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ARTICLE INFO ABSTRACT

Dataset link: https://openkim.org/ We present a systematic methodology, built within the Open Knowledgebase of Interatomic Models (OpenKIM)
framework (https://openkim.org), for quantifying properties of grain boundaries (GBs) for arbitrary interatomic
potentials (IPs), GB character, and lattice structure and species. The framework currently generates results for
symmetric tilt GBs in cubic materials, but can be readily extended to other types of boundaries. In this paper,
GB energy data are presented that were generated automatically for Al, Ni, Cu, Fe, and Mo with 225 IPs; the
system is installed on openkim.org and will continue to generate results for all new IPs uploaded to OpenKIM.
The results from the atomistic calculations are compared to the lattice matching model, which is a semi-analytic
geometric model for approximating GB energy. It is determined that the energy predicted by all IPs (that are
stable for the given boundary type) correlate closely with the energy from the model, up to a multiplicative
factor. It thus is concluded that the qualitative form of the GB energy versus tilt angle is dominated more
by geometry than the choice of IP, but that the IP can strongly affect the energy level. The spread in GB
energy predictions across the ensemble of IPs in OpenKIM provides a measure of uncertainty for GB energy
predictions by classical IPs.
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1. Introduction boundaries have been a subject of study for many decades. The seminal
analysis of GB energy as a function of misorientation was by Read [9],

As exploration of the behavior of materials progresses towards ever resulting in the well-known Read-Shockley equation. This was followed
smaller scales, the influence of grain boundaries (GBs) on their me- by insights from other investigators, such as the Frank-Bilby equa-
chanical properties has become increasingly relevant. In particular, the tion [10] and the O-Lattice model [111, all of which are restricted
phenomenon of GB anisotropy, the dependence of GB excess energy [1] to GBs that are interpretable as arrays of geometrically necessary
on the relative crystallographic orientation of the two adjacent grains, dislocations. For the general case, many attempts have been made to

has been identified as a non-trivial effect in processes such as plastic-
ity [2], twinning and phase transformation [3], and solidification [4].
However, while the orientation relationship between the grains (em-
bodied in the coincident site lattice and X value of the boundary) was
originally thought to be predominant in determining the energy of a
GB [5], it has become clear that it is strongly dependent upon the
interface inclination, as well. That is, it has been shown that the excess
energy exhibits a marked dependence upon all five microscopic degrees
of freedom that define a GB [6,7], which we collectively refer to as its
character.

Because of the eminent role played by GBs in micromechanics, and
because a knowledge of their stability will be critical in developing
methods for GB engineering [8], it is necessary to gather accurate
data that relates the excess energy of a GB to its character. Grain irregular GB energy features is debatable.

capture GB behavior accurately at all points in GB character space by
means of analytical or semi-analytical models. Some methods, such as
that of Bulatov et al. [12], rely on an interpolation-based approach for
constructing a model informed by GB data [13] that reproduces the
dependence of excess energy on orientation over a wide range of known
GB configurations. It has also been argued in [12] that a geometry
or crystallography-driven method is sufficient for approximating GB
energy up to a scaling factor. Udler and Seidman suggested that GB
energy scales with elastic moduli, implying a possible relationship;
however, this has yet to be verified [14]. In a similar vein, some
machine learning models (as well as potentials [15]) have proven
useful in estimating GB energy [16,17], although their ability to predict
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Advances from focused ion beam tomography (FIB) [18] to non-
destructive full 3D tomography [19] provide a means for determining
the effect of GB energy on microstructural evolution. However, aside
from a modest collection of observations of excess energy for specific
subsets of GB character [20,21], experimental data is scarce. The lack
of experimental GB energy data has been mitigated to some extent by
advancements in computational hardware that have made it possible
to perform realistic atomistic simulations of GBs with sufficient com-
plexity to determine energetic trends. Due to the computational cost,
such simulations are typically performed using interatomic potentials
(IPs): approximate functional forms fitted to ab initio and experimental
data. IPs effect a significant reduction of order by solving only for
atomic nuclei positions without resolving electron density. The result-
ing simulations are more computationally efficient, but require that the
functional form and parameters of the IP be carefully selected.

Multiple wide-ranging atomistic studies of GB energy using IPs have
been conducted. One of the first broad surveys was performed by
Wolf [22-27], who considered symmetric and asymmetric tilt and twist
boundaries in face-centered cubic (fcc) and body-centered cubic (bec)
materials. Still, exploration of GB energy for various materials, IPs,
and crystal structures is a topic of ongoing research [28]. Of particular
note are the evident similarities that have been identified between the
relaxed GB energies of various materials with identical crystal lattice
types, implying that their excess energy surfaces are the same up to a
material-specific scaling constant [13].

