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Abstract—We propose a multi-agent reinforcement learning
(MARL) solution for the user scheduling problem in cellular
networks. Incorporating features of this particular use case,
we cast the problem in a decentralized partially observable
Markov decision process (Dec-POMDP) framework, and present
a detailed design of MARL that allows for fully decentralized
execution. The performance of MARL against both centralized
RL and an engineering heuristic solution is comprehensively
evaluated in a system-level simulation. In particular, MARL
achieves almost the same total system reward as centralized
RL, while enjoying much better scalability with the number of
base stations. The transferability of both MARL and centralized
RL to new environments is also investigated, and a simple fine-
tuning approach based on a general model trained on a pool of
environments is shown to have faster convergence while achieving
comparable performance with individually trained RL agents,
demonstrating its generalization capability.

Index Terms—User scheduling; Multi-agent reinforcement
learning (MARL); Reinforcement learning (RL)

I. INTRODUCTION

Dense deployment of base stations (BS) is an emerging
solution to increase the overall throughput of modern cellular
networks. The high density requires all base stations to work
cooperatively in order to mitigate inter-cell interference with
concurrent transmissions. Thus, a well-designed radio resource
management (RRM) algorithm is crucial in optimizing the
overall throughput of the wireless communication system.

Conventionally, RRM algorithms are largely based on opti-
mization theory, where the design aims at optimizing certain
utility that depends on the instantaneous state of the system.
This approach is insufficient when the system utility represents
the long-term behavior rather than is based entirely on the
current state. Additionally, it often involves solving large-scale
and non-convex optimization problems, which are computa-
tionally challenging.

In recent years, there is a growing interest in applying rein-
forcement learning (RL) methods to adaptively configure the
radio resources to match the deployment environment on the
fly. An overview of related works is given in Section I-A. This
is a natural “marriage” for several reasons. First, RRM is a
closed-loop and sequential operation: configure the resources,
observe performance, and fine tune. Second, RRM mostly
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cares about the long-term performance, and its parameters are
adjusted at a low rate. Last but not the least, there exist well-
established feedback protocols in cellular standards, which
provide a built-in mechanism for observing the state and
receiving rewards.

Two critical issues that adopting RL for RRM faces are the
scalability and generalization. Dense deployment leads to an
exponentially growing action space, which creates significant
challenges for training a (deep) RL algorithm. Furthermore,
the model training phase of RL does not necessarily have the
same environment as the deployment phase, which may be a
potentially unseen environment. How to efficiently transfer the
trained RL agent to a new environment with fast convergence,
is an important research problem.

This paper focuses on a specific RRM use case of user
scheduling to address the aforementioned challenges. We cast
user scheduling as a decentralized partially observable Markov
decision process (Dec-POMDP) problem, and then develop
a multi-agent reinforcement learning (MARL) framework to
make user scheduling decisions. The MARL design takes into
account the specific application of cellular user scheduling and
centers the design around a deep learning algorithm called
Deep Recurrent Q-Network (DRQN) [1], which allows each
agent to utilize its own historical information in decision
making, thus making it a decentralized executed policy. We
demonstrate that the MARL design not only scales much
better than its centralized RL counterpart due to its fully
decentralized nature, but also achieves almost the same per-
formance. Furthermore, we investigate the transferability of
both centralized RL and MARL with respect to mismatched
or even unseen environments (between training and testing),
and empirically evaluate a transfer learning method that first
trains a general RL agent based on a pool of environments,
and then fine-tunes when deployed. The advantage of faster
convergence is observed for both centralized RL and MARL,
although the gain of the latter is smaller than the former.

A. Related Works

There have been a growing body of literature that apply
RL to solving wireless network optimization problems, such
as spectrum access and sharing [2]-[4], mobility management
[5]-[7], and power control [8], [9]. Limiting to the scope of
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Fig. 1: Tllustration of the system model. In this example, BSs are regularly
positioned with a conventional hexagonal structure, while UEs are randomly
dropped. Each BS can choose to serve one UE (indicated by the airwave
symbol), or turn off (no airwave symbol).

this work, RL has been used for user selection in [10]. More
recently, [11] uses deep RL to solve radio resource allocation
problems in massive multi-input multi-output (MIMO) sys-
tems. [11]-[13] are the closer literature to our work, using
either deep RL or MARL to control downlink power and user
selection. More specifically, [11] uses centralized deep RL
algorithms to control transmit power as well as subchannel
allocation in a multi-cell system. Similarly, [12] and [13] use
MARL to control the downlink power and select users with
the exchange of neighbor observations to maximize the overall
throughput of the wireless system.

