
4090 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

Mechanisms for Hiding Sensitive Genotypes

With Information-Theoretic Privacy
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Abstract— Motivated by the growing availability of personal
genomics services, we study an information-theoretic privacy
problem that arises when sharing genomic data: a user wants
to share his or her genome sequence while keeping the geno-
types at certain positions hidden, which could otherwise reveal
critical health-related information. A straightforward solution
of erasing (masking) the chosen genotypes does not ensure
privacy, because the correlation between nearby positions can
leak the masked genotypes. We introduce an erasure-based
privacy mechanism with perfect information-theoretic privacy,
whereby the released sequence is statistically independent of
the sensitive genotypes. Our mechanism can be interpreted as
a locally-optimal greedy algorithm for a given processing order
of sequence positions, where utility is measured by the number
of positions released without erasure. We show that finding an
optimal order is NP-hard in general and provide an upper
bound on the optimal utility. For sequences from hidden Markov
models, a standard modeling approach in genetics, we propose
an efficient algorithmic implementation of our mechanism with
complexity polynomial in sequence length. Moreover, we illustrate
the robustness of the mechanism by bounding the privacy leakage
from erroneous prior distributions. Our work is a step towards
more rigorous control of privacy in genomic data sharing.

Index Terms— Information-theoretic privacy, genomic privacy,
genomic data sharing, data sanitization, hidden Markov models.

I. INTRODUCTION

A. Motivation

THE rise of personal genomics, whereby private indi-

viduals are exposed to an increasing range of
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direct-to-consumer services for sequencing, sharing, or ana-

lyzing their genomes, is leading to growing concerns for

genomic privacy [1]–[3]. A personal genome is a rich trove

of information about the underlying individual, including

predictors for disease risks and other health-related traits,

which holds great potential for improving one’s health, yet

may cause harm if used against the individual. Unlike other

types of personal data like passwords, one’s genetic data

cannot be replaced once leaked, and a data breach may even

affect the relatives of the individual whose genome is leaked.

In order to facilitate the sharing of genomes to improve public

health and advance science, we need principled strategies for

controlling the privacy risks associated with genomic data

sharing.

A key need in this regard is to selectively limit the leakage

of information about biological or health-related traits of an

individual that can be inferred from the shared genetic data.

For example, one may wish to hide certain genotypes (an

individual’s genetic information at specific genomic positions)

with well-established disease association before sharing his

or her data with others (e.g., analytic service providers or

researchers). Such a capability would give the individuals more

fine-grained control over their genomic privacy.

A simple approach to privacy protection, whereby specific

positions in the genome deemed sensitive by the individual are

masked before sharing the data, does not provide sufficient

privacy protection. This is because the correlation structure

among nearby genomic positions induced by the biological

processes of genetic inheritance can be used to reconstruct

the masked data as demonstrated in a number of studies [4],

[5]. To prevent such an attack, one could alternatively erase all

positions that are highly correlated with the sensitive sites [6],

which may be achieved by masking the data within a large

window around each sensitive position. Unfortunately, depend-

ing upon the chosen size of window, these approaches either

provide incomplete privacy protection or require an excessive

amount of data to be erased in order to achieve strong privacy

(as we demonstrate in our results), thus limiting the usefulness

of the shared data. Here, we aim to design a principled

and effective mechanism for sharing a personal genome that

provably hides sensitive positions, while introducing a small

amount of erasure. Our techniques build upon the recent work

on ON-OFF privacy [31], [32] while extending the theory to

general data distributions beyond Markov chains addressed in

the previous work.

It is worth noting that information-theoretic approaches are

being increasingly explored for a diverse range of applica-

tions in genomics, including sequencing [7], genome-wide
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association study (GWAS) [8], [9], genome assembly [10],

[11], regulatory network of gene interactions (RNGI) [12], and

DNA-based information storage [13]. There are also recent

works addressing the issue of genomic privacy, including a

solution for private shotgun sequencing [14] based on the

intensively researched private information retrieval (PIR) prob-

lems [15]–[20] and differential privacy mechanisms for sharing

aggregate genomic data [21]–[23]. Broadly, our work can be

viewed as a continuation of these efforts to develop effective

genomic data processing tools from an information-theoretic

perspective, yet for a novel problem that we introduce, i.e., the

design of mechanisms for selectively hiding sensitive positions

in genetic sequences.

B. Genetics Background

An individual’s genome consists of a pair of sequences,

one from each parent, each consisting of around 3 billion

nucleotides (A, C, G, and T). Each sequence is referred

to as a haplotype. Since most of the genome sequence is

identical between different individuals, a common way to

compactly represent a personal genome is as a list of positions

of variation, paired with the observed nucleotide(s) in the given

individual (referred to as a genotype). In this work, we consider

the problem of sharing a list of genotypes corresponding

to a single haplotype of an individual. Although standard

sequencing or genotyping pipelines produce a genotype at each

position that convolves the two haplotypes, well-established

methods exist [24], [25] for resolving this ambiguity in

order to separate the two haplotypes (a process called

phasing), after which each haplotype could be individually

considered.

In the setting of our work, we consider an adversary whose

goal is to infer the target individual’s genotypes at specific

positions in the genome, given a partially masked genetic

sequence of the individual. In principle, this reconstruction

task is equivalent to an extensively studied problem in bioin-

formatics known as genotype imputation, originally developed

for coping with the presence of missing data in the existing

experimental pipelines for characterizing personal genomes.

If one were to mask only the sensitive positions before

sharing the data, existing imputation algorithms are expected

to be effective at revealing the hidden genotypes using other

genotypes in their respective neighborhoods.

A state-of-the-art algorithm for genotype imputation, Mini-

mac [26], is based on a classical model of genetic sequences

introduced by Li and Stephens [27]. In this model, a person’s

genetic sequence is modelled as a mosaic of a large group

of reference sequences from other individuals. This model

intuitively captures the underlying biological process of recom-

bination, which describes the interleaving of two haplotypes

of each parent when their genetic material is passed onto the

child. Formally, these models are expressed as hidden Markov

models (HMMs), where a sequence of genotypes of an indi-

vidual is generated from a sequence of hidden states indicating

which reference haplotype to copy the genotype from, for each

corresponding position. The parameters of these models are

typically inferred from a large reference panel including tens

of thousands of sequenced human genomes [28]. Although

alternative approaches to imputation (e.g. based on matrix fac-

torization [29]) exist, in our work we are especially interested

in HMMs as the primary means to model the distribution

of genotypes, considering the wide adoption of HMMs in

genetics not only for imputation, but also for other standard

tasks like phasing [24] and simulation [30]. Further details of

this model is provided in Section VII-A.

C. Setup and Contributions

In this paper, we formulate the genotype hiding problem: We

consider a user who wishes to share a partially erased version

of their genetic sequence while protecting a list of sensitive

positions. Privacy is measured by the mutual information

between the sensitive positions and the released sequence,

and we adopt a stringent privacy requirement that enforces

zero mutual information (i.e., perfect privacy). The goal of

the problem is to design a privacy mechanism that satisfies

this requirement, while minimizing the number of erasures

introduced so as to maximize the utility of the data.

We present such a mechanism with perfect privacy and

provide a range of theoretical insights into its performance

with respect to its utility, measured by the erasure rate. The

proposed mechanism sequentially processes the positions in

the sequence in a given ordering and determines a suitable

erasure rate at each position based on the previously released

positions and the data generating distribution. We prove that

our mechanism can be viewed as a locally-optimal, greedy

solution for minimizing the erasure rate at each position.

Furthermore, we give a lower bound on the number of erasures

required for any mechanism satisfying the privacy constraint,

and show that our privacy mechanism is in fact (globally)

optimal for a class of data generative distributions defined

by Markov chains. We also show that finding the optimal

ordering for the sequential mechanism is generally intractable

(NP-hard), illustrating the limits of current techniques. Lastly,

we derive an upper bound on potential privacy leakage due to

inaccuracies in the estimation of the data generative model,

suggesting that our mechanism is relatively robust to a small

amount of noise in the data distribution.

For practical applications, we are particularly interested

in data generating distributions induced by hidden Markov

models (HMMs), which are broadly adopted in genetics as

described in Section VII-A. To this end, we also present a

computationally-efficient algorithm to implement the proposed

privacy mechanism based on HMMs, and provide an empirical

evaluation of its performance on simulated datasets.

