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Abstract— Motivated by the growing availability of personal
genomics services, we study an information-theoretic privacy
problem that arises when sharing genomic data: a user wants
to share his or her genome sequence while keeping the geno-
types at certain positions hidden, which could otherwise reveal
critical health-related information. A straightforward solution
of erasing (masking) the chosen genotypes does not ensure
privacy, because the correlation between nearby positions can
leak the masked genotypes. We introduce an erasure-based
privacy mechanism with perfect information-theoretic privacy,
whereby the released sequence is statistically independent of
the sensitive genotypes. Our mechanism can be interpreted as
a locally-optimal greedy algorithm for a given processing order
of sequence positions, where utility is measured by the number
of positions released without erasure. We show that finding an
optimal order is NP-hard in general and provide an upper
bound on the optimal utility. For sequences from hidden Markov
models, a standard modeling approach in genetics, we propose
an efficient algorithmic implementation of our mechanism with
complexity polynomial in sequence length. Moreover, we illustrate
the robustness of the mechanism by bounding the privacy leakage
from erroneous prior distributions. Our work is a step towards
more rigorous control of privacy in genomic data sharing.

Index Terms— Information-theoretic privacy, genomic privacy,
genomic data sharing, data sanitization, hidden Markov models.

I. INTRODUCTION
A. Motivation

HE rise of personal genomics, whereby private indi-
viduals are exposed to an increasing range of
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direct-to-consumer services for sequencing, sharing, or ana-
lyzing their genomes, is leading to growing concerns for
genomic privacy [1]-[3]. A personal genome is a rich trove
of information about the underlying individual, including
predictors for disease risks and other health-related traits,
which holds great potential for improving one’s health, yet
may cause harm if used against the individual. Unlike other
types of personal data like passwords, one’s genetic data
cannot be replaced once leaked, and a data breach may even
affect the relatives of the individual whose genome is leaked.
In order to facilitate the sharing of genomes to improve public
health and advance science, we need principled strategies for
controlling the privacy risks associated with genomic data
sharing.

A key need in this regard is to selectively limit the leakage
of information about biological or health-related traits of an
individual that can be inferred from the shared genetic data.
For example, one may wish to hide certain genotypes (an
individual’s genetic information at specific genomic positions)
with well-established disease association before sharing his
or her data with others (e.g., analytic service providers or
researchers). Such a capability would give the individuals more
fine-grained control over their genomic privacy.

A simple approach to privacy protection, whereby specific
positions in the genome deemed sensitive by the individual are
masked before sharing the data, does not provide sufficient
privacy protection. This is because the correlation structure
among nearby genomic positions induced by the biological
processes of genetic inheritance can be used to reconstruct
the masked data as demonstrated in a number of studies [4],
[5]. To prevent such an attack, one could alternatively erase all
positions that are highly correlated with the sensitive sites [6],
which may be achieved by masking the data within a large
window around each sensitive position. Unfortunately, depend-
ing upon the chosen size of window, these approaches either
provide incomplete privacy protection or require an excessive
amount of data to be erased in order to achieve strong privacy
(as we demonstrate in our results), thus limiting the usefulness
of the shared data. Here, we aim to design a principled
and effective mechanism for sharing a personal genome that
provably hides sensitive positions, while introducing a small
amount of erasure. Our techniques build upon the recent work
on ON-OFF privacy [31], [32] while extending the theory to
general data distributions beyond Markov chains addressed in
the previous work.

It is worth noting that information-theoretic approaches are
being increasingly explored for a diverse range of applica-
tions in genomics, including sequencing [7], genome-wide
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association study (GWAS) [8], [9], genome assembly [10],
[11], regulatory network of gene interactions (RNGI) [12], and
DNA-based information storage [13]. There are also recent
works addressing the issue of genomic privacy, including a
solution for private shotgun sequencing [14] based on the
intensively researched private information retrieval (PIR) prob-
lems [15]-[20] and differential privacy mechanisms for sharing
aggregate genomic data [21]-[23]. Broadly, our work can be
viewed as a continuation of these efforts to develop effective
genomic data processing tools from an information-theoretic
perspective, yet for a novel problem that we introduce, i.e., the
design of mechanisms for selectively hiding sensitive positions
in genetic sequences.

B. Genetics Background

An individual’s genome consists of a pair of sequences,
one from each parent, each consisting of around 3 billion
nucleotides (A, C, G, and T). Each sequence is referred
to as a haplotype. Since most of the genome sequence is
identical between different individuals, a common way to
compactly represent a personal genome is as a list of positions
of variation, paired with the observed nucleotide(s) in the given
individual (referred to as a genotype). In this work, we consider
the problem of sharing a list of genotypes corresponding
to a single haplotype of an individual. Although standard
sequencing or genotyping pipelines produce a genotype at each
position that convolves the two haplotypes, well-established
methods exist [24], [25] for resolving this ambiguity in
order to separate the two haplotypes (a process called
phasing), after which each haplotype could be individually
considered.

In the setting of our work, we consider an adversary whose
goal is to infer the target individual’s genotypes at specific
positions in the genome, given a partially masked genetic
sequence of the individual. In principle, this reconstruction
task is equivalent to an extensively studied problem in bioin-
formatics known as genotype imputation, originally developed
for coping with the presence of missing data in the existing
experimental pipelines for characterizing personal genomes.
If one were to mask only the sensitive positions before
sharing the data, existing imputation algorithms are expected
to be effective at revealing the hidden genotypes using other
genotypes in their respective neighborhoods.

A state-of-the-art algorithm for genotype imputation, Mini-
mac [26], is based on a classical model of genetic sequences
introduced by Li and Stephens [27]. In this model, a person’s
genetic sequence is modelled as a mosaic of a large group
of reference sequences from other individuals. This model
intuitively captures the underlying biological process of recom-
bination, which describes the interleaving of two haplotypes
of each parent when their genetic material is passed onto the
child. Formally, these models are expressed as hidden Markov
models (HMMs), where a sequence of genotypes of an indi-
vidual is generated from a sequence of hidden states indicating
which reference haplotype to copy the genotype from, for each
corresponding position. The parameters of these models are
typically inferred from a large reference panel including tens
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of thousands of sequenced human genomes [28]. Although
alternative approaches to imputation (e.g. based on matrix fac-
torization [29]) exist, in our work we are especially interested
in HMMs as the primary means to model the distribution
of genotypes, considering the wide adoption of HMMs in
genetics not only for imputation, but also for other standard
tasks like phasing [24] and simulation [30]. Further details of
this model is provided in Section VII-A.

C. Setup and Contributions

In this paper, we formulate the genotype hiding problem: We
consider a user who wishes to share a partially erased version
of their genetic sequence while protecting a list of sensitive
positions. Privacy is measured by the mutual information
between the sensitive positions and the released sequence,
and we adopt a stringent privacy requirement that enforces
zero mutual information (i.e., perfect privacy). The goal of
the problem is to design a privacy mechanism that satisfies
this requirement, while minimizing the number of erasures
introduced so as to maximize the utility of the data.

We present such a mechanism with perfect privacy and
provide a range of theoretical insights into its performance
with respect to its utility, measured by the erasure rate. The
proposed mechanism sequentially processes the positions in
the sequence in a given ordering and determines a suitable
erasure rate at each position based on the previously released
positions and the data generating distribution. We prove that
our mechanism can be viewed as a locally-optimal, greedy
solution for minimizing the erasure rate at each position.
Furthermore, we give a lower bound on the number of erasures
required for any mechanism satisfying the privacy constraint,
and show that our privacy mechanism is in fact (globally)
optimal for a class of data generative distributions defined
by Markov chains. We also show that finding the optimal
ordering for the sequential mechanism is generally intractable
(NP-hard), illustrating the limits of current techniques. Lastly,
we derive an upper bound on potential privacy leakage due to
inaccuracies in the estimation of the data generative model,
suggesting that our mechanism is relatively robust to a small
amount of noise in the data distribution.

