
Teaching Reinforcement Learning Agents via
Reinforcement Learning

Kun Yang, Chengshuai Shi, Cong Shen
Department of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22904

{ky9tc,cs7ync,cong}@virginia.edu

Abstract—In many real-world reinforcement learning (RL)
tasks, the agent who takes the actions often only has partial
observations of the environment. On the other hand, a principal
may have a complete, system-level view but cannot directly take
actions to interact with the environment. Motivated by this agent-
principal capability mismatch, we study a novel “teaching” prob-
lem where the principal attempts to guide the agent’s behavior
via implicit adjustment on her observed rewards. Rather than
solving specific instances of this problem, we develop a general
RL framework for the principal to teach any RL agent without
knowing the optimal action a priori. The key idea is to view
the agent as part of the environment, and to directly set the
reward adjustment as actions such that efficient learning and
teaching can be simultaneously accomplished at the principal.
This framework is fully adaptive to diverse principal and agent
settings (such as heterogeneous agent strategies and adjustment
costs), and can adopt a variety of RL algorithms to solve
the teaching problem with provable performance guarantees.
Extensive experimental results on different RL tasks demonstrate
that the proposed framework guarantees a stable convergence
and achieves the best tradeoff between rewards and costs among
various baseline solutions.

I. INTRODUCTION

In a typical reinforcement learning (RL) systems, the learn-
ing agent directly interacts with the environment by repet-
itively taking an action, observing the state transition, and
collecting a reward. However, there are also many real-world
RL systems where the definition of learning agent is less
obvious. In some cases, a principal-client structure exists in
place of a single learning agent, where the clients are trying
to make their own decisions based on their own observations
while the principal’s task is to balance all the clients to achieve
a system-level goal (implicitly based on the collective and
thus more comprehensive observations of many clients). There
are several motivating factors behind this principal-client
structure instead of considering a single learning agent. First,
for some applications, such principal-client structure may be
indispensable when the principal does not have the capability
to directly take actions on the environment. Second, in some
other applications, no single agent can either fully observe
the complete environment or completely impact the change of
environment state. Last but not the least, the principal-client
structure may already exist as a legacy infrastructure, before

The work is partially supported by the National Science Foundation under
Grant ECCS-2033671, ECCS-2143559, and CNS-2002902.

RL is brought in as a new solution. It is desirable to keep the
existing protocol while also enjoying the new benefits of RL.

A representative example that highlights the aforementioned
properties is the cellular cognitive radio system. We can view
a principal as the base station (BS) while the clients are user
equipments (UEs). The goal of the BS is to learn which
channel to use for broadcasting information within its coverage
area based on the current network status. However, the BS
is fixed at one location and cannot observe the complete
environment in its coverage area. On the other hand, it is often
the case that many UEs are scattered around in the coverage
area. In each time slot, every UE will try to select a channel to
communicate with the BS to maximize its own communication
quality. However, each of these UEs may only observe the
local environment in its neighborhood, which provides partial
information of the entire environment. This may lead to
undesirable performance from a network/system perspective,
e.g., reducing the network throughput or increasing packet
collision. Finally, there are already existing (and mature)
cellular signalling protocols in the devices, making it desirable
to design an RL solution for the principal-client structure by
maintaining the existing solution at the devices.

In this work, we address RL for a principal-client structure
by proposing an RL framework for the principal that can
efficiently and effectively teach any client running RL algo-
rithms, by only (implicitly) adjusting the observed reward of
the client. This formulation has some similarity to the reward
attack problem in RL (see Section II for related works), but
with a fundamental difference that the principal does not know
the optimal action a priori. Hence, in addition to designing
how to teach the clients (which can adopt any RL algorithm)
by only adjusting the observed rewards, we face the new
challenge of learning the optimal global action simultaneously
with teaching. A key idea behind our proposed solution is
to view the clients as part of the principal’s observations,
and formulate it as a Markov Decision Process (MDP). Then,
under this new MDP, we train an RL learning agent (i.e., the
principal) that can simultaneously achieve the following two
goals: (1) find the globally optimal action of the complete
environment, and (2) determines the optimal policy to teach
each RL client via implicit reward adjustment. We evaluate
the proposed solution using standard deep RL (DRL) testing
environments, and the results indicate that our algorithm can

978-1-6654-5181-9/23/$31.00 ©2023 IEEE

20
23

 5
7t

h
An

nu
al

 C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Sc

ie
nc

es
 a

nd
 S

ys
te

m
s (

CI
SS

) |
 9

78
-1

-6
65

4-
51

81
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CI
SS

56
50

2.
20

23
.1

00
89

69
5

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 05,2023 at 02:28:54 UTC from IEEE Xplore. Restrictions apply.

perform competitively with existing solutions that know the
desired optimal global action in advance.