The rest of this paper is organized as follows. In Section II,

we formalize the genotype-hiding problem. Performance

bounds are summarized in Section III. In Section IV, we intro-

duce our privacy mechanism for hiding sensitive genotypes.

In Section V, we describe its interpretation as a locally-optimal

solution in detail and demonstrate the NP-hardness of find-

ing the optimal ordering in general. The robustness of

our privacy mechanism to model mismatch is discussed in

Section VI. In Section VII, we propose an efficient implemen-

tation of the privacy mechanism for hidden Markov models.
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Simulation experiments are presented in Section VIII. Finally

in Section IX, we conclude the paper and discuss future

directions.

II. THE GENOTYPE-HIDING PROBLEM

Let X = (X1, . . . , Xn) be the user’s personal genome

sequence of length n, and each Xi takes values in the

alphabet X . The user wishes to share X with others, but is

concerned about revealing information about certain positions

of X. To hide the values at these sensitive positions, the user

generates a masked version of the data Y = (Y1, . . . , Yn),
which only partially reveals X.

The desired properties of Y are given as follows. First,

since we expect substitution errors to be considerably more

undesirable than erasures in genetic analyses, we impose a

constraint that Yi can be either Xi or the erasure symbol ∗.

We refer to this property as the faithfulness condition, i.e.,

Yi = Xi or ∗ . (Faithfulness) (1)

Note that the alphabet of Yi is X ∪ {∗}.

Next, let K ⊂ [n] := {1, . . . , n} be the user-provided set of

indices of X containing sensitive information. We assume that

K is chosen irrespective of the sequence (i.e., independently

from X) based on information such as family history or

curated disease associations. We use XK to denote a collection

of random variables, i.e., XK := {Xi : i ∈ K}. We require

that no information about XK is revealed when Y is shared.

In other words, we require that

I(XK;Y) = 0, (Privacy) (2)

where I(·) denotes the mutual information. We refer to this

requirement as the privacy condition. Note that our notion of

privacy is stronger than alternatives such as local differential

privacy [33], which allows a small amount of leakage. Our

work focuses on maximizing the utility over all mechanisms

satisfying the perfect privacy condition.

We aim to design a privacy mechanism w (y|x) to generate

Y from given X and K such that both the faithfulness and

privacy conditions are satisfied. Here, we consider the ideal

scenario where the data generating distribution p (x) is known

to the mechanism. We discuss the impact of having an inaccu-

rate p (x) in Section VI; even under this challenging scenario,

we show that the potential privacy leakage is bounded by the

divergence between the given p (x) and the true distribution.

Note that we use uppercase symbols to represent random

variables and lowercase symbols to denote their realizations.

While satisfying the above two conditions, we wish to share

as much of X as possible. More precisely, let e(Y) be the

number of erasure symbols in Y. Our goal is to minimize

the expected number of erasures E[e(Y)], or equivalently the

erasure rate 1
n

E[e(Y)], where

E[e(Y)] =

n
X

i=1

E[�{Yi = ∗}] =

n
X

i=1

p (yi = ∗) , (3)

and �{·} denotes the indicator function.

A formal description of the genotype-hiding problem is

given below. We start by defining the privacy mechanism for

the genotype-hiding problem as follows.

Definition 1: An (n,K) privacy mechanism for a given

data generative distribution p (x) with input alphabet Xn and

output alphabet Yn is defined by a probabilistic encoding

function

Enc : Xn → Yn,

where Enc satisfies both the faithfulness condition (Yi ∈
{Xi, ∗}, ∀i) and the privacy condition (I(XK;Y) = 0).

The performance of the privacy mechanism is measured

by the expected number of erasures per symbol in an output

sequence y. This measure captures the distortion between the

input and output sequences induced by a set of single-letter

erasures. Following the convention, we define the rate of a

privacy mechanism as the fraction of positions that are not

erased in the output:

Definition 2: The rate of an (n,K) privacy mechanism

for a given data generative distribution p (x) is defined by

1 − 1
n

E[e(Enc(X))] per symbol.

Definition 3: For any given data distribution p (x), a rate

R is achievable if there exists an (n,K) privacy mechanism

such that

1 −
1

n
E[e(Y)] ≥ R, (4)

where Y = Enc(X).
Clearly, if R is achievable then R− � for any � > 0 is also

achievable by the definition, so we are interested in finding

the maximum achievable rate.

It is worth noting that the encoder Enc(·) can be potentially

stochastic, so we may use conditional probabilities w (y|x)
to represent the encoding function. If we treat conditional

probabilities w (y|x) where x ∈ Xn,y ∈ Yn as decision

variables, the genotype-hiding problem can be defined as the

following optimization problem:

maximize
w(y|x)

1 −
1

n

n
X

i=1

p (yi = ∗)

subject to I(XK;Y) = 0 (Privacy)

Yi ∈ {Xi, ∗}, ∀i (Faithfulness) (5)

Note that this problem maximizes the information rate (utility)

under the stringent privacy constraint such that no information

about the sensitive positions is leaked.

If we express the objective and the constraints explicitly in

terms of the conditional probabilities w (y|x), the optimization

problem (5) can be viewed as an instance of linear program-

ming (LP). However, the scale of the problem is intractable

in practice, given the exponential blowup in the number of

variables and constraints as the length of the sequence n
grows; the number of decision variables is |X |n|Y|n, and the

number of constraints is in the order of |X ||K||Y|n +n |X ||Y|.
Therefore, the ultimate goal of this paper is to identify a

solution to the genotype-hiding problem in a tractable and

computationally-efficient manner. To this end, we first present

an achievable privacy mechanism as well as an upper bound on

the maximum achievable rate. Then we show that the proposed
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Fig. 1. An illustration of (n,K) genotype-hiding privacy mechanism. The mechanism takes as input a genetic sequence along with a set of sensitive positions
and outputs a masked sequence with erasures. We require the faithfulness and privacy conditions to be satisfied, and the goal is to minimize the expected
number of erasures in the output.

privacy mechanism is computationally efficient for a particular

data generative distribution, namely hidden Markov models,

which is of broad interest in our motivating application in

genomics.

III. PERFORMANCE BOUNDS

In this section, we state the performance bounds on the

achievable rate in the following theorems.

Theorem 1: For a given data distribution p (x), a rate R is

achievable if

R ≤
1

n

n
X

i=1

X

xi∈X

EY[i−1]

�

min
u∈X |K|

p
(

xi|xK = u, Y[i−1]

)

�

. (6)

A detailed description of the achievable scheme will be

presented in Section IV. The right-hand side of (6) may appear

unconventional, given that conditioning on Y[i−1] for each

i makes the probability term generally hard to compute as

the sequence length n grows. However, this expression corre-

sponds to a sequential mechanism where the encoder generates

Y1, . . . , Yn one position at a time, and an efficient update

exists for incrementally expanding the conditioning set. As an

example, in Section VII, we present a concrete implementation

of the privacy mechanism for data distributions governed by

hidden Markov models, which indeed allows the right-hand

side of (6) to be efficiently computed.

Theorem 2: For a given data distribution p (x), any achiev-

able rate R must satisfy

R ≤
1

n

n
X

i=1

X

xi∈X

min
u∈X |K|

p (xi|xK = u) . (7)

It is worth noting that, given a data distribution p (x),
each summand in the right-hand side of (7) represents the

conditional probability of the observation xi at coordinate i
when the sensitive positions xK take on the least-likely values,

which can be determined from the given p (x).

Proof: From (3), we know that to establish (7), it is

sufficient to show

p (yi 6= ∗) ≤
X

xi∈X

min
u∈X |K|

p (xi|xK = u) (8)

for any mechanism satisfying the privacy and faithfulness

conditions. Consider

p (yi 6= ∗) =
X

yi∈X

p (yi)

(a)
=
X

yi∈X

min
u

p (yi|xK = u)

(b)
=
X

yi∈X

min
u

p (yi = xi|xK = u)

=
X

xi∈X

min
u

p (xi|xK = u) p (yi = xi|xi, xK = u)

(c)

≤
X

xi∈X

min
u

p (xi|xK = u) , (9)

where (a) is due to the fact that Yi is independent of XK

(privacy condition); (b) follows from the faithfulness condition

Yi ∈ {Xi, ∗}; and (c) follows from the fact that probabilities

are bounded above by 1.