For practical applications, we are particularly interested
in data generating distributions induced by hidden Markov
models (HMMs), which are broadly adopted in genetics as
described in Section VII-A. To this end, we also present a
computationally-efficient algorithm to implement the proposed
privacy mechanism based on HMMs, and provide an empirical
evaluation of its performance on simulated datasets.

The rest of this paper is organized as follows. In Section II,
we formalize the genotype-hiding problem. Performance
bounds are summarized in Section III. In Section IV, we intro-
duce our privacy mechanism for hiding sensitive genotypes.
In Section V, we describe its interpretation as a locally-optimal
solution in detail and demonstrate the NP-hardness of find-
ing the optimal ordering in general. The robustness of
our privacy mechanism to model mismatch is discussed in
Section VI. In Section VII, we propose an efficient implemen-
tation of the privacy mechanism for hidden Markov models.
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Simulation experiments are presented in Section VIII. Finally
in Section IX, we conclude the paper and discuss future
directions.

II. THE GENOTYPE-HIDING PROBLEM

Let X = (Xi,...,X,,) be the user’s personal genome
sequence of length n, and each X, takes values in the
alphabet X. The user wishes to share X with others, but is
concerned about revealing information about certain positions
of X. To hide the values at these sensitive positions, the user
generates a masked version of the data Y = (Y3,...,Y},),
which only partially reveals X.

The desired properties of Y are given as follows. First,
since we expect substitution errors to be considerably more
undesirable than erasures in genetic analyses, we impose a
constraint that Y; can be either X; or the erasure symbol .
We refer to this property as the faithfulness condition, i.e.,

Y; = X; or x. (Faithfulness) (1)

Note that the alphabet of Y; is X' U {x}.

Next, let K C [n] := {1,...,n} be the user-provided set of
indices of X containing sensitive information. We assume that
KC is chosen irrespective of the sequence (i.e., independently
from X) based on information such as family history or
curated disease associations. We use X to denote a collection
of random variables, i.e., X := {X; : i € K}. We require
that no information about Xy is revealed when Y is shared.
In other words, we require that

I(Xik;Y) =0, (Privacy) 2)
where I(-) denotes the mutual information. We refer to this
requirement as the privacy condition. Note that our notion of
privacy is stronger than alternatives such as local differential
privacy [33], which allows a small amount of leakage. Our
work focuses on maximizing the utility over all mechanisms
satisfying the perfect privacy condition.

We aim to design a privacy mechanism w (y|x) to generate
Y from given X and K such that both the faithfulness and
privacy conditions are satisfied. Here, we consider the ideal
scenario where the data generating distribution p (x) is known
to the mechanism. We discuss the impact of having an inaccu-
rate p (x) in Section VI; even under this challenging scenario,
we show that the potential privacy leakage is bounded by the
divergence between the given p (x) and the true distribution.
Note that we use uppercase symbols to represent random
variables and lowercase symbols to denote their realizations.

While satisfying the above two conditions, we wish to share
as much of X as possible. More precisely, let e(Y) be the
number of erasure symbols in Y. Our goal is to minimize
the expected number of erasures E[e(Y)], or equivalently the
erasure rate ~Ele(Y)], where

n

Ele(Y)] = Z]E[]l{yi ==Y plri=%, @

i=1

and 1{-} denotes the indicator function.
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A formal description of the genotype-hiding problem is
given below. We start by defining the privacy mechanism for
the genotype-hiding problem as follows.

Definition 1: An (n,K) privacy mechanism for a given
data generative distribution p (x) with input alphabet X" and
output alphabet )™ is defined by a probabilistic encoding
function

Enc: X" — Y™,

where Enc satisfies both the faithfulness condition (Y; €
{Xi,*}, Vi) and the privacy condition (I(Xx;Y) = 0).

The performance of the privacy mechanism is measured
by the expected number of erasures per symbol in an output
sequence y. This measure captures the distortion between the
input and output sequences induced by a set of single-letter
erasures. Following the convention, we define the rafte of a
privacy mechanism as the fraction of positions that are not
erased in the output:

Definition 2: The rate of an (n,K) privacy mechanism
for a given data generative distribution p (x) is defined by

— 1E[e(Enc(X))] per symbol.

Definition 3: For any given data distribution p (x), a rate
R is achievable if there exists an (n, KC) privacy mechanism
such that

1— —Ee(Y)] > R )

where Y = Enc(X).

Clearly, if R is achievable then R — € for any € > 0 is also
achievable by the definition, so we are interested in finding
the maximum achievable rate.

It is worth noting that the encoder Enc(+) can be potentially
stochastic, so we may use conditional probabilities w (y|x)
to represent the encoding function. If we treat conditional
probabilities w (y|x) where x € A",y € Y" as decision
variables, the genotype-hiding problem can be defined as the
following optimization problem:

1 n
maximize 1— — p(y; = *
w(y|x) n ; (yt )
subject to I(Xx;Y) =0
YL' S {)(17 *},VZ

(Privacy)
(Faithfulness) (@)

Note that this problem maximizes the information rate (utility)
under the stringent privacy constraint such that no information
about the sensitive positions is leaked.

If we express the objective and the constraints explicitly in
terms of the conditional probabilities w (y|x), the optimization
problem (5) can be viewed as an instance of linear program-
ming (LP). However, the scale of the problem is intractable
in practice, given the exponential blowup in the number of
variables and constraints as the length of the sequence n
grows; the number of decision variables is |X'|™|)|", and the
number of constraints is in the order of |X|*1| Y| +n |X]|V|.

Therefore, the ultimate goal of this paper is to identify a
solution to the genotype-hiding problem in a tractable and
computationally-efficient manner. To this end, we first present
an achievable privacy mechanism as well as an upper bound on
the maximum achievable rate. Then we show that the proposed
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Requirements

Privacy: I(Y; Xx) =0
Faithfulness: Y; € {X;, *}
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Goal

minimize —IE[ (Y)]
where Ele(Y)] = >0 p(y; = )

Input
Output
Genetic sequence:
Xi,...,Xn Privacy mechanism (Masked sequence:
Sensitive positions: > w(Yi,..., Yo X1,..., X5) Yi,...,Y,
KC{l,...,n} J

Fig. 1.

An illustration of (n, KC) genotype-hiding privacy mechanism. The mechanism takes as input a genetic sequence along with a set of sensitive positions

and outputs a masked sequence with erasures. We require the faithfulness and privacy conditions to be satisfied, and the goal is to minimize the expected

number of erasures in the output.

privacy mechanism is computationally efficient for a particular
data generative distribution, namely hidden Markov models,
which is of broad interest in our motivating application in
genomics.

III. PERFORMANCE BOUNDS

In this section, we state the performance bounds on the
achievable rate in the following theorems.

Theorem 1: For a given data distribution p (x), a rate R is
achievable if

1 n
= n Z Z EYH—H

[ min_p (zize = u,Y—1)) | . (6)

cXIK|

A detailed description of the achievable scheme will be
presented in Section I'V. The right-hand side of (6) may appear
unconventional, given that conditioning on Y;_;; for each
1 makes the probability term generally hard to compute as
the sequence length n grows. However, this expression corre-
sponds to a sequential mechanism where the encoder generates
Y1,...,Y, one position at a time, and an efficient update
exists for incrementally expanding the conditioning set. As an
example, in Section VII, we present a concrete implementation
of the privacy mechanism for data distributions governed by
hidden Markov models, which indeed allows the right-hand
side of (6) to be efficiently computed.

Theorem 2: For a given data distribution p (x), any achiev-
able rate R must satisfy

R< = jg: jg:

It is worth noting that, given a data distribution p (x),
each summand in the right-hand side of (7) represents the
conditional probability of the observation z; at coordinate 7
when the sensitive positions x i take on the least-likely values,
which can be determined from the given p (x).

