, which first 
neglects all the inequality constraints to solve the optimizer 
and then iteratively adds active constraints back. We 
summarize the procedure of the active set algorithm in Figure 
3 below. 

 

Initialize an empty Active set 𝐴𝑆 = ∅ 
Repeat until ‘no infeasible constraints & negative 

Lagrange multipliers’: 
(1) Solve the Optimizer, subject to active set 

𝐴𝑆 constraints  
(2) Compute the Lagrange multipliers of the 

active set 𝐴𝑆 
(3) Remove constraints with negative 

Lagrange multipliers from active set 𝐴𝑆 
(4) Each CAV 𝑖 searches for its own 

infeasible constraints and add to set 𝐴𝑆. 
End repeat 

Figure 3. AS-OCD Outer loop (AS) 

VI. Numerical Experiments 

This study validates the traffic performance of the 
proposed SO-ED control when a platoon passes the 
intersection. The experiments compared the SO-ED with an 
existing CACC controller. The results are shown in Figure 4 
below. Specifically, we set the remaining green interval equal 
to 25 seconds (𝑘̃𝑔 = 25 s) when the mixed flow platoon with 
a HDV leading vehicle arrives at the communication zone 
(𝑟 =300 m away from the intersection). Then we set the green 
interval and red interval are 40 seconds in a traffic signal 

𝑥  if 𝑔(𝑥) > 0 , whereas equality constraints are always 
active.  
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cycle: 𝑘𝑟 = 𝑘𝑔 = 40 s. The experiment uses the VT-micro 
model to estimate the fuel consumptions and emissions (15).  

 
(𝑎) SO-ED (𝑘̃𝑔 = 25)      (𝑏) CACC (𝑘̃𝑔 = 25) 

Figure 4. Distance-time trajectory (SO-ED and CACC) 

Figure 4 indicates that the SO-ED control can 
significantly improve the traffic smoothness, save fuel 
consumptions and emissions as compared with the CACC 
control under both green and red scenarios. Mainly, the 
platoon using the SO-ED control in Figure 4 (𝑎) will split 
into two sub-platoons to sequentially pass the intersection. It 
is noted that the latter sub-platoon will decelerate gently and 
smoothly to avoid red idling and reduce fuel consumption 
and emission. For the entire trip, SO-ED control can save 
approximately 59% fuel consumptions and CO2 emissions 
as well as 3 seconds total travel time for each vehicle, 
compared with CACC control in Figure 4 (𝑏). 

VII. Conclusion 

This study develops a system optimal platoon-based 
eco-driving control (SO-ED), aiming to guide a mixed flow 
platoon to run on the urban roads smoothly and pass the 
signalized intersections economically. Different from the 
existing research focusing on the trajectory planning, a 
hybrid MPC system is used in this study to implement the 
SO-ED, which is a closed-loop control and adapts to CAV 
dynamic uncertainties. For the control continuity and online 
implementation, an active set algorithm is developed to solve 
large-scale MPC models efficiently. Numerical experiments 
are conducted to validate the performance of the SO-ED in 
smoothing traffic and reducing energy consumption and 
emission. There are several interesting future topics 
motivated by this study. One of them is to consider the signal 
control adaptive to the upcoming traffic flow. This extension 
may further smooth traffic and reduce energy consumption 
but brings in new challenges such as coordination issues of 
platoon and signal control. We propose to address these 
challenges in the future work. 
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