Although not true in general, the upper bounds in (6) and (7)

match under special circumstances, implying the optimality of

an achievable mechanism. That is,
X

xi∈X

X

y[i−1]

p
(

y[i−1]

)

min
xK

p
(

xi|xK, y[i−1]

)

=
X

xi∈X

min
u∈X |K|

p (xi|xK = u) . (10)

We observe that a sufficient condition for this equality is given

by the following: for any xi, if

u∗ ∈ arg min
u

p (xi|xK = u) , (11)

then

u∗ ∈ argmin
u

p
(

xi|xK = u, y[i−1]

)

(12)

for all possible y[i−1]. Intuitively, this means that for any given

position xi, the least-likely values of the (unobserved) sensitive

positions xK remains the same regardless of the positions that

have been previously released in the output y[i−1] during the

course of the mechanism.

A special case that satisfies this optimality condition is when

random variables X1, . . . , Xn form a Markov chain (i.e., p (x)
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is induced by a Markov chain), with a single sensitive position.

Without loss of generality, we assume K = {1}.

Corollary 1 (Markov Chain): If X1, . . . , Xn forms a

Markov chain and the sensitive position is K = {1}, then

a rate R is achievable if and only if

R ≤
1

n

n
X

i=1

X

xi∈X

min
u∈X |K|

p (xi|xK = u) . (13)

It is sufficient to justify the corollary by showing that

the aforementioned sufficient condition holds. The proof is

included in Appendix A.

IV. PRIVACY MECHANISM

In this section, we present a privacy mechanism for gener-

ating Y based on a given p (x), whose performance matches

the bound given in (6), while satisfying both faithfulness and

privacy conditions.

Let us first recall the genotype-hiding problem introduced

in (5), i.e.,

maximize
w(y|x)

1 −
1

n

n
X

i=1

p (yi = ∗)

subject to I(XK;Y) = 0 (Privacy)

Yi ∈ {Xi, ∗}, ∀i. (Faithfulness) (14)

This problem is difficult to solve in its general form given the

exponentially growing number of decision variables in w (y|x)
as the sequence length n grows. Instead, we adopt a greedy

optimization approach, whereby the erasure probability of yi

is locally minimized, one position at a time, from 1 to n.

In other words, for each i = 1, . . . , n, we solve

minimize
w(yi|x,y[i−1])

p
(

yi = ∗|y[i−1]

)

subject to I(XK; Yi|Y[i−1]) = 0

Yi ∈ {Xi, ∗}, (15)

for any given y[i−1]. Note that

I(XK;Y) =

n
X

i=1

I(XK; Yi|Y[i−1]) = 0, (16)

by the chain rule, so if the first constraint of (15) is satisfied for

all i, then the solution preserves the required privacy constraint

I(XK;Y) = 0 as defined in (2). The second constraint is

inherited directly from the faithfulness condition. In other

words, any solution satisfying the constraints of (15) for all

i will naturally be a feasible solution to the genotype-hiding

problem in (5).

We observe that solving the local optimization problem (15)

gives rise to a sequential mechanism for generating Y. That is,

we generate Y one position at a time, where the conditional

distribution for Yi may depend on the values of Y1, . . . , Yi−1

that have been previously generated. The following defines our

chosen privacy mechanism for any given position i, which is in

fact an optimal solution to the local optimization problem (15).

A detailed proof of the local optimality of this scheme is

deferred to Section V.

A. Privacy Mechanism

Generate each Yi according to the following conditional

distribution

w
(

yi|xi, xK, y[i−1]

)

=



















min
u∈X|K| p(xi|xK=u,y[i−1])

p(xi|xK,y[i−1])
, if yi = xi,

1 −
min

u∈X|K| p(xi|xK=u,y[i−1])
p(xi|xK,y[i−1])

, if yi = ∗,

0, otherwise,

(17)

for any xi, xK and y[i−1], where [i − 1] := {1, . . . , i − 1}.

The expression for the erasure probability in the above

mechanism can be intuitively understood as follows. We first

identify the values of the sensitive positions with the smallest

likelihood of generating the observed symbol xi at the i-
th position (as indicated by the numerator in the fractional

term), conditioned on the previously released positions y[i−1].

Note that u is an auxiliary variable denoting the possible

values in the alphabet X |K|, whereas xK denotes the observed

values at the sensitive positions. We then choose the erasure

probability such that, the probability of releasing the original

symbol (without erasure) becomes identical among different

hypothetical values of xK, thus ensuring privacy.

It is worth noting that our privacy mechanism satisfies the

faithfulness condition (i.e., yi ∈ {xi, ∗}) by design, so we

only need to verify that it satisfies the privacy constraint (2).

Before verifying the privacy constraint, we note the following

properties of the mechanism.

(1) If i ∈ K, then

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

= 0, (18)

which yields

w
(

yi = ∗|xi, xK, y[i−1]

)

= 1. (19)

This implies that Xi is always erased if it corresponds

to one of the sensitive positions in K.

(2) We notice from (17) that Xi is not erased with some

nonzero probability, so this mechanism is strictly better

than the naïve approach of always erasing any posi-

tion that have a nonzero correlation with the sensitive

positions.

Proof of Privacy: To show that the proposed mechanism

in (17) satisfies the privacy condition (2), it is sufficient to

show

I(Yi; XK|Y1, . . . , Yi−1) = 0, (20)

for all i = 1, . . . , n, since this implies

I(XK;Y) =

n
X

i=1

I(XK; Yi|Y[i−1]) = 0 (21)

by the chain rule. To establish (20), we will equivalently prove

that

p
(

yi|xK, y[i−1]

)

= p
(

yi|y[i−1]

)

(22)

for any xK, y[i−1] and yi. Since

p
(

yi|xK, y[i−1]

)

=
X

xi∈X

p
(

xi|xK, y[i−1]

)

w
(

yi|xi, xK, y[i−1]

)

, (23)
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by substituting (17), we have

p
(

yi = ∗|xK, y[i−1]

)

=
X

xi

p
(

xi|xK, y[i−1]

)

w
(

yi = ∗|xi, xK, y[i−1]

)

= 1 −
X

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

. (24)

Similarly, for yi ∈ X , we have

p
(

yi|xK, y[i−1]

)

=
X

xi∈X

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

=
X

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

. (25)

We can observe that the right-hand sides of both (24) and (25)

are independent of xK, and hence by combining (24) and (25),

we have

p
(

yi|xK, y[i−1]

)

= p
(

yi|y[i−1]

)

, (26)

for any xK, y[i−1] and yi, which finishes the proof of (22).

Finally, we can easily verify that our sequential privacy

mechanism (17) achieves the rate

1 −
1

n

n
X

i=1

p (yi = ∗)

= 1 −
1

n

n
X

i=1

X

y[i−1]

p
(

yi = ∗|y[i−1]

)

p
(

y[i−1]

)

(a)
=1 −

1

n

n
X

i=1

X

y[i−1]

p
(

y[i−1]

)

 

1 −
X

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

!

=
1

n

n
X

i=1

X

y[i−1]

p
(

y[i−1]

)

X

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

=
1

n

n
X

i=1

X

xi∈X

X

y[i−1]

p
(

y[i−1]

)

min
xK

p
(

xi|xK, y[i−1]

)

, (27)

where (a) follows by (24) and (26). The final expression is

identical to the right-hand side of (6) as desired.

Example: We present an example to illustrate the operations

of the proposed privacy mechanism in a simplified setting. Let

us consider a data distribution p (x) where X1, . . . , Xn form a

Markov chain, as in Corollary 1, and a single sensitive position

K = {1}.

By inspecting the privacy mechanism in (17), we know that

if yi−1 6= ∗ for some i > 1, then

p
(

xi|xK = u, y[i−1]

)

= p
(

xi|xK = u, y[i−1], xi−1 = yi−1

)

= p (xi|xi−1 = yi−1) , (28)

for any xi and y[i−1] by the Markov property and the fact that

K = {1}. This implies that

w
(

yi = xi|xi, xK, y[i−1]

)

=
minu∈X |K| p

(

xi|xK = u, y[i−1]

)

p
(

xi|xK, y[i−1]

)

=
p (xi|xi−1 = yi−1)

p (xi|xi−1 = yi−1)

= 1, (29)

which means that if yi−1 6= ∗ then yi 6= ∗ with probability

one.

Thus, when p (x) is specified by a Markov chain, we see that

the privacy mechanism erases all positions within a window

from the sensitive position and releases the rest without

erasure, and the size of the window is stochastically chosen.