B. Paper Organization

The remainder of this paper is organized as follows. The
system model and the Dec-POMDP formulation are described
in Section II. Details of both MARL and centralized RL de-
signs are given in Section III. Experiment results are reported
in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We first present the communication model for a cellular
user scheduling problem, and then describe how to cast it in
the framework of decentralized partially observable Markov
decision process (Dec-POMDP) with networked agents.

A. Communication Model

A multi-cell wireless network is considered, as depicted in
Fig. 1. There are N, base stations (BS) and N,, user equipment
devices (UE) located inside an area with a size of dg x dg. We
consider a time slotted system. The UEs, after being randomly
dropped in the area, take random walks following

[2(8), y(1)] = [2(t = 1), y(t = D] +vo [0z, 8],

where (0, 0,) follow independently uniform distribution on
[—1,1], and vo thus represents the maximum step size a UE

can move in one time slot. Boundary conditions are handled
with mirror-back.

We adopt a standard 3GPP pathloss model with a specified
antenna pattern [14]. Specifically, we assume each BS has a
maximum transmit power of 10 dBm, and the pathloss between
BS i and UE j is characterized by

PL;; =153+ 37.6log(d;;) + Low, d > do

where Lo, = 10 dB and d;; is the distance between UE j
and BS i. We set dy = 1m and re-drop (or bounce) the UE if
it enters this area around the BS. We also adopt a parabolic
antenna pattern, defined as

A(f) = min {12 (9:13)2 : Am}

with 63g5 = 7/3 and A, = 20 dB. A(6) is then subtracted
from the transmit power when computing the received power
at direction 6. To simplify the problem, we only consider
pathloss in the user scheduling problem, which is suitable
when the timescale of the scheduling decision is large. This
simplification also allows for a (relatively) less random wire-
less environment, where the dynamics mainly come from the
geometry and user movement.

We assume that all BSs and UEs are on the same frequency,
and each BS serves at most one UE at a time. In each time
slot, if UE j is served by BS 1, its data rate at time ¢ is given
by

C@j(i’) = log (1 + S|NRi,j (ﬁ))

where SINR; ;(t) denotes the signal-to-interference-plus-noise
ratio (SINR) that captures both the background noise and all
interferences from non-serving BS’s {k € [N,] : k # i}. The
overall system utility, however, often cannot simply consider
the instantaneous data rate for various reasons (e.g., fairness).
We thus adopt the long-term average rate for UE j as [13]:

r(t) = arj(t = 1) + (1 = )Ci (1), (1)

if UE j is served by BS 7 at time ¢. If no BS is serving this
UE at ¢, the second term is 0. a € [0, 1] is the discount factor.

B. The POMDP Formulation
A Dec-POMDP can be written as

M = (87 {Ai}iE[Na]a P7 Ra Z7 {O}iG[Na]aNaa ’Y)

for [N,] agents. In this formulation, each agent i has its
local observation o; € Z which is sampled from a global
state s € S according to o; = O;(s). Agent i generally
has a different observation o; from other agents and can thus
take different action a; € A;. The joint action is denoted as
a; = (a1, a2, ,an,,+). When a joint actions v is taken by
the agents under a given state s, the state transit probability
P:SxAxS — [0,1], written as P[s’ | s,u], denotes
the probability of transitioning to next state s’, and a global
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reward R is collected. Our goal is to maximize the discounted
accumulated reward:

+oo
G(t):=E lz YTR(t+7)

7=0

2

by allowing each agent to choose which UE (if any) to serve
at each time slot ¢.

Given this formulation, we now describe how to model the
user scheduling problem as a Dec-POMDP. We consider each
BS as an agent, and present the key elements as follows.

Agents. Each BS is an agent in the MARL formulation.