The remainder of this paper is organized as follows. Related
works are surveyed in Section II. The proposed RL framework
to teach RL clients and the theoretical guarantees are described
in Sections III and IV. Experiment results are reported in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORKS

The line of research that is mostly closely related to this
work is reward adjustment in RL. In particular, there has been
extensive research on data-poisoning attacks in RL, where an
attacker can alter the agent’s rewards in order to modify her
behavior towards the goal of the attacker. The study ranges
from the simple setting of multi-armed bandits (MAB) [1]–[3]
to general RL [4]–[6]. Nevertheless, they require that there
exists a pre-specified target policy known to the attacker,
and the existing designs aim at making the agent almost
always follow the target policy while only incurring sub-
linear attack cost. One notable (albeit still limited) extension
is [7], which aims at minimizing the client rewards. None
of these prior studies can handle the challenging principal-
client structure with the constraints mentioned in Section I. It
is worth mentioning that [8] briefly discussed an idea of using
an RL framework to carry out attacks, which shares the same
philosophy as this work. However, [8] needs to know not only
the target policy but also the exact environment dynamics (the
environment MDP) as well as the agent’s learning algorithm
(a Q-learning-type one), which is much more restrictive.

III. SYSTEM MODEL AND PROBLEM FORMULATION

To focus on the key elements of our work, in this conference
paper, we consider a simplified system where at any time only
one principal and one agent (i.e., client) exist in the system.
The principal does not change while the agent may vary over
time. The agent interacts with an episodic MDP by following
her own RL strategy. She is oblivious of the existence of
a principal and is completely autonomous in terms of the
learning process. The principal, on the other hand, can monitor
the agent’s behavior but cannot directly interact with the MDP.
To formulate this agent-principal mismatch as discussed in
Sec. I, each performed action at the agent will have two
different rewards: an individual-level one for the agent and a
system-level one for the principal. The agent is oblivious and
only concerns about optimizing her individual-level reward. To
overcome potential mismatch and optimize the system-level
performance, the principal is interested in guiding the agent.
However, we enforce the constraint that the only action for the
principal is to adjust the agent’s local reward before revealing
it to the agent. The main design objective is to efficiently
utilize the reward adjustment capability at the principal to
maximize the system-level reward. An illustrative diagram
of the considered system model is given in Fig. 1. In the
following, we present the details of the system components.
Raw MDP with two rewards. The environment is modeled
as an episodic MDP, which is referred to as the raw MDP

Fig. 1: System illustration. Principal and agent both interact with the
MDP environment but with different capabilities and observations.

to facilitate discussion and is denoted by a tuple MDPraw :=
(F, E ,K,Q, ρ, κ). This tuple contains some standard notions
in MDP: F is the number of steps in each episode, E is
the state space with |E| = E, K is the action space with
|K| = K, and Q is the transition matrix where Qf (·|ef , kf) is
the distribution measure of the next state with action kf in state
ef at step f . The major distinction to standard MDPs is that
for action kf taken on state ef , two rewards are generated:
Xf := Xf (ef , kf) ∼ ρf (·|ef , kf) is the individual-level
random reward and Yf := Yf (ef , kf) ∼ κf (·|ef , kf) is the
system-level random reward, respectively.

In this model, the agent can directly observe the realized
states and perform actions, but can only observe the individual-
level rewards Xf . From the agent perspective, she faces a
“standard” MDP environment and thus can learn an RL policy
based on historical states, actions and individual-level rewards
(i.e., ef , kf and Xf). We consider that the agent interacts with
the raw MDP for G episodes. Importantly, the agent’s learning
strategy is unknown to the principal.

As for the principal, she has the same observations as
the agent, with an additional system-level reward Yf . The
principal is interested in maximizing the cumulative system-
level reward. However, such reward Yf is produced by the
action kf taken by the agent at state ef , and the principal
does not have the capability to act on the environment. As a
result, the principal needs to guide the agent’s behavior (i.e.,
“teach” the agent) to behave towards system-level objectives,
while not explicitly interfering with the agent’s autonomous
learning operation. While different teaching methods can be
studied, this work considers a practical while challenging
scenario where the principal can only implicitly adjust the
agent individual-level reward observations, as specified below.

