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During wound healing, fish keratocyte cells undergo galvanotaxis where they follow a wound-
induced electric field. In addition to their stereotypical persistent motion, keratocytes can develop
circular motion without a field or oscillate while crawling in the field direction. We developed a
coarse-grained phenomenological model that captures these keratocyte behaviors. We fit this model
to experimental data on keratocyte response to an electric field being turned on. A critical element
of our model is a tendency for cells to turn toward their long axis, arising from a coupling between
cell shape and velocity, which gives rise to oscillatory and circular motion. Galvanotaxis is influenced
not only by the field-dependent responses, but also cell speed and cell shape relaxation rate. When
the cell reacts to an electric field being turned on, our model predicts that stiff, slow cells react slowly
but follow the signal reliably. Cells that polarize and align to the field at a faster rate react more
quickly and follow the signal more reliably. When cells are exposed to a field that switches direction
rapidly, cells follow the average of field directions, while if the field is switched more slowly, cells
follow a “staircase” pattern. Our study indicated that a simple phenomenological model coupling
cell speed and shape is sufficient to reproduce a broad variety of different keratocyte behaviors,
ranging from circling to oscillation to galvanotactic response, by only varying a few parameters.
Significance: Many cells follow electric fields – “galvanotaxis” – using this cue to heal wounds.
How can cells respond to electric fields that change rapidly? What controls what type of pattern
cells crawl in? We model and predict the migration patterns of a keratocyte (a cell derived from a
fish scale), both with and without an electric field present. The key element of our model is that
a cell’s shape is coupled to its velocity. Our model reproduces cell crawling patterns like persistent
motion, oscillatory motion about a field, and circular crawling, and quantitatively recapitulates the
cell’s directionality after an electric field is turned on. We make predictions about how cell shape,
speed, and stiffness affect cell motility.

I. INTRODUCTION

Directed cell migration is necessary for processes like
wound healing, immune response, and developmental bi-
ology [1]. Epidermal keratocyte cells in fish and am-
phibians can follow electrical fields to heal wounds [2–
4]. It has been known since the 19th century that skin
wounds generate electric fields [5, 6]. In vivo, injuries dis-
rupt the transepithelial potential [7, 8], short-circuiting
the injured section, and leading to a potential difference
between the injured section and healthy tissue, creat-
ing an endogenous electric field that guides migration of
cells towards the wound [6, 9]. These fields are generally
steady in time (DC fields) [6, 10]. In vitro, many sin-
gle cells also have strong directional response to electric
fields. Dictyostelium discoideum, human mesenchymal
stem cells, fibroblasts, and keratocytes in electric fields
typically migrate towards the cathode [8, 11–15]. Kera-
tocytes in particular are relatively geometrically simple
and have become a useful model system for cell motility
in response to electric fields [16–19]. Field strengths as
low as 0.25 V/cm are enough to induce single and collec-
tive cell migration in keratocytes [20], though other cell
types like neural crests exhibit galvanotaxis in fields as
weak as 0.1 V/cm [21]. These fields are too weak to phys-
ically drag cells – the cells sense and respond to the field
using their motility machinery [20]. Interestingly, in ad-
dition to their typical persistent motion, keratocytes also

display spontaneous circular motion, a persistent turn-
ing driven by asymmetries in traction forces and myosin
contractility at the rear of the cell [16, 18, 19]. This
behavior is also seen in detailed molecular models resolv-
ing cell shape and polarity [16–18, 22, 23] and emerges
from self-propelled deformable particle models [24]. In
the presence of a field, keratocytes may oscillate from
side to side while crawling in the field direction [20].
The molecular details of galvanotaxis in keratocytes

are somewhat obscure. There is evidence that galvan-
otaxis is driven by electrophoresis of mobile, charged
membrane-attached molecules [19, 20, 25], and candi-
dates for sensors have been identified [26–28], but the
molecular-scale understanding is not as well-established
as chemotaxis [1]. In addition, the details of how this
spatial asymmetry on the cell surface leads to initiation
of the downstream signaling cues and migration are not
fully understood. Despite this uncertainty, it is clear that
electric fields are a key cue in wound healing, overriding
other signals [9, 29]. As the study of directed motion in
electric fields is expanded to the study of groups of cells
[30–36], there is a need for phenomenological models that
can quantitatively describe galvanotaxis.
We developed a stochastic model of single-cell galvan-

otaxis describing the cell as a self-propelled deformable
particle [24, 37–40], tracking the cell’s shape and velocity
as it follows a constant DC electric field. Shape and ve-
locity have a natural relationship experimentally [41, 42].
This reason may contribute to why keratocytes adopt dif-



2

θ

n

R0-s/2

R0+s/2

s=0

p

v

s>0R0 E

Cell speed and 
self-propulsion

Velocity alignment 
rate to polarity

Velocity tends 
to long axis

Noise perturbs 
velocity + polarity

Rate of shape 
relaxation

Elongation 
perpendicular
to velocity

Polarity alignment 
rate to velocity

Polarity alignment 
rate to field

γ a χ σ,σp

κ b τ-1 τb
-1

FIG. 1: Left: Cells modeled as deformable ellipses, with a velocity v and an underlying biochemical polarity unit vector p̂. Their
orientation is characterized by θ, the shortest angle between the cell’s long axis and the x̂-axis. The unit vector n̂ points along the cell’s
long axis. Cells begin as circular with radius R0. They can deform to ellipses with semi-major and semi-minor axes lengths of R0 ± s/2.
s controls eccentricity, with s = 0 denoting no deformation from a circle. Right: Schematic of the different terms in the equations of
motion for velocity (Eq. 2), shape (Eq. 3), and polarity (Eq. 4).

ferent morphologies for migrating forward versus making
turns [18]. To capture the effect of cell shape, we uti-
lize the deformable self-propelled particle model of [24],
as it naturally includes a coupling between the cell’s ve-
locity and its shape; this coupling is known to create
circular motion. However, the model of [24] was derived
as the simplest model that could describe a general self-
propelled deformable particle, including a cell, active col-
loid, or an emulsion droplet. Thus, we tailor this model to
cell migration by introducing noise to account for random
fluctuations in the intra- and extracellular environment,
and a polarity angle to indicate the underlying biochemi-
cal polarization of the cell – the “compass” that responds
to the electric fields. This polarity is then coupled with
the cell’s velocity. We show using linear stability analysis
that, as in [24], this model has regimes where persistent
linear crawling by the cell is stable, and others where
more complex behaviors like circular motion arise. We
fit this model to the data of [20] studying how keratocyte
directionality responds to an activated field. We then use
these parameters to show how the cell’s directionality de-
pends on features like cell speed and the rate its shape
relaxes to equilibrium. Finally, we show that the cell’s
rate of response to a switched-on electric field also can
influence its response to rapidly-switched fields, where
cells may reliably follow each field direction, follow the
average of the fields, or develop a more complex behavior,
depending on the cell’s parameters.

II. MODEL AND METHODS

Our model includes four key variables to represent the
state and motion of a keratocyte: shape (characterized

by a tensor Sαβ), center of mass r(t), velocity v =
dr

dt
,

and a internal polarity direction p̂ (Fig. 1).
The symmetric traceless shape tensor Sαβ [24] cap-

tures the extent of deformation from a circle s(t), and
the orientation of the cell’s long axis θ(t),

Sαβ = s

(︃
nαnβ − 1

2
δαβ

)︃
, (1)

where δαβ is the Kronecker delta, nα and nβ are the
components of the unit vector n̂(t) = (cos θ, sin θ) which
points along the long axis of the cell (Fig. 1), and {α, β}
are indices running over the coordinates {x, y}. Here,
s(t) is a nonnegative number that describes the degree
of deformation. s = 0 is a circular cell while increasing
s increases cell eccentricity. The eigenvalues of Sαβ are
±s/2. We draw cells with a deformation s as being an
ellipse with the length of the semi-major and minor axes
given by A = R0 + s/2 and B = R0 − s/2, where R0

is the radius the cell would have if it were circular (Fig.
1). We chose the deviation s/2 to be consistent with the
definition of s in the Fourier mode representation of [39].
Our model’s dynamics for Sαβ , v, and p̂ are given in

Eqs. 2-4 and shown schematically in Fig. 1. The cell’s
velocity obeys:

dv

dt
= µ(γ−|v|2)v−aS⃗

⃗

·v− χ

|v|
v×(v×p̂)+σξ(t)v̂⊥. (2)