This observation suggests that, in contrast to the heuristic

approach of deterministically choosing a window for erasure,

our mechanism introduces additional uncertainty about sensi-

tive data (in fact achieving perfect privacy) by randomizing

the choice of the window. Later in Section VIII, we present

a simulation experiment comparing our mechanism with the

deterministic window-based erasure approach with respect to

the privacy-utility trade-off, based on a more realistic data

distribution defined by hidden Markov models.

V. LOCAL OPTIMALITY

In the previous section, we proposed a privacy mechanism

for the genotype-hiding problem satisfying both privacy and

faithfulness conditions. Here, we provide further insights into

the optimality of the proposed mechanism. We first prove

that the mechanism is indeed an optimal solution to the local

optimization problem in (15) as claimed, and thus can be

viewed as a greedy solution to the general genotype-hiding

problem in (5) given a fixed variable ordering (i.e., the order

in which Yi’s are sampled). We then present a negative result

to inform future investigation, showing that finding an optimal

variable ordering for the mechanism is intractable (NP-hard)

in general, thus illustrating the limits of current techniques in

achieving global optimality.

A. Optimality With Respect to the Local Optimization

Problem

Let us first recall the local optimization problem (15), i.e.,

minimize
w(yi|x,y[i−1])

p
(

yi = ∗|y[i−1]

)

subject to I(XK; Yi|Y[i−1]) = 0

Yi ∈ {Xi, ∗}. (30)

As we have shown,

I(XK;Y) =
n
X

i=1

I(XK; Yi|Y[i−1]) = 0, (31)

by the chain rule, so any solution satisfying the constraints

of (15) for all i is a feasible solution to the general

genotype-hiding problem in (5).
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We now show that the privacy mechanism in (17) is optimal

with respect to the above optimization problem. First, for any

given y[i−1], note that

p
(

yi = ∗|y[i−1]

)

= 1 −
X

yi∈X

p
(

yi|y[i−1]

)

(a)
=1 −

X

yi∈X

min
xK

p
(

yi|xK, y[i−1]

)

(b)
= 1 −

X

yi∈X

min
xK

p
(

yi = xi|xK, y[i−1]

)

= 1 −
X

xi∈X

min
xK

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

(c)

≥ 1 −
X

xi∈X

min
xK

p
(

xi|xK, y[i−1]

)

, (32)

where (a) follows from the privacy condition, (b) follows from

the faithfulness condition, and (c) holds because probability

values are at most 1. This implies that any feasible solution

to the local optimization problem (15) has to satisfy

p
(

yi = ∗|y[i−1]

)

≥ 1 −
X

xi∈X

min
xK

p
(

xi|xK, y[i−1]

)

, (33)

and that it is optimal if the last step holds with equality, i.e.,

min
xK

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

= min
xK

p
(

xi|xK, y[i−1]

)

, (34)

for any xi and y[i−1].

By plugging in the proposed mechanism in (17), we have

min
xK

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

= min
xK

p
(

xi|xK, y[i−1]

) minu∈X |K| p
(

xi|xK = u, y[i−1]

)

p
(

xi|xK, y[i−1]

)

= min
xK

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

= min
xK

p
(

xi|xK, y[i−1]

)

, (35)

where the last step follows because the two minimizations,

both over the alphabet of XK, are equivalent and can be

merged. This implies that the mechanism (17) attains the min-

imum probability of erasing Yi and thus is an optimal solution

to the local optimization problem (15). Therefore, our sequen-

tial privacy mechanism can be viewed as a locally-optimal

algorithm for solving the general genotype-hiding problem (5),

given a fixed variable ordering.

B. NP-Hardness of Finding an Optimal Variable Ordering

So far, we considered the privacy mechanism that generates

a masked sequence Y1, . . . , Yn in a linear order from 1 to

n. A natural question is then whether this linear ordering is

optimal in terms of the erasure rate that the locally-optimal

mechanism achieves. Here, we illustrate the difficulty of deter-

mining the optimal variable ordering for the mechanism from

a complexity theory perspective, by proving that it is NP-hard

in general. This suggests that devising an efficient mecha-

nism with better optimality guarantees in the general setting

requires additional assumptions or techniques to circumvent

this impossibility result, which is an interesting direction for

further research.

To formalize the problem, let (o1, . . . , on) be any permuta-

tion of (1, . . . , n). We consider generating Y in the order of

o1, . . . , on instead. In this setting, the privacy mechanism (17)

is defined by the conditional distribution

w
(

yoi
|xoi

, xK, yo[i−1]

)

=



























min
u∈X|K| p

�
xoi

|xK=u,yo[i−1]

�

p
�

xoi
|xK,yo[i−1]

� , if yoi
= xoi

,

1 −
min

u∈X|K| p
�

xoi
|xK=u,yo[i−1]

�

p
�

xoi
|xK,yo[i−1]

� , if yoi
= ∗,

0, otherwise,

(36)

for any xoi
, xK and yo[i−1]

, where o[i−1] := {o1, . . . , oi−1}.

It is easy to see that the faithfulness and privacy conditions

are still satisfied regardless of the ordering.

In the following, we show that finding the best ordering

(o1, . . . , on) that minimizes the erasure rate of the mechanism

is NP-hard by constructing a polynomial-time reduction of

the well-known hitting set problem [34] to our problem.

More specifically, given an arbitrary instance of a hitting

set problem, we construct an instance of the genotype-hiding

problem for which finding the optimal ordering for the privacy

mechanism is equivalent to solving the original hitting set

problem.

At the core of this reduction is a bipartite graph, illustrated

in Figure 2, which we use to represent both an instance of the

hitting set problem and to construct a corresponding instance

of the genotype-hiding problem, as we explain in detail below.

To clarify the dimensions of the problems upfront, note that

we represent a hitting set problem for k sets over m elements

using a bipartite graph with m left nodes and k right nodes,

and the resulting genotype-hiding problem is over a sequence

of length n = m + k with k sensitive positions (|K| = k) and

a specially constructed p (x).
We first review the hitting set problem. Consider a universe

U = {v1, . . . , vm} and a collection of non-empty subsets

S = {S1, . . . , Sk} such that Sj ⊆ U for all j ∈ [k]. Without

loss of generality, assume that U =
Sk

j=1 Sj , and U = [m].
A universe U and sets {S1, . . . , Sk} can be represented by a

bipartite graph, as depicted in Fig. 2. The goal of the hitting

set problem is to find the minimum cardinality h∗ of a set

V ⊆ U that satisfies V ∩ Si 6= ∅ for all i, that is

h∗ = min
V ⊆U :V ∩Sj 6=∅,∀j∈[k]

|V |. (37)

Next, we construct the corresponding genotype-hiding prob-

lem from the given hitting set problem instance (U,S). For

any i ∈ [m], j ∈ [k] such that i ∈ Sj , let bi,j be a random

variable which is independently and uniformly drawn from

{0, 1}. In other words, each edge in the bipartite graph is

associated with a random bit bi,j (see Fig. 2). Then, we define

X to be a sequence of length n = m + k as follows. Let Xi
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Fig. 2. A graphical illustration of the bipartite graph used in our NP-hardness
proof, representing an instance of the hitting set problem. The universe U is
represented by vertices on the left, sets are represented by vertices on the right,
and the edges represent the inclusion of elements in each set. To facilitate
reduction to the genotype-hiding problem, we associate each edge with an
independent and uniformly random bit bi,j .

for i ∈ [m] be a tuple of random bits associated with edges

connected to node vi, i.e.,

Xi = (bi,j1 , . . . , bi,jr
), (38)

where {j1, . . . , jr} = {j : i ∈ Sj}. Next, let Xm+j for j ∈ [k]
be

Xm+j =
M

i∈Sj

bi,j , (39)

which can be viewed as a parity check bit over the edges

connected to node Sj . In other words, the first m positions

of the sequence are uniform and independently distributed

symbols (a tuple of random bits), whereas the remaining

k positions are parity check bits defined over the first m
positions.

Note that the joint distribution p (x) = p (x1, . . . , xm+k)
is succinctly characterized by the random bits bi,j’s and the

associated bipartite graph, and thus the description of the

genotype-hiding problem can be generated in polynomial time

with respect to m and k. In the following, we refer to the above

data generating distribution as p (x; U,S), with respect to

which the corresponding genotype-hiding problem is defined.

