
Multi-Agent Reinforcement Learning for Wireless

User Scheduling: Performance, Scalablility, and

Generalization

Kun Yang∗, Donghao Li†, Cong Shen∗, Jing Yang†, Shu-ping Yeh‡, Jerry Sydir‡

∗ Department of Electrical and Computer Engineering, University of Virginia, USA
† Department of Electrical Engineering, the Pennsylvania State University, USA

‡ Intel Corporation, USA

Abstract—We propose a multi-agent reinforcement learning
(MARL) solution for the user scheduling problem in cellular
networks. Incorporating features of this particular use case,
we cast the problem in a decentralized partially observable
Markov decision process (Dec-POMDP) framework, and present
a detailed design of MARL that allows for fully decentralized
execution. The performance of MARL against both centralized
RL and an engineering heuristic solution is comprehensively
evaluated in a system-level simulation. In particular, MARL
achieves almost the same total system reward as centralized
RL, while enjoying much better scalability with the number of
base stations. The transferability of both MARL and centralized
RL to new environments is also investigated, and a simple fine-
tuning approach based on a general model trained on a pool of
environments is shown to have faster convergence while achieving
comparable performance with individually trained RL agents,
demonstrating its generalization capability.

Index Terms—User scheduling; Multi-agent reinforcement
learning (MARL); Reinforcement learning (RL)

I. INTRODUCTION

Dense deployment of base stations (BS) is an emerging

solution to increase the overall throughput of modern cellular

networks. The high density requires all base stations to work

cooperatively in order to mitigate inter-cell interference with

concurrent transmissions. Thus, a well-designed radio resource

management (RRM) algorithm is crucial in optimizing the

overall throughput of the wireless communication system.

Conventionally, RRM algorithms are largely based on opti-

mization theory, where the design aims at optimizing certain

utility that depends on the instantaneous state of the system.

This approach is insufficient when the system utility represents

the long-term behavior rather than is based entirely on the

current state. Additionally, it often involves solving large-scale

and non-convex optimization problems, which are computa-

tionally challenging.

In recent years, there is a growing interest in applying rein-

forcement learning (RL) methods to adaptively configure the

radio resources to match the deployment environment on the

fly. An overview of related works is given in Section I-A. This

is a natural “marriage” for several reasons. First, RRM is a

closed-loop and sequential operation: configure the resources,

observe performance, and fine tune. Second, RRM mostly

The first two authors contributed equally to this work.

cares about the long-term performance, and its parameters are

adjusted at a low rate. Last but not the least, there exist well-

established feedback protocols in cellular standards, which

provide a built-in mechanism for observing the state and

receiving rewards.

Two critical issues that adopting RL for RRM faces are the

scalability and generalization. Dense deployment leads to an

exponentially growing action space, which creates significant

challenges for training a (deep) RL algorithm. Furthermore,

the model training phase of RL does not necessarily have the

same environment as the deployment phase, which may be a

potentially unseen environment. How to efficiently transfer the

trained RL agent to a new environment with fast convergence,

is an important research problem.

This paper focuses on a specific RRM use case of user

scheduling to address the aforementioned challenges. We cast

user scheduling as a decentralized partially observable Markov

decision process (Dec-POMDP) problem, and then develop

a multi-agent reinforcement learning (MARL) framework to

make user scheduling decisions. The MARL design takes into

account the specific application of cellular user scheduling and

centers the design around a deep learning algorithm called

Deep Recurrent Q-Network (DRQN) [1], which allows each

agent to utilize its own historical information in decision

making, thus making it a decentralized executed policy. We

demonstrate that the MARL design not only scales much

better than its centralized RL counterpart due to its fully

decentralized nature, but also achieves almost the same per-

formance. Furthermore, we investigate the transferability of

both centralized RL and MARL with respect to mismatched

or even unseen environments (between training and testing),

and empirically evaluate a transfer learning method that first

trains a general RL agent based on a pool of environments,

and then fine-tunes when deployed. The advantage of faster

convergence is observed for both centralized RL and MARL,

although the gain of the latter is smaller than the former.

A. Related Works

There have been a growing body of literature that apply

RL to solving wireless network optimization problems, such

as spectrum access and sharing [2]–[4], mobility management

[5]–[7], and power control [8], [9]. Limiting to the scope of

1169978-1-6654-5906-8/22/$31.00 ©2022 IEEE Asilomar 2022

20
22

 5
6t

h
As

ilo
m

ar
 C

on
fe

re
nc

e
on

 S
ig

na
ls,

 S
ys

te
m

s,
an

d
Co

m
pu

te
rs

 |
 9

78
-1

-6
65

4-
59

06
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IE

EE
CO

NF
56

34
9.