Because the precise effect of IP choice on GB energy is generally
missing from current GB studies, the primary contribution of this
work is to specifically analyze the correlation, if any, between IPs and
the relaxed GB energy they predict. Doing so requires a systematic
framework for cataloging the massive sets of data that result from this
broad sweep of possible GB character and, to this end, we leverage the
Open Knowledgebase of Interatomic Models (OpenKIM, KIM) [29,30].
This system automates the process of computing the predictions of
the many IPs stored within it by allowing users to upload atomistic
simulation codes that calculate material properties of interest. We
have developed this capability for computing the GB energy-versus-
tilt angle relation for symmetric tilt GBs in cubic materials. In this
article, we report on the results for aluminum (Al), nickel (Ni), copper
(Cu), iron (Fe), and molybdenum (Mo) simulated using 225 IPs (as of
December 2022). Additional results are continuously generated as IPs
and material systems are added to OpenKIM, and current results are
available online at https://openkim.org.

The remainder of this paper is structured as follows: Section 2
provides an overview of the OpenKIM framework as it relates to the
problem of systematic GB energy calculations. Section 3 provides the
details of the algorithm used to compute the GB energy and its im-
plementation. In Section 4, results are presented and discussed for the
above mentioned systems. The implications and limitations of the work
are reviewed in Section 5.

2. The OpenKIM framework and grain boundary energy calcula-
tions

OpenKIM [29,30] is a cyberinfrastructure hosted at https://openk
im.org for archiving computer implementations of IPs (referred to as
Models in KIM terminology) and testing their predictions for different
material properties. All KIM Models conform to an application pro-
gramming interface (API) [31] that allows them to be used seamlessly
and without alteration with a number of major simulation packages
that conform to the KIM API (for a current list, see https://openkim.
org/projects-using-kim). These Models are automatically coupled to a
large number of “Tests” in the system that compute physical properties
of interest. Some examples for crystalline systems are cohesive energy,
equilibrium lattice constant, phonon dispersion, stacking fault energy,
surface energy, thermal expansion, and vacancy formation energy. The
Test-Model matching and calculation process is handled by the “KIM
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Processing Pipeline” [32,33], which creates corresponding jobs and
distributes them to high-performance computing clusters whenever a
new Model or Test is uploaded. To reduce compute time and promote
reusable code, Tests can access the results of other Tests in the system
for properties that they depend on, such as the equilibrium lattice
constant of the crystal or its cohesive energy. These dependencies are
handled automatically by the pipeline when determining the order in
which sequences of Test-Model pairs are executed.

The results of all compatible Test-Model couplings run by the
pipeline are stored online in the publicly accessible OpenKIM repos-
itory. These results can be viewed through a user-extendable visu-
alization system integrated into the OpenKIM framework, as well as
directly through standardized web queries [34]. This provides a wealth
of information on the predictions of stored Models for a large number of
material properties. New Models and Tests are uploadable by the user
community, making the OpenKIM system an evolving, adaptive system.

An individual Test in the OpenKIM system is a fully specified
calculation, e.g. the cohesive energy of Al in the fcc structure, or the
(111) surface energy of Fe in the bcc structure. In practice, it is more
efficient to work with “Test Drivers”. Test Drivers are analogous to pure
abstract classes in object oriented programming; they are designed to
be as general as possible to reduce code redundancy. For example, a
cohesive energy Test Driver could take in as input the crystal structure
(lattice vectors, basis atoms, and species) and compute the energy-per-
unit cell for this system for any Model with which it is coupled. Each
set of inputs to the Test Driver then constitutes a Test. A Test Driver can
be a stand-alone computer program written in any language supported
by the KIM API (C, C++, Fortran 90 and greater) or can be a script that
runs an external simulation code (called a “simulator” in KIM), such as
the LAMMPS molecular dynamics (MD) package [35]. Consistent with
this philosophy of modularity, KIM Models are handled similarly. An
individual KIM Model may either consist of a self-contained program
or as a parameter file that is read by a Model Driver.

To study GB energetics, we have developed a KIM Test Driver that
computes the GB energy versus angle for symmetric tilt GBs in cubic
materials [36] using LAMMPS. This Test Driver, and several dozen
Tests which use it, are installed within the OpenKIM system and, as
mentioned above, will therefore automatically be run with any new
Models uploaded to the system. The specific algorithm used by the Test
Driver to compute the tilt GB energy is described in the next section.

3. Symmetric tilt GB energy test driver algorithm

The symmetric tilt GB Test Driver reads in the species, crystal
structure, tilt axis and range of tilt angles, a spatial resolution for the
grid search over translations along the GB in units of the lattice constant
of the material, and the maximum allowable length of any dimension
of the periodic cell. Note that the interface inclination is not read in
as a parameter because the current Test Driver is intended to model
only symmetric tilt GBs. The equilibrium lattice constant and cohesive
energy of the specified lattice are then automatically imported from
the results of other Tests that were previously run against the IP being
tested, as well as interatomic energies across a range of non-equilibrium
lattice spacings (i.e. the cohesive energy versus lattice spacing curve),
which are used to determine the minimum atomic separation where
the interatomic energy of the lattice exceeds the single-atom energy.
Any pairs of atoms in the initial unrelaxed GB configuration that are
within this distance from a neighbor have one member automatically
deleted to avoid unphysical configurations.! The following section de-
scribes the algorithm used in the Test Driver for constructing LAMMPS
simulations.