State. The global state of the entire system consists of the
relevant UE information, i.e., position and moving average
data rate in Eqn. (1). We note that the discount factor «
helps balance the services to all UEs, including the ones that
experience unfavorable propagation, by decaying the moving
average data rate of UEs that have not been served.

Observation. Each agent is only allowed to observe the
nearest K UEs. The local observation of each agent contains
the UE index, its relative position to the agent (BS), and the
moving averaged data rates of the UE.

Action. In this work, we consider a simple action space
where each agent can choose to serve one of the K nearest
UEs with a maximum transmit power, or not serve any UE
by turning off (to reduce its interference to other UEs served
by nearby BSs). We also comment that for the algorithms
presented later in this paper, if more than one agent chooses
the same UE to serve, only the agent corresponding to the
strongest received power at the UE successfully serves this
UE, while other agents are counted as interference. This is also
a relatively pessimistic option, as advanced mechanisms such
as Coordinated Multipoint (CoMP) [15] may allow multiple
BSs to simultaneously serve the same UE and thus increase
the system utility.

Reward. The global reward is defined as the sum of all
moving averaged data rates, truncated at a threshold value to
reflect the maximum rate limitation in practical systems. More
specifically, the overall system reward can be written as

R(t)= Y max{r;(t),rm}

JE[Nw]

where r1y is the UE rate threshold.

III. ALGORITHM DESIGNS

Maximizing the objective in (2) falls into the category of
reinforcement learning (RL), and we propose a multi-agent
reinforcement learning (MARL) design that is tailored for the
specific wireless user scheduling problem. In addition, we also
present a centralized RL design that serves two purposes: (1)
It serves as a benchmark for MARL, to measure how much
“coordination” among clients (by allowing a central decision
making based on the complete system state) can benefit the
policy; (2) Its performance against a baseline design, which
will be elaborated in the simulation section, characterizes the
potential gain RL-based designs may have.

global reward N
stimated local Q-values Loss .
function Environment
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observations

local history: ',

RNN agent n I local history: h!
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Fig. 2: The MARL design for user scheduling.

local history: h}

A. MARL Design

Our proposed MARL design is based on two well-known
methods: DRQN [1] and QMIX [16], but with substantial
changes that reflect the “domain knowledge” of our wireless
problem. An overall illustration of the proposed MARL design
is given in Fig. 2. The design involves a Deep Recurrent Q-
Network (DRQN) model for agents to estimate their local
Q functions, and a QMIX network to estimate the global Q
function from the local Q functions. More specifically,

« DRQN. DRQN operates as follows

= 057t = h(of?, 7500,
QL) = max Q) (7", a;0,).

Basically, it utilizes the history information in Tt(l_)l which
is generated from network h defined by 6. We note that
this network only requires local history information, i.e.,
it does not require any information from other agents.
This feature is critical in achieving better scalability, as
the increase of agents does not scale the computation or
storage requirement of each agent much. At the same
time, another network Q(*) (defined by 6,) generates the
local Q value with local information Tt(q) The DRQN
network incorporates both functions h and Q).

o QMIX. Local Q functions alone are insufficient to realize
cooperation in an MARL setting. We thus adopt the
method of QMIX [16] and construct the global Q function
as another function of local Q functions:

Qlot = fQMIX(Qloe§ etot(oﬁ ep))

where Q1o is a vector of local QIOC As long as 38;‘“ >0,
local Q functions will produce the same choice of actions
with the global Q function [16]. With QMIX, our network
can be trained with back propagation by minimizing

E{S,a,s’} [(Qlol(& a) - (T(Sv a, S/) + Y arg maXa’ Qtot(sla a/)))2]'

Finally, the action taken by agent ¢ at time ¢ is

a; ¢ = argmax Q(i)(rt(i), a;0q). 3)

a
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Fig. 3: The centralized RL design for user scheduling.