20
22

.1
00

51
99

2

Authorized licensed use limited to: Penn State University. Downloaded on May 25,2023 at 14:38:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Illustration of the system model. In this example, BSs are regularly
positioned with a conventional hexagonal structure, while UEs are randomly
dropped. Each BS can choose to serve one UE (indicated by the airwave
symbol), or turn off (no airwave symbol).

this work, RL has been used for user selection in [10]. More

recently, [11] uses deep RL to solve radio resource allocation

problems in massive multi-input multi-output (MIMO) sys-

tems. [11]–[13] are the closer literature to our work, using

either deep RL or MARL to control downlink power and user

selection. More specifically, [11] uses centralized deep RL

algorithms to control transmit power as well as subchannel

allocation in a multi-cell system. Similarly, [12] and [13] use

MARL to control the downlink power and select users with

the exchange of neighbor observations to maximize the overall

throughput of the wireless system.

B. Paper Organization

The remainder of this paper is organized as follows. The

system model and the Dec-POMDP formulation are described

in Section II. Details of both MARL and centralized RL de-

signs are given in Section III. Experiment results are reported

in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We first present the communication model for a cellular

user scheduling problem, and then describe how to cast it in

the framework of decentralized partially observable Markov

decision process (Dec-POMDP) with networked agents.

A. Communication Model

A multi-cell wireless network is considered, as depicted in

Fig. 1. There are Na base stations (BS) and Nu user equipment

devices (UE) located inside an area with a size of d0×d0. We

consider a time slotted system. The UEs, after being randomly

dropped in the area, take random walks following

[x(t), y(t)] = [x(t− 1), y(t− 1)] + v0 [δx, δy] ,

where (δx, δy) follow independently uniform distribution on

[−1, 1], and v0 thus represents the maximum step size a UE

can move in one time slot. Boundary conditions are handled

with mirror-back.

We adopt a standard 3GPP pathloss model with a specified

antenna pattern [14]. Specifically, we assume each BS has a

maximum transmit power of 10 dBm, and the pathloss between

BS i and UE j is characterized by

PLi,j = 15.3 + 37.6 log(dij) + Low, d > d0

where Low = 10 dB and dij is the distance between UE j
and BS i. We set d0 = 1m and re-drop (or bounce) the UE if

it enters this area around the BS. We also adopt a parabolic

antenna pattern, defined as

A(θ) = min

{

12

(

θ

θ3dB

)2

, Am

}

with θ3dB = π/3 and Am = 20 dB. A(θ) is then subtracted

from the transmit power when computing the received power

at direction θ. To simplify the problem, we only consider

pathloss in the user scheduling problem, which is suitable

when the timescale of the scheduling decision is large. This

simplification also allows for a (relatively) less random wire-

less environment, where the dynamics mainly come from the

geometry and user movement.

We assume that all BSs and UEs are on the same frequency,

and each BS serves at most one UE at a time. In each time

slot, if UE j is served by BS i, its data rate at time t is given

by

Ci,j(t) = log (1 + SINRi,j(t))

where SINRi,j(t) denotes the signal-to-interference-plus-noise

ratio (SINR) that captures both the background noise and all

interferences from non-serving BS’s {k ∈ [Na] : k 6= i}. The

overall system utility, however, often cannot simply consider

the instantaneous data rate for various reasons (e.g., fairness).

We thus adopt the long-term average rate for UE j as [13]:

rj(t) = αrj(t− 1) + (1− α)Ci,j(t), (1)

if UE j is served by BS i at time t. If no BS is serving this

UE at t, the second term is 0. α ∈ [0, 1] is the discount factor.