! For a typical IP, the energy of a single isolated atom is zero, and hence
the deletion criterion applies to pairs of atoms whose distance is less than the
lattice constant at which the lattice energy becomes positive at short distances.



B. Waters et al.
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Fig. 1. Computational simulation domain for a symmetric tilt GB. Periodicity requires
the creation of two GBs, the first of which is shown in the center and the second of
which is formed by effectively adjoining the top and bottom of the simulation domain.

3.1. Definition of grain boundary excess energy

Following established definitions, (cf. [1,37-40]) we use the follow-
ing definition for grain boundary excess energy between two grains,
denoted “+” and “-”

e " _ " _
= lim 12 (égnoo(Etot(){L,L,H’ eow) ~WNL gt Ni 1) Eeon) ) @

Lo
4 _ . s . .
where Xl XL are the relaxed atomic positions contained within

the simulation domain, [—%, £]2 X [—g, g], and NZL ytN pis the

total number of atoms contained in the simulation domain. E_, is the
cohesive energy of the crystals in their ground state. If the boundary
is periodic within some finite cell, [—%, %] X [—%, %], the energy

reduces to

1o . - . _
r= L,L, (f}l—rgo(Emt(){LlsLZsH’ ){LI-LZvH) - (Nllst,H + NLl-szH)ECOh) )

(2)

In the limit as H becomes large, then the energy is sufficiently approx-
imated by

o . _ . _
v L,L, (Etot(XLl,Lz,H’XL,,Lz,H) - (NLI,LZ,H + NL]A,LZ,H)ECOh)’ (3

where E, is computed via atomistic methods.

Nonnegativity of y requires that the first term in Eq. (3) be greater
than the sum of the second two. E_y, should be the energy per atom
of the crystal in its optimal lattice configuration, guaranteeing that the
boundary configuration will incur an increase of energy. However, if
a cohesive energy for a higher-energy lattice configuration is chosen,
e.g. a bee cohesive energy used for a material with an fcc ground state,
then the minimization may result in a phase transformation from the
unstable lattice to the stable one. Such a configuration would result in
a meaningless, possibly negative value of y, and would be said to be an
unstable configuration.

In the present work, GB energy computations are considered com-
prehensively for all IPs designed for a given material, regardless of
actual ground state. As a result, several unstable configurations are
included that may be systematically dismissed.

3.2. Domain generation

When setting up an atomistic GB simulation, a periodic compu-
tational representative domain is generally used. In order to respect
this periodicity, a typical calculation of the GB energy necessitates the
creation of two GBs (see Fig. 1). The algorithm implemented in the
Test Driver for generating the repeating cell for a prescribed tilt angle
is based on the significant body of work already done on the subject
(see, for example, [41-43]). Let g,,,8,..83+ € R3 be the unit vectors
defining the orientation of the periodic cell, and let a,,a,,a; € R?
define the rectangular unit cell such that a; is coincident with the axis
of rotation. (Note that this is not generally the same as the unit cell,
nor is it unique for every choice of tilt axis.) The vectors defining the

Computational Materials Science 220 (2023) 112057

periodic cell used to represent each grain, shown in Fig. 2, are defined
as {4;g;, }, which we express in terms of {a;} as

A& =matnay, A&+ =Fpa; +qay, 4

where m,n,p,q € Z are integral coefficients, and we note that a; =
g5 for tilt boundaries. The task at hand is to compute the integral
coefficients given a tilt angle 6. Generally, an arbitrary angle 6 will be
irrational (corresponding to periodically incommensurate boundaries),
so it is necessary to locate the “closest” rational angle that defines
an acceptably small periodic cell. This is done using the following
equations, derived by an elementary geometric calculation:

|a| la,|
(m,n) =raty; | —tanf |, (p,q) =raty [ ——tanf|, (5)
|a;]| la; |

where rat, : R - ZxZ is a rationalization function written in terms of
a “maximum denominator” d, defined as

rat,(§) = argmin ‘2—5‘. (6)

abe)al<d ' @

That is, d is an integer that determines the maximum allowable size of
the periodic cell in terms of integer multiples of the original cell width.
Increasing d increases the density of data points in grain boundary
space. The rational angle yielded using the formulae above is given by

_1| nlaal ! -1 pla;|
O = tan™! = tan . @
ra |:m|al|:| qla,|

where L denotes enforced equality. The enforced equality in Eq. (7) is
critical because, especially for non-cubic periodic cells, rationalizations
are not necessarily equal for both axes. The dimensions of the final unit
cell used to construct the simulation domain are computed in terms of
m,n,p,q, and 6, to be

Ay = m|a;|cos 8 + n|a,|sinb, (8)
Ay = pla;|sinf + gla,| cos b, 9

where A; = 1 for tilt boundaries. The X value of the GB, a common
classification used when describing tilt GBs, can be computed directly
from these dimensions:

A A A
1—23 s.t.
la;llallas]

.1
2 = min — int

Ay Ag
acZ 24

————— | mod2¢=0.
la;lla|las]
10)

This algorithm can readily be extended to other types of boundaries,
but is used in its current form for the OpenKIM Test Driver we have
written for this work. We emphasize that it allows the user to control
the resolution of sampled boundaries in a tilt family by controlling only
the maximum-denominator integer d. Conversely, given a maximum
allowable repeating cell size, it can be used to generate a boundary
configuration for an arbitrary tilt angle.