B. Centralized RL Design

Based on the MARL design in Section III-A, we further
develop a centralized RL method for the user scheduling
problem. Since the goal for the centralized RL is to facilitate
our investigation of MARL, we reuse DRQN in order to have
a fair comparison. The action space of centralized RL is the
combination of actions from all BSs, and the basic training
steps remain the same as discussed in the previous MARL
section. Compared with the MARL design, the centralized
RL is “simple” in the sense that the RNN network takes the
global observation o; = [o},02, - ,0]] as the input and
directly outputs the global Q-function Q. Fig. 3 illustrates
the centralized RL design for user scheduling, and the action
Centralized RL agent takes as time ¢ is

a; = argmax Q(7y, a; 6,).
a

IV. EXPERIMENT RESULTS
A. Simulation Setup

We evaluate the performance of the proposed MARL design
in a system-level simulation. In the simulator, the environment
has N stationary BSs that are randomly distributed within a
bounded area with a minimum distance of d separating them.
The simulator will randomly generate the initial positions for
the M UEs, and these UEs will randomly move. The detailed
setting of the environment follows the description in Section II.
All the results shown in this section are averaged of 10
randomly generated environments unless otherwise specified.
The comparison of different algorithms is fair because they
share the same set of multiple random seeds in generating the
environment traces in the simulation.

We compared our MARL method with two baselines. One
is a rule-based greedy algorithm, where each BS greedily
serves the user with the best channel quality until the long-
term local data rate reaches the predefined threshold. The BS
then serves the second best UE. We denote this simple greedy
algorithm as the Heuristic algorithm. The other baseline
we would like to compare our MARL design with is the
Centralized RL, described in Section III-B. This is basically
a centralized version of DRQN, where the DRQN network
takes the global observation as the input and provides actions
for all agents.

B. System Reward and Training Efficiency

We compare the training efficiency between Centralized
RL, MARL, and Heuristic mentioned above. In our design

—— MARL
—- Centralized RL
=+ Heuristic

10-

o 50 100 200 250 300

150
Training Epochs

Fig. 4: Average training results from a 4-BS 10-UE environments.

Method Epochs to optimal | Total Reward
Heuristic N/A 19.10 +/-1.08
Centralized RL 200 24.31 +/- 1.09
MARL 200 23.65 +/- 0.98

TABLE I: Average training results on 10 different environments.

of the centralized RL agent, the size of action space grows
exponentially with the number of BSs, rendering the training
difficult. We thus set the number of BSs to 4, to allow for a
fair comparison of training efficiency between RL and MARL.
The scalability of these two methods will be investigated in
Section IV-C.

From Fig. 4 and Table I, we can see that both methods
can outperform the rule-based heuristic method with roughly
150 epochs of training', and Centralized RL converges a little
faster than MARL. After 300 training epochs, both methods
can outperform Heuristic by approximately 38% and almost
converge to the same operating point. On the other hand,
because the centralized RL agent has a complete view of
the system (i.e., global observation), it has a better starting
point than MARL. This leads to better early performance of
Centralized RL over MARL, which is observed in the results.

C. Scalability

The “curse of dimensionality” prevents the centralized RL
to scale with the number of agents, as the action space grows
exponentially and convergence cannot be guaranteed anymore.
This scalability issue associated with centralized RL is partic-
ularly harmful when deep learning is adopted. First, a large
action space typically leads to a large output layer. Second,
the exponentially expanding action space means adequate
exploration quickly becomes difficult if not infeasible.

These two issues are captured in the simulation results
reported in Fig. 5, where we repeat the experiment setting
described in Section IV-A with different number of agents. We
report the total system rewards, which is why they generally
increase with the number of agents. We can see that when
the number of agents is small, i.e., between 4 and 6 in our
particular user scheduling simulation, we have the expected

'Our training epoch is similar to the training episode defined in Algorithm
3 of [17]. We keep a replay buffer and sample a mini-batch of data points
for training at each time slot. Meanwhile, we also use our current agent to
sample a new trajectory and feed it into the replay buffer.
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Fig. 5: Total rewards versus the number of agents.

behavior that Centralized RL has a slight advantage over
MARL, both of which outperform Heuristic. This is consistent
with the results in Section IV-B. However, when the number of
agents continues to increase, we can see that Centralized RL
first falls below MARL, and then its convergence is severely
impacted such that the total rewards decrease with more agents
in the system. We should emphasize that these results are
obtained by training for the same amount of epochs across
different number of agents. Conceivably, the performances
can be improved by increasing the training epochs, but it
still highlights the scalability limitation of Centralized RL. On
the other hand, the centralized-training decentralized-execution
MARL solution scales well with the number of agents, and
has a much better performance. Nevertheless, its advantage
over Heuristic also becomes smaller at 8 or 9 agents, mainly
because the centralized training also becomes more difficult.