B. The POMDP Formulation

A Dec-POMDP can be written as

M = (S, {Ai}i∈[Na],P,R,Z, {O}i∈[Na], Na, γ)

for [Na] agents. In this formulation, each agent i has its

local observation oi ∈ Z which is sampled from a global

state s ∈ S according to oi = Oi(s). Agent i generally

has a different observation oi from other agents and can thus

take different action ai ∈ Ai. The joint action is denoted as

at = (a1,t, a2,t, · · · , aNa,t). When a joint actions u is taken by

the agents under a given state s, the state transit probability

P : S × A × S → [0, 1], written as P [s′ | s, u], denotes

the probability of transitioning to next state s′, and a global

1170

Authorized licensed use limited to: Penn State University. Downloaded on May 25,2023 at 14:38:36 UTC from IEEE Xplore. Restrictions apply.

reward R is collected. Our goal is to maximize the discounted

accumulated reward:

G(t) := E

[

+∞
∑

τ=0

γτR(t+ τ)

]

(2)

by allowing each agent to choose which UE (if any) to serve

at each time slot t.
Given this formulation, we now describe how to model the

user scheduling problem as a Dec-POMDP. We consider each

BS as an agent, and present the key elements as follows.

Agents. Each BS is an agent in the MARL formulation.

State. The global state of the entire system consists of the

relevant UE information, i.e., position and moving average

data rate in Eqn. (1). We note that the discount factor α
helps balance the services to all UEs, including the ones that

experience unfavorable propagation, by decaying the moving

average data rate of UEs that have not been served.

Observation. Each agent is only allowed to observe the

nearest K UEs. The local observation of each agent contains

the UE index, its relative position to the agent (BS), and the

moving averaged data rates of the UE.

Action. In this work, we consider a simple action space

where each agent can choose to serve one of the K nearest

UEs with a maximum transmit power, or not serve any UE

by turning off (to reduce its interference to other UEs served

by nearby BSs). We also comment that for the algorithms

presented later in this paper, if more than one agent chooses

the same UE to serve, only the agent corresponding to the

strongest received power at the UE successfully serves this

UE, while other agents are counted as interference. This is also

a relatively pessimistic option, as advanced mechanisms such

as Coordinated Multipoint (CoMP) [15] may allow multiple

BSs to simultaneously serve the same UE and thus increase

the system utility.

Reward. The global reward is defined as the sum of all

moving averaged data rates, truncated at a threshold value to

reflect the maximum rate limitation in practical systems. More

specifically, the overall system reward can be written as

R(t) =
∑

j∈[Nu]

max{rj(t), rTH}

where rTH is the UE rate threshold.

III. ALGORITHM DESIGNS

Maximizing the objective in (2) falls into the category of

reinforcement learning (RL), and we propose a multi-agent

reinforcement learning (MARL) design that is tailored for the

specific wireless user scheduling problem. In addition, we also

present a centralized RL design that serves two purposes: (1)

It serves as a benchmark for MARL, to measure how much

“coordination” among clients (by allowing a central decision

making based on the complete system state) can benefit the

policy; (2) Its performance against a baseline design, which

will be elaborated in the simulation section, characterizes the

potential gain RL-based designs may have.

Fig. 2: The MARL design for user scheduling.

A. MARL Design

Our proposed MARL design is based on two well-known

methods: DRQN [1] and QMIX [16], but with substantial

changes that reflect the “domain knowledge” of our wireless

problem. An overall illustration of the proposed MARL design

is given in Fig. 2. The design involves a Deep Recurrent Q-

Network (DRQN) model for agents to estimate their local

Q functions, and a QMIX network to estimate the global Q

function from the local Q functions. More specifically,

• DRQN. DRQN operates as follows

τ
(i)
0 = 0; τ

(i)
t = h(o

(i)
t , τ

(i)
t−1; θh),

Q
(i)
loc = max

a
Q(i)(τ

(i)
t , a; θq).

Basically, it utilizes the history information in τ
(i)
t−1 which

is generated from network h defined by θh. We note that

this network only requires local history information, i.e.,

it does not require any information from other agents.

This feature is critical in achieving better scalability, as

the increase of agents does not scale the computation or

storage requirement of each agent much. At the same

time, another network Q(i) (defined by θq) generates the

local Q value with local information τ
(i)
t . The DRQN

network incorporates both functions h and Q(i).

• QMIX. Local Q functions alone are insufficient to realize

cooperation in an MARL setting. We thus adopt the

method of QMIX [16] and construct the global Q function

as another function of local Q functions:

Qtot = fQMIX(Qloc; θtot(ot; θp))

where Qloc is a vector of local Q
(i)
loc . As long as ∂Qtot

∂Q
j

loc

> 0,

local Q functions will produce the same choice of actions

with the global Q function [16]. With QMIX, our network

can be trained with back propagation by minimizing

E{s,a,s′}[(Qtot(s, a)− (r(s, a, s′) + γ argmaxa′ Qtot(s
′, a′)))2].