3.3. Estimation of ground state energy

It has been well-documented that GBs may exist in a large number
of metastable configurations at OK [44]. For a given IP, the particular
configuration obtained depends on the initial guess and the energy
minimization (optimization) method used. It is generally understood
that these configurational parameters can substantially affect the result,
making the ground state difficult to find [44]. Common practice [13,
45] is to perform a high resolution grid search over available param-
eters, taking the lowest value. On the other hand, determination of
the actual ground state demands computational resources well beyond
those feasible for this high-throughput framework. Therefore, this Test
Driver aims to strike an appropriate balance between management of
computational resources and consistent, realistic test results across all
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relative position of the two grains is determined by grid search, and overlapping atoms are deleted as described below.

platforms by performing a grid search with limited resolution. Such
a grid search is not sufficiently fine to converge to the actual ground
state. Instead, we aim for a search that is likely to report the energy of
a representative, low-energy state that is neither the ground state, nor
an artificially high energy state.

In the design of a grid search algorithmIn determining the ground
state energy, there are usually two primary considerations: the atom
deletion criterion and grain offsets. The first, atom deletion, is governed
by a cutoff radius for eliminating atomic overlap. When generating
initial configurations of GBs, the algorithm can create unphysical ar-
rangements with one or more pairs of atoms located at identical or very
close positions. In some cases, a consistent cutoff radius (for example,
half the lattice constant) is used to eliminate atoms that are initially
too close to each other [28]. However, this may result in undefined
behavior for some IPs. As explained in Section 3, the approach used
here is to set the cutoff to the lattice spacing at which the lattice energy
exceeds the single-atom energy for the IP being used. This critical
radius is determined for each IP based on values that are automatically
referenced in the OpenKIM repository by the Test Driver.

The second consideration is the set of grain offsets used as initial
guesses for energy minimization. The initial position of the top grain
with respect to the bottom grain can substantially alter the energy,
as reported in [41,43,46,47] and others. The standard approach is to
perform a grid search over the space of initial translations: for each
initial translation, allow the minimizer to find the local ground state,
and then select the lowest of the returned results. High-resolution grid
searches are often used when finding the ground state energy, but for
efficiently estimating a representative metastable statecomputational
tractability within this high-throughput system, the grid search in the
OpenKIM Test Driver is limited to in-plane translations across the
CSL, truncated according to symmetry, in increments of 1/4th of the
relevant lattice constant.? Translations normal to the grain boundary
are not explicitly considered. The number of translations considered,
each of which requires a full energy minimization calculation, can
range from 16 for a no-boundary case to thousands, depending on the
misorientation. For each shift vector on the grid, the atomic positions
and the dimensions of the orthogonal simulation box are relaxed in
all directions, including the direction normal to the grain boundary,
using the Polak-Ribiére variant of the conjugate gradient method [48].
This implicitly explores translations of the grains normal to the grain
boundary.

4. Computational results for symmetric tilt grain boundaries

In this section we present calculations for GB energies explored
along the four inequivalent tilt axes that give rise to symmetric tilt

2 In some previous works [13,45] the lattice displacements were restricted
to elements in the displacement-shift complete (DSC) lattice. We have opted
instead to select offset vectors that are consistent between boundaries (i.e. ir-
respective of bicrystallography) in order to ensure consistent sampling of the
ensemble of in-plane translations.

boundaries in cubic materials [1]: [100], [110], [111], and [112]. This
is far from an exhaustive study of all grain boundaries, but rather
provides a representative sampling across a range of boundaries that
demonstrates high angle and low angle cusp behavior. GB energy was
calculated using the following Tests: fcc Al [428-431], fcc Cu [432-
435], fce Ni [436-439], fcc Fe, [440-443] bece Fe, [444-447] and bee
Mo [448-451]. Iron is uniquely present for both fcc and bcc tests,
where the only distinction between them is the initial condition of
the lattice. For each chemical element, GB energies were computed for
every matching potential in OpenKIM. The results presented herein are
up-to-date as of December 2022, but the Tests are being continuously
run and the latest results are available on openkim.org.

With such a large number of IPs fitted for different purposes, it is
unavoidable that some of the computations result in errors or unphysi-
cal behavior. For example, a cause of several errors is that the OpenKIM
Embedded Atom Model (EAM) Model Driver [29,162,452-454] raises
an error when the electron density is outside of the fitted range of the
embedding function, unlike other implementations of the EAM method
that extrapolate. A full examination of every IP that caused errors and
aberrant behavior is outside of the scope of the present work. However,
some discussion of IP behavior is provided in Section 4.2. If an IP
encountered errors for some tilt axes but not others, its energy curves
are presented only on tilt axis plots corresponding to Tests for which
no errors occurred.