Teaching via implicit reward adjustment. With action
kf taken by the agent at state ef , the principal can adjust
the environment-generated reward Xf into a perturbed one
X̃f , which is then revealed to the agent, who is assumed
to be unaware of the reward adjustment. In other words, the
adjustments are implicit and thus oblivious to the agent.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 05,2023 at 02:28:54 UTC from IEEE Xplore. Restrictions apply.

With such adjustments, the principal can shape the agent’s
observations, especially, the agent now observes a mod-
ified trajectory {ef , kf , X̃f , ef+1} instead of the original
one {ef , kf , Xf , ef+1}. Intuitively, the agent can be guided
towards a more preferable behavior w.r.t. the system-level
rewards via careful reward adjustment designs.

However, adjusting rewards is often costly in real-
world systems. We thus model changing reward Xf (ef , kf)
to X̃f (ef , kf) to incur a corresponding cost Cf :=
α|Xf (ef , kf) − X̃f (ef , kf)|, where α ≥ 0 is a known
parameter that controls the cost level. We are interested in
designing a reward adjustment method that can maximize
the cumulative system-level reward while incurring as little
adjustment costs as possible.

IV. A GENERAL RL FRAMEWORK FOR RL TEACHING

The formulated teaching problem is considerably challeng-
ing in the following perspectives. First, as mentioned, the
principal needs to balance teaching effectiveness and cost
efficiency. Moreover, the principal has to teach with no prior
knowledge of the environment. Specifically, she needs to learn
about the system dynamics (i.e., reward generation and state
transition laws) from the agent’s past interactions with the
environment, while guiding her behaviors via reward adjust-
ments. The principal also does not know the optimal actions
to maximize system-level reward a priori. These challenges
distinguish this work from previous works in guiding (or
attacking) the agent either in a known environment or with
a pre-specified target [1]–[6].

To solve the general problem of teaching RL agent, we
take a novel approach by recognizing that this challenging
problem can be modeled as solving a new episodic MDP,
and thus we can apply RL to solving the teaching RL agent
problem. Especially, the agent’s behaviors can be modeled as
part of the environment (of a new MDP) for the principal and
her available actions are the reward adjustments, which would
impact the agent (thus the principal’s rewards). To distinguish
from the raw MDP, the newly constructed MDP is referred
to as the teaching MDP MDPteach := (U,S,A,P, R), whose
elements are defined as follows.

Episode length U . Naturally, the length of one episode for
teaching is the overall time steps of G episodes in the raw
MDP, i.e., U := FG. To facilitate the discussion, for step f at
episode g in the raw MDP, another time counter is introduced
as u = (g − 1)F + f ∈ [U] for the teaching MDP. In the
following discussion, time u ∈ [U] and its corresponding
(f, g) ∈ [F] × [G] pair would be used interchangeably, e.g,
eu = ef,g,Qu = Qf .

State S. At step u ∈ [U], the state su characterizes all the
observations collected by the principal, which includes both
the observations from the raw MDP and the characterization
of the agent. Thus, in general, the state can be specified
as a tuple su :=

(
H̃u, eu, ku, Xu, Yu, eu+1

)
∈ S , with

H̃u := {eτ , kτ , X̃τ : τ ∈ [u−1]} as the agent’s (modified) ob-
servations up to time u. Recall that for time u, ku is the agent’s

action, Xu is the environment-generated reward for agent, Yu

is the principal’s reward, X̃u is the agent’s observed/perceived
reward (after the principal’s implicit adjustment), and eu+1 is
the next state sampled from Qu(·|eu, ku).
Action A. At each step u, a reward Xu is generated for
the agent. However, this environment-produced individual-
level reward is only directly received at the principal, who
modifies it to be X̃u and sends to the agent. Thus, the
principal’s action au can be defined as the adjustment value,
i.e., au := X̃u−Xu ∈ A. Note that in many applications, the
feasible reward generated by the raw MDP is often bounded,
e.g., |Xu| ∈ [B1, B2]. In these cases, the principal’s action is
also constrained as it cannot exceed the natural limits of the
environment, i.e., au ∈ [B1−Xu, B2−Xu]⇒ X̃u ∈ [B1, B2].
To simplify the discussion, instead of considering general
continuous adjustments, the principal is limited to choosing
reward adjustments (i.e., actions) in a finite set with size
|A| = A. This consideration is practical as the agent’s
rewards are often discrete (or discretized) in real world and
the principal can only choose other elements in the same set
A without agent noticing external interference.