Proof: From (3), we know that to establish (7), it is
sufficient to show
=2,

min P (wi|lze = u). @)
ueX\

min_ p(z;|xe = u) (8)
cxIKl

for any mechanism satisfying the privacy and faithfulness
conditions. Consider

p(yi # *) = Zp(yz')

Y EX
(@)

= minp (yilzx = w)
Y €EX

& Z minp (y; = z|rc = u)
Yi€X “
= Z minp (zilexe = w)p (yi = wiles, v = u)
T, EX
(©)
< Z mgnp (xi|lee = u), 9)
r,€EX
where (a) is due to the fact that Y; is independent of X
(privacy condition); (b) follows from the faithfulness condition
Y; € {X,,*}; and (c) follows from the fact that probabilities
are bounded above by 1. O
Although not true in general, the upper bounds in (6) and (7)
match under special circumstances, implying the optimality of
an achievable mechanism. That is,

> 2 rl

T €X Yli—1]

Yli—1] mlnp(lexrc, Yii—1])

= > min p(ailex =u). (10)
€

; XueX\’C\
We observe that a sufficient condition for this equality is given
by the following: for any x;, if

(1)

u* € argminp (x;|ze = u),
u

then

u” € argminp (zilze = u,yp—1)) (12)

for all possible y; ). Intuitively, this means that for any given
position x;, the least-likely values of the (unobserved) sensitive
positions xx remains the same regardless of the positions that
have been previously released in the output y;_; during the
course of the mechanism.

A special case that satisfies this optimality condition is when
random variables X7, ..., X,, form a Markov chain (i.e., p (x)
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is induced by a Markov chain), with a single sensitive position.
Without loss of generality, we assume C = {1}.

Corollary 1 (Markov Chain): If Xi,...,X, forms a
Markov chain and the sensitive position is £ = {1}, then
a rate R is achievable if and only if

R< = ZZ

It is sufficient to justify the corollary by showing that
the aforementioned sufficient condition holds. The proof is
included in Appendix A.

min p(x;|ze = u). (13)

ueX\ I

IV. PRIVACY MECHANISM

In this section, we present a privacy mechanism for gener-
ating 'Y based on a given p (x), whose performance matches
the bound given in (6), while satisfying both faithfulness and
privacy conditions.

Let us first recall the genotype-hiding problem introduced
in (5), i.e.,

1 n
1—E2P(yz‘=*)

maximize
w(ylx)
subject to I(Xx;Y) =0 (Privacy)
Y € {X;, «}, Vi. (Faithfulness)  (14)

This problem is difficult to solve in its general form given the
exponentially growing number of decision variables in w (y|x)
as the sequence length n grows. Instead, we adopt a greedy
optimization approach, whereby the erasure probability of y;
is locally minimized, one position at a time, from 1 to n.

In other words, for each i = 1,...,n, we solve
minimize  p (y; = *|y;i—1])
w(yi‘x:y[i—l]
subject to  [(Xjc; Yi|Yi—1)) =0
Yi € {Xi, *}, (15)
for any given yj;_1j. Note that
I(Xx:Y) =Y I(Xg: Yi|Yji—q) =0 (16)

i=1
by the chain rule, so if the first constraint of (15) is satisfied for
all 7, then the solution preserves the required privacy constraint
I(Xx;Y) = 0 as defined in (2). The second constraint is
inherited directly from the faithfulness condition. In other
words, any solution satisfying the constraints of (15) for all
¢ will naturally be a feasible solution to the genotype-hiding
problem in (5).

We observe that solving the local optimization problem (15)
gives rise to a sequential mechanism for generating Y. That is,
we generate Y one position at a time, where the conditional
distribution for Y; may depend on the values of Y7,...,Y;
that have been previously generated. The following defines our
chosen privacy mechanism for any given position ¢, which is in
fact an optimal solution to the local optimization problem (15).
A detailed proof of the local optimality of this scheme is
deferred to Section V.
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A. Privacy Mechanism

Generate each Y; according to the following conditional
distribution

w (yi|@s, . yp—1)
min _ .|| p(;c,;\;c;c=u,y[i,1])
p(zilzc,yii-1)
=91_ min (x| p(gc7¢|9c;c=u,y[i,1])
p(zilzrc,ypi—1)
0, otherwise,

for any x;, xxc and yj;_q), where [i — 1] :={1,...,i — 1}.

The expression for the erasure probability in the above
mechanism can be intuitively understood as follows. We first
identify the values of the sensitive positions with the smallest
likelihood of generating the observed symbol z; at the -
th position (as indicated by the numerator in the fractional
term), conditioned on the previously released positions y; 1)
Note that u is an auxiliary variable denoting the possible
values in the alphabet X’ |’C‘, whereas x denotes the observed
values at the sensitive positions. We then choose the erasure
probability such that, the probability of releasing the original
symbol (without erasure) becomes identical among different
hypothetical values of xi, thus ensuring privacy.

It is worth noting that our privacy mechanism satisfies the
faithfulness condition (i.e., y; € {x;,*}) by design, so we
only need to verify that it satisfies the privacy constraint (2).
Before verifying the privacy constraint, we note the following
properties of the mechanism.

(1) If i € IC, then

) if Yi = Ty,

A7)

) 1fyz:*7

min p (zi]ze = u,y;-1)) =0, (18)
ueXIKl
which yields
w (yi = *|zi, zc, Y1) = 1. (19)

This implies that X; is always erased if it corresponds
to one of the sensitive positions in K.

(2) We notice from (17) that X; is not erased with some
nonzero probability, so this mechanism is strictly better
than the naive approach of always erasing any posi-
tion that have a nonzero correlation with the sensitive
positions.

Proof of Privacy: To show that the proposed mechanism
in (17) satisfies the privacy condition (2), it is sufficient to
show

I(Y;;X,C|Y1,...7Y271)ZO, (20)
for all i = 1,...,n, since this implies
I(Xx;Y) =Y I(Xi; YilYizy) = 0 Q1)

i=1
by the chain rule. To establish (20), we will equivalently prove
that

p (wilzi, y—1)) = p (ylyi-1) (22)
for any zx, y;;—1) and y;. Since
p (yilz, Y1)
= Z p(wlwic, y—)) w (vilzs, zc, y—)) , - (23)

T, €EX
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by substituting (17), we have

p (yz - *|$Ka Yli— 1])
= ZP $i|$K7y[i—1}) w (yz = *|$i7931<;y[i—1])

_1_2

min p xz|$K =u y[z 1]) (24’)

uc XKk
Similarly, for y; € X', we have

p (yilzx, yi—1y)
= Z p ($i|$Ka y[i—l]) w (yz = xi|zi, xley[i—l])

T, €EX

2

We can observe that the right-hand sides of both (24) and (25)
are independent of xx, and hence by combining (24) and (25),
we have

min_p (z;loxe = u,yp_1)) - (25)

u€XIKI

p (wilzi, y—1)) = p (wlyi-1) » (26)

for any zx, y[;—1) and y;, which finishes the proof of (22). [J
Finally, we can easily verify that our sequential privacy
mechanism (17) achieves the rate

1_%,2:}7(%:
R S eport

=1 Yri—1]

17’L
1—52229 Yi-1])

=1 yri—1]

(l T 2 (e = ”>>
1 n
255 E P (yi-1) E

=1 Ypi—1)

yz = *|y[i—1])P (y[i—l])

mln p $z|$K = U, Y[i— 1])
cexIK|

n

- %Z > > 2 (y—y) minp (ilex, yi-y)

=1 x; €EX Y[i—1]

27)

where (a) follows by (24) and (26). The final expression is
identical to the right-hand side of (6) as desired.

Example: We present an example to illustrate the operations
of the proposed privacy mechanism in a simplified setting. Let
us consider a data distribution p (x) where X1, ..., X, form a
Markov chain, as in Corollary 1, and a single sensitive position
K ={1}.