Theorem 3: Given a data generating distribution p (x; U, S)
for a sequence of length n = m+k and sensitive positions K =
{m+1, . . . , m+k}, finding the best ordering (o1, . . . , om+k)
that minimizes the erasure rate of our mechanism (36) is

NP-hard.

We provide a sketch of the proof here and defer the details

to Appendix C. First, we note the key property of p (x; U, S)
that whether or not our mechanism erases the oi-th position

is deterministic given the variable ordering, as stated in the

following lemma.

Lemma 2: Given a data generating distribution p (x; U, S)
for a sequence of length n = m + k and sensitive positions

K = {m+1, . . . , m+k}, the conditional sampling distribution

of our privacy mechanism satisfies

w
(

yoi
= ∗|xoi

, xK, yo[i−1]

)

∈ {0, 1} (40)

for all i, given any ordering π = (o1, . . . , om+k).
Proof: See Appendix B.

As a result of Lemma 2, the overall erasure rate of the

privacy mechanism can be calculated simply by counting the

number of erased positions. Note that, if oi ∈ K, then

w
(

yoi
= ∗|xoi

, xK, yo[i−1]

)

= 1, (41)

regardless of the ordering as we have previously shown. Thus,

we need to compare only the erased indices in [m] = [m +
k]\K for finding the best ordering.

Let Eπ be the set of erased indices in [m] for a given

ordering π = (o1, . . . , on), i.e.,

Eπ = {i : yi = ∗, i ∈ [m]} , (42)

where the distribution over Y is determined by the privacy

mechanism. Then, finding the best ordering corresponds to

finding π that leads to the minimum cardinality e∗ of the

corresponding Eπ:

e∗ = min
π

|Eπ|. (43)

Intuitively, whether a particular index i ∈ [m] is included in

Eπ can be easily determined based on the bipartite graph rep-

resentation of the underlying hitting set problem (see Fig. 2)

as follows. The ordering π = (o1, . . . , om+k) specifies the

order in which the m nodes on the left-hand side of the graph,

each with a corresponding Xi, is visited by the mechanism

(disregarding the sensitive indices oi /∈ [m], which are always

erased). As we show in the proof of Lemma 2, when we

visit the node oi ∈ [m], Xoi
is erased if and only if there

exists a node j ∈ [k] on the right-hand side of the graph

that is connected to oi and only to other nodes (if any) that

are previously visited and not erased. The presence of such a

node j indicates that the sensitive variable Xm+j is directly

revealed by Xoi
(since the rest of random bits contributing to

Xm+j are already released in Y without erasure), while the

absence of such j indicates the existence of other positions

that are erased or have not been released that fully mask the

correlation between Xoi
and the sensitive positions.

Finally, we complete the reduction by showing that solv-

ing (43) also produces a solution for the hitting set prob-

lem (37), i.e., e∗ = h∗. This is achieved by showing both

that the set of erased indices Eπ is in fact a valid hitting

set (e∗ ≥ h∗), and that there exists an ordering π satisfying

|Eπ| ≤ |V | for any given hitting set V (e∗ ≤ h∗). A detailed

proof is included in Appendix C.

Since the hitting set problem is equivalent to the set cover

problem and is well-known to be NP-hard, our reduction

proves that finding the best ordering π for our privacy mecha-

nism given any p (x) and K is also NP-hard. We note that this

result does not preclude the possibility that for a restricted

class of genotype-hiding problems (e.g., with a structured

p (x) defined by HMMs), one could still find an efficient

polynomial-time algorithm for determining the optimal vari-

able ordering, which remains an interesting open question.

VI. ROBUSTNESS

In this section, we discuss the robustness of our mecha-

nism with respect to the underlying data distribution. In our
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formulation of the privacy mechanism, the distribution (or the

data generative model) p (x), from which the input genome

sequence originated, is assumed to be known. In practice,

one can only empirically estimate this distribution based on

existing data resources, e.g., by obtaining maximum likeli-

hood estimates of the model parameters based on a large

collection of reference genomes in public data repositories.

Consequently, the generative model used by the mechanism

is bound to have deviations from the true generative process,

both in terms of the limitations of the model as well as the

noisy estimation of the parameters. These discrepancies can

potentially lead to privacy leakage if the adversary has access

to a more accurate distribution for the underlying input. Here,

we study the potential privacy leakage under the worst-case

scenario, where the adversary has access to the true underlying

distribution. We bound the potential leakage as a function

of the distance between the data distribution used by the

mechanism and the true underlying distribution, suggesting

that our mechanism is robust to small deviations in the noisy

data distribution we expect to encounter in real-world use

cases.

We denote the noisy data distribution used by the mecha-

nism by q (x) and the true distribution by p (x). The privacy

mechanism constructs the sampling distribution w(y|x) based

on the available q (x) such that the output Y is independent of

sensitive genotypes XK with respect to the joint distribution

q (x,y) induced by q(x) and the mechanism w(y|x), i.e.,

q (xK,y) =
X

x[n]\K

q (x,y)

=
X

x[n]\K

w(y|x)q (x) = q (xK) q (y) . (44)

Since X is actually generated from p (x) not q (x), we also

define the true joint distribution p (x,y) induced by p (x) and

the mechanism w(y|x); note that the mechanism is still based

on q (x).

Then, we can measure the unforeseen privacy leakage due

to the mismatch in data distribution by the mutual information

I(p (xK) ; p (y)) between the sensitive genotypes and the

output sequence with respect to p (x,y), as follows:

I(p (xK) ; p (y))

=
X

xK,y

p (xK,y) log
p (xK,y)

p (y) p (xK)

=
X

xK,y

p (xK,y) log
p (xK,y) q (xK,y)

p (y) p (xK) q (xK,y)

(a)
=
X

xK,y

p (xK,y) log
p (xK,y) q (xK) q (y)

p (y) p (xK) q (xK,y)

= D(p (xK,y) ||q (xK,y)) − D(p (xK) ||q (xK))

− D(p (y) ||q (y)), (45)

where D(·||·) denotes relative entropy or equivalently

Kullback-Leibler (KL) divergence, and (a) follows from (44).

This leads to the following theorem.

Theorem 4: I(p (xK) ; p (y)) ≤ D(p (x) ||q (x)).
Proof: See Appendix D.

This result implies that the amount of privacy leakage due

to the potential mismatch between the data distribution used

by the mechanism and the true underlying generative process

gracefully scales with the extent to which the two distributions

diverge.

VII. PRIVACY MECHANISM FOR HIDDEN

MARKOV MODELS

Thus far, we considered the data generative model p (x) of

the privacy mechanism to be an arbitrary distribution. Here,

we address a particular form of p (x) of great interest for our

application setting in genomics, namely the Li and Stephens

model [27], which is based on a hidden Markov model. This

model is widely adopted in genetics for a wide range of tasks

that require a probabilistic model of the genome [35]. For this

class of p (x), we propose an efficient algorithm to implement

the privacy mechanism introduced in Section IV.

A. Review of Hidden Markov Models for Genomes

The classical hidden Markov model (HMM) describing the

distribution of personal genomes [27] is as follows. First, let

X = (X1, X2, . . . , Xn) represent an individual’s (haplotype)

genetic sequence of length n. Following standard practice in

genetics, we adopt a binary alphabet X = {0, 1} for each

element Xi, representing whether the observed nucleotide is

identical to the one in the reference human genome (called

reference allele) or not (alternative allele). In addition, we are

given a reference dataset of m personal genome sequences

H = {hj : j = 1, . . . , m}, where each sequence hj is of

length n. The i-th coordinate of hj is denoted by hi,j , which

also takes a value in X .

In this model, X is viewed as a “mosaic” of reference

sequences in H with potential substitution errors arising from

mutations or experimental noise in sequencing. Formally, X

depends on a sequence of hidden states {Si}n
i=1 forming

a Markov chain, where each Si takes an integer in the

range {1, . . . , m}, representing an index into H. Without

loss of generality, we assume that the initial state S1 is

uniformly distributed over {1, . . . , m}. The transition prob-

ability πi,j from state i to j is set to �
m−1 and 1 − �

for i 6= j and i = j, respectively. The parameter � is

often called the recombination probability; in the following

we also use the term crossover probability to refer to this

quantity.