Finally, the action taken by agent i at time t is

ai,t = argmax
a

Q(i)(τ
(i)
t , a; θq). (3)

1171

Authorized licensed use limited to: Penn State University. Downloaded on May 25,2023 at 14:38:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The centralized RL design for user scheduling.

B. Centralized RL Design

Based on the MARL design in Section III-A, we further

develop a centralized RL method for the user scheduling

problem. Since the goal for the centralized RL is to facilitate

our investigation of MARL, we reuse DRQN in order to have

a fair comparison. The action space of centralized RL is the

combination of actions from all BSs, and the basic training

steps remain the same as discussed in the previous MARL

section. Compared with the MARL design, the centralized

RL is “simple” in the sense that the RNN network takes the

global observation ot = [o1t , o
2
t , · · · , o

N
t] as the input and

directly outputs the global Q-function Qt. Fig. 3 illustrates

the centralized RL design for user scheduling, and the action

Centralized RL agent takes as time t is

at = argmax
a

Q(τt, a; θq).

IV. EXPERIMENT RESULTS

A. Simulation Setup

We evaluate the performance of the proposed MARL design

in a system-level simulation. In the simulator, the environment

has N stationary BSs that are randomly distributed within a

bounded area with a minimum distance of d separating them.

The simulator will randomly generate the initial positions for

the M UEs, and these UEs will randomly move. The detailed

setting of the environment follows the description in Section II.

All the results shown in this section are averaged of 10

randomly generated environments unless otherwise specified.

The comparison of different algorithms is fair because they

share the same set of multiple random seeds in generating the

environment traces in the simulation.

We compared our MARL method with two baselines. One

is a rule-based greedy algorithm, where each BS greedily

serves the user with the best channel quality until the long-

term local data rate reaches the predefined threshold. The BS

then serves the second best UE. We denote this simple greedy

algorithm as the Heuristic algorithm. The other baseline

we would like to compare our MARL design with is the

Centralized RL, described in Section III-B. This is basically

a centralized version of DRQN, where the DRQN network

takes the global observation as the input and provides actions

for all agents.

B. System Reward and Training Efficiency

We compare the training efficiency between Centralized

RL, MARL, and Heuristic mentioned above. In our design

Fig. 4: Average training results from a 4-BS 10-UE environments.

Method Epochs to optimal Total Reward

Heuristic N/A 19.10 +/-1.08
Centralized RL 200 24.31 +/- 1.09

MARL 200 23.65 +/- 0.98

TABLE I: Average training results on 10 different environments.

of the centralized RL agent, the size of action space grows

exponentially with the number of BSs, rendering the training

difficult. We thus set the number of BSs to 4, to allow for a

fair comparison of training efficiency between RL and MARL.

The scalability of these two methods will be investigated in

Section IV-C.

From Fig. 4 and Table I, we can see that both methods

can outperform the rule-based heuristic method with roughly

150 epochs of training1, and Centralized RL converges a little

faster than MARL. After 300 training epochs, both methods

can outperform Heuristic by approximately 38% and almost

converge to the same operating point. On the other hand,

because the centralized RL agent has a complete view of

the system (i.e., global observation), it has a better starting

point than MARL. This leads to better early performance of

Centralized RL over MARL, which is observed in the results.

C. Scalability

The “curse of dimensionality” prevents the centralized RL

to scale with the number of agents, as the action space grows

exponentially and convergence cannot be guaranteed anymore.

This scalability issue associated with centralized RL is partic-

ularly harmful when deep learning is adopted. First, a large

action space typically leads to a large output layer. Second,

the exponentially expanding action space means adequate

exploration quickly becomes difficult if not infeasible.

These two issues are captured in the simulation results

reported in Fig. 5, where we repeat the experiment setting

described in Section IV-A with different number of agents. We

report the total system rewards, which is why they generally

increase with the number of agents. We can see that when

the number of agents is small, i.e., between 4 and 6 in our

particular user scheduling simulation, we have the expected

1Our training epoch is similar to the training episode defined in Algorithm
3 of [17]. We keep a replay buffer and sample a mini-batch of data points
for training at each time slot. Meanwhile, we also use our current agent to
sample a new trajectory and feed it into the replay buffer.