Transition P. With action au performed for state su, a new
state is generated via the following process, which is denoted
as su+1 = (H̃u+1, eu+1, ku+1, Xu+1, Yu+1, eu+2). First, the
agent’s history is supplemented with new observations, i.e.,
H̃u+1 ← H̃u ∪ {eu, ku, X̃u}. Then, as the agent’s actions
are determined by her policy ϕ, with a modified history
H̃u+1, action ku+1 is to be sampled from ϕu+1(·|eu+1, H̃u+1),
i.e., ku+1 ∼ ϕu+1(·|eu+1, H̃u+1). This action further re-
sults in rewards Xu+1 ∼ ρu+1(·|eu+1, ku+1) and Yu+1 ∼
κu+1(·|eu+1, ku+1). Finally, the environment transitions to
eu+2 ∼ Qu+1(·|eu+1, ku+1).

The transition probability can be factorized as

Pu(su+1|su, au) = 1{H̃u+1 = H̃u ∪ {eu, ku, X̃u}}︸ ︷︷ ︸
agent’s history update

ϕu+1(ku+1|eu+1, H̃u+1)︸ ︷︷ ︸
agent’s action selection

Qu+1(eu+2|eu+1, ku+1)︸ ︷︷ ︸
raw state transition

ρu+1(Xu+1|eu+1, ku+1)︸ ︷︷ ︸
agent’s reward

κu+1(Yu+1|eu+1, ku+1)︸ ︷︷ ︸
principal’s reward

,

where the history H̃u+1 is updated deterministically as H̃u ∪
{eu, ku, X̃u}, while the agent’s action selection, the reward
generation, and the raw state transition are all stochastic.

Reward R. A natural approach to unify the system-level
reward and the cost for the principal is to define an outcome
as the principal’s reward minus the cost: Ru := Yu − Cu,
where we recall that Cu = α|Xu − X̃u| = α|au|. Note that
this reward is deterministic w.r.t. the state su and action au in
MDPteach.

It should be clear now that the original teaching problem can
be formulated as solving the teaching MDP MDPteach. With the
outcome characterizing both the principal’s reward and cost,
the design goal is now to maximize the cumulative outcome.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 05,2023 at 02:28:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 RL2RL Framework

Require: Unknown raw MDP MDPraw(F, E ,K,Q, ρ, κ), se-
quentially arriving agents [M], parameter α

1: Define teaching MDP as MDPteach := (U,S,A,P, R)
2: Initialize policy π(0)

3: for m ∈ [M] do
4: Initialize history H1 = ∅
5: for u ∈ [U] do
6: Observe raw state eu on the raw MDP MDPraw
7: Observe agent m performs action ku
8: Observe the realized rewards Xu and Yu

9: Construct su = (H̃u, eu, ku, Xu, Yu, eu+1)
10: Sample action au ∼ π(m)(·|su)
11: Collect reward Ru = Yu − α|au|
12: Reveal reward X̃u = Xu + au to agent m
13: Update the observation history of the agent

H̃u+1 = H̃u ∪ {eu, ku, X̃u}
14: end for
15: Update policy π(m+1)

16: end for

V. ALGORITHM DESIGN FOR TEACHING

With the general framework established, we now focus
on how to solve the formulated teaching MDP problem. In
particular, we consider a sequential teaching setting (also
known as population learning in [6]). Specifically, a set of M
agents enters the system sequentially while the same principal
teaches all of them also sequentially. The teaching design is
discussed in the following, which demonstrates the notable
advantage of the flexible algorithm choice for the principal.

A. Flexibility of Principal Strategy

In the ideal case, if the principal has the exact information
of the raw MDP MDPteach and the agent’s policy ϕ (and thus,
MDPteach), she can solve the optimal policy via standard RL
planning techniques (e.g., value iteration). However, the princi-
pal considered in this work does not have any prior knowledge
about MDPteach, and thus must learn the environment.