Next, each Xi is sampled based on the hidden state Si by

copying the corresponding symbol in the selected reference

sequence with a small probability of error. In other words,

Xi is equal to the symbol in the i-th position of hSi
with

error probability θ. The overall data distribution p (x) is

fully specified by the tuple (H, �, θ). We provide a graphical

illustration of p (x) in Fig. 3. In our work, we treat the

parameters of the above model as given. In practice, these

parameters are estimated from a large collection of reference

genomes, e.g., including hundreds of thousands of individuals,

which are available in public data repositories such as the UK

Biobank [36].
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Fig. 3. A graphical illustration of HMM for genomes. The state space of the hidden states is {1, . . . , m}, where each element corresponds to an index into
the reference dataset {h1, . . . ,hm} (each of length n). A Markov process {Si}

n
i=1

indicates which reference sequence the user reads the data from at the
i-th position. For each i, Xi differs from the i-th position of hSi

with probability θ, representing noise in the data. BSCθ : Binary symmetric channel with
crossover probability θ.

B. An Efficient Algorithm for HMMs

In this section, we propose an efficient algorithm to imple-

ment the privacy mechanism introduced in Section IV for p (x)
based on a hidden Markov model (H, �, θ) described in the

previous section. The outline of our algorithm is provided in

Algorithm 1.

As seen in (17), the privacy mechanism determines the

probability of erasing xi mainly based on the probability

p
(

xi|xK, y[i−1]

)

. By employing a belief propagation approach

akin to the well-known forward-backward algorithm [37],

we track the computation of p
(

xi|xK = u, y[i−1]

)

for all

u ∈ X |K| efficiently. The novelty of our algorithm is that

it incorporates the stochasticity of the privacy mechanism in

addition to that of the HMM.

First, note that it is sufficient to describe how to compute

p
(

xi|xK = u, y[i−1]

)

for all u ∈ X |K| and i ∈ [n], which

fully determines the distribution of y1, . . . , yn specified by our

privacy mechanism, i.e.,

p
(

yi|xi, xK, y[i−1]

)

=



















min
u∈X|K| p(xi|xK=u,y[i−1])

p(xi|xK,y[i−1])
, if yi = xi,

1 −
min

u∈X|K| p(xi|xK=u,y[i−1])
p(xi|xK,y[i−1])

, if yi = ∗,

0, otherwise.

(46)

We begin by expressing p
(

xi|xK = u, y[i−1]

)

as

p
(

xi|xK = u, y[i−1]

)

=
X

si

p
(

si|xK = u, y[i−1]

)

p
(

xi|si, xK = u, y[i−1]

)

=
X

si,si−1

p
(

si−1|xK =u, y[i−1]

)

p (si|si−1, xK=u) p (xi|si) .

(47)

Note that

p (si|si−1, xK = u)

=
p (si, si−1, xK = u)

p (si−1, xK = u)

=
p
(

si−1|xKi− = u−

)

p (si|si−1) p
(

xKi+ = u+|si

)

p
(

si−1|xKi− = u−

)

p
(

xKi+ = u+|si−1

)

=
p (si|si−1) p

(

xKi+ = u+|si

)

p
(

xKi+ = u+|si−1

)

=
p (si|si−1) p

(

xKi+ = u+|si

)

P

si
p (si|si−1) p

(

xKi+ = u+|si

) , (48)

where Ki− := K∩{1, . . . , i− 1}, Ki+ := K∩{i, . . . , n}, u−

and u+ are corresponding values of xKi− and xKi+ specified

by u.

As p (xi|si) and p (si|si−1) are directly given by the HMM,

we need only to consider how to compute the two terms

p
(

si−1|xK = u, y[i−1]

)

and p
(

xKi+ = u+|si

)

. To simplify

our notation, we introduce the following variables to represent

these terms:

ψ(i)(u, si) := p (si|xK = u, y1, . . . , yi) ,

γ(i)(u, si) := p
(

xKi+ = u+|si

)

.

With ψ(i)(u, si) and γ(i)(u, si) for a given position i, we can

calculate (47) as

p
(

xi|xK = u, y[i−1]

)

=
X

si−1

P

si
ψ(i−1)(u, si−1)p (si|si−1) γ(i)(u, si)p (xi|si)

P

si
p (si|si−1) γ(i)(u, si)

.

(49)

First, note that γ(i)(u, si) can be recursively computed in

the same manner as calculating the backward probabilities in

the forward-backward algorithm, as described below:
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1) Initialization: We initialize γ(n)(u, sn) by

γ(n)(u, sn) =

(

p (xn = un|sn) , n ∈ K,

1, n /∈ K.
(50)

2) Iterations: For i = n− 1, . . . , 1, we compute γ(i)(u, si)
as

γ(i)(u, si)

=

(

P

si+1
p (xi = ui|si) p (si+1|si) γ(i+1)(u, si+1), i ∈ K

P

si+1
p (si+1|si) γ(i+1)(u, si+1), i /∈ K.

(51)

Next, to efficiently compute ψ(i)(u, si) for i ∈ [n], we anal-

ogously adopt the following iterative steps.

3) Initialization: ψ(1)(u, s1) is initialized by

ψ(1)(u, s1) ∝ p (s1|xK = u) p (y1|s1, xK = u) , (52)

where p (s1|xK = u) can be calculated by (48) given

γ(1)(u, s1), and p (y1|s1, xK = u) is given by our mechanism

as shown in (46).

4) Iterations: Using Bayes’ rule, we can express ψ(i)(u, si)
as

ψ(i)(u, si) = p
(

si|xK = u, y[i]

)

∝ p
(

si|xK = u, y[i−1]

)

p
(

yi|si, xK = u, y[i−1]

)

,

(53)

where

p
(

si|xK = u, y[i−1]

)

=
X

si−1

ψ(i−1)(u, si−1)p (si|si−1, xK = u) , (54)

and

p
(

yi|si, xK = u, y[i−1]

)

=
X

xi

p (xi|si) p
(

yi|xi, xK = u, y[i−1]

)

. (55)

Therefore, ψ(i)(u, si) can be computed based

on ψ(i−1)(u, si−1). We note that the probability

p (si|si−1, xK = u) can be calculated using γ(i)(u, si)
as shown in (48), and p

(

yi|xi, xK = u, y[i−1]

)

is given by

our mechanism as shown in (46). Using this recurrence

relation, ψ(i)(u, si) for all i ∈ [n] can be computed.

Analogous to the forward-backward algorithm, our algo-

rithm has polynomial computational complexity of O(nm2)
for a fixed u, with respect to the sequence length n and the

number of reference sequences m, for a given u. Clearly,

minu∈X |K| p
(

xi|xK = u, y[i−1]

)

can be easily obtained once

p
(

xi|xK = u, y[i−1]

)

for all u have been computed. This over-

head involves a factor of 2|K| in the computational complexity,

but we expect |K| to be a small constant in practice (e.g., less

than 10); since genotype correlation is predominantly local,

the user may apply our mechanism to local regions of the

genome of a permissive length, each of which including only

a few sensitive positions.

Algorithm 1 Mechanism for Hiding Sensitive Genotypes in X

Input: Genome sequence X = (X1, . . . , Xn) from an HMM

with parameters (H, �, θ), and indices of sensitive positions

K ⊂ [n]
Output: Masked genome sequence Y = (Y1, . . . , Yn), such

that I(XK;Y) = 0 and Yi ∈ {Xi, ∗} for all i ∈ [n]
1: Initialize γ(n)(u, sn) according to (50)

2: for i = n − 1, . . . , 1 do

3: for u ∈ X |K| do

4: Compute γ(i)(u, si) according to (51)

5: Compute p (si|si−1, xK = u) according to (48)

6: end for

7: end for

8: Initialize ψ(1)(u, s1) according to (52)

9: for i = 2, . . . , n do

10: Calculate the erasure probability for Yi using (46)

11: Generate Yi ∈ {Xi, ∗} according to the erasure proba-

bility

12: for u ∈ X |K| do

13: Compute ψ(i)(u, si) according to (53)

14: end for

15: end for

VIII. SIMULATIONS

In this section, we provide insights into the empirical per-

formance of our privacy mechanism for hidden Markov mod-

els (HMMs) on simulated datasets. We randomly generated

100 haplotype sequences of length 100, which together with

the choices of error probability θ and crossover probability �
induce p (x), as described in Section VII-A. For simplicity,

we suppose the sensitive position K = {1}.

We first illustrate the privacy-utility trade-off of the heuristic

window-based erasure approach described in the Introduction.

In particular, this approach erases the first ω positions of

the sequence to hide information about the sensitive posi-

tion (the first position). The results are shown in Figure 4.