The first two terms on the right hand side are from [24].
The first term describes the cell’s self-propulsion, which
will (in the absence of other effects) drive the cell’s speed
to

√
γ. γ sets the cell speed and has a natural biologi-

cal basis since keratocyte cell speed is easily measurable,
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with some experiments recording speeds as low as 3-15
µm/min [42, 43], while others observed speeds up to 60
µm/min [3, 44]. γ will then presumably be dependent
on factors that regulate cell speed, e.g. the rate of actin
polymerization at the leading edge and motor/clutch in-
teractions with the substrate [45, 46]. µ was added to
balance units (Appendix B). The second term on the
right hand side shows how the velocity responds to cell
shape: if a < 0 (which is true everywhere in the main
body of this paper), velocities along the cell’s major axis
will increase, and velocities along the cell’s minor axis will
decrease, leading the velocity to tend to align to ±n̂ (Ap-
pendix A). The tendency of v to align with ±n̂ competes
with the tendency of the cell shape to expand perpen-
dicular to the velocity (Eq. 3), leading to both circular
cell motion (Fig. 2) and other complex behaviors where
the long axis of the cell is not perfectly perpendicular to
the velocity. There is no immediate biological analog for
a; it is the coefficient of the first order term that couples

v and S⃗

⃗

[24]; this shape coupling may reflect Rho GT-
Pase shape-sensing dynamics [17, 47], and would likely
be altered by factors controlling the distribution of Rho
GTPases within the cell. The third term’s triple cross
product (a la [48]) shows a rotation of velocity to come
into alignment with the cell’s polarity – i.e. that the cell
tries to move along its direction of internal biochemical
polarity. Alignment to the polarity is modulated by the
alignment rate χ, which we think of as reflecting the rate
at which the cell’s motility machinery reorients to reflect
any underlying biochemical polarization p̂. The χ term
is essential for galvanotaxis, as we assume the electric
field alters the polarity p̂. The last term on the right is a
rotational noise: ξ(t) is a Gaussian Langevin noise with
⟨ξ(t)⟩ = 0 and ⟨ξ(t1)ξ(t2)⟩ = δ(t1 − t2). v̂⊥ is a unit
vector perpendicular to v. The noise accounts for the
aggregate effect of noisiness in signal transduction [49]
and motility [50, 51].

Velocity ⊥
major axis

Velocity aligns
toward major

axis

Expands ⊥
to velocity

Cell
rotates

Cycle Repeats

FIG. 2: Schematic of the interaction between two competing
processes: velocity alignment to the long axis and shape
expansion perpendicular to the velocity. This competition leads
to circular motion of the cell.

Cell shape Sαβ obeys, following [24] exactly:

dSαβ

dt
= −κSαβ − b

(︃
vαvβ − 1

2
v2δαβ

)︃
. (3)

The first term in this equation informs us that elongated
shapes tend to relax back to a circular shape with a rate
κ – similar to the role of cell tension in [17]. Steady-state

circular shapes have been observed in nonmotile kerato-
cyte lamellipodial fragments [52, 53] – consistent with
Eq. 3, where the circular state is stable when the cell is
motionless. The second term on the right of Eq. 3 models
cell shape responding to cell velocity, and was proposed
by [24] as the simplest term coupling the components of
velocity vα to the shape tensor Sαβ allowed by symmetry
– we must set b as a phenomenological parameter. How-
ever, we note that because b reflects the change in cell
shape in response to local protrusive and contractile sig-
nals, it will reflect the strength and distribution of those
signals around the cell perimeter – see, e.g. [42, 54, 55].
If b < 0, cells expand their shape perpendicular to the
direction of the velocity and contract parallel to the ve-
locity. Cells expanding perpendicular to motion directly
competes with v aligning with ±n̂ whenever shape or
velocity changes rapidly, leading to rotation and oscil-
lations (Fig. 2). We emphasize that the cell generally
ends up with its velocity perpendicular to n̂, but veloc-
ity orientation can be transiently different during turns
and oscillations. As keratocytes have their long axis per-
pendicular to the direction of travel, we will have b < 0
throughout the main paper. We show some results for
cell types that travel parallel to their long axis, choosing
a, b > 0 in Appendix E.
Lastly, the time evolution of the angle of the polarity,

p̂ = (cosϕp, sinϕp), is given by:

dϕp
dt

= −1

τ
arcsin [(v̂ × p̂)z]−

1

τb
arcsin [(Ê× p̂)z]+σpξp(t).

(4)
The first term here aligns the cell’s polarity with its ve-
locity over a timescale τ i.e. a cell will want to polarize
along its direction of travel [56–60]. The second term
similarly shows that the polarity tends to align to the
electric field’s direction Ê over a timescale τb. τb reflects
the timescale for a cell to become polarized in response to
an electric field, potentially by membrane proteins redis-
tributing on the cell surface [20, 25, 61, 62]. The τb term
in the polarity equation is the only role of the electric field
within our model. The term ξp is a Gaussian Langevin
noise with zero mean and ⟨ξp(t1)ξp(t2)⟩ = δ(t1 − t2).
Noise in polarity could arise from the finite number of
sensing proteins [62], stochastic conformation changes of
relevant ion channels [63, 64], or finite numbers of signal-
ing molecules [65, 66]. Within our model, we only include
the electric field’s direction – we do not explicitly include
its magnitude, which could alter the timescale over which
the polarity aligns with the bias τb.
We fit parameters to data in [20]; see Results (Section

III) and Appendix B. We simulate our model equations
(Eqs. 2-4) using the Euler-Maruyama method. To handle
the noise ξ(t) and ξp(t) numerically, we defined a new
Gaussian distributed random variable Γ:

Γ(∆t) =

∫︂ t+∆t

t

ξ(t) dt.

Using the delta-correlation of the noise, ⟨Γ⟩ = 0 and

⟨Γ2⟩ = ∆t. That means numerically, Γ = X
√
∆t, where
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X ∼ N (0, 1). For an example of this approach, we inte-
grate Eq. 2 from time t to t+∆t:

v(t+∆t)− v(t) = f(v(t), S⃗

⃗

(t), p̂(t))∆t+ σΓv̂⊥(t).

Other equations are integrated similarly.

III. RESULTS

Phase diagram of model in absence of a field

We show the phases of cell motion in the absence of
a field in Fig. 3A. With no field present and no noise,
we observe two relevant steady states: cells may either
travel in a straight line with their long axis perpendicular
to their velocity, or move in a circular trajectory. Like
the original work of [24], we observe a transition between
perfectly straight, linear motion at small cell speeds (low
γ) and large shape relaxation rates (large κ) and circu-
lar motion at large γ and small κ. We can identify this
transition line by a linear stability analysis around the
steady-state of a cell crawling in a straight line, neglect-
ing noise (Appendix D). We find two transition lines γ1
and γ2,

γ1 =
κ2

ab
+

(︃
1

2µ
+
χ+ τ−1

ab

)︃
κ+

χ+ τ−1

2µ
, (5)

γ2 =
χτ + 1

ab
κ2 +

χτ + 1

2µ
κ. (6)

Linear motion is stable to perturbations if γ <
min(γ1, γ2). Once γ > γ1 or γ2, then linear motion is
unstable. We mark the region of the phase diagram Fig.
3A where linear motion is stable as “Persistent Motion
Stable.”

The phase diagram is plotted with respect to the “wild-
type” parameters, the default fitted values for our model
parameters. We found these parameters from fitting our
model to data from [20] showing cells’ response to a field
being turned on (Appendix B and Fig. 4).