By inspecting the privacy mechanism in (17), we know that
if ;1 # * for some i > 1, then

=D ($¢|$Ic = U Yli-1], Ti—1 = yi—l)
=p (zi|lzic1 = yi—1), (28)

p ($z|$ic = va[ifl])
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for any x; and yj; ) by the Markov property and the fact that
K = {1}. This implies that

mlnueX\’C\ p (J,‘1|J,‘]c = u, y[z 1])
p (wilee, yi-1)
p (@il = yi1)
B p(zilric1 = yic1)
= 1,

w (yi = @3l@s, wc, yp—1)) =

(29)

which means that if y;_1 # * then y; # * with probability
one.

Thus, when p (x) is specified by a Markov chain, we see that
the privacy mechanism erases all positions within a window
from the sensitive position and releases the rest without
erasure, and the size of the window is stochastically chosen.
This observation suggests that, in contrast to the heuristic
approach of deterministically choosing a window for erasure,
our mechanism introduces additional uncertainty about sensi-
tive data (in fact achieving perfect privacy) by randomizing
the choice of the window. Later in Section VIII, we present
a simulation experiment comparing our mechanism with the
deterministic window-based erasure approach with respect to
the privacy-utility trade-off, based on a more realistic data
distribution defined by hidden Markov models.

V. LocAL OPTIMALITY

In the previous section, we proposed a privacy mechanism
for the genotype-hiding problem satisfying both privacy and
faithfulness conditions. Here, we provide further insights into
the optimality of the proposed mechanism. We first prove
that the mechanism is indeed an optimal solution to the local
optimization problem in (15) as claimed, and thus can be
viewed as a greedy solution to the general genotype-hiding
problem in (5) given a fixed variable ordering (i.e., the order
in which Y;’s are sampled). We then present a negative result
to inform future investigation, showing that finding an optimal
variable ordering for the mechanism is intractable (NP-hard)
in general, thus illustrating the limits of current techniques in
achieving global optimality.

A. Optimality With Respect to the Local Optimization
Problem

Let us first recall the local optimization problem (15), i.e.,

minimize p (yi = *|y[i—1])
’w(yi,lx7y[i—1]
subject to I (Xjc; Yi|Y;—q) =0
As we have shown,
n
I(Xx;Y) :ZI(XK;YiW[i—l]) =0, 3D

i=1

by the chain rule, so any solution satisfying the constraints
of (15) for all ¢ is a feasible solution to the general
genotype-hiding problem in (5).
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We now show that the privacy mechanism in (17) is optimal
with respect to the above optimization problem. First, for any
given y[;_1, note that

p (yz = *|y[¢—1])

=1- > p(wilvi-u)
Yi€EX

L1— 3" minp (e, yi)
Yi€X *

21— 3" minp (y: = @ilox, yp)
YiEX x

=1- ) minp (z;|ax, i)
T, €X K

w (yi = xi|xi7$Kvy[i71])

(c)
>1- Z I;l}icnp (zilzi, yi-1))
T, €EX

(32)

where (a) follows from the privacy condition, (b) follows from
the faithfulness condition, and (c) holds because probability
values are at most 1. This implies that any feasible solution
to the local optimization problem (15) has to satisfy

p(yi = *lyji—y) > 1 - Z rg}icnp (zilei, y-1y),  (33)
r,€EX

and that it is optimal if the last step holds with equality, i.e.,
min p (zilzi, yi—1) w (yi = @ilzi, 2, Y1)

= minp (@il yp-1y) (34)

for any z; and yj_1].
By plugging in the proposed mechanism in (17), we have

Dgfcl}'lcnp (zilz, Y1) w (Y = @l@s, 2, Yjimy)

min, e yix p (2ilre = u,yp-1))
p ($i|$IC7y[i71])

=min min p(zlec = yi-)

= nxl}icnp (zilzi, Y1) -

= rg}lcnp (.T/'q,|x]C) y[lfl])

(35)

where the last step follows because the two minimizations,
both over the alphabet of X, are equivalent and can be
merged. This implies that the mechanism (17) attains the min-
imum probability of erasing Y; and thus is an optimal solution
to the local optimization problem (15). Therefore, our sequen-
tial privacy mechanism can be viewed as a locally-optimal
algorithm for solving the general genotype-hiding problem (5),
given a fixed variable ordering.

B. NP-Hardness of Finding an Optimal Variable Ordering

So far, we considered the privacy mechanism that generates
a masked sequence Yj,...,Y, in a linear order from 1 to
n. A natural question is then whether this linear ordering is
optimal in terms of the erasure rate that the locally-optimal
mechanism achieves. Here, we illustrate the difficulty of deter-
mining the optimal variable ordering for the mechanism from
a complexity theory perspective, by proving that it is NP-hard
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in general. This suggests that devising an efficient mecha-
nism with better optimality guarantees in the general setting
requires additional assumptions or techniques to circumvent
this impossibility result, which is an interesting direction for
further research.

To formalize the problem, let (01, ...,0,) be any permuta-
tion of (1,...,n). We consider generating Y in the order of
01,...,0y instead. In this setting, the privacy mechanism (17)
is defined by the conditional distribution

w (yoi Lo; ) T yO[,;_l])

min, x| p(mu,; |2 =uY0p, 4 )

( ) ’ lf yo,; = x()m
p(@o; lTKYor;,_y
= min k| P(Zo; |2xc=1,y0, _ .
1 _ uE X [ 1]) , lf in — *,
p(z"i‘z’c’y“w—u)
0, otherwise,
(36)

for any x,,, zxc and yo,_,,, where oy := {o1,...,0i-1}.

It is easy to see that the faithfulness and privacy conditions
are still satisfied regardless of the ordering.

In the following, we show that finding the best ordering
(01,...,0,) that minimizes the erasure rate of the mechanism
is NP-hard by constructing a polynomial-time reduction of
the well-known hitting set problem [34] to our problem.
More specifically, given an arbitrary instance of a hitting
set problem, we construct an instance of the genotype-hiding
problem for which finding the optimal ordering for the privacy
mechanism is equivalent to solving the original hitting set
problem.

At the core of this reduction is a bipartite graph, illustrated
in Figure 2, which we use to represent both an instance of the
hitting set problem and to construct a corresponding instance
of the genotype-hiding problem, as we explain in detail below.
To clarify the dimensions of the problems upfront, note that
we represent a hitting set problem for & sets over m elements
using a bipartite graph with m left nodes and % right nodes,
and the resulting genotype-hiding problem is over a sequence
of length n = m + k with k sensitive positions (|| = k) and
a specially constructed p (x).

We first review the hitting set problem. Consider a universe
U = {v1,...,v5} and a collection of non-empty subsets
S ={51,..., 8k} such that S; C U for all j € [k]. Without
loss of generality, assume that U = U?:l S;, and U = [m)].
A universe U and sets {S1,...,S;} can be represented by a
bipartite graph, as depicted in Fig. 2. The goal of the hitting
set problem is to find the minimum cardinality h* of a set
V C U that satisfies V' N S; # O for all 4, that is

h* = min V).

= (37
VCU:VNS; £0,Vje(k]

Next, we construct the corresponding genotype-hiding prob-
lem from the given hitting set problem instance (U,S). For
any i € [m], j € [k] such that i € S;, let b; ; be a random
variable which is independently and uniformly drawn from
{0,1}. In other words, each edge in the bipartite graph is
associated with a random bit b; ; (see Fig. 2). Then, we define
X to be a sequence of length n = m + k as follows. Let X;
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(%

Vi4+1

Fig. 2. A graphical illustration of the bipartite graph used in our NP-hardness
proof, representing an instance of the hitting set problem. The universe U is
represented by vertices on the left, sets are represented by vertices on the right,
and the edges represent the inclusion of elements in each set. To facilitate
reduction to the genotype-hiding problem, we associate each edge with an
independent and uniformly random bit b; ;.

for i € [m] be a tuple of random bits associated with edges
connected to node v, i.e.,

Xi = (bijrs---bij,),
ey ={j 14 € S5} Next, let X, for j € [k]

Xm,-i—j = @ bi,j7

i€,

(38)

where {j1, ...
be
(39)

which can be viewed as a parity check bit over the edges
connected to node ;. In other words, the first m positions
of the sequence are uniform and independently distributed
symbols (a tuple of random bits), whereas the remaining
k positions are parity check bits defined over the first m
positions.