The erasure rate is defined by the size of the erased win-

dow over the sequence length, i.e., ω/n (note n = 100).

The privacy leakage is measured by the mutual information

between the released positions and the sensitive position X1,

normalized by the entropy of X1, i.e., I(X1; X[n]\[ω])/H(X1).
We also show the expected erasure rate of our proposed

privacy mechanism for comparison, whose privacy leakage is

strictly zero by design. We observe that the window-erasure

approach requires a high erasure rate (around 0.3) to keep

the privacy leakage close to zero, whereas our mechanism

achieves a considerably smaller erasure rate (around 0.12)

while providing perfect privacy. On the other hand, choosing

a window size for the baseline approach to match the era-

sure rate of our mechanism leads to a considerable privacy

leakage.

We next evaluate our privacy mechanism over a range of

different parameter settings. We consider θ ∈ {0.01, 0.05} and

vary � from 0.01 to 0.5, both of which reflect reasonable ranges

of the parameters for the scale of the dataset we simulated.

We provide each instance of p (x) to our privacy mechanism

with K = {1} to calculate its achievable rate R (i.e., one minus
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Fig. 4. Privacy-utility trade-off of the window-based erasure approach on
simulated HMM data with m = 100, n = 100, K = {1}, crossover
probability � = 0.1 and error probability θ = 0.01. Erasure rate denotes
the size of window that is erased normalized by the sequence length
n. Privacy leakage denotes the mutual information between the released
data and the sensitive symbol normalized by the entropy of the sensitive
symbol.

Fig. 5. Comparison of our mechanism and the upper bound on simulated
HMM data with m = 100, n = 100, K = {1} and different choices of
crossover probability � and error probability θ.

the expected erasure rate). Figure 5 shows the comparison

between the rate of our mechanism and the upper bound we

derived in Section III. The results suggest that the performance

of our mechanism shows varying degrees of closeness to

the theoretical upper bound depending on the characteristics

of the underlying data distribution. In particular, for higher

values of �, representing the regime where the hidden Markov

model mixes faster and thus the correlation with the sensitive

position decays more quickly, the rate of our mechanism is

nearly identical to the upper bound. On the other hand, for

lower values of �, which lead to stronger correlations in the

sequence, we observed that the gap between our mechanism

and the upper bound can grow considerable large. Note that

this does not necessarily imply that our mechanism achieves

a significantly suboptimal performance, given that the upper

bound we considered is not tight in general. We also note that

the rate of our mechanism is generally higher when the error

probability is larger (θ = 0.05 vs 0.01), which agrees with

the intuition that higher levels of noise in the data distribution

lower the requirement for hiding sensitive information, thus

leading to lower erasure probabilities and higher rates as a

result.

Fig. 6. Comparison of our mechanism, the upper bound and the optimal rate
based on a linear programming (LP) solution on simulated HMM data with
m = 100, n = 6, K = {1} based on a truncated version of the dataset used
in Fig. 5.

To gain further insights into the noticeable gap between

the upper bound and our mechanism in the small � regime,

we additionally implemented a linear programming (LP)

approach for directly obtaining the optimal mechanism

w (y|x). However, since the size of LP grows exponentially

with the length of the sequence n, we could only evaluate

this approach for small problem instances due to numerical

instability. We took the same simulated data as before and

truncated each reference haplotype down to the first six

positions to obtain a tractable LP instance for this experiment

(n = 6).

The rate comparisons of our privacy mechanism, LP-based

optimal mechanism, and the upper bound in this setting are

shown in Fig. 6. As expected, we observed that the optimal rate

lies between the upper bound and the rate of our mechanism,

demonstrating that the gap between the optimal rate and the

rate of our mechanism is indeed smaller than the ostensible

gap suggested by the upper bound.

Taken together, these results suggest that, although the

performance of our mechanism is often quite close to the

upper bound, the difference between the maximum achievable

rate and the rate of our mechanism can vary based on

the properties of the data distribution. We note that it is

yet unknown whether there exists a privacy mechanism that

can be as efficiently constructed as our mechanism while

achieving performance that is closer to the optimal rate.

Closing this performance gap both by devising enhanced

privacy mechanisms that achieve higher rates and by devel-

oping tighter upper bounds are important directions for future

work.

IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced the genotype hiding problem

and proposed an information-theoretic privacy mechanism as

a solution. We analyzed the theoretical properties of the mech-

anism, and proposed an efficient algorithmic implementation

of the mechanism for hidden Markov models, a main model

of interest for our application in genomics.

It is worth noting that our mechanism does not rule out the

possibilities of genotype reconstruction attacks that leverage
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(i) alternative genetic sequence models and imputation strate-

gies or (ii) a larger set of reference dataset using which HMM

parameters could be more accurately estimated. However,

our model based on HMMs is consistent with the state-

of-the-art techniques for genotype imputation, which is a

relatively mature field. In addition, given the high cost of

amassing large-scale genomic data, it would be a significant

challenge for an attacker to gain access to a larger dataset

than those in the public realm. As such, our mechanism could

be thought of as providing privacy protection according to

the best knowledge of the field. Our results in Section VI

show that any unforeseen privacy leakage arising from the

discrepancies in the data distribution scales gracefully with

the relative entropy between the true distribution and the one

used by the mechanism.

There are several key directions for future work. Our work

focused on hiding the content of the sensitive positions, yet

a potential concern remains regarding information revealed

by the choice of sensitive positions K. Any approach rely-

ing on erasures for privacy protection may inevitably leak

information about K, since preventing such leakage would

generally require erasures to be consistently applied through-

out the sequence, which is highly costly in terms of utility

if only a small fraction is considered sensitive. An interest-

ing extension of our work is then to relax the faithfulness

condition when hiding the positions is deemed important.

A promising approach is to re-sample the erased positions

from the data distribution as a post-processing step to the

mechanism presented in this paper. That said, we note that

in our application setting, K is neither necessarily or nor

solely decided by the sequence, as it may be determined based

on family history of diseases or curated disease associations

in public repositories. Thus, we believe the mechanism pre-

sented in this work is directly applicable in many practical

scenarios.

Next, although we focused on achieving perfect privacy

(with respect to the given data distribution), it may be use-

ful in practice to consider a relaxed notion such as local

differential privacy [38]. This may give the user the ability

to determine a more desirable trade-off between the level

of privacy and the amount of data to be erased. From an

analytical standpoint, this direction would also lead to useful

insights about the achievable points along the privacy-utility

trade-off curve defined by the genotype-hiding problem with

a relaxed notion of privacy, to complement the results in this

work.

Furthermore, it would be interesting to explore the general-

ization of our efficient implementation strategies to a broader

class of data generative models beyond HMMs, which may

allow similar mechanisms to be employed to protect sensitive

data in other domains.

Lastly, we plan to study the performance of our privacy

mechanism on real genetic datasets and release the software

implementation of our mechanism for the genetics community

in the near future.

Growing threats to genetic privacy are necessitating prin-

cipled strategies for protecting the privacy of individuals

while maintaining the utility of data sharing. Our work

illustrates how such a strategy could be designed from an

information-theoretic perspective to enable selective disclosure

of personal genomic data. Our methodology is broadly applica-

ble to other data sharing scenarios involving sensitive data with

complex correlation structure. We hope that our work will help

spur the development of a wide range of information-theoretic

tools for modelling and preserving private genomic informa-

tion.

APPENDIX A

PROOF OF COROLLARY 1

We prove the sufficient condition of the optimality

holds for the Markov chain case. We give an inductive

proof for the sufficient condition by showing that, for a

given xi,

u∗ ∈ arg min
u

p
(

xi|xK = u, y[j−1]

)

(56)

implies

u∗ ∈ argmin
u

p
(

xi|xK = u, y[j]

)

(57)

for j = 1, . . . , i − 1. For each j, we consider the following

two cases (yj 6= ∗ and yj = ∗):

(1) If yj 6= ∗, then we have

p
(

xi|xK, y[j]

)

=
X

xj

p
(

xj |xK, y[j]

)

p
(

xi|xK, y[j], xj

)

(a)
=�{xj = yj}p

(

xi|xK, y[j], xj

)

(b)
= �{xj = yj}p (xi|xj) , (58)

where (a) follows because Yj can either be Xj or

∗, and (b) follows from Markovity. In this case,

argminu p
(

xi|xK = u, y[j]

)

is indeed independent of u,

which means

argmin
u

p
(

xi|xK = u, y[j]

)

= |X |, (59)

so the statement is trivially true.