In Fig. 3A, we highlight three points on the phase di-
agram and show example trajectories. The curve in Fig.
3A is simply γ2, because γ2 < γ1 in the region of param-
eter space presented. Unlike the phase diagram, which
was constructed without noise, the example trajectories
have noise. In the presence of noise, the orientation of
the cell changes even in the linear motion phase, and the
cell undergoes a persistent random walk due to its ori-
entational fluctuations. Thus, we define linear motion as
characterized by perfectly straight cell migration with-
out noise. Meanwhile, persistent motion is the analog of
linear notion in the presence of noise, characterized by
a persistent random walk with no loops, turns, or oscil-
lations. We see in Fig. 3A that our wild-type values,
represented by point i, are slightly above the transition
line, where linear/persistent motion is unstable; meaning

that the cell would exhibit circular motion/noisy trajec-
tory with loops, turns, and oscillations. At the wild-type
parameters, we see cell trajectories that resemble “knots
on a string” [18], where the cell goes through episodes
of circular movement (Fig. 3i, Movie S1). The wild-
type values being right above the transition line is due
to an assumption in our fitting process: because both
circular and persistent motion are observed in normal
keratocytes, reasonable parameters must be close to the
transition (Appendix B).
As we move away from the transition line and increase

cell speed by increasing γ (Fig. 3ii, Movie S2), we see
that the cell travels perpetually in a circle, slightly per-
turbed by noise. Circular crawling is seen in keratocytes
in [18], though our model can produce trajectories – like
Fig. 3ii – with tighter loops than biologically observed.
If we move across the transition by increasing cell shape
relaxation rate κ (Fig. 3iii, Movie S3), we see that per-
sistent migratory motion is stabilized again. While the
boundary derived from Eqs. 5 and 6 is determined with-
out added noise, it nonetheless captures a key transition
in the model between persistent and circular migration.
How do the phenotypes seen in Fig. 3A relate to the

cell’s ability to explore space? We plot the mean squared
displacement over time in Fig. S2 for the parameter sets
in Fig. 3Ai, ii and iii. We see transition between persis-
tent and diffusive motion over one hour for wild-type i,
oscillations for ii, and highly persistent motion for iii.

Field stabilizes cell response

Fig. 3A shows cell behaviors in the absence of a field.
Fig. 3B shows how these phases can change in the pres-
ence of a field. In our simulations, we noticed that un-
stable linear motion can be stabilized with a field (Movie
S4), depending on where we are in parameter space. We
extended our linear stability analysis to the case with a
field present with no noise (Appendix D). The linear sta-
bility curves are shown in the lines in Fig. 3B, where
the solid line demarcates the transition between unsta-
ble linear motion and stable linear motion in the absence
of an electric field, and the dotted line demarcates the
transition in the presence of an electric field. However,
even if the straight trajectory is linearly unstable, the cell
may still be able to follow the field. The linear stability
analysis shows whether the linear trajectory following the
field is stable to small perturbations – and at the wild-
type parameters, it is not. Fig. 3iv shows an example of
a trajectory from the phase diagram using our wild-type
parameters (this trajectory, like all our plotted example
trajectories, includes the stochastic noise terms). In Fig.
3iv, the field is on, but persistent motion is unstable.
This is apparent by the presence of loops, turns, and os-
cillations. It is crucial to note that cells in the regime of
globally unstable linear motion, such as Fig. 3iv, clearly
can still follow a field. However, once we move across the
solid transition line by increasing the rate χ that v aligns
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FIG. 3: (A): Linear stability phase diagram in γ − κ plane in the absence of electric field. Example trajectories for points i-iii are
shown. (i): shows a 2.5-hour trajectory at the “wild-type” (WT) values, (γ = γwt, κ = κwt). (ii): 1-hour trajectory when cell speed is
increased, resulting in persistent circular motion, (γ = 1.5γwt, κ = κwt). (iii): 1.5-hour trajectory with increased shape relaxation rate κ
shows persistent random walk, (γ = 1.5γwt, κ = 2κwt). (B): Linear stability phase diagram in τb − χ plane. Transition lines in presence
of field (solid line) and absence (dotted line) are shown, and examples iv-vi are shown with field. (iv): 1.5-hour WT trajectory following
a field in +x̂-direction. In this region of the plot, persistent motion is unstable, but the cell oscillates side to side while traveling in the
field direction. (v): 1.5-hour trajectory following an field pointing in +x̂-direction. In this region of the plot, persistent motion is
stabilized in the presence of a field and there are no oscillations, (τb = τb,wt, χ = 8χwt). (vi): 1.5-hour trajectory following an field
pointing in +x̂-direction, (τb = τb,wt, χ = 50χwt).

with p̂, linear motion is unstable only in the absence of
a field, meaning that a cell would migrate persistently
without oscillations when a field is present. We then see
the oscillations around the field direction disappear in
Fig. 3v. Once we cross the dotted transition line by in-
creasing the rate of v − p̂ alignment further, Fig. 3vi
shows us a cell following the field even more persistently.
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FIG. 4: Cell response to a field being turned on. Here, ϕ is the
angle of the cell’s velocity with respect to the field direction, and
the field is turned on at 15 minutes. In blue is experimental data
of the average response of 140 cells, extracted from [20]. In red is
our simulation data which we fit to experiment to calibrate our
parameters, averaging over 1000 cells. Error bars are ±1 standard
deviation of the average, computed by bootstrapping (Appendix
B).

Simulations recapitulate experimental response to
field

To validate our model parameters and determine their
wild-type values, we fit our simulations to data from
Allen et al. (2013) [20]. This data, shown in blue dots
in Fig. 4, shows the experimental data of the average
response of 140 cells responding to a field being switched
on after 15 minutes of no exposure. We simulated 1000
cells freely traveling, responding to a field pointing in
the +x̂-direction that is switched on after 15 minutes. In
Fig. 4, we plot the average response of those 1000 cells
as directedness vs. time in minutes. The directedness is
defined by ⟨cosϕ⟩, where ϕ is the angle of the cell veloc-
ity relative to the field. For the first 15 minutes when no
field is present, we observe cells on average to go in all
directions, so ⟨cosϕ⟩ ≈ 0. Once the field turns on, the
cells in the experiment respond to the field and follow it
to varying levels of precision. In the figure, we see the di-
rectedness leveling off at ⟨cosϕ⟩ ≈ 0.6. This reflects both
orientational noise and cell trajectories that often oscil-
late around the field direction (Fig. 3iv). Details of the
fit, including how we tuned our parameters are discussed
in Appendix B.

Our model captures the experimentally observed re-
sponse to a field being switched on reasonably well. What
parameters influence this response and to what degree?
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FIG. 5: Response to a field being turned on at 15 minutes, as in Fig. 4, with parameters varied from fit wild-type parameters. (A):
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(E): field alignment time τb. Each curve is the average response of 500 cells. Error bars are not shown in order to preserve clarity, but
curve-to-curve variability is limited (see dotted red wild-type curve from panel to panel).

Cell speed, shape, and ability to align with field
control cell response to field activation

In Fig. 5 we use the cell directedness ⟨cosϕ⟩ in re-
sponse to a field being turned on for various parameter
values. Fig. 5 demonstrates how cell responses to an
electric field would change if we looked at cells with dif-
ferent speeds, shape relaxation rates, rates of alignment
to the field, etc. We vary parameters values relative to
the wild-type model fit parameters (Table I). We see that
cells with lower speeds, γ < γwt, have a more reliable re-
sponse – their value of ⟨cosϕ⟩ saturates to a value of

∼ 0.9, compared to ∼ 0.6 for the wild-type cells (Fig.
5A). However, this may come at a cost: for a slow enough
cell, γ = 0.25γwt, the response to a field turned on at 15
minutes takes over 45 minutes to reach its steady-state
level. This behavior is closely linked to where the cell’s
parameters are in the phase diagram (Fig. 3). For speeds
much above the wild-type speed, e.g. γ = 1.5γwt, cells
undergo a mostly circular trajectory and there is no net
directedness (though there can be drift perpendicular to
the field; see discussion of Fig. 6). Based on our linear
stability results, we would expect that increasing the rate
of shape relaxation κ would make linear, persistent mo-
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tion more stable, allowing for a more directed response.
This is what we find (Fig. 5B): increasing κ leads to a
more directed response (saturation value of ⟨cosϕ⟩ near-
ing 1). Similarly to our results for cell speed, increasing
shape relaxation rate κ can both increase the accuracy
and slow the response time (see κ = 10κwt curve).

In our model, the electric field reorients cell polarity p̂
– but for the cell’s actual motility to reflect this change
in polarity, the coupling between polarity and velocity is
essential. The rate of this coupling is χ. We see that
if we decrease χ below the wild-type value, the response
to signal becomes systematically less directed (Fig. 5C).
However, increasing χ can simultaneously increase ac-
curacy and the response time of cells – increasing χ to
10χwt results in a cell that reaches near-perfect alignment
with the field in under five minutes. This suggests that,
with our fit parameters, bringing the velocity in align-
ment with the polarity can be the slowest element of cell
reorientation. This is consistent with the small value of
the time scale τb: polarity aligns with the field in much
less than a minute.