Note that the joint distribution p (x) = p(21,...,Tm+k)
is succinctly characterized by the random bits b; ;’s and the
associated bipartite graph, and thus the description of the
genotype-hiding problem can be generated in polynomial time
with respect to m and k. In the following, we refer to the above
data generating distribution as p (x;U,S), with respect to
which the corresponding genotype-hiding problem is defined.

Theorem 3: Given a data generating distribution p (x; U, S)
for a sequence of length n = m-k and sensitive positions I =
{m+1,...,m+k}, finding the best ordering (01, .., Om+)
that minimizes the erasure rate of our mechanism (36) is
NP-hard.

We provide a sketch of the proof here and defer the details
to Appendix C. First, we note the key property of p (x; U, S)
that whether or not our mechanism erases the o;-th position
is deterministic given the variable ordering, as stated in the
following lemma.

Lemma 2: Given a data generating distribution p (x; U, S)
for a sequence of length n = m + k and sensitive positions
K ={m+1,...,m+k}, the conditional sampling distribution
of our privacy mechanism satisfies

W (Yo, = *|To,, Tk, Yop,_yy) € {0,1} (40)

4097

for all 4, given any ordering 7 = (01,. .., Omk)-
Proof: See Appendix B. O]
As a result of Lemma 2, the overall erasure rate of the
privacy mechanism can be calculated simply by counting the
number of erased positions. Note that, if o; € /C, then

w (ym = *lxomxlﬁyo“,l]) =1, (41)

regardless of the ordering as we have previously shown. Thus,
we need to compare only the erased indices in [m] = [m +
EJ\K for finding the best ordering.

Let E, be the set of erased indices in [m] for a given
ordering m = (01, ...,0,), ie.,

E,={i:y;=x*,i€[m]}, (42)

where the distribution over Y is determined by the privacy
mechanism. Then, finding the best ordering corresponds to
finding 7 that leads to the minimum cardinality e* of the
corresponding E:

er = mﬂin |Ex|. (43)

Intuitively, whether a particular index ¢ € [m] is included in
FE; can be easily determined based on the bipartite graph rep-
resentation of the underlying hitting set problem (see Fig. 2)
as follows. The ordering m = (01,...,0mtk) specifies the
order in which the m nodes on the left-hand side of the graph,
each with a corresponding X, is visited by the mechanism
(disregarding the sensitive indices o; ¢ [m], which are always
erased). As we show in the proof of Lemma 2, when we
visit the node o; € [m], X,, is erased if and only if there
exists a node j € [k] on the right-hand side of the graph
that is connected to o; and only to other nodes (if any) that
are previously visited and not erased. The presence of such a
node j indicates that the sensitive variable X, ; is directly
revealed by X, (since the rest of random bits contributing to
X+ are already released in Y without erasure), while the
absence of such j indicates the existence of other positions
that are erased or have not been released that fully mask the
correlation between X,, and the sensitive positions.

Finally, we complete the reduction by showing that solv-
ing (43) also produces a solution for the hitting set prob-
lem (37), i.e., e = h*. This is achieved by showing both
that the set of erased indices E, is in fact a valid hitting
set (¢* > h*), and that there exists an ordering 7 satisfying
|E:| < |V] for any given hitting set V' (e* < h*). A detailed
proof is included in Appendix C.

Since the hitting set problem is equivalent to the set cover
problem and is well-known to be NP-hard, our reduction
proves that finding the best ordering 7 for our privacy mecha-
nism given any p (x) and K is also NP-hard. We note that this
result does not preclude the possibility that for a restricted
class of genotype-hiding problems (e.g., with a structured
p(x) defined by HMMs), one could still find an efficient
polynomial-time algorithm for determining the optimal vari-
able ordering, which remains an interesting open question.

VI. ROBUSTNESS

In this section, we discuss the robustness of our mecha-
nism with respect to the underlying data distribution. In our
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formulation of the privacy mechanism, the distribution (or the
data generative model) p (x), from which the input genome
sequence originated, is assumed to be known. In practice,
one can only empirically estimate this distribution based on
existing data resources, e.g., by obtaining maximum likeli-
hood estimates of the model parameters based on a large
collection of reference genomes in public data repositories.
Consequently, the generative model used by the mechanism
is bound to have deviations from the true generative process,
both in terms of the limitations of the model as well as the
noisy estimation of the parameters. These discrepancies can
potentially lead to privacy leakage if the adversary has access
to a more accurate distribution for the underlying input. Here,
we study the potential privacy leakage under the worst-case
scenario, where the adversary has access to the true underlying
distribution. We bound the potential leakage as a function
of the distance between the data distribution used by the
mechanism and the true underlying distribution, suggesting
that our mechanism is robust to small deviations in the noisy
data distribution we expect to encounter in real-world use
cases.

We denote the noisy data distribution used by the mecha-
nism by ¢ (x) and the true distribution by p (x). The privacy
mechanism constructs the sampling distribution w(y|x) based
on the available ¢ (x) such that the output Y is independent of
sensitive genotypes X with respect to the joint distribution
q (x,y) induced by ¢(x) and the mechanism w(y|x), i.e.,

> a(xy)

Tn]\K

= Z w(y|x)q (x) =q(zx)q(y) .

Tln)\K

Q(xlCay) =

(44)

Since X is actually generated from p (x) not ¢ (x), we also
define the true joint distribution p (x,y) induced by p (x) and
the mechanism w(y|x); note that the mechanism is still based
on ¢ (x).

Then, we can measure the unforeseen privacy leakage due
to the mismatch in data distribution by the mutual information
I(p(zx);p(y)) between the sensitive genotypes and the
output sequence with respect to p (x,y), as follows:

I(p(zx);p(¥))
= plax,y)log

T,y

= plax,y)log

W peeyala)
7%]9( Y8 b (o) 4 o, y)

=D(p(zx,y)llg (v, y)) — D(p (wx) [l (k)
—D(p(y)llq(y)),

where D(-||-) denotes relative entropy or equivalently
Kullback-Leibler (KL) divergence, and (a) follows from (44).
This leads to the following theorem.

Theorem 4: 1(p (zx);p (y)) < D(p(x)[lq (x)).
Proof: See Appendix D. O

p(rx,y)
P (y)p(7k)

p(xlCay) Q(xKvy)
p(y)p(zc)q(rk,y)

(45)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

This result implies that the amount of privacy leakage due
to the potential mismatch between the data distribution used
by the mechanism and the true underlying generative process
gracefully scales with the extent to which the two distributions
diverge.

VII. PRIVACY MECHANISM FOR HIDDEN
MARKOV MODELS

Thus far, we considered the data generative model p (x) of
the privacy mechanism to be an arbitrary distribution. Here,
we address a particular form of p (x) of great interest for our
application setting in genomics, namely the Li and Stephens
model [27], which is based on a hidden Markov model. This
model is widely adopted in genetics for a wide range of tasks
that require a probabilistic model of the genome [35]. For this
class of p (x), we propose an efficient algorithm to implement
the privacy mechanism introduced in Section IV.

A. Review of Hidden Markov Models for Genomes

The classical hidden Markov model (HMM) describing the
distribution of personal genomes [27] is as follows. First, let
X = (X1, Xo,...,X,,) represent an individual’s (haplotype)
genetic sequence of length n. Following standard practice in
genetics, we adopt a binary alphabet X = {0,1} for each
element X, representing whether the observed nucleotide is
identical to the one in the reference human genome (called
reference allele) or not (alternative allele). In addition, we are
given a reference dataset of m personal genome sequences
H = {h; : j = 1,...,m}, where each sequence h; is of
length n. The i-th coordinate of h; is denoted by h; ;, which
also takes a value in X.