4.1. General trends in grain boundary energy

Despite the diversity and complexity of GB energy calculations, the
results are found to be remarkably well-behaved for the vast majority
of the tested IPs. Included in this work is a series of plots illustrating
the range of behaviors for the full spectrum of potentials currently
available (as of December 2022) in OpenKIM for the aforementioned
atomic species. To faithfully represent such a large number of energies
in a compact way, we have ordered the IPs by their average energy
across all GB tests. Therefore, the position of an IP in the legend is a
rough indicator of its relative position in the spectrum, which may or
may not be clearly visible due to the large number of potentials. Each
IP in the legend contains its KIM ID (a shorthand designation indicating
the potential type, authors, publication year, and supported chemical
elements) and two or three citations: one is to the KIM Model (defining
the IP parameters), one refers to the corresponding KIM Model Driver
(containing the IP functional form, if applicable), and one is to the
primary scientific source in which the IP was originally published. We
encourage the reader to follow these citations to further investigate
the behavior of IPs of interest and to directly access the data, which
is published in the OpenKIM repository.

For the fcc metals, Al (Fig. 3), Cu (Fig. 4), Ni (Fig. 5), and Fe (Fig. 6),
similar trends are noted and generally good behavior (i.e., stability
of the boundary sufficient to calculate the relaxed GB formation en-
ergy) was observed. Remarkably, there is a variation of up to two or
three fold in the average high angle GB energy calculated by different
potentials; yet, the angles at which cusps in the energy occur are



B. Waters et al.

Computational Materials Science 220 (2023) 112057

[110]

Energy (J/m?)

Energy (J/m?)

T T T

0 20 40

Tilt angle, 6 (deg)

60 80 0 25 50 75 100 125 150

Tilt angle, 6 (deg)

[112]

Energy (J/m?)

Energy (J/m?)

0 10 20 30

Tilt angle, 6 (deg)

Morse_Shifted_GirifalcoWeizer_1959HighCutoff Al [49-51]

Mor: hifted. 1959MedCutoff_Al [49, 51, 52]
EAM_Dynamo. 002-NiAl [53-55]
Morse_Shifted_GirifalcoWeizer 1959LowCutoff Al [49, 51, 56]
EAM_Dynamo_Farkas Jones_1996_.NbTiAl [55, 57, 58]

MEAM_LAMMPS RoyDuttaChakraborti 2021 AILi [59-61]

Tersoff LAMMPS._PlummerRathodSrivastava.2021_TiAIC [62-64]

Tersoff LAMMPS_PlummerTucker 2019_TiAIC [64-66]
MEAM_LAMMPS_PascuetFernandez.2015_Al [61, 67, 68]
MEAM_LAMMPS DickelBaskesAslam_2018_MgAIZn [61, 69, 70]
MEAM_LAMMPS_MahataMukhopadhyayAsleZaeem_2022_AlFe [61, 71, 72]
MEAM_LAMMPS _JelinekGrohHorstemeyer2012.AISiMgCuFe [61, 73, 74]
MEAM_LAMMPS _KimSeolJi_2017_PtAl [61, 75, 76]

—%— MEAM.LAMMPS_KoShimLee2011.AIH [61, 77, 78]

MEAM_LAMMPS _JeongParkDo_2018_PdAl [61, 79, 80]
MEAM_LAMMPS Kim JungLee.2015_NiAICo [61, 81, 82]
MEAM_LAMMPS DongKimKo.2012_CoAl [61, 83, 84]

MEAM_LAMMPS _LeeShimBaskes_2003.Al [61, 85, 86]
MEAM_LAMMPS_KimKimLee 2009_AIMg [61, 87, 83]

MEAM_LAMMPS _KimKimJung2017_NiAITi [61, 89, 90]

botddadtddddt

consistent. For all fcc materials, especially, the >3 boundary along the
[110] axis exhibits close agreement across potentials. fcc Fe (Fig. 6)
is the most disordered plot by far, with many potentials exhibiting
unstable behavior. As the low-temperature ground state of iron is bcc,
it is not surprising that many IPs rearrange the atoms so as to occupy
this state.” Somewhat unexpectedly, however, many of the models are
shown to be stable in the fcc phase for a large proportion of the GB

configurations relevant to this work.

The GB energy relations computed for bcc Fe (Fig. 7) exhibit agree-
ment amongst well-behaved potentials that rivals (and somewhat ex-
ceeds) that observed in the fcc metals. bec Mo (Fig. 8) has the smallest
spread among its well-behaved potentials, although this may simply
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Fig. 3. GB energies for fcc Al [49-167].

or hexagonal close-packed (hcp).” In the case of Mo, the pathological
behavior of the Zhang and Nguyen Tersoff-style potential [29,138,
411,454] and the Stillinger-Weber (SW)-style MX2 potentials [403,
417,421] may be attributed to the fact that they are designed for
two-dimensional multicomponent systems.