We have also modeled an alignment of cell polarity
back to cell velocity (“self-alignment” [56, 57, 60, 67]),
which occurs with timescale τ . Self-alignment appears to
not be essential to cell response. Increasing τ (reducing
the influence of self-alignment) even by orders of magni-
tude does not have a large effect on directionality (Fig.
5D). By contrast, if τ is decreased to the order of τb,
e.g. at τ = 0.1τwt, the cell’s polarity must compromise
between the field direction and the current velocity, and
the cell responds more slowly and has a low directedness
saturation level.

Our model has the cell polarity align to the field over
a timescale τb, subject to stochastic noise. Increasing τb
should then reduce the influence of the electric field. By
increasing τb sufficiently (τb = 50τb,wt) we can nullify
cell response to the field entirely (Fig. 5E). Because τb
controls cell repolarization to the field, we would naively
expect decreasing τb below the wild-type to make the cell
response to field turn-on faster. However, instead we see
little effect of setting τb = 0.1τb,wt, suggesting that the
reorientation of polarity to the field is not rate-limiting –
sensible as τb,wt ≈ 1.4 seconds, far less than the timescale
for cell reorientation. The relative unimportance of τb is
consistent with the importance of χ: solely increasing χ
can make cells respond in < 5 minutes.

Cell response to switching fields includes averaging,
tracking, and more complex behaviors

Our results in Fig. 4 and 5 show how a cell responds to
a field that is switched on and kept in a fixed direction.
Fig. 6 illustrates the results we see when we observe
how a cell responds to a field being continually switched
between the +x̂- and +ŷ-directions. This is motivated
by the experiments of Zajdel et al. [34], who probed
collective cell migratory response to a rapidly switching

electric field (Fig. 6A). They discovered that on short
time scales (20 seconds) the group of cells time average
the varying field and follow the composite direction. For
example, if a field switches from +x̂ and +ŷ, cells travel
in a 45 degree angle. However, on longer times, cells
follow the field direction reliably.

When single cells respond to time-varying fields, do
they track it closely (Fig. 6C, Movie S5) or average the
field (Fig. 6D, Movie S6)? The experimental results of
[34] and our results of Fig. 5 suggest that when a field
is switched on, there is a delay in response, which affects
how well a cell would track or average a field. We know
some of the parameters that control this response delay.
To what degree do these parameters control responses to
a changing field? On what time scale is a switching field
considered “rapid”?

In Fig. 6, we show how cells respond to a switching
electric field. During each simulation, we vary the di-
rection of the field from +x̂ to +ŷ every tET minutes
– the “exposure time” (Fig. 6A). tET is held constant
throughout a single simulation. We show results for how
the cell behavior varies with exposure time, varying ex-
posure time over 60 values from tET = 2.5 minutes to
2.5 hours. We show in Fig. 6B the cell’s response to a
switching field as a function of exposure time by showing
the probability density of the cell velocity’s angle ϕcell.
We plot this angle relative to the reference angle of 45o,
ϕr = π/4, which the cell would take if the cell averaged
the signal perfectly (we compute the angles of the ve-
locity averaged over the exposure time; see Appendix F).
We anticipated that a cell would take the average of a dy-
namically changing field at short exposure times, when
the cell could not adequately respond in the timescale
of the changing field. In this case, the cell should travel
along ϕr = π/4. However, when the exposure time is
much longer than the cellular response time (typically on
the order of 10 minutes), we would expect that the cell
tracks the changing field direction, producing a staircase-
like trajectory. Fig. 6B shows heat maps to illustrate this
result. Here, ∆ϕ = ϕcell − ϕr. A cell traveling along the
diagonal ϕr = π/4 would produce a heat plot with den-
sity centered at ∆ϕ = 0. We highlight this point with a
solid red line. However, as the exposure time increases,
we would expect to see two distinct bands at ∆ϕ = ±π/4
(dashed red lines), a sign that ϕcell = {0, π/2}, indicating
that the cell is traveling in a staircase pattern (Fig. 6C).
This characteristic shape is seen most clearly in Fig. 6B
when κ = 10κwt. This is consistent with the response to
a field turning on at κ = 10κwt seen in Fig. 5B, where
we see a very high level of cell directedness, but a slow
response. Hence, we expect cells would not be able to fol-
low a field with a short switching time, but would track
reliably at long exposure times, forming solid bands at
±π/4. However, this branching response is not as evi-
dent in the other parameters shown in Fig. 6B. The heat
map for χ = 10χwt is similar, but shows two clear bands
at nearly all exposure times except the shortest ones –
there is no averaging unless the field is switched less than
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FIG. 6: (A): Schematic of simulation. We vary the electric field direction from +x̂ to +ŷ every tET and track the cell trajectory. Will
the cell follow the field closely (dotted red arrows) or average the field directions (solid red arrow)? (B): Probability density plots. These
are histogram heatmaps indicating the probability of a cell averaging and pointing in the composite direction of the two field directions
(+x̂ and +ŷ) versus pointing in the field directions directly. Simulations are done for 100 simulation hours. The red lines correlate with
the red arrows in (A). Center solid red line corresponds to a cell traveling on average around the average field direction. Dotted red lines
corresponds to a cell following the field direction precisely. (C): 10-hour wild-type trajectory with slow switching time (2.5 hours). (D):
3-hour wild-type trajectory with fast switching time (5 minutes). (E): 4-hour trajectory with high γ value where cell rotates faster than
our averaging sample time.

every 5 minutes. Again, this is consistent with Fig. 5C,
where high values of χ have a response time of < 5 min-
utes and a highly directed response. γ = 0.25γwt has a
heatmap with a forking pattern, but the noise blurs the
bands since the cell does not follow and respond to the
field as strongly, consistent with Fig. 5A.

The middle panels of Fig. 6B all show heatmaps at the
wild-type parameter values, however, like γ = γwt0.25,
the heatmaps look blurred at short exposure times,
though there are clear peaks at ±π/4 at longer expo-
sure times. The behavior at short exposure time shows a
broad distribution of angles ∆ϕ, but with a peak at zero,
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indicating that the cell is most commonly going in the
expected direction ϕr. Fig. 6C and D show representa-
tive examples of trajectories at the wild-type parameters
when the field is switched at 2.5 hours and 5 minutes,
respectively (see also Movies S5 and S6).

Even with a field on, we observe some parameter val-
ues where cells move in circles, which leads to strange
results in the corresponding heatmaps in Fig. 6B. For
γ = 5γwt and κ = 0.25κwt, we do not see a branching
pattern nor do we see peaks at ∆ϕ = ±π/4, as the cell is
rotating – which can be seen in Fig. 5A and B as oscilla-
tions in the directionality. This rapid rotation does follow
a sort of staircase pattern (Fig. 6E, Movie S7) – but does
not result in a net movement in the direction of the fields.
In this regime, the rotating cell body moves perpendicu-
lar to the field direction. Depending on the direction of
the cell’s rotation (clockwise or counter-clockwise), the
cell will then move in different directions in the field. In
this example where the cell rotates counterclockwise, the
cell’s center of mass drifts in the +ŷ-direction when the
field points in the x̂-direction, and the cell drifts in the
−x̂-direction when the field points in +ŷ. When the cell
rotates clockwise, the drifts will be in the opposite direc-
tion. This rotational motion explains the patchy struc-
ture of the heat maps of γ = 5γwt and κ = 0.25κwt: they
are constructed from one long simulation, where the cell
spontaneously breaks symmetry from its initial condi-
tions, ending up rotating clockwise or counter-clockwise,
setting its direction of net drift. Therefore, we see either
a large density at ∆ϕ > 0 or ∆ϕ < 0, which changes from
one exposure time to another. We see from this that the
influence of our stochastic noise is attenuated at these
extreme parameter values, as the cell’s initial symmetry
breaking persists over the length of the trajectory. We
emphasize that the behavior seen in Fig. 6E and Movie
S7 is an extreme edge case of our model that has yet to
be experimentally validated as there is no experimental
evidence of cell drift depending on rotation in galvano-
taxis.