In this model, X is viewed as a “mosaic” of reference
sequences in H with potential substitution errors arising from
mutations or experimental noise in sequencing. Formally, X
depends on a sequence of hidden states {S;}?_; forming
a Markov chain, where each S; takes an integer in the
range {1,...,m}, representing an index into 7. Without
loss of generality, we assume that the initial state Sp is
uniformly distributed over {1,...,m}. The transition prob-
ability m; ; from state ¢ to j is set to —“5 and 1 — ¢
for i« # j and ¢ = j, respectively. The parameter € is
often called the recombination probability; in the following
we also use the term crossover probability to refer to this
quantity.

Next, each X; is sampled based on the hidden state S; by
copying the corresponding symbol in the selected reference
sequence with a small probability of error. In other words,
X, is equal to the symbol in the i-th position of hg, with
error probability 0. The overall data distribution p (x) is
fully specified by the tuple (H, ¢, ). We provide a graphical
illustration of p(x) in Fig. 3. In our work, we treat the
parameters of the above model as given. In practice, these
parameters are estimated from a large collection of reference
genomes, e.g., including hundreds of thousands of individuals,
which are available in public data repositories such as the UK
Biobank [36].

Authorized licensed use limited to: Rutgers University. Downloaded on May 25,2023 at 13:30:38 UTC from IEEE Xplore. Restrictions apply.



YE et al.: MECHANISMS FOR HIDING SENSITIVE GENOTYPES WITH INFORMATION-THEORETIC PRIVACY 4099
States >
Reference
v
() Reference allele
() Alternative allele
Fig. 3. A graphical illustration of HMM for genomes. The state space of the hidden states is {1, ..., m}, where each element corresponds to an index into

the reference dataset {hi, .

..,y } (each of length n). A Markov process {S;}7"; indicates which reference sequence the user reads the data from at the

i-th position. For each 7, X; differs from the i-th position of hg, with probability 6, representing noise in the data. BSCy: Binary symmetric channel with

crossover probability 6.

B. An Efficient Algorithm for HMMs

In this section, we propose an efficient algorithm to imple-
ment the privacy mechanism introduced in Section IV for p (x)
based on a hidden Markov model (H, ¢, ) described in the
previous section. The outline of our algorithm is provided in
Algorithm 1.

As seen in (17), the privacy mechanism determines the
probability of erasing x; mainly based on the probability
P (xi|x;<, y[i_l]). By employing a belief propagation approach
akin to the well-known forward-backward algorithm [37],
we track the computation of p(a:¢|a:;c :u,y[i,l]) for all
u € XX efficiently. The novelty of our algorithm is that
it incorporates the stochasticity of the privacy mechanism in
addition to that of the HMM.

First, note that it is sufficient to describe how to compute
p(xi|x;c = u,y[i,l]) for all uw € X!l and i € [n], which
fully determines the distribution of vy, ..., y, specified by our
privacy mechanism, i.e.,

p (ilzi, T, yji—1))

min__ i) p(@ilec=uyi 1))

if y, = x;
P(%W}C,y[i—u) ’ Ye v
= min i p(mlee=neiy) oo (46)
p(iloc,yi—1)) ’ Yi ’
0, otherwise.

We begin by expressing p (z;|zc = u, yj—1)) as

p ($¢|$Ic = U7y[i71])
= p(silec = w,y—) p (wilsi, 2 = u, Y1)

= Z p (Si—1|$1c=u7y[i71]) p (Si|8¢—17$K=U)p ($¢|8¢) .

Si,Si—1

(47)

Note that

p(silsi—1, 2 = u)
_ p (si; Si—1,TK = U)
p(si—1,76 = u)
Cp(sialze, =u ) p(silsia)p (vx,, = uils;)
p (5i71|$lci, = U—) p (%CH = U+|5i71)
~ p(silsic)p (wxc,, = uylsi)
p (QITIC,;+ = U+|5i—1)
o p(silsic)p (e, = uylsi)
Yo, p(silsic)p (wx,, = uylsi)’
where IC;— == KN{l,...,i—1}, Kiy :=KnN{i,...,n}, u_
and u are corresponding values of zx,  and xx,, specified
by u.

As p (z;]s;) and p (s;]s,—1) are directly given by the HMM,
we need only to consider how to compute the two terms
D (si,1|x;< = u,y[i_l]) and p (m;gi+ = u+|sz) To simplify
our notation, we introduce the following variables to represent
these terms:

(48)

VD (u, 8;) :=p (silrie = w, y1, ..., %) s
'y(i)(u, 8i):=0p (x;gi+ = u+|si) .
With 49 (u, s;) and 4 (u, s;) for a given position i, we can
calculate (47) as
p ($z|$ic =u, y[i%])
= X U (s )p (silsica) v (u, 5i)p (] si)
B Z Eg p (silsi-1) (@) (u, 54) '

Si—1

(49)

First, note that (¥ (u, s;) can be recursively computed in
the same manner as calculating the backward probabilities in
the forward-backward algorithm, as described below:
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1) Initialization: We initialize v (u, s,,) by

= K
My g ) — 4P @ =tnlsn), nEL,
2) Iterations: Fori=mn—1,...,1, we compute 7 (u, s;)
as
,y(’L) (U, 57,)

_ 2, p@i= uilsi) p(sivls) YO (u, si41), i€ K
Y eiss P (sivn]si) 0D (u, 5040), i¢ K.
(5D

Next, to efficiently compute (¥ (u, s;) for i € [n], we anal-
ogously adopt the following iterative steps.
3) Initialization: ¥ (u, s1) is initialized by

W (u, 51) o< p(siloe = u)p (st zc =u),  (52)

where p(si|ex =u) can be calculated by (48) given
7D (u, s1), and p (y1]s1, zx = u) is given by our mechanism
as shown in (46).

4) Iterations: Using Bayes’ rule, we can express 1" (u, 5;)
as

D (u, s5) = p (silzxe = u, yp)
xXp (Si|$rc =u, y[i—l]) p (yi|8i7$1< = uvy[i—l]) )
(53)

where

p (Si|$l< =u, y[i—l])
= Z PO (w, 5;1)p (sisim1, w6 = ),

Si—1

(54)

and

p (yilsi, o = u, Y1)
= plails)p (vilzi e = wyi—y) . (59)

Therefore, (" (u,s;) can be computed based
on U D(u,s;1). We note that the probability
p(silsi_1,2xc =u) can be calculated using ) (u,s;)
as shown in (48), and p (yi|zi, xx = u,y—_1)) is given by
our mechanism as shown in (46). Using this recurrence
relation, 9(*) (u, s;) for all i € [n] can be computed.

Analogous to the forward-backward algorithm, our algo-
rithm has polynomial computational complexity of O(nm?)
for a fixed u, with respect to the sequence length n and the
number of reference sequences m, for a given wu. Clearly,
min, ¢ yix| p (mz|x;< =u, y[i_l]) can be easily obtained once
p (@] = u,yj—1)) for all u have been computed. This over-
head involves a factor of 2/l in the computational complexity,
but we expect |K| to be a small constant in practice (e.g., less
than 10); since genotype correlation is predominantly local,
the user may apply our mechanism to local regions of the
genome of a permissive length, each of which including only
a few sensitive positions.
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Algorithm 1 Mechanism for Hiding Sensitive Genotypes in X

Input: Genome sequence X = (X1,...,X,,) from an HMM
with parameters (7, €, §), and indices of sensitive positions
K C [n]

Output: Masked genome sequence Y = (Y7,...,Y},), such
that [(Xx;Y) =0 and Y; € {X;,*} for all i € [n]

1: Initialize v(") (u, s,,) according to (50)

2:fori=n—1,...,1do

3. for u € XXl do

4 Compute v (u, s;) according to (51)

5: Compute p (s;|si—1, zx = u) according to (48)

6

7

8

9

end for
: end for
. Initialize 1) (u, s1) according to (52)
cfori=2,....,ndo
10:  Calculate the erasure probability for Y; using (46)
11:  Generate Y; € {X;,*} according to the erasure proba-
bility
122 for u € XI*l do
13:  Compute ¥ (u, s;) according to (53)
14:  end for
15: end for

VIII. SIMULATIONS

In this section, we provide insights into the empirical per-
formance of our privacy mechanism for hidden Markov mod-
els (HMMs) on simulated datasets. We randomly generated
100 haplotype sequences of length 100, which together with
the choices of error probability # and crossover probability e
induce p (x), as described in Section VII-A. For simplicity,
we suppose the sensitive position K = {1}.