(2) If yj = ∗, then we have

p
(

xi|xK, y[j]

)

=
X

xj

p
(

xj |xK, y[j]

)

p
(

xi|xK, y[j], xj

)

(a)
=
X

xj

p
(

xj |xK, y[j]

)

p (xi|xj)

(b)
∝
X

xj

n

p
(

xj |xK, y[j−1]

)

− min
u

p
(

xj |xK = u, y[j−1]

)

o

p (xi|xj)

=
X

xj

p (xi|xj) p
(

xj |xK, y[j−1]

)

−
X

xj

p (xi|xj)min
u

p
(

xj |xK = u, y[j−1]

)

= p
(

xi|xK, y[j−1]

)

−
X

xj

p (xi|xj)min
u

p
(

xj |xK = u, y[j−1]

)

,

(60)
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where (a) follows from Markovity, and (b) follows from

Bayes’s rule and our privacy mechanism (17). Since the

second term of the right-hand side in (60) is independent

of xK, we obtain

arg min
u

p
(

xi|xK = u, y[j]

)

= argmin
u

p
(

xi|xK = u, y[j−1]

)

. (61)

For both cases, we have verified that the sufficient condition

holds, which completes the proof.

APPENDIX B

PROOF OF LEMMA 2

We will prove (40) by induction. First, consider the base

case:

w (yo1 = ∗|xo1 , xK) = 1 −
minxK p (xo1 |xK)

p (xo1 |xK)
. (62)

From the previous discussion, we know that if oi ∈ K, then

w
(

yoi
= ∗|xoi

, xK, yo[i−1]

)

= 1, (63)

so without loss of generality, we assume that

o1 /∈ K = {m + 1, . . . , m + k}. (64)

Since

xK =







X

i:i∈Sj

bi,j : j ∈ [k]







, (65)

and

xo1 = {bo1,j : o1 ∈ Sj} (66)

by definition, we can see that if there exists some j such that

Sj = {o1}, then bo1,j ∈ xK and bo1,j ∈ xo1 . In this case,

we can always find some assignments such that

min
xK

p (xo1 |xK) = 0, (67)

implying that

w (yo1 = ∗|xo1 , xK) = 1. (68)

If there is no j such that Sj = {oi}, each
P

i:i∈Sj
bi,j

constituting xK is a binary summation of some bo1,j and (inde-

pendent) random bits bi,j such that i 6= o1, where the latter

render the result uniformly random. This means that XK is

independent of Xo1 , and thus we have

w (yo1 = ∗|xo1 , xK) = 1 −
minxK p (xo1 |xK)

p (xo1 |xK)

= 1 −
minxK p (xo1)

p (xo1)
= 0, (69)

for all xo1 and xK.

Assume the statement is true for o1, . . . , oi−1. Then for oi,

note that

p
(

xoi
|xK, yo[i−1]

)

=
p (xoi

|xK) p
(

yo[i−1]
|xoi

, xK

)

p
(

yo[i−1]
|xK

) . (70)

By letting

Ẽi =
�

oj : yoj
6= ∗, j ≤ i − 1

�

, (71)

(70) can be written as

p
(

xoi
|xK, yo[i−1]

)

=
p (xoi

|xK) p
(

xẼi
|xoi

, xK

)

p
(

xẼi
|xK

)

= p
(

xoi
|xẼi

, xK

)

, (72)

because of the inductive assumption that the decisions whether

to erase yo1 , . . . , yoi−1 are deterministic.

Hence, we have

w
(

yoi
= ∗|xoi

, xK, yo[i−1]

)

= 1 −
minxK p

(

xoi
|xK, yo[i−1]

)

p
(

xoi
|xK, yo[i−1]

)

= 1 −
minxK p

(

xoi
|xẼi

, xK

)

p
(

xoi
|xẼi

, xK

) .

(73)

Analogous to our argument for the base case, if there exists

some j such that Sj ⊆ Ẽi ∪ {oi}, then one can determine

boi,j ∈ xo1 from xẼi
, xK, and thus

min
xK

p
(

xoi
|xẼi

, xK

)

= 0, (74)

implying that

w
(

yoi
= ∗|xoi

, xK, yo[i−1]

)

= 1. (75)

If there is no such j, each xj for j ∈ K is the binary

summation of some boi,j ∈ xoi
and some independent random

bits bi0,j such that i0 6= oi, which again guarantees that XK is

independent of Xoi
conditioning on XẼi

. Thus, we have

w
(

yoi
= ∗|xoi

, xK, yo[i−1]

)

= 1 −
minxK p

(

xoi
|xẼi

)

p
(

xoi
|xẼi

) = 0,

(76)

for all xoi
, xK and yo[i−1]

, which completes the inductive

proof.

APPENDIX C

PROOF OF THEOREM 3

First, let us show that e∗ ≥ h∗ by showing that Eπ is a

hitting set for any order π, i.e., Eπ ∩ Sj 6= ∅ for all j ∈ [k].
We prove it by contradiction. Suppose that there exists some

Sj such that Eπ∩Sj = ∅, which implies that Sj ⊆ [m]\Eπ for

some j. Assume that Sj = {i1, . . . , it}, and it is the last index

visited that specified by the given order π. Then, when we run

our mechanism for it, since i1, . . . , it−1 are all visited and not

erased, by recalling the proof of Lemma 2, we know that Ẽit
⊇

{i1, . . . , it−1}, so we have Sj ⊆ Ẽit
∪ {it}. It means that yit

is erased or it ∈ Eπ, which contradicts with our assumption

Eπ ∩ Sj = ∅.

Next, we show that e∗ ≤ h∗ by showing that for any given

hitting set V , there exists an order π such that |Eπ | ≤ |V |.
Suppose V is a hitting set and |V | = h, i.e., V ∩Sj 6= ∅ for all

j ∈ [k]. Consider an order π such that oi /∈ V ∪[m+1 : m+k]
for i ≤ m − h and oi ∈ V for i ∈ [m − h + 1 : m], i.e.,

visiting indices in the complementary of T before attaining

V . When we visit oi such that i ≤ m − h (or oi ∈ [m]\V ),

by the assumption that V ∩ Sj 6= ∅ for all j, we know that

there exists some index tj ∈ Sj ∩ V for each j. By recalling
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the definition (71), we know that Ẽi ⊇ [m]\V , so tj /∈ Ẽi.

Note that tj ∈ V while oi /∈ V , so tj /∈ Ẽi ∪ {oi}. Hence,

we know that yoi
is not erased, or oi /∈ Eπ from the proof of

Lemma 2. Since oi /∈ Eπ for i ≤ m − h given this particular

order π, we have |Eπ | ≤ h = |V |, which completes the

proof.

APPENDIX D

PROOF OF THEOREM 4

From (45), we have

I(p (xK) ; p (y)) = D(p (xK,y) ||q (xK,y))

−D(p (xK) ||q (xK)) − D(p (y) ||q (y)), (77)

and it remains to show that the right-hand side is bounded

above by D(p (x) ||q (x)).
By applying the chain rule for relative entropy, we have

D(p (x,y) ||q (x,y))

= D(p (x) ||q (x)) + D(p (y|x) ||q (y|x)), (78)

and

D(p (x,y) ||q (x,y)) = D(p (xK,y) ||q (xK,y))

+D(p
(

x[n]\K|xK,y
)

||q
(

x[n]\K|xK,y
)

). (79)

The definition of conditional relative entropy and the proof of

the chain rule for relative entropy can be found in [40, p. 24].

From these equations, we obtain

D(p (xK,y) ||q (xK,y))

= D(p (x) ||q (x)) + D(p (y|x) ||q (y|x))

− D(p
(

x[n]\K|xK,y
)

||q
(

x[n]\K|xK,y
)

). (80)

By substituting (80) in (77), we have

I(p (xK) ; p (y))

=D(p (x) ||q (x))+D(p (y|x)||q (y|x))−D(p (xK) ||q (xK))

− D(p
(

x[n]\K|xK,y
)

||q
(

x[n]\K|xK,y
)

)−D(p (y)||q (y))
(a)

≤D(p (x) ||q (x)) + D(p (y|x) ||q (y|x))
(b)
= D(p (x) ||q (x)), (81)

where (a) follows from the non-negativity of relative entropy,

(b) follows from the assumption q (y|x) = p (y|x) = w(y|x).
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