For the parameter set χ = 0.25χwt, cells are much less
effective at following the field (Fig. 5C), and we do not
see a strong directed response in the heat maps. This is
also in the regime where cells are experiencing episodes of
rotation, albeit not always in a perfectly circular pattern
(Movie S8). However, the heat map is not as patchy as
the heat maps for γ = 5γwt and κ = 0.25κwt. Instead
of seeing larger densities at ∆ϕ > 0 or ∆ϕ < 0, we see
a more uniform distribution with slight densities near
∆ϕ = π/4 or ∆ϕ = −π/4 at longer exposure times. This
is due to the slower rotation and less directed motion in
this regime. Hence, this regime has a greater sensitivity
to noise. We are plotting the direction averaged over
the exposure time. For γ = 5γwt, κ = 0.25κwt, cells
often are able to perform several circular motions per
averaging period – so the average angle picks up on the
net drift. Slower rotations, as in χ = 0.25χwt, lead to
less directed velocities. Therefore, we don’t see analogous
patchy bands in the χ = 0.25χwt case.

IV. DISCUSSION

Our model recapitulates several qualitative migration
behaviors observed in single keratocyte cells in or out of
a field, including straight linear motion, persistent turn-
ing, turning while following a field (Fig. 3iv), and more
complex “knots on a string” dynamics (Fig. 3i). These
behaviors occur at slightly different parameter points in
our model, but they can be created from relatively small
changes in parameters – so we expect keratocytes, which
have a broad distribution of different properties includ-
ing speed and aspect ratio, would naturally exhibit all of
the phases shown in Fig. 3. This results from our ini-
tial assumption that wild-type model parameters had to
be near the transition calculated from the linear stability
analysis.

Our model can make predictions beyond mimicking the
aforementioned behaviors. In Figs. 4 and 5, our cell di-
rectionality responses to a field being turned on show an
increase in directionality, but also subsequent “ringing”
akin to a damped harmonic oscillator. There is a notice-
able bump in Fig. 4 at ∼ 22 minutes which stems from
cells overcorrecting when responding to an electric field
(Movie S9). A similar overcorrection is seen experimen-
tally in single keratocyte trajectories (e.g. Fig. 3E of
[18]), though it is not as immediately obvious in the av-
eraged experimental data in Fig. 4, perhaps due to aver-
aging of many cells with varying frequencies. Unsurpris-
ingly, the degree of overcorrection increases for cells that
initially face away from an electric field when it is turned
on (Fig. S3) [20]. Earlier modeling of keratinocytes as a
proportional controller leads solely to overdamped, non-
oscillatory responses [68]. In our model, the presence of
the ringing depends on the nearness to the circular mo-
tion transition line. We would then think of parameters
like 1/γ and κ as analogous to friction coefficients in a
damped harmonic oscillator, where smaller cell speeds
(large 1/γ) and greater shape relaxation rates (large κ)
attenuate oscillations. Other parameters like χ and τ
may also play a role.

We have only studied cells in the presence or absence
of a field, and have not systematically varied the strength
of the field, which is not explicitly invoked in our model.
Within our model, the role of the field is only to re-
orient the cell polarity. It is also possible that electric
fields could have effects on single cells beyond repolar-
ization, such as an increase in cell speed (electrokinesis).
There is some evidence that stronger electric fields in-
creases cell speed for neural progenitor cells and 3T3 fi-
broblasts [69, 70]. Stronger fields have also been observed
to increase directedness and decrease response times of
keratocytes [14, 15, 20]. However, these results may be
difficult to interpret. While Allen et al. [20] did observe
a positive correlation between keratocyte speed and field
strength – they also noted that the increase in voltage led
to an increase in temperature, which separately increases
cell speed [71]. This makes it difficult to discern if elec-
tric fields can increase cell speed alone. Possibilities for
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the effects of electric fields on single cells including elec-
trokinesis have been systematically studied by Prescott
et al., in experiments on human corneal epithelial cells,
who found that the only consistent model was one where
cells preferentially polarize in the direction of the field
[72], supporting our broad assumptions about the polar-
ity. We should note that if cell speeds changed as a func-
tion of field strength (i.e. making γ a function of |E|),
this could lead to dramatic changes in single-cell response
(Fig. 5A). We argue that the most natural interpretation
of our model to study field strength systematically is to
assume that the rate at which the polarity aligns with
the field, τ−1

b , could increase as the field increases. For
our fit parameters, we predict relatively small changes
from making the time τb smaller (Fig. 5E) – suggesting
that increasing field strength beyond 1 V/cm (the field
used in the experimental data shown in Fig. 4) would
not directly increase taxis, but that dropping the field
could lead to impaired directionality.

In principle, the time τb should reflect the time the
cell takes to develop an underlying biochemical polarity
in response to an electric field, e.g. by charged proteins
on the membrane’s surface electromigrating. However,
the timescale of electromigration is much slower than
the ∼ 1.4 second value we find for τb [20, 62]. This
could mean that we should think of the polarity p̂ as
indicating a faster-responding cue than simple electromi-
gration. However, an alternate possibility is that in our
fitting, since the experimental data only measures cell
velocity, the fit cannot distinguish between changes of
polarity p̂ in response to the field and direct changes of
the direction of v in response to the field – i.e. the slow
electromigration response may largely be reflected in the
value of 1/χ ≈ 14 minutes, rather than τb.

The coupling between cell motion and cell shape is a
core element of our model, which drives persistent cir-
cular motion and oscillation. This coupling could arise
through the dynamics of Rho GTPases within the cell
[17, 47], and similar effects can be generated through
actomyosin instabilities [22]. How can experimental in-
terventions be interpreted in our minimal model without
these elements? κ is a suitable parameter for this inter-
pretation. κ is the rate of cell shape relaxation from an
ellipse to a circle. Our model trajectories reveal that a
cell with a slower rate of shape relaxation (transition-
ing from large κ to κwt) can hold an elongated shape for
longer periods of time. Slower shape relaxation allows the
cell to respond to cues and perturbations more quickly;
however, it tends to sacrifice accuracy in following these
cues and perturbations (Fig. 5). We find that more elon-
gated cells with small values of κ turn more quickly (Fig.
5). However, when κ≪ κwt, cells begin to oscillate. Lee
et al. observed that cells with myosin activity inhibited
by blebbistatin (low contractility) were less likely to os-
cillate [16], developing a model in which unequal amounts
of adhesion on the left and right sides of the cell driven
by myosin contractility destabilize linear motion, caus-
ing the cell to oscillate. It would be natural to assume

that our shape relaxation rate κ would increase with con-
tractility. This leads to a contradiction with [16], as we
see oscillation at low κ, not high contractility. However,
blebbistatin has other effects on cell motility, including
changing cell speed [73]. In our model, reduction in cell
speed stabilizes linear motion (Fig. 3). Thus, the bleb-
bistatin treatments in [16] may not be straightforward to
predict.

Zajdel et al. [34] studied how collections of MDCK
kidney epithelial cell line and primary, neonatal mouse
skin keratinocytes respond to a rapidly changing field.
They saw that at exposure times of 10 seconds, a group
of cells would average the field and follow the composite
direction, but would follow a staircase pattern for longer
exposure times of 1.5 hours. Our results are broadly in
agreement with Zajdel et al. in the regime where per-
sistent motion is stable. κ = 10κwt is a very clear ex-
ample. The “wishbone” pattern clearly shows that at
small time scales, we see the cell averaging and taking
the composite field, but at large time scales, we see a cell
follow a staircase pattern. The branching point of the
wishbone is determined by the cell response time, which
is determined by the transition region in the directed-
ness vs. time plots (Fig. 5), the region where the graph
has a sharp incline before saturating at steady value of
⟨cosϕ⟩. Other heat maps show similar behavior, but the
level of noise masks the effects. For example, in the wild-
type, the density at short time scales is centered at zero,
but has a wide spread. Understanding to what extent
these single-cell response curves influence the ability of
cell groups to turn around is a future direction.

One striking prediction of our model is that, in ex-
treme parameter ranges where cells undergo rapid rota-
tion, they will travel perpendicularly to the field, with a
directionality that depends on the cell’s direction of ro-
tation (Fig. 6E). In principle, this suggests it could be
possible in vitro to use an electric field to separate cells
that rotate clockwise versus counterclockwise. While we
only see this behavior at extreme parameter values that
do not map to experimentally validated conditions and
where stochasticity becomes less important, our results
show that this is possible, highlighting that this behav-
ior is allowed by the symmetry of the system, when the
clockwise/counter-clockwise rotation breaks the symme-
try between ±ŷ with the field in the x̂-direction. This
drift of single cells is similar to behavior observed in sim-
ulations of clusters of rotating cells following a chemical
gradient [74].
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Bruyère, Marine Luciano, Karine Glinel, Geoffrey Delhaye, et al. Substrate area confinement is a key determinant of cell
velocity in collective migration. Nature Physics, 15(8):858–866, 2019.