We first illustrate the privacy-utility trade-off of the heuristic
window-based erasure approach described in the Introduction.
In particular, this approach erases the first w positions of
the sequence to hide information about the sensitive posi-
tion (the first position). The results are shown in Figure 4.
The erasure rate is defined by the size of the erased win-
dow over the sequence length, ie., w/n (note n = 100).
The privacy leakage is measured by the mutual information
between the released positions and the sensitive position X7,
normalized by the entropy of X1, i.e., I(X1; Xpn)\(w])/H (X1).
We also show the expected erasure rate of our proposed
privacy mechanism for comparison, whose privacy leakage is
strictly zero by design. We observe that the window-erasure
approach requires a high erasure rate (around 0.3) to keep
the privacy leakage close to zero, whereas our mechanism
achieves a considerably smaller erasure rate (around 0.12)
while providing perfect privacy. On the other hand, choosing
a window size for the baseline approach to match the era-
sure rate of our mechanism leads to a considerable privacy
leakage.

We next evaluate our privacy mechanism over a range of
different parameter settings. We consider 6 € {0.01,0.05} and
vary € from 0.01 to 0.5, both of which reflect reasonable ranges
of the parameters for the scale of the dataset we simulated.
We provide each instance of p (x) to our privacy mechanism
with I = {1} to calculate its achievable rate R (i.e., one minus
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0.2 Window-based Erasure Approach
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Fig. 4. Privacy-utility trade-off of the window-based erasure approach on

simulated HMM data with m» = 100, n = 100, K = {1}, crossover
probability ¢ = 0.1 and error probability § = 0.01. Erasure rate denotes
the size of window that is erased normalized by the sequence length
n. Privacy leakage denotes the mutual information between the released
data and the sensitive symbol normalized by the entropy of the sensitive
symbol.
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Fig. 5.  Comparison of our mechanism and the upper bound on simulated

HMM data with m = 100, n = 100, K = {1} and different choices of
crossover probability € and error probability 6.

the expected erasure rate). Figure 5 shows the comparison
between the rate of our mechanism and the upper bound we
derived in Section III. The results suggest that the performance
of our mechanism shows varying degrees of closeness to
the theoretical upper bound depending on the characteristics
of the underlying data distribution. In particular, for higher
values of ¢, representing the regime where the hidden Markov
model mixes faster and thus the correlation with the sensitive
position decays more quickly, the rate of our mechanism is
nearly identical to the upper bound. On the other hand, for
lower values of €, which lead to stronger correlations in the
sequence, we observed that the gap between our mechanism
and the upper bound can grow considerable large. Note that
this does not necessarily imply that our mechanism achieves
a significantly suboptimal performance, given that the upper
bound we considered is not tight in general. We also note that
the rate of our mechanism is generally higher when the error
probability is larger (¢ = 0.05 vs 0.01), which agrees with
the intuition that higher levels of noise in the data distribution
lower the requirement for hiding sensitive information, thus
leading to lower erasure probabilities and higher rates as a
result.
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Fig. 6. Comparison of our mechanism, the upper bound and the optimal rate
based on a linear programming (LP) solution on simulated HMM data with
m = 100, n = 6, K = {1} based on a truncated version of the dataset used
in Fig. 5.

To gain further insights into the noticeable gap between
the upper bound and our mechanism in the small e regime,
we additionally implemented a linear programming (LP)
approach for directly obtaining the optimal mechanism
w (y|x). However, since the size of LP grows exponentially
with the length of the sequence n, we could only evaluate
this approach for small problem instances due to numerical
instability. We took the same simulated data as before and
truncated each reference haplotype down to the first six
positions to obtain a tractable LP instance for this experiment
(n = 6).

The rate comparisons of our privacy mechanism, LP-based
optimal mechanism, and the upper bound in this setting are
shown in Fig. 6. As expected, we observed that the optimal rate
lies between the upper bound and the rate of our mechanism,
demonstrating that the gap between the optimal rate and the
rate of our mechanism is indeed smaller than the ostensible
gap suggested by the upper bound.

Taken together, these results suggest that, although the
performance of our mechanism is often quite close to the
upper bound, the difference between the maximum achievable
rate and the rate of our mechanism can vary based on
the properties of the data distribution. We note that it is
yet unknown whether there exists a privacy mechanism that
can be as efficiently constructed as our mechanism while
achieving performance that is closer to the optimal rate.
Closing this performance gap both by devising enhanced
privacy mechanisms that achieve higher rates and by devel-
oping tighter upper bounds are important directions for future
work.

IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced the genotype hiding problem
and proposed an information-theoretic privacy mechanism as
a solution. We analyzed the theoretical properties of the mech-
anism, and proposed an efficient algorithmic implementation
of the mechanism for hidden Markov models, a main model
of interest for our application in genomics.

It is worth noting that our mechanism does not rule out the
possibilities of genotype reconstruction attacks that leverage
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(1) alternative genetic sequence models and imputation strate-
gies or (ii) a larger set of reference dataset using which HMM
parameters could be more accurately estimated. However,
our model based on HMMs is consistent with the state-
of-the-art techniques for genotype imputation, which is a
relatively mature field. In addition, given the high cost of
amassing large-scale genomic data, it would be a significant
challenge for an attacker to gain access to a larger dataset
than those in the public realm. As such, our mechanism could
be thought of as providing privacy protection according to
the best knowledge of the field. Our results in Section VI
show that any unforeseen privacy leakage arising from the
discrepancies in the data distribution scales gracefully with
the relative entropy between the true distribution and the one
used by the mechanism.

There are several key directions for future work. Our work
focused on hiding the content of the sensitive positions, yet
a potential concern remains regarding information revealed
by the choice of sensitive positions . Any approach rely-
ing on erasures for privacy protection may inevitably leak
information about C, since preventing such leakage would
generally require erasures to be consistently applied through-
out the sequence, which is highly costly in terms of utility
if only a small fraction is considered sensitive. An interest-
ing extension of our work is then to relax the faithfulness
condition when hiding the positions is deemed important.
A promising approach is to re-sample the erased positions
from the data distribution as a post-processing step to the
mechanism presented in this paper. That said, we note that
in our application setting, K is neither necessarily or nor
solely decided by the sequence, as it may be determined based
on family history of diseases or curated disease associations
in public repositories. Thus, we believe the mechanism pre-
sented in this work is directly applicable in many practical
scenarios.

Next, although we focused on achieving perfect privacy
(with respect to the given data distribution), it may be use-
ful in practice to consider a relaxed notion such as local
differential privacy [38]. This may give the user the ability
to determine a more desirable trade-off between the level
of privacy and the amount of data to be erased. From an
analytical standpoint, this direction would also lead to useful
insights about the achievable points along the privacy-utility
trade-off curve defined by the genotype-hiding problem with
a relaxed notion of privacy, to complement the results in this
work.

Furthermore, it would be interesting to explore the general-
ization of our efficient implementation strategies to a broader
class of data generative models beyond HMMs, which may
allow similar mechanisms to be employed to protect sensitive
data in other domains.

Lastly, we plan to study the performance of our privacy
mechanism on real genetic datasets and release the software
implementation of our mechanism for the genetics community
in the near future.