Luckily, with the MDP formulation, a variety of RL algo-
rithms can be adopted for this learning process for MDPteach.
Especially, the proposed framework does not have any re-
striction on the RL algorithm adopted by the principal, which
provides significant flexibility. This advantage largely benefits
the practical implementation of the proposed framework as any
suitable RL algorithms can be chosen under other considera-
tions such as the target application, computation and storage
requirement. The general RL to teach RL (RL2RL) design is
summarized in Algorithm 1. We note that this algorithm is
executed entirely by the principal.

B. Theoretical Guarantees for RL2RL

Despite being general, we are able to show that the the-
oretical analysis in RL studies can be generalized for the

RL2RL algorithm. Before stating the results, the following
regret definition is used as the performance metric.

Reg(M) :=
∑

m∈[M]

[
V ∗
1 (s

(m)
1)− V π(m)

1 (s
(m)
1)

]
where we consider that M clients have sequentially entered
(and left) the system as described earlier, π(m) is the strategy
of teaching agent m and s

(m)
1 is the corresponding initial state.

Moreover, V π
1 (s) := E

[∑
u∈[U] Rτ (su, au)|s1 = s

]
defines

the expected cumulative outcomes collected by the principal
with policy π while V ∗

1 (s) := V π∗

1 (s) is the best performance
from the optimal policy π∗ := argmaxπ V

π
1 (s).

Inspired by the recent theoretical advances [9]–[11], the
following theorem can be proved, with specific designs and
analysis deferred to the journal version.

Theorem 1 There exists an update policy under the RL2RL
framework in Algorithm 1 such that with probability at least
1− δ, the regret satisfies: Reg(M) = Õ(poly(FG|S|A)

√
M),

where poly(·) refers to a polynomial term.

We note that the square-root dependency on M indicates that
the per-agent regret, i.e., Reg(M)/M , is vanishing, which
implies that the principal can gradually converge to the optimal
teaching strategy.

One limitation in this regret guarantee is that there exists
a polynomial dependency of the size of the state space |S|,
which can be large. Especially, the state su contains the agent’s
adjusted history H̃u, whose possible combinations have a
cardinality growing exponentially in the teaching episode
length U . To make the proposed framework more practical,
information extractors are introduced to handle the large state
space by providing state features. The details of the adopted
extractors are explained in the practical evaluations of Sec. VI.

Remark 1 An additional theoretical advantage of the teach-
ing MDP is that the optimal policy π∗ can be rigorously
defined. While seemingly insignificant, this can be a major
benefit because none of the previous studies in RL reward
adjustment [1], [2], [4]–[6] have discussed the optimal policy
without ambiguity. In fact, previous results can only guarantee
performance up to certain levels (e.g., sub-linear costs).

VI. EXPERIMENT EVALUATION

In this section, we evaluate the performance of RL2RL via
numerical experiment. We first focus on a (simple) multi-arm
bandit (MAB) environment, which allows us to compare our
method with a theoretically-optimal baseline. Then, experi-
ment results on grid world example are reported, where we
focus on understanding when RL2RL can teach the agents
effectively and whether our method can learn new targets. For
both experiments, the principal is assumed to be able to modify
the reward with three possible actions {−1, 0, 1}.

A. Bandit Environment

We first consider a stochastic MAB setting, where each
arm’s reward follows the standard Gaussian distribution. In our

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 05,2023 at 02:28:54 UTC from IEEE Xplore. Restrictions apply.

experiments, the agents will face the same five arms with two
different rewards for the agents and the principal, respectively.
More specifically, for the agents, at the beginning of each
experiment, we randomly generate a mean reward (uniformly
in [0, 1]) for each arm, while for the principal, we randomly
choose a target arm and then assign it with a mean value of
one, while all other arms having zero mean values. We let the
agent run the UCB-1 algorithm (with coefficient 2; see [12])
and let the principal adopt proximal policy optimization (PPO)
or soft actor-critic (SAC). To compare the effectiveness of our
algorithm, we compare RL2RL with three baselines. We note
that all three baselines need the knowledge of the target arm,
while our RL2RL does not have this information a priori.
• Baseline 1. This is the solution from [3], where the principal

will not make any modification when the agent pulls the
target arm, and will depress all non-target arms’ rewards to
the minimum value (i.e., 0). It is proved that this solution
enjoys linear pulling time while incurring logarithmic cost.

• Baseline 2. This is the same as Baseline 1 except that when
the agent pulls the target arm, the principal increases its
reward to the maximum value (i.e., 1).