[42] Kinneret Keren, Zachary Pincus, Greg M Allen, Erin L Barnhart, Gerard Marriott, Alex Mogilner, and Julie A Theriot.
Mechanism of shape determination in motile cells. Nature, 453(7194):475–480, 2008.

[43] Carlos Jurado, John R Haserick, and Juliet Lee. Slipping or gripping? fluorescent speckle microscopy in fish keratocytes
reveals two different mechanisms for generating a retrograde flow of actin. Molecular Biology of the Cell, 16(2):507–518,
2005.

[44] Yuan Zhong and Baohua Ji. Impact of cell shape on cell migration behavior on elastic substrate. Biofabrication, 5(1):015011,
2013.

[45] Stephanie L Gupton and Clare M Waterman-Storer. Spatiotemporal feedback between actomyosin and focal-adhesion
systems optimizes rapid cell migration. Cell, 125(7):1361–1374, 2006.

[46] Lindsay B Case and Clare M Waterman. Integration of actin dynamics and cell adhesion by a three-dimensional,
mechanosensitive molecular clutch. Nature Cell Biology, 17(8):955–963, 2015.

[47] Amit R Singh, Travis Leadbetter, and Brian A Camley. Sensing the shape of a cell with reaction diffusion and energy
minimization. Proceedings of the National Academy of Sciences, 119(31):e2121302119, 2022.
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[58] András Szabó, R Ünnep, Eld Méhes, WO Twal, WS Argraves, Y Cao, and András Czirók. Collective cell motion in
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tic cell polarisation through wave-pinning. Bulletin of mathematical biology, 74(11):2570–2599, 2012.

[66] Calina Copos and Alex Mogilner. A hybrid stochastic–deterministic mechanochemical model of cell polarization. Molecular
Biology of the Cell, 31(15):1637–1649, 2020.

[67] Brian A Camley, Yunsong Zhang, Yanxiang Zhao, Bo Li, Eshel Ben-Jacob, Herbert Levine, and Wouter-Jan Rappel.
Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on
micropatterns. Proceedings of the National Academy of Sciences, 111(41):14770–14775, 2014.

[68] Hans Gruler and Richard Nuccitelli. The galvanotaxis response mechanism of keratinocytes can be modeled as a propor-
tional controller. Cell Biochemistry and Biophysics, 33(1):33–51, 2000.

[69] Xiaoting Meng, Miguel Arocena, Josef Penninger, Fred H Gage, Min Zhao, and Bing Song. PI3K mediated electrotaxis
of embryonic and adult neural progenitor cells in the presence of growth factors. Experimental Neurology, 227(1):210–217,
2011.

[70] Erik Finkelstein, Winston Chang, P-H Grace Chao, Dorota Gruber, Audrey Minden, Clark T Hung, and J Chloë Bulinski.
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Supplemental Information for “Self-propelled deformable particle model
for keratocyte galvanotaxis”

Appendix A: Interpreting shape-velocity coupling

In our equations of motion for the velocity, we have a term S⃗

⃗

·v, which is a matrix product, i.e. its αth component
is Sαβvβ .

We can write

S⃗

⃗

= s

⎛⎜⎜⎝cos2 θ − 1

2
cos θ sin θ

cos θ sin θ sin2 θ − 1

2

⎞⎟⎟⎠ =
s

2

(︄
cos 2θ sin 2θ

sin 2θ − cos 2θ

)︄
. (A1)

The eigenvectors of S⃗

⃗

are just the unit vectors parallel to the axis, n̂ = (cos θ, sin θ) and perpendicular to it, n̂⊥ =
(− sin θ, cos θ), with eigenvalues ±s/2, respectively. If we break up the velocity into the components perpendicular to
and parallel to the long axis, v = v∥n̂+ v⊥n̂⊥, then

S⃗

⃗

· v = S⃗

⃗

· (v∥n̂+ v⊥n̂⊥)

=
s

2
v∥n̂− s

2
v⊥n̂⊥.

Thus, revisiting Eq. 1, we see that −aS⃗

⃗

· v = −as(v∥n̂ − v⊥n̂⊥)/2. When a < 0, as is true everywhere in the main
paper, this term then makes the velocity component along the long axis n̂ increase while the component along the
short axis decreases – this term makes the velocity align more along the long axis of the cell.

Appendix B: Model calibration and fitting

Parameter Value Units Description Source
v0 10 µm min−1 characteristic keratocyte velocity [42, 43]
γ v20 µm2 min−2 propulsion term defined as v20
κ 1.3068 min−1 shape relaxation rate fit
χ 0.0720 min−1 rate of velocity aligning with polarity fit
τ 0.0617 min time scale of polarity aligning with velocity fit
τb 0.0238 min time scale of polarity aligning with bias fit
ω0 0.9758 min−1 characteristic frequency of keratocyte rotation,

defined as ω0 = µv20

fit constrained by [18]

σ 0.3372 µm min−1.5 velocity rotational noise fit
σp 0.7058 min−1.5 polarity displacement noise fit
a -0.1132 µm−1 min−1 controls rate of velocity responding to shape (a <

0 means velocity along cell’s long axis increases)
fit

b -0.5423 min µm−1 controls rate of shape responding to velocity (b <
0 means cell shape expands perpendicular to ve-
locity direction)

fit

∆t 0.001 min time step for simulations

TABLE I: Table of parameter values, description, and sources.

Where possible, we use well-known cell parameters for shape, size, and speed. We choose a characteristic speed
of v0 = 10 µm min−1 [42, 43], which fixes γ = v20 . We note that the actual speed of the cell will depend on other
parameters other than γ (see Appendix D); we have only set its rough order of magnitude by choosing v0.
To set the remainder of our parameters, we fit our model to the experimental results of Allen et al. [20], who

studied cell directionality in response to an electric field being turned on (shown in Fig. 4). We extracted this data
with WebPlotDigitizer [75]. The experiments show that if the cell’s velocity has an angle ϕ to the x-axis, the average
directionality ⟨cosϕ⟩ increases to a steady state value over a time of ∼ 5−10 minutes after the field is turned on (Fig.
4).
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The parameters that needed to be calculated were a, b, κ, ω0, χ, τ, τb, σ, and σp; we reparameterized µ = ω0/v
2
0 ,

where ω0 is the characteristic keratocyte rotational frequency [18]. To get our fit parameters, we picked from a broad
range of plausible values (See Appendix C) using Latin hypercube sampling, and then ran a simulation to match
the experiment by having no electric field when t < 15 min, then setting E = [1, 0] when t ≥ 15 min. To minimize
the influence of initial conditions, we simulate 2 hours of trajectory as equilibration time before the t = 0 point of
the trajectories shown in Fig. 4. We ran 1000 repeated simulations to construct the average directionality ⟨cosϕ⟩
over time. The same procedure of equilibration and averaging was conducted for the curves in Fig. 5, but with 500
simulations. Parameter sets that led to numerical instabilities were discarded; we found these largely corresponded
to cells oscillating unphysically fast. We then chose the parameters that created the best-fitting directionality curve,
according to our criterion (see Eq. B2 below).

We know that in order to observe both circular motion and persistent motion, as seen experimentally, we must have
our parameters close to the transition between circular and straight motion (see Section III). To ensure we are near
this transition point, and to reduce the number of fit parameters, we constrained the possible fit values for b and κ
using two pieces of information: 1) the rough experimental aspect ratio of keratocytes, and 2) the idea that the cells
must be near the transition between circular and persistent motion. The value of the shape deformation parameter s
emerges from the model; if the cell is at steady state in a straight line, it takes on the value

sss = − b

κ

µγ

β + µ
, where β =

ab

2κ
.