Growing threats to genetic privacy are necessitating prin-
cipled strategies for protecting the privacy of individuals
while maintaining the utility of data sharing. Our work

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

illustrates how such a strategy could be designed from an
information-theoretic perspective to enable selective disclosure
of personal genomic data. Our methodology is broadly applica-
ble to other data sharing scenarios involving sensitive data with
complex correlation structure. We hope that our work will help
spur the development of a wide range of information-theoretic
tools for modelling and preserving private genomic informa-
tion.

APPENDIX A
PROOF OF COROLLARY 1

We prove the sufficient condition of the optimality
holds for the Markov chain case. We give an inductive
proof for the sufficient condition by showing that, for a
given x;,

u* € arg min p (zilex = u,yp-1)) (56)

implies
u* e arg min p (zilze = u, ypy) (57)
for j = 1,...,7 — 1. For each j, we consider the following

two cases (y; # * and y; = *):
(1) If y; # *, then we have
p (e, yy) = )b (@l vy) p (@il vy ;)
()
=1{z; = y;}p (wilox, vy, 75)

(b

=z = yj}p (zi|zy), (58)

where (a) follows because Y; can either be X; or
x, and (b) follows from Markovity. In this case,
arg ming p (mz|x;< =u, ym) is indeed independent of u,
which means

argminp (zilzx = u,yp) = | X1, (59)

so the statement is trivially true.
If y; = =, then we have

)
P (wilric, yi)
=D o (@l y) p (wilex, v, )

@Zp (zjlzrc, yy) p (ilzy)

& {P (z5lzi, yy—)) — mgnp (zjlex = uvy[j—l])}

p (wi]7;)
=D p(iley)p (25l yy-1)

= p (il minp (zj]ex = u,y;-1)

=P (xi|xlC7y[j—1])
=Y p(wilay) minp (z;lvx = u, yy-1) ,

T

(60)
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where (a) follows from Markovity, and (b) follows from
Bayes’s rule and our privacy mechanism (17). Since the
second term of the right-hand side in (60) is independent
of xx, we obtain
arg Hhinp ($z|$ic = u, y[j])

= argminp (wilzx = w,yy ). (61)

For both cases, we have verified that the sufficient condition
holds, which completes the proof.

APPENDIX B
PROOF OF LEMMA 2

We will prove (40) by induction. First, consider the base
case:

ming . p (zo, |2xc)
p (o, |zK)

From the previous discussion, we know that if o; € I, then

W (Yo, = *|Toy,xic) =1 — (62)

w (yoi - *|$Oi;x’<:7y0[,;_1]) = 17 (63)
so without loss of generality, we assume that
o ¢ K={m+1,....m+Ek}. (64)
Since
=9 > bij:jelkly, (65)
RIS
and
To, = {b(’hj 101 € S]} (66)

by definition, we can see that if there exists some j such that
S; = {o1}, then b,, ; € xx and b,, ; € x,,. In this case,
we can always find some assignments such that

Iél)icnp (o, |zKc) =0, (67)
implying that
w (yo1 = *|xo1axlC) =1 (68)

If there is no j such that S; = {oi}, each ;. bi;
constituting zx is a binary summation of some b,, ; and (inde-
pendent) random bits b; ; such that ¢ # o;, where the latter
render the result uniformly random. This means that Xy is
independent of X,,, and thus we have

ming, p (o, |2xc)
p(wo, |7K)

B ming, p (%o, )

p(To,)

w(yol = *|$01,l‘]c) =1-

=1 =0, (69

for all z,, and xk.

Assume the statement is true for o1,...,0;_1. Then for o;,

note that
P (in Ik, yO[,;_l]) _ P (To;|zKc) P (yo[i—l] |m0mmlc) . (70)
p (y()[i,l] JTIC)
By letting .
Ei=10j Yo, #%J<i—1}, (71)
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(70) can be written as
p (o, lzx) p (g |20, 2K)
p (xoi x’C’yO[i—u) =
p (2 lxx)
=p (2o, |25, K) , (72)

because of the inductive assumption that the decisions whether
to erase Yo, ,- - -, Yo, , are deterministic.
Hence, we have

ming, p (l’oi Trc, yo[i—l])
D (J)o,; TKC, y(’[i—l])
ming, p (2o, |z, 2x)

p (o, o)

w (yoi = *|$Oiax7C7y0[,;_1]) =

(73)

Analogous to our argument for the base case, if there exists
some j such that S; C & U {o;}, then one can determine
bo,.j € xo, from zg, , xic, and thus

minp (r g ) =0 o

implying that

w (yoi - *|x0i;x’<:7y0[,;_1]) = ]- (75)

If there is no such j, each z; for j € K is the binary
summation of some b,, ; € ,, and some independent random
bits b/ ; such that ¢’ # o;, which again guarantees that X is
independent of X, conditioning on X . Thus, we have

g,)
zg,)

ming . p (moi

p (2o,

w (in = *|x0i;x’(:7yo[i_1]) =1- = O’

(76)

for all z,,, zx and Yopi_1p» which completes the inductive
proof.

APPENDIX C
PROOF OF THEOREM 3

First, let us show that e* > h* by showing that F is a
hitting set for any order 7, i.e., Er NS; # () for all j € [k].
We prove it by contradiction. Suppose that there exists some
S; such that E.NS; = (), which implies that S; C [m]\ E, for
some j. Assume that S; = {i1,...,4;}, and i, is the last index
visited that specified by the given order 7. Then, when we run
our mechanism for 4, since 71, ...,4;_1 are all visited and not
erased, by recalling the proof of Lemma 2, we know that f:'it )
{#1,...,44—1}, so we have S; C f:'it U {i;}. It means that y;,
is erased or i; € E, which contradicts with our assumption
E.NS;=0.

Next, we show that e* < h* by showing that for any given
hitting set V, there exists an order 7 such that |E.| < |V].
Suppose V' is a hitting set and |V| = h, i.e., VNS; # (O for all
j € [k]. Consider an order 7 such that o; ¢ VU[m+1: m+k|
fori <m-—hando, € Vfori € [m—h+1:m],ie,
visiting indices in the complementary of 71" before attaining
V. When we visit o; such that i < m — h (or o; € [m]\V),
by the assumption that V' N S; # () for all j, we know that
there exists some index ¢; € S; NV for each j. By recalling
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the definition (71), we know that & D [m\V, so t; ¢ &
Note that t; € V while o; ¢ V, so t; ¢ & U {o;}. Hence,
we know that y,, is not erased, or o; ¢ E, from the proof of
Lemma 2. Since o; ¢ E, for i« < m — h given this particular
order m, we have |E;| < h = |V|, which completes the
proof.

APPENDIX D
PROOF OF THEOREM 4

From (45), we have

I(p(zx);p(y)) = D(p (v, y) [lg (zx,y))
—D(p(zx)llg (zx)) — D(p(y) [lg (¥)),

and it remains to show that the right-hand side is bounded

above by D(p (x) [|g (x)).
By applying the chain rule for relative entropy, we have

(77)

D(p(x,y) llg (x,¥))
=D(p(x)|lg(x)) + D(p(ylx)llg (y[x)),  (78)
and
D(p(x,y)llg (x,y)) = D(p (zx,¥) llg (zx,y))
+D(p (zppclze, y) g (zppclze. y)).  (79)

The definition of conditional relative entropy and the proof of
the chain rule for relative entropy can be found in [40, p. 24].
From these equations, we obtain

D(p(zx,y) llg (zx,¥y))
= D(p (%) g (x)) + D(p (y|x) |lg (y|x))

— D(p (zppiclexs y) lla (zppclec, y)).  (80)

By substituting (80) in (77), we have

I(p(xzc)'p(Y))
D(p (%) |lg (x))+D(p (y[x)|lg (yx))—
D(p (x[n]\ldx’Ca )||q ({E n]\)C|xley))_

D(p
® ® pp

D(p (wx) ||q (xx))

D(p(y)llg (y))

x) |lg (x)) + D(p (ylx) llg (y|x))
) llq (%)),

where (a) follows from the non-negativity of relative entropy,
(b) follows from the assumption ¢ (y|x) = p (y|x) = w(y|x).

(
(x 81
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