• Baseline 3. This is the same as Baseline 2 except that for
the non-target arms, the principal does not do any reward
adjustment.

Handling the growing state space. Since we formulate the
history of the agents as a part of the state in the teaching MDP,
one difficulty of applying RL2RL to a practical problem is that
the state space will grow as the learning continues. To address
this issue, we propose to use some pre-selected features to
extra information from the history instead of directly using
all the raw history as a state for the teaching MDP. For
the MAB agents, the most commonly adopted algorithms
UCB, Thompson Sampling, and Epslion Greedy all rely on
the sample mean and arm pulling frequencies. These two
features are a good representation of the history the agents
have encountered. Thus in our experiments, we treat the
computation of these two quantities as η(H̃u), a representation
of the history. Using this η, we are able to “store” the history
of the agents from the very beginning, which we denote as∞-
length history. We have empirically observed that using this
representation of history results in better performance than
some naive approaches, e.g., truncating the history to keep
only the recent ones.

Results. We first set α = 1 and evaluate the performance of
RL2RL when the agents are running UCB-1. The results are
plotted in Fig. 2. We can see that when the cost of the system
is large, RL2RL always outperforms the three baselines. Again
we emphasize that this gain is achieved despite that all
baselines have access to the target arm and thus face a much
easier problem. We also observe similar performance gains
when the agents run other bandits algorithms, which we will
detail in the journal version.

Next, we extend the experiment to different arm settings
and cost levels. The goal is to test the performance of RL2RL
when the environment is more favorable to the baselines. The

Fig. 2: Learning to teach with agents running UCB-1 and α = 1.
Each curve is averaged over the same 100 environments.

results are summarized in Table I. Due to space limitation
we only report the results when principal adopts PPO. More
specifically, we compare the cases where we set the target
arm’s mean value from {0.1, 0.5, 0.9} which is ’not aligned’,
’loosely aligned’ and ’strongly aligned’ with the principal
target 1. We also set different cost levels by changing α, and
we denote α = {0.1, 0.5, 1} as ’small cost’, ’mid cost’ and
’large cost’ respectively. We can see from these results that
the baselines, despite knowing the correct target in advance,
all have some settings where they perform very poorly. On
the contrary, RL2RL cannot be uniformly the best across all
environments. However, it provides consistent performance
(the best average) and never falls to the negative reward
region. We believe this consistency comes from the “learning”
capability of RL2RL where the adjustment level is judiciously
and dynamically determined.

B. Grid-world Environment

We extend our experiment to an N×N grid-world environ-
ment, where each agent aims to find the best path towards the
goal while the principal has an additional goal with a larger
reward compare to the agent’s one. The individual-level reward
is such that the agent receives a constant punishment of −1
for each step it moves, while receiving a reward of 1 when it
reaches its own goal. The principal has a system-level reward
of 1 if the agent reaches its own goal, and receives a reward of
K if the agents visits the principal’s (unknown) system-level
goal. We note that this specific dual-reward model captures the
real-world use case where the principal finds it acceptable if an
agent only reaches her individually optimal goal, but would
prefer to explore the potentially better global goal. We add
some environment randomness so that all agents have a 10%
probability to move in a uniformly random direction at each
time step. We only report the combination of agent running
tabular Q-learning while principal runs PPO. Other methods
are deferred to the journal version.
Handling the growing state space. Similar to the bandit
case, we use a representation of the history instead of the
raw history. The agents adopts Q-learning which keeps a
tabular estimation of the Q-values. The Q-table reflects the

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 05,2023 at 02:28:54 UTC from IEEE Xplore. Restrictions apply.

(a) Ground truth (b) Before Training (c) After Training

Fig. 3: Training result in grid-world environment. In Fig. 3a, the orange line stands for (unknown) optimal trajectories for agent’s target
while the blue trajectories represent the (unknown) optimal paths to reach principal’s target. In Figs. 3b and 3c the number on each grid
stands for how many times the agent visited the corresponding grid. The color becomes darker with more visits.