Note that a, b < 0. The values κ and b that would be found if the parameters were at the transition line and at steady
state are

κ1 = −as− (χ+ τ−1), κ2 =
−as
χτ + 1

,

bT = − 2sµκ

2γµ+ as
,

where s = sss is the value of s in the steady-state with the cell crawling straight (Appendix D). κ1 and κ2 are derived
from γ1 and γ2, respectively. bT is derived by rearranging sss, where γ = v20 (Appendices C and D). There are two
equations for κ. Choosing κ = κ1 sets the system to the transition line in the phase diagram if γ1 < γ2, and choosing
κ = κ2 sets the system to the transition line if γ2 < γ1. For all the plausible range of parameters shown in Table
II, γ2 < γ1 and so we always choose κ to be near κ2 (Table II). In setting κ and b, we assume sss = 12.5 µm, which
sets the aspect ratio of the keratocyte. We know experimentally that the roughly elliptical keratocyte cells of interest
that we were modeling had an radius of R0 = 14.5 µm for an equivalent circle of the same area. We then choose the
steady state value of s = sss = 12.5 µm, which ensures that the aspect ratio of the cell, (R0 + s/2)/(R0 − s/2) ≈ 2.5.
Our goal is to find the parameter set that minimized the error between simulations and experiment – but we suspect

from our simulations that many of the oscillations about the steady-state value in the experimental data of Fig. 4
are from the finite sample size of 140 cells. To avoid overfitting, we have chosen not to directly minimize the error
between simulation and experiment in ⟨cosϕ⟩ (Fig. 4). Instead, we want our model to correctly capture the response
time and steady-state directionality of the data. We fit both the simulated and experimental measurements of ⟨cosϕ⟩
to a hyperbolic tangent function:

⟨cosϕ⟩ = A tanh

(︃
t− ts
τr

)︃
+B. (B1)

using MATLAB’s nlinfit. As described above, the simulation curves of ⟨cosϕ⟩ were constructed from averaging
together 1000 simulations of the field being turned on. In this fit function, ts is the time of the inflection point
of tanh (·) i.e. the time where the derivative is maximal. τr is the scaling factor that determines how “wide” the
function is at the transition. Physically, τr sets the scale of the time the cell takes to respond to an electric field
being turned on. The other key parameter in the fitting form Eq. B1 is the long-time value of the directionality,
SS = limt→∞⟨cosϕ⟩ = A + B. We found the values τexpt and SSexpt from fitting the experimental curve to Eq.
B1. We then chose, among the range of parameters, the parameters that minimize the error ϵ in steady-state value
SS = A+B and response time τr between the experiment and theory:

ϵ =

(︃
τr − τexpt
τexpt

)︃2

+

(︃
SS − SSexpt

SSexpt

)︃2

. (B2)

The resulting wild-type parameters are shown in Table I.
The errors bars in Fig. 4 were calculated with the bootstrap method. 100 of the 1000 simulated cells were sampled

and the mean of their response was calculated. This process was repeated for 100 samples. The standard deviation
of the mean responses of the 100 samples were calculated and used as the error bars.



S3

Appendix C: Parameter range variation

We show in Table II the ranges of parameter values used to fit in our Latin hypercube process.

Parameter Range Comments
κ [0.9, 1.1]κ1,2 Linearly spaced
χ [0.01, 0.1] Logarithmically spaced
τ [0.01, 0.1] Logarithmically spaced
τb [0.01, 10]τ Logarithmically spaced

ω0 [0.9, 1.1]
π

3
rad This constraint is both from the rough timescale of ω0 ∼ 1 deg/s

[18] and earlier fits, which pointed at this being the plausible
range.

σ [0.01, 0.1]
√︁

v20ω0 Linearly spaced

σp [0.01, 0.1]
√︁

v20ω0 Linearly spaced
a -[0.1, 1] Logarithmically spaced; a is required to be negative so that the

velocity along the long axis of the cell increases, leading to the
turning instability (Appendix A).

b [0.9, 1.1]bT Linearly spaced; b is constrained to be near the value given by
the transition condition (Appendix B). b is also required to be
negative so that ab > 0, which is necessary for the instability to
occur [24].

TABLE II: Table showing range over which parameters were varied in the fit.

Appendix D: Linear stability analysis

We start by finding the stationary solutions of the deterministic portions of Eqs. 2-4, which are a first step to
finding linear stability but are also interesting in their own right. First, let us define v = v(cosϕ, sinϕ), where
v1 = v cosϕ and v2 = v sinϕ are the first and second components, respectively. Earlier, we defined n̂ = (cos θ, sin θ)
and p̂ = (cosϕp, sinϕp), meaning that n1, n2, p1, p2 can be defined the same way v1 and v2 were defined. Knowing the

components of n̂ allow us to list the components of S⃗

⃗

using Eq. 1. Second, it will serve us to rewrite the deterministic
portions of Eqs. 2 and 3 component-wise:

dvα
dt

= µ(γ − v2)vα − aSαβvβ − χ

v
(vαvβ − v2δαβ)pβ ,

dSαβ

dt
= −κSαβ + b

(︃
vαvβ − 1

2
v2δαβ

)︃
.

where we have implicitly assumed Einstein summation. After making the appropriate substitutions for the components
of v, p̂, and n̂, one can derive equations for the velocity magnitude, v, the angle of the velocity, ϕ, the shape
change s, and the angle of the major axis θ i.e. Eqs. D1-D4. To derive Eq. D1, one must calculate v̂ · ∂tv =
(cosϕ)∂tv1 + (sinϕ)∂tv2. To derive D2, one must calculate v̂⊥ · ∂tv = (− sinϕ)∂tv1 + (cosϕ)∂tv2. To derive Eqs.
D3 and D4, one must calculate (cos 2θ)∂tS11 + (sin 2θ)∂tS12 and (− sin 2θ)∂tS11 + (cos 2θ)∂tS12, respectively. These
calculations yield the following equations:

dv

dt
= µ(γ − v2)v − asv

2
cos 2(θ − ϕ), (D1)

dϕ

dt
= −as

2
sin 2(θ − ϕ)− χ sin (ϕ− ϕp), (D2)

ds

dt
= −κs+ v2b cos 2(θ − ϕ), (D3)

dθ

dt
= −v

2b

2s
sin 2(θ − ϕ). (D4)
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Following [24], assuming that we have a steady state with the cell moving in the +x̂-direction, i.e. ϕ = 0, and that
ab > 0, the steady state solutions for the velocity magnitude, v, and the shape deformation, s, can be calculated by
setting Eqs. D1-D4 equal to 0 and solving. When b < 0, the steady state occurs when θ = π/2 and

sss = − b

κ
v2ss, v2ss = µ

γ

β + µ
, where β =

ab

2κ
.

These results so far are identical to the results of Ohta and Ohkuma [24] except that we have introduced the scale
µ to help make the units of the problem more explicit. At the steady state, ϕ = ϕp, which removes the polarity’s
influence in Eq. D2; thus the polarity equation does not affect the steady-state values of s or θ.

Next, for linear stability analysis we can first consider the deterministic portion of Eq. 4 without the influence of
an electric field. In that case, Eq. 4 simplifies to

dϕp
dt

= −1

τ
arcsin (v̂ × p̂) =

ϕ− ϕp
τ

. (D5)

where we have assumed that |ϕ − ϕp| is small enough that arcsin(sin(ϕp − ϕ)) = ϕp − ϕ, which will be true in our
linear stability analysis below. Then, we can define two new variables, ψ = θ − ϕ and ϵ = ϕ − ϕp, constructing two
equations for our analysis from Eqs. D1-D5:

dϵ

dt
= −as

2
sin 2ψ − χ sin ϵ− ϵ

τ
≡ f(ϵ, ψ), (D6)

dψ

dt
= −1

2

(︃
−as+ bv2

s

)︃
sin 2ψ + χ sin ϵ ≡ g(ϵ, ψ). (D7)

Next, we have to linearize f and g with respect to ϵ and ψ to first order. We evaluate the derivatives of f and g
at ϵ∗ = 0 and ψ∗ = π/2 (i.e. at a steady state where velocity and polarity are pointed in the same direction, but the
long axis of the cell is perpendicular to this, appropriate since b < 0 for our model), giving us:

d

dt

(︃
ϵ
ψ

)︃
≈ A

(︃
ϵ
ψ

)︃
, (D8)

where the Jacobian matrix

A =

⎛⎜⎜⎝
∂f

∂ϵ

∂f

∂ψ

∂g

∂ϵ

∂g

∂ψ

⎞⎟⎟⎠ =

⎛⎜⎝−χ− τ−1 as

χ −as+ bv2

s

⎞⎟⎠ .