To further explore the question of energy variance between IPs, we
consider the spectrum of microscopic degrees of freedom as a function
of potential. Specifically, we consider six [110] tilt boundaries in fcc
Al Three of the configurations correspond to cusps in the energy (6 =
0°, 50.5°, 109.5°, Fig. 9(a)) and three to high-energy boundaries (6 =
20.1°, 77.8°, 124.1°, Fig. 9(b)). Even for this small selection, reporting
the full selection of microstates for all ~60 IPs is not feasible. Instead,

be due to a lower number of tested potentials. The Morse pair poten-
tials [66,326,367,454] exhibit unstable behavior for both bcc materials

because pair potentials tend to favor close-packed structures such as fcc

3 Physically, the ground state of Fe is bec up to ~1180K. The fact that some
potentials produce stable Fe fcc GBs at OK does not necessarily reflect physical

stability.

4 We are aware of at least two methods used to stabilize pair potentials
in the becc structure. One is to use a double minimum in the energy curve.
Another is to maintain a single minimum, but to use a cutoff that excludes the
second nearest neighbor in fcc and design the curve such that the combined
sum of first and second bcc neighbors is more stable than the sum of first fcc
neighbors. The latter is used in the well-behaved modified Johnson (MJ) pair
potential.
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EAM_Dynamo.FischerSchmitzEich_2019_CuNi [55, 215, 216]

001_Cu [55, 217, 218]
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EMT_Asap_MetalGlass_PaduraruKenoufiBailey 2007_CuZr [142, 144, 226, 227]
EAM_Dynamo.ZhouWadleyJohnson.2001_Cu [55, 155, 156, 228]
MEAM_LAMMPS_AsadiZaeemNouranian_2015_Cu [61, 229, 230]
EAM_Dynamo.LiuLiuBorucki_1999_AICu [55, 134, 135]

SNAP_LiHuChen_2018.Cu [231-233]

EAM_Dynamo_CaiYe_1996_AICu [55, 153, 154]
EAM_Dynamo_DeluigiPasianotValencia_2021_FeNiCrCoCu [55, 234, 235]
EAM_Dynamo.FarkasCaro_2018_FeNiCrCoCu [55, 236, 237]

EAM_Dynamo.Zhou 2004NISTr Cu [55, 155, 156, 23]
EAM_Dynamo.ZhouJohnsonWadley.2004-Cu [55, 155, 156, 239]
EAM_Dynamo_ZhouJohnsonWadley2004_CuTa [55, 155, 156, 240]
EAM_Dynamo_Zhou JohnsonWadley_2004NIS Tretabulation_CuAgAu [55, 156, 241]
EAM_Dynamo_ZhouJohnsonWadley 2004NIS Tretabulation.CuTa [55, 155, 156, 242]
EAM_Dynamo.WuTrinkle_2009_CuAg [55, 243, 244]

EAM_NN_Johnson.1988_Cu [245, 246]

Phedsttotdeadtint

MEAM_LAMMPS_WangOhLee_2020_CuCo [61, 195, 196]

~O— EAM_Dynamo_WilliamsMishinHamilton_2006_CuAg [55, 219, 220]

Fig. 4. GB energies for fcc Cu [51-53,57,66,72,88,94,110,120,122,123,126,131,133,136,140,154,156,162,168-246].

for each boundary, a histogram is presented showing the distribution of
coordination numbers for each IP’s lowest energy relaxed structure. The
histograms of all Al IPs are superimposed, with the bars associated with
a given IP colored to correspond to the legend color in Fig. 3. No differ-
entiation is made between boundary atoms and non-boundary atoms,
and so each histogram reflects the coordination numbers for all atoms
in the simulation, including atoms in the bulk. This allows for a more
straightforward comparison between IPs. However, it also means that
the magnitude of the spike at #=12 depends on the normal simulation
domain size, which varies from boundary to boundary. Therefore, while
the histogram magnitudes may be compared potential-to-potential,
they should not be compared boundary-to-boundary.

The 6 = 0 cusp corresponds to the absence of a GB. As expected,
in this case all atoms have a coordination of 12, corresponding to the
ideal fecc crystal structure. For the other two energy cusps, a scattering
of additional coordinations appear in addition to 12. However, we note
that there is a clear qualitative difference between these cusps. For
the 8 = 109.47° cusp, for most IPs, the ground state structure involves
primarily three coordinations: 12, 9 and 6. This suggests that most of
the IPs relax to a similar regular geometry, and indeed the scatter in
energy at this cusp as seen in Fig. 3 for the [110] tilt axis is relatively
small. In contrast, for the 6 = 50.48° cusp, the spread in coordinations

is broader and less uniform across IPs, suggesting a wider spread in
structures, and indeed the spread in energy for this cusp is about 2.5
times larger than for = 109.47°. This spread includes both IP effects
(given the energy spread at § = 0° for an identical structure), and
configuration effects. Turning to the high-energy boundaries, we see
that these exhibit a significantly larger spread in both coordination and
energies (cf. Fig. 3), which indicates a broad spread in ground state
structures. The spread in energy in this case is due both to the IP itself
and the ground state structure (which depends indirectly on the IP), as
also observed for the low-energy cusps.®