TABLE I: Performance comparison with different cost and bandit game settings

Scenario RL2RL Baseline1 Baseline2 Baseline3

High Cost & Not Aligned 5.1± 1.2 −21.2± 3.5 −11.2± 1.5 0.0± 0.0
High Cost & Loosely Aligned 21.3± 4.2 30.1± 7.5 −8.0± 1.2 0.0± 0.0
High Cost & Strongly Aligned 49.7± 7.3 58.2± 4.5 −4.1± 1.1 0.0± 0.0

Mid Cost & Not Aligned 25.1± 2.1 21.2± 4.5 33.3± 2.5 1.5± 7.2
Mid Cost & Loosely Aligned 38.7± 2.5 37.5± 6.5 38.5± 2.1 33.5± 2.4
Mid Cost & Strongly Aligned 57.7± 7.5 68.2± 3.5 42.5± 1.3 40.3± 1.5

Low Cost & Not Aligned 65.9± 9.2 23.2± 8.5 70.6± 0.5 37.6± 7.3
Low Cost & Loosely Aligned 70.5± 5.5 70.8± 5.5 78.6± 0.8 53.5± 5.3
Low Cost & Strongly Aligned 75.9± 5.3 75.4± 3.5 82.1± 0.5 74.6± 2.4

Average 45.5± 5.3 40.6± 6.3 36.1± 1.8 26.9± 3.1

historical information and is used as the history extractor. For
the principal, she keeps the frequency of state visitation and
its average rewards, and feeds the averaged reward map and
reaching frequency map to the deep RL algorithm. We can see
from Fig. 3 that RL2RL is effective in learning the globally
optimal trajectory and teaching it to the agent, resulting in
achieving a higher reward that the agent individually cannot
achieve.

VII. CONCLUSION

We have studied a novel RL system with a principal and
multiple agents. The agents can take actions that directly
operate on the environment but cannot observe the system-
level reward, while the principal cannot directly interact with
the environment but can observe and wants to maximize
the system-level reward. Only implicit agent-level reward
adjustment exists as the interaction between the principal and
agents. We attacked this challenge by formulating an RL
agent teaching problem, and further proposed to adopt RL to
solve this new problem. The resulting RL2RL framework is
general in terms of the policy selection for both clients and the
principal, and we provided theoretical performance guarantee.
Experimental results on both bandits and RL settings demon-
strate the effectiveness and efficiency of RL2RL in terms of
both system-level rewards and adjustment costs.

REFERENCES

[1] K.-S. Jun, L. Li, Y. Ma, and J. Zhu, “Adversarial attacks on stochastic
bandits,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[2] F. Liu and N. Shroff, “Data poisoning attacks on stochastic bandits,” in
International Conference on Machine Learning, pp. 4042–4050, PMLR,
2019.

[3] H. Wang, H. Xu, and H. Wang, “When are linear stochastic ban-
dits attackable?,” in International Conference on Machine Learning,
pp. 23254–23273, PMLR, 2022.

[4] Y. Ma, X. Zhang, W. Sun, and J. Zhu, “Policy poisoning in batch
reinforcement learning and control,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[5] A. Rakhsha, G. Radanovic, R. Devidze, X. Zhu, and A. Singla, “Policy
teaching via environment poisoning: Training-time adversarial attacks
against reinforcement learning,” in International Conference on Machine
Learning, pp. 7974–7984, PMLR, 2020.

[6] A. Rakhsha, X. Zhang, X. Zhu, and A. Singla, “Reward poisoning in
reinforcement learning: Attacks against unknown learners in unknown
environments,” arXiv preprint arXiv:2102.08492, 2021.

[7] Y. Sun, D. Huo, and F. Huang, “Vulnerability-aware poisoning
mechanism for online rl with unknown dynamics,” arXiv preprint
arXiv:2009.00774, 2020.

[8] X. Zhang, Y. Ma, A. Singla, and X. Zhu, “Adaptive reward-poisoning
attacks against reinforcement learning,” in International Conference on
Machine Learning, pp. 11225–11234, PMLR, 2020.

[9] M. G. Azar, I. Osband, and R. Munos, “Minimax regret bounds
for reinforcement learning,” in International Conference on Machine
Learning, pp. 263–272, PMLR, 2017.

[10] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is Q-learning prov-
ably efficient?,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[11] Z. Zhang, Y. Zhou, and X. Ji, “Almost optimal model-free reinforcement
learningvia reference-advantage decomposition,” Advances in Neural
Information Processing Systems, vol. 33, pp. 15198–15207, 2020.

[12] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, pp. 235–256,
2002.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 05,2023 at 02:28:54 UTC from IEEE Xplore. Restrictions apply.