Here, s = sss and v = vss. For the solutions of our system of linearized equations to be stable, the eigenvalues of A
must both have negative real parts, which requires Tr(A) < 0 and det(A) > 0. We can derive Eqs. 5 and 6 by solving
for the γ values that set Tr(A) = 0 and det(A) = 0.
The linear stability results of our model in the absence of a field reduces to that of Ohta & Ohkuma [24] in the

limit where v is no longer aligned with p̂ (χ→ 0), but p̂ is perfectly aligned with v (τ−1 → ∞) . In this case γ1 → ∞

while γ2 → γc =
κ2

ab
+

κ

2µ
. As we noted above, µ = 1 is chosen implicitly in [24].

We also conducted linear stability analysis with the electric field present in the deterministic portion of Eq. 4,
which takes the form

dϕp
dt

=
ϕ− ϕp
τ

+
ϕE − ϕp
τb

=
ϕ− ϕp
τ

− ϕp
τb
. (D9)

ϕE = 0 since E = [1, 0]. To do stability analysis, we need three equations for ϵ, ψ, and ϕp, as now the angle between
the polarity and the electric field is important. f(ϵ, ψ, ϕp) gains an extra term, +ϕp/τb, while g(ϵ, ψ, ϕp) remains
unchanged and we define ∂tϕp ≡ h(ϵ, ψ, ϕp). The resulting Jacobian matrix is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂f

∂ϵ

∂f

∂ψ

∂f

∂ϕp
∂g

∂ϵ

∂g

∂ψ

∂g

∂ϕp
∂h

∂ϵ

∂h

∂ψ

∂h

∂ϕp

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
−χ− τ−1 as τ−1

b

χ −as+ bv2

s
0

τ−1 0 −τ−1
b

⎞⎟⎟⎟⎟⎠ . (D10)



S5

where the derivatives are evaluated at the appropriate steady-state values of ϵ, ψ, and ϕp.
For the solutions to be stable, all three eigenvalues of A must have a negative real part. The analytical form for

these conditions are cumbersome; we show stability diagrams determined by numerically finding the eigenvalues of A
in Fig. 3B.

Appendix E: Phase diagram for cells that move along their long axis

0 0.5 1 1.5 2

/
wt

0

0.5

1

1.5

2

2.5

/
w

t

i

ii iii

Persistent Motion Stable

Persistent Motion Unstable

Field Stable

Stable

Unstable

iv v vi

10
-1

10
0

10
1

10
2

/
wt

10
-1

10
0

10
1

10
2

b
/

b
,w

t

A i ii iii

-35 -30 -25 -20 -15 -10 -5

X ( m)

-15

-10

-5

0

5

10

15

20

100 200 300 400 500 600 700

X ( m)

-700

-600

-500

-400

-300

-200

-100

50 100 150

X ( m)

-50

0

50

100

Y
 (

m
)

FIG. S1: (A): Linear stability phase diagram in γ − κ plane in the absence of electric field for a, b > 0. a and b have the same values as
Table I, but with signs flipped. Example trajectories for points i-iii are shown. (i): shows a 2.5-hour trajectory at the “wild-type” (WT)
values, (γ = γwt, κ = κwt). (ii): 1-hour trajectory when cell speed is increased slightly, resulting in persistent circular motion,
(γ = 1.5γwt, κ = κwt). (iii): 1.5-hour trajectory with greatly increased shape relaxation rate κ shows persistent random walk,
(γ = 1.5γwt, κ = 2κwt).

Throughout this manuscript, we have fixed a, b < 0 to best emulate keratocyte behavior, which includes both
persistent motion with the cell velocity perpendicular to the long axis and circular motion. If we fix a, b > 0, this
might be more appropriate for other eukaryotic cell types such as Dictyostelium discoideum and Paramecium which
undergo galvanotaxis parallel to their long axis [76–79]. When a > 0, velocities along the cell’s major axis will
decrease, and velocities along the cell’s minor axis will increase, leading the velocity to align to ±n̂⊥ (Appendix
A). When b > 0, cells contract their shape perpendicular to the direction of the velocity and expand parallel to the
velocity.

Additional stability analysis reveals the regime our model is effective for emulating other cell behavior. Starting
with Eqs. 2-4, the steady state of a cell moving in the +x̂-direction occurs when θ = 0, giving us v2ss = µγ/(β + µ)
and sss = +bv2ss/κ. We can follow a similar procedure and define ψ = θ − ϕ and ϵ = ϕ− ϕp and rewrite Eqs. 2-4 as
Eqs. D6 and D7. Evaluating the derivatives at ϵ∗ = 0 and ψ∗ = 0 produces the Jacobian matrix

A =

⎛⎜⎝−χ− τ−1 −as

χ as− bv2

s

⎞⎟⎠ .

Linear stability analysis of this Jacobian reveals two new transition lines:

γ3 =
κ2

ab
+

(︃
1

2µ
− χ+ τ−1

ab

)︃
κ− χ+ τ−1

2µ
, (E1)

γ4 =
1− χτ

ab
κ2 +

1− χτ

2µ
κ. (E2)

Unlike in the main text, stability occurs when γ3 < γ < γ4. This requirement simplifies to γ < γ4 since γ > 0 and
γ3 is always negative for the range of parameters investigated here (for example, κ ≫ 1000κwt is necessary to have
γ3 > 0). The linear stability results for a, b > 0 also reduces to [24] when µ = 1 in the limit where v is no longer aligned

with p̂ (χ→ 0), but p̂ is perfectly aligned with v (τ−1 → ∞) . In this case γ3 → −∞ while γ4 → γc =
κ2

ab
+

κ

2µ
.

We observe the same type of behaviors above and below the transition line (Fig. S1) like we see in Fig. 3 of the main
text. Note that the phase diagram of Fig. S1 looks indistinguishable from the phase diagram in Fig. 3A, even though
γ2 ̸= γ4, for two reasons: first, the product ab remains the same since a and b have the same absolute value but opposite
signs from Table I; second, the coefficients for κ2 and κ are virtually identical, since χτ ≈ 0.0044 → 1± χτ ≈ 1.
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Appendix F: Probability density plots

In Fig. 6, we showed the effect of a rapidly switching fields in terms of the probability density of angles of the cell
velocity. In these simulations, the field was switched between the +x̂- and +ŷ-directions with “exposure times” tET

ranging from every 2.5 minutes to 2.5 hours. The simulation was run for a total of tmax = 100 hours. To measure
the cell response, we calculated the angle between the average cell velocity in a given time window and the reference
angle ϕr = π/4, which is the average direction of the changing field.
Algorithm:

1. Simulate the cell and find v(t) for a time tET, keeping the field constant.
2. Compute the average velocity over this time, v̄
3. Find the angle between v̄ and ϕr and store: ∆ϕ = ϕcell − ϕr, where ϕcell = arctan (v̄2/v̄1)
4. Switch the field direction and then repeat steps 1-3 until total time tmax.
5. Plot probability density of angles.

Appendix G: Supplementary figures and movie captions
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FIG. S2: Mean squared displacement for cases i, i, and iii of Fig. 3. Each MSD is computed from a a single long trajectory of total
length of 200 simulation hours.
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FIG. S3: Cell response to field depending on whether the cell was at t = 15 minutes facing away (black) or facing towards (blue) the
field direction, juxtaposed with the overall average from Fig. 4 (red). These are all constructed from the same set of 1000 cells simulated
in Fig. 4, but averaged only over the relevant trajectories.

In all movies, the magnitude |v| shows the magnitude of the velocity in units of µm/min. The red arrow in the left
panel shows the presence and direction of an electric field. Parameters not stated explicitly are given by the default
values in Table I.

Movie S1: Trajectory of wild-type cell without any field.
Movie S2: Trajectory of cell at 1.5γwt without any field.
Movie S3: Trajectory of cell at 1.5γwt and 2κwt without any field.
Movie S4: Trajectory of cell at 8χwt with no noise. Field turns on after first 120 minutes.
Movie S5: Trajectory of wild-type cell with slowly switching electric field (tET = 2.5 hours).
Movie S6: Trajectory of wild-type cell with rapidly switching electric field (tET = 5 minutes).
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Movie S7: Trajectory of cell at 5γwt with switching electric field (tET = 80 minutes). Cells rotate while showing
drift perpendicular to field direction.
Movie S8: Trajectory of cell at 0.25χwt with switching electric field (tET = 80 minutes). At these parameters, the
polarity follows the field reliably but the cell direction does not.
Movie S9: Trajectory of wild-type cell showing an “oversteering” response when the field turns on. Field turns on
after first 120 minutes.
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