1172

Authorized licensed use limited to: Penn State University. Downloaded on May 25,2023 at 14:38:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Total rewards versus the number of agents.

behavior that Centralized RL has a slight advantage over

MARL, both of which outperform Heuristic. This is consistent

with the results in Section IV-B. However, when the number of

agents continues to increase, we can see that Centralized RL

first falls below MARL, and then its convergence is severely

impacted such that the total rewards decrease with more agents

in the system. We should emphasize that these results are

obtained by training for the same amount of epochs across

different number of agents. Conceivably, the performances

can be improved by increasing the training epochs, but it

still highlights the scalability limitation of Centralized RL. On

the other hand, the centralized-training decentralized-execution

MARL solution scales well with the number of agents, and

has a much better performance. Nevertheless, its advantage

over Heuristic also becomes smaller at 8 or 9 agents, mainly

because the centralized training also becomes more difficult.

D. Transferability

1) The Problem: One issue of the experimental results so

far is that both training of the RL agents and testing are

carried out in the same environment. In other words, there is

no statistical mismatch between training and testing. In reality,

however, this is often not the case. What is more likely is that

data collected to train the RL agent may not fully represent the

actual deployment environment. It is of interest to know how

RL agents trained in one environment behave in others, and

how one can improve the generalization capability of MARL

for wireless user scheduling.

We first take a look at how rewards are affected by the

different deployments. To see this, we have randomly gener-

ated 100 environments, and run the Heuristic algorithm (for

its computational efficiency) to get the system rewards for

these deployments. The deployment setting follows that in

Section IV-A, with 4 fixed BSs and 10 randomly dropped UEs.

Fig. 6 plots the histogram of system rewards. The results show

that the system reward can change drastically under the same

algorithm, even in such a setting with limited randomness.

A natural follow-up question from Fig. 6 is that, if we take

MARL agents trained in one environment and then directly

apply them to a different one, how much of a performance

degradation, if any, we will observe? To answer this question

empirically, we randomly generated 10 environments (with

Fig. 6: Histogram of the system rewards with Heuristic across 100 randomly
generated environments.

Fig. 7: Rewards of the agents trained in one environment and tested in another.

the same procedure described previously) and then train the

MARL agents for each deployment. For every trained set

of agents, we then test their performances over the other

9 deployments, and plot the resulting system rewards in

Fig. 7. In this figure, the row indices stand for the training

environments, while the indices of the columns are for the

testing environments. As we can see from this figure, there are

a few environment pairs where the performances do transfer

well, but by and large, the transferability is very limited.

2) The Solution: This limitation essentially requires one to

train the RL model from scratch for every new environment,

which is undesirable. Alternatively, a strategy to reduce the

computational cost is to train a general model that performs

relatively well across a large number of environments, and

then fine-tune the general model on the specific environment

at the deployment time.

To evaluate this approach, we have reused the same 10

environments from those in Fig. 6, and trained the general

model according to the following steps.

1) Initialize the common model.

2) For each outer loop, randomly sample an environment.

1173

Authorized licensed use limited to: Penn State University. Downloaded on May 25,2023 at 14:38:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: The required fine-tuning epochs from the general model to achieve 90%
performances of individually trained RL agents. General model is trained on
environments 0 to 9, and fine-tuned on all 13 environments.

3) Train the RL model for n epochs. Test on all 10 environ-

ments and take the average.

4) Repeat steps 2) and 3) until a good result is achieved.

After these steps, we then fine-tune the general model on

the specific environment in which we deploy the RL agents,

using the same training mechanism as described previously.

Our hope is that with a general model that performs reasonably

well across a large number of environments, it presents a good

initialization model to have quicker convergence than starting

from scratch (i.e., a random initial model). The experimental

results are reported in Fig. 8. In this figure, we first pool

the 10 environments together to train a general model with

1000 epochs, and then fine-tune the model for each of the

10 environments. Fig. 8 reports the number of additional

steps (epochs) fine-tuning requires to reach at least 90% of

the reward that is achieved by Centralized RL, which is

individually trained for this environment. We can see that

for fine-tuned Centralized RL, we generally require fewer

than 50 training steps of fine-tuning. This is a significant

advantage over training from scratch, which often requires

300 or more steps to converge. Fine-tuned MARL, on the other

hand, has similar but smaller advantage for most environments,

mainly because the fine-tuning of MARL is more difficult

than Centralized RL. This is also why for some environments

(e.g., 0 and 9), MARL does not have an advantage compared

with training from scratch. Nevertheless, we have an average

saving of over 80% of the training resources for fine-tuning

MARL across all 10 random environments. An interesting

future research direction is how to improve fine-tuning MARL,

and we believe the difficulty is mainly from the QMIX, since

different environments often have different QMIXs and tuning

from the general QMIX to local QMIXs is difficult.