5 Careful examination of Fig. 9 shows that there is not a direct relationship
between configuration and energy across IPs. Were this true, it would be
manifested in Fig. 9 as near-identical frequencies at each coordination number
for any given energy band of IPs, e.g., all of the dark blue bands would have a
similar frequency at any given coordination number for each subfigure. That
is, the frequencies shown at a given coordination number in any subfigure
would appear to vary (piecewise) continuously as the energy decreases from
left to right. To the contrary, the rightmost column shows significant variance
in coordination distribution for IPs that predict similar energies for the same
GB. Hence, we conclude that different IPs may drive the minimizer to different
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Fig. 5. GB energies for fec Ni [51-53,55,57,58,60,63,64,66,68,69,72,77-79,82,87,94,98,111,115,119,120,124-126,128,131,133,137,148,152,158,162-164,166,170,171,176,179,184,

194,198,205,208,210,217,218,223,225,238,247-315].
4.2. Examples of individual potential behavior

The data that has been presented may be used to compare IPs
with respect to GB predictions, and to eventually design IPs to predict
accurate boundary energies. Although an exhaustive analysis along
these lines is outside the scope of this work, it is illuminating to
examine the behavior of some specific IPs.

The GB energy tests produce for most IPs a ground state atomic
structure that is well-behaved and has an expected form: the domain
is divided into two symmetric grains separated in the center and across
the periodic boundary by two well-defined GBs. For example, the result
for bec Fe for a 32° tilt about the [111] axis, run using the Zhou,
Johnson, and Wadley EAM potential [390], is shown in Fig. 10a, and
clearly has a well-behaved structure. Moreover, all of the potentials

configurations, but this does not fully explain the observed energy differences,
one must also account for the differences between the IPs themselves.

used in benchmark GB literature are well-behaved and produce roughly
average results (with respect to the ensemble of IPs considered here).
Of particular importance are the results for the two potentials used
in the well-known Olmsted dataset [13] — the Foiles and Hoyt EAM
potential [162,276] and the Ercolessi-Adams EAM potential [80,149].
Reasonable results and average energies are also found for the Mishin,
Farkas, and Mehl EAM potential [87,162,315] used in Homer’s recent
work [45], as presented in Fig. 10b.

We now consider examples of IPs that produce unexpected results.
The OpenKIM website provides easy access to descriptions of IPs, the
original citation where the potential was developed, and selected com-
parisons of canonical properties (e.g., lattice and elastic constants). In
the following examples, we demonstrate how such information can be
used to explain the behavior of several IPs that were outliers, unstable,
and/or failed to relax.

The EAM IMD potential of Schopf, Brommer, and Frigan for AIM-
nPd [58,457,458] was found to be unstable for fcc Al at high angle
[110] boundaries. This is a potential developed for a complex metallic
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Fig. 6. GB energies for fcc Fe [52,57,66,69,72,73,77,83,88,119,126,131,138,140,141,162,170,179,194,198,205,208,238,250,252,254,256,262,277,279,288,290,295,300,304,309,

314,316-402].

alloy (CMA) - the = phase of AIMnPd, which is a quasicrystal ap-
proximant. It is, therefore, not surprising that it does not provide an
accurate description of fcc Al. Indeed, a further examination of the
results of other Tests indicates that the corresponding lattice constant
and elastic constants predicted by this IP are extreme in magnitude
compared to the other potentials considered here and, furthermore,
that its predicted ground state for pure Al is the hcp structure. Fig. 10c
shows the relaxed configuration reached for a representative unstable
fcc Al [110] boundary, where it can be seen that the initially fcc bulk
has developed interspersed bands of atomic environments similar to
those found in the hcp structure.

As mentioned in the previous section, the SW MX2 potential of
Kurniawan, Petrie, and Williams [417] was developed for MoS, layers,
and therefore is unsuitable for modeling bulk Mo. Indeed, there is
a disclaimer on this potential’s OpenKIM page stating as much, and
its ground state can be seen to be hcp. Fig. 10d shows that at the
angles where this potential exhibits unstable behavior, the pair of grain
boundaries annihilates and the material relaxes to a nearly perfect

hep structure. The two EAM IMD potentials by Bromer and Gaehler
(“A” [55,58,109] and “B” [55,58,64]) were developed for AINiCo qua-
sicrystals and both have extreme lattice and elastic constants for Ni. The
“B” potential is an outlier for Ni, while the “A” potential had massively
positive energies and numerous failures to relax, and is not included in
the plots. On the other hand, the lattice and elastic constants for Al are
less extreme for both potentials, and their GB energy relations for fcc
Al exhibit unremarkable behavior. Finally, the EAM Dynamo potential
of Sun, Zhang, and Mendelev for Fe [162,366,378] is an outlier for
both fce and bee, although less so for fee (Figs. 6 and 7). This potential
is designed for high-pressure simulations of the Earth’s core, and has
extreme material constants.