D. Transferability

1) The Problem: One issue of the experimental results so
far is that both training of the RL agents and testing are
carried out in the same environment. In other words, there is
no statistical mismatch between training and testing. In reality,
however, this is often not the case. What is more likely is that
data collected to train the RL agent may not fully represent the
actual deployment environment. It is of interest to know how
RL agents trained in one environment behave in others, and
how one can improve the generalization capability of MARL
for wireless user scheduling.

We first take a look at how rewards are affected by the
different deployments. To see this, we have randomly gener-
ated 100 environments, and run the Heuristic algorithm (for
its computational efficiency) to get the system rewards for
these deployments. The deployment setting follows that in
Section IV-A, with 4 fixed BSs and 10 randomly dropped UEs.
Fig. 6 plots the histogram of system rewards. The results show
that the system reward can change drastically under the same
algorithm, even in such a setting with limited randomness.

A natural follow-up question from Fig. 6 is that, if we take
MARL agents trained in one environment and then directly
apply them to a different one, how much of a performance
degradation, if any, we will observe? To answer this question
empirically, we randomly generated 10 environments (with

14 16 18 20 22 24 26
reward

Fig. 6: Histogram of the system rewards with Heuristic across 100 randomly
generated environments.
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Fig. 7: Rewards of the agents trained in one environment and tested in another.

the same procedure described previously) and then train the
MARL agents for each deployment. For every trained set
of agents, we then test their performances over the other
9 deployments, and plot the resulting system rewards in
Fig. 7. In this figure, the row indices stand for the training
environments, while the indices of the columns are for the
testing environments. As we can see from this figure, there are
a few environment pairs where the performances do transfer
well, but by and large, the transferability is very limited.

2) The Solution: This limitation essentially requires one to
train the RL model from scratch for every new environment,
which is undesirable. Alternatively, a strategy to reduce the
computational cost is to train a general model that performs
relatively well across a large number of environments, and
then fine-tune the general model on the specific environment
at the deployment time.

To evaluate this approach, we have reused the same 10
environments from those in Fig. 6, and trained the general
model according to the following steps.

1) Initialize the common model.
2) For each outer loop, randomly sample an environment.
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Fig. 8: The required fine-tuning epochs from the general model to achieve 90%
performances of individually trained RL agents. General model is trained on
environments 0 to 9, and fine-tuned on all 13 environments.

3) Train the RL model for n epochs. Test on all 10 environ-
ments and take the average.
4) Repeat steps 2) and 3) until a good result is achieved.

After these steps, we then fine-tune the general model on
the specific environment in which we deploy the RL agents,
using the same training mechanism as described previously.
Our hope is that with a general model that performs reasonably
well across a large number of environments, it presents a good
initialization model to have quicker convergence than starting
from scratch (i.e., a random initial model). The experimental
results are reported in Fig. 8. In this figure, we first pool
the 10 environments together to train a general model with
1000 epochs, and then fine-tune the model for each of the
10 environments. Fig. 8 reports the number of additional
steps (epochs) fine-tuning requires to reach at least 90% of
the reward that is achieved by Centralized RL, which is
individually trained for this environment. We can see that
for fine-tuned Centralized RL, we generally require fewer
than 50 training steps of fine-tuning. This is a significant
advantage over training from scratch, which often requires

V. CONCLUSION AND DISCUSSION

We have developed a multi-agent reinforcement learning
(MARL) solution for user scheduling. This method enjoys
comparable performance to the centralized RL, both of which
outperform the simple engineering heuristic solution. More
importantly, we have seen that our MARL design allows for
better scalability (with the number of base stations) in the
system than centralized RL, which is an important feature
that is highly desirable in practice. On the other hand, trans-
ferability of both MARL and centralized RL was empirically
studied, and a simple fine-tuning approach based on a general
model trained on a pool of environments was shown to achieve
faster convergence while achieving comparable performance
with individually trained RL agents.
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