As a final result, we have also fine-tuned the general model,

which was obtained by training on environments 0 to 9, for

three unseen environments (indexed as 10, 11, and 12). We can

see that the generalization capability of such general model

with fine-tuning also carries over to unseen environments,

where we again need only 50 steps for Centralized RL and

100 steps for most of the MARL (with one exception).

V. CONCLUSION AND DISCUSSION

We have developed a multi-agent reinforcement learning

(MARL) solution for user scheduling. This method enjoys

comparable performance to the centralized RL, both of which

outperform the simple engineering heuristic solution. More

importantly, we have seen that our MARL design allows for

better scalability (with the number of base stations) in the

system than centralized RL, which is an important feature

that is highly desirable in practice. On the other hand, trans-

ferability of both MARL and centralized RL was empirically

studied, and a simple fine-tuning approach based on a general

model trained on a pool of environments was shown to achieve

faster convergence while achieving comparable performance

with individually trained RL agents.

REFERENCES

[1] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” in 2015 AAAI Fall Symposium Series, 2015.

[2] Z. Wang, Z. Ying, and C. Shen, “Opportunistic spectrum access via
good arm identification,” in 2018 IEEE Global Conference on Signal

and Information Processing (GlobalSIP), Nov 2018, pp. 673–677.
[3] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-

ment learning for dynamic multichannel access in wireless networks,”
IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265, June
2018.

[4] C. Gan, R. Zhou, J. Yang, and C. Shen, “Cost-aware learning and
optimization for opportunistic spectrum access,” IEEE Trans. Cogn.

Commun. Netw., vol. 5, no. 1, pp. 15–27, March 2019.
[5] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control in wireless

systems via asynchronous multiuser deep reinforcement learning,” IEEE

Internet Things J., vol. 5, no. 6, pp. 4296–4307, Dec 2018.
[6] Y. Zhou, C. Shen, and M. van der Schaar, “A non-stationary online

learning approach to mobility management,” IEEE Trans. Wireless

Commun., vol. 18, no. 2, pp. 1434–1446, Feb 2019.
[7] C. Wang, R. Zhou, J. Yang, and C. Shen, “A cascading bandit approach

to efficient mobility management in ultra-dense networks,” in IEEE

International Workshop on Machine Learning for Signal Processing

(MLSP), 2019, (Invited Paper).
[8] C. Shen, R. Zhou, C. Tekin, and M. van der Schaar, “Generalized global

bandit and its application in cellular coverage optimization,” IEEE J. Sel.

Topics Signal Process., vol. 12, no. 1, pp. 218–232, Feb 2018.
[9] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning

based resource allocation for UAV networks,” IEEE Trans. Wireless

Commun., pp. 1–1, 2019, early access.
[10] E. Ghadimi, F. D. Calabrese, G. Peters, and P. Soldati, “A reinforcement

learning approach to power control and rate adaptation in cellular
networks,” in 2017 IEEE International Conference on Communications

(ICC). IEEE, 2017, pp. 1–7.
[11] X. Guo, Z. Li, P. Liu, R. Yan, Y. Han, X. Hei, and G. Zhong, “A novel

user selection massive mimo scheduling algorithm via real time DDPG,”
in GLOBECOM 2020. IEEE, 2020, pp. 1–6.

[12] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Select. Areas

Commun., vol. 37, no. 10, pp. 2239–2250, 2019.
[13] N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource

management in wireless networks via multi-agent deep reinforcement
learning,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3507–
3523, 2021.

[14] 3GPP, “Simulation assumptions and parameters for FDD HeNB RF
requirements,” Tech. Rep. R4-092042.

[15] P. Marsch and G. P. Fettweis, Coordinated multi-point in mobile com-

munications: from theory to practice. Cambridge University Press,
2011.

[16] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on

Machine Learning. PMLR, 2018, pp. 4295–4304.
[17] S. Zhang and R. S. Sutton, “A deeper look at experience replay,” arXiv

preprint arXiv:1712.01275, 2017.

1174

Authorized licensed use limited to: Penn State University. Downloaded on May 25,2023 at 14:38:36 UTC from IEEE Xplore. Restrictions apply.