In general, we found that the relaxed structures of energetically
stable outliers were the same as those of well-behaved potentials. This
should be expected based on their tendency to follow the trends of the
energy-angle dependence, and only be incorrect in the magnitude of
the GB energy.
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4.3. Comparison to theoretical benchmark

Given the lack of experimental GB data for the full range of tilt
boundaries, we use the results from a theoretical model for comparison.
Combining the lattice matching model of [40] with the application of
a facet-relaxation scheme [459] provides a benchmark for compari-
son that does not depend on an extensive set of fitting parameters.
As a geometric/crystallographic method, the lattice matching model
depends on only three parameters: (i) a window function parameter
e that correlates to cusp width, (ii) a thermalization parameter ¢ that
corresponds to temperature, and (iii) a scaling factor E,,. Determination
of € and ¢ is relatively straightforward, and is discussed in great detail
(along with a full presentation of the theory) in [460]. The parameter
E,, however, is a fitting parameter that linearly scales the reported
energy. In prior work, it was found by calibration to existing atomistic

data sets. These results indicate that there is considerable disagreement
between potentials in what the correct value of E;, may be.

An average over the potentials was taken and plotted alongside the
lattice matching model fitted to that average for all available species
(Figs. 11(a) and 11(b)). Although the IPs display a wide range of
energy values, they also demonstrate a remarkable consistency in the
general features of the GB energy landscape, correlating closely to
the prediction of the geometric lattice matching energy model. This
reinforces the hypothesis that GB energy is primarily driven by the
geometry and crystallography, and is consistent across potentials and
species up to a scaling factor. Yet, the value of the scaling factor itself
remains undetermined, as the variance between models is large.

In light of the shortage of available experimental or ab initio data
for validation, the large discrepancy in reported energy for different
potentials causes some concern regarding the legitimacy of molecular
dynamics GB energy calculations for any particular IP. Fig. 12 shows
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the distribution of average energies over the [110] tilt axes. In the
case of Al potentials there appears to be some degree of agreement
among many IPs with the distribution mostly concentrated near the
mean, although this is not necessarily an indicator of accuracy. The
distributions of fcc Cu and Ni are more lopsided, with the Fe and Mo
series more erratic still. Overall, these results provide a sense of the
uncertainty in GB energy predictions by classical IPs. The set of IPs that
provide a prediction for a given GB comprise a multi-model ensemble.
Studies in other physical domains, such as climate change [461], have
shown that multi-model ensemble predictions generally outperform
those of the “best” model, and are necessary to account for all as-
pects of model uncertainty (initial and boundary conditions, parametric
and structural). However, care must be used when considering the
prediction of a multi-model ensemble due to the possibilities for inter-
model dependencies and biases, which can lead to double counting.
For example, the high agreement between Al potentials may be due
to the fact that many are EAM-type potentials that share a common
structural bias and, in some cases, are not independent. Nevertheless
the spread in IP predictions does provide an estimate of uncertainty.
Future work should focus on methods for weighting ensemble members
based on metrics for assessing their likely accuracy (e.g., by considering
correlations between GB energy and other property predictions for
which reference data is available), as done for example in the reliability
ensemble average (REA) approach [462]. The OpenKIM framework is
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very amenable to such analysis, but a full exploration along these lines
is left to future work.

4.4. Ongoing testing on OpenKIM.org

The framework presented here is accessible online, and the GB
energy test result database is constantly updated as new potentials are
added. The general and systematic framework used to generate these
Tests makes it possible to add new Tests for more materials and IPs
automatically. The current, raw data for the Tests presented here is
available at https://openkim.org.

5. Conclusion

We have leveraged the OpenKIM framework to systematically com-
pute atomistic symmetric tilt GB energies for multiple IPs and materials
using a newly developed OpenKIM Test Driver. This system will con-
tinue to be applied to all future IPs that are uploaded to OpenKIM.
The results from all simulations conducted as part of this study (as well
as all future calculations) are available online at https://openkim.org,
where they can be explored using text- and graphics-based visualization
tools. The results of these calculations were compared and common
trends identified, leading to the conclusion that although the overall
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shape of the energy landscape appears to be IP-agnostic, the magni-
tude of the energy differs significantly between IPs and necessitates
additional validation.

The foremost limitation of the results presented here is the rela-
tively limited global optimization. Generally, determining the absolute
ground state requires a high-resolution grid search over the microscopic
GB degrees of freedom; here, only a relatively coarse search is per-
formed due to the prohibitively excessive computational time required
for a high-throughput framework. There are two reasons for this. First,

11

the computational time required for a full resolution grid search is
prohibitive for a high-throughput framework. Second, it is unlikely
that ground states will be present in realistic calculations, especially
when they are not reachable except by high-resolution grid search.
Therefore, the energies found by the OpenKIM Test are more likely to
be representative of actual energies in large simulations, and therefore
of greater importance to most practitioners when simulating systems in

which grain boundaries play a role.
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Future work will focus on extending this work to more general multi-model ensemble paradigm. To better approximate the ground
GBs and crystal structures, and to seeking connections between the state in future iterations of this KIM test, genetic methods such as the
predicted GB energy and other properties predicted by an IP in order USPEX method [463,464] or the Monte Carlo method [465] may be
to better assess the uncertainty in its GB energy predictions within a used.
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