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EXECUTIVE SUMMARY

This white paper is an outgrowth of a National Science Foundation (NSF) Project Scoping Workshop, the purpose of
which was to assess the current status of calculations for the nuclear matrix elements governing neutrinoless double-
beta decay and determine if more work on them is required. The recent e↵ort to define the United States’ role in
ton-scale experiments, together with the conclusion in 2021 of the Department of Energy (DOE) Topical Collaboration
on neutrinoless double-beta decay, made such an exercise extremely timely.

The main conclusions of the workshop can be summarized as follows:

• Neutrinoless double-beta decay of nuclei is an important window into the physics of neutrinos. It could be the
first lepton-number violating process ever observed. As such, it would provide key insights into physics beyond
the Standard Model—in particular how the matter-anti-matter asymmetry of the universe arose.

• Much progress on the theory of neutrinoless double-beta decay of nuclei has been made over the last five years.
An end-to-end set of e↵ective field theories (EFTs) that shows how to evolve the physics of the decay from the
scale at which lepton number is violated (possibly much larger than TeV) down to the scales relevant for nuclei
has been developed. Lattice quantum chromodynamics (LQCD) calculations of the process in the two-nucleon
(NN) system are being set up, and the first ab initio many-body calculations of neutrinoless double-beta decay
matrix elements M0⌫ have been carried out.

• Much remains to be done before theory can successfully complement the large experimental e↵ort to observe
neutrinoless double-beta decay and measure its rate. Both the accuracy and precision of LQCD and ab initio
nuclear many-body calculations need to be improved if crisp statements about experimental observation or
non-observation are to be made. The uncertainty in nuclear many-body calculations remains largely unquanti-
fied, making it di�cult to interpret the significant di↵erences predicted by di↵erent approaches for the rate of
neutrinoless double-beta decay in candidate nuclei.

• Uncertainty quantification is thus crucial to future progress. Better assessment of both the parametric uncer-
tainty and the model uncertainty in predictions of neutrinoless double-beta decay matrix elements is needed.
The tools for the former exist, and methodology for the latter is under development. The ab initio calculation
of a variety of nuclear observables related to neutrinoless double-beta decay can help establish and reduce the
uncertainty in M0⌫ that arises from the complexity of the nuclear many-body problem.

I. INTRODUCTION

In recent years the search for new fundamental physics, for the forces and particles that underlie the Standard
Model, for the explanation of the excess of matter over antimatter and similar mysteries, and for the sources both
of symmetries and their violation, has moved increasingly to low-energy experiments. Among the most visible and
promising are those that seek to observe neutrinoless double-beta (0⌫��) decay, a process in which two neutrons
inside an atomic nucleus turn into protons, emitting two electrons and no neutrinos. An observation of this process
would show that lepton number (L) is not conserved and that the neutrino mass has a Majorana component, implying
that the mass eigenstates are self-conjugate [1]. Observation of 0⌫�� decay would thus provide crucial information
about neutrino mass generation [2–4], and suggest that the matter-antimatter asymmetry in the universe originated in
leptogenesis [5]. The major implications of an observation made the construction of a ton-scale 0⌫��-decay experiment
the top priority for new projects in the 2015 NSAC Long Range Plan [6], which set the decadal priorities for nuclear
physics. The anticipated investment is in the range of 250-400 million dollars.

Smaller experiments already put stringent limits on the decay rate [7–18], e.g. T 0⌫
1/2 > 2.3 ⇥ 1026yr for the decay

of 136Xe [19]. The next very few years will see stricter limits from experiments—such as LEGEND-200, CUORE,
KamLAND-Zen 800, and SNO+—that are currently operating or under construction. On a slightly longer time scale,
ton-scale experiments [19–24] based on 76Ge, 100Mo, 136Xe, and perhaps other isotopes will come on line. The goal of
these large experiments is the ability to detect any decay caused by the exchange of light Majorana neutrinos if the
neutrino mass hierarchy is inverted (i.e., if the neutrino with the largest electron-flavor component is the heaviest),
as well as increased sensitivity to decay caused primarily by the exchange of other still-hypothetical particles.

In order to extract the e↵ective light-neutrino Majorana mass m�� ⌘ |
P

i U
2
eimi| (with mi the mass of the neutrino

mass eigenstate i and Uei the elements of the Pontecorvo-Maki-Nakagawa-Sato matrix) from any of these impressive
experiments, one needs nuclear matrix elements (denoted by M0⌫) of the decay operators. The degree to which
ton-scale experiments will be sensitive to decay caused by the exchange of inverted-hierarchy light neutrinos depends
on these nuclear matrix elements, as does the the extent to which experiments in more than one isotope will prove
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useful. The nuclear matrix elements su↵er at present from sizable uncertainties [25]. Their accurate computation,
with a quantified uncertainty, is therefore a task of the greatest importance.

The need for precise nuclear matrix elements is in fact more general than the notion that the exchange of light
Majorana neutrinos causes 0⌫�� decay. That idea is based on the assumption that lepton-number violation (LNV)
originates at very high energies and manifests itself in the decay through the “high-scale seesaw,” which leaves
Majorana neutrino masses as its only remnant at low energies. If that is indeed the case, 0⌫�� decay and neutrino-
oscillation experiments will together tell us most of what we can learn. High-scale LNV is only one scenario, however,
and even in the restricted class of seesaw models, it applies only if the new particles are very heavy right-handed
neutrinos. In many Beyond-the-Standard-Model (BSM) scenarios, other lower-scale sources of LNV can also induce
0⌫�� decay. In left-right symmetric models, for example, heavy neutrinos and charged scalars with TeV-scale masses
can be exchanged. In other scenarios there may be light right-handed (sterile) neutrinos with masses much lower than
the electroweak scale. The large number of ways in which lepton number could be violated (see, e.g., Ref. [26] for
a review) means that ton-scale searches for 0⌫�� decay have a significant discovery potential beyond the inverted-
hierarchy high-scale seesaw. Each kind of LNV leads to its own set of transition operators, the nuclear matrix
elements of which must be calculated. If the calculations are su�ciently accurate, we can assess the sensitivity of the
generation of experiments now coming online to various kinds of LNV. We can also provide a subsequent generation of
experiments with information on how best to narrow the range of possibilities for LNV and neutrino-mass generation
through measurements of single-electron spectra, electron angular distributions, and the isotopic dependence of the
decay rate.

The ability to compute all the relevant nuclear matrix elements requires work at widely separated energy scales, from
the high energies at which LNV originates all the way down to nuclear energies, and the ability to bridge the scales.
EFT provides the bridge by expanding observables and Lagrangians in the ratios of the important energy scales. In
reality the calculation is done via a series of EFTs—a connected set of bridges rather than a single one; see Fig. 1
for an illustration. The SM EFT allows us to encode the e↵ects of di↵erent LNV mechanisms in operators involving
neutrinos, electrons, and d and u quarks, thereby taking us from the TeV scale to the scale of quark confinement at
around 1 GeV. Converting these operators into hadronic operators that are organized through chiral perturbation
theory requires non-perturbative input from LQCD. Chiral-perturbation-theory operators are then used to derive
operators in a nucleons-only Hilbert space; following that step, the operators can be used in many-body calculations
of nuclei. In combination, the bridges deliver us a separate set of chiral EFT nn ! pp transition operators for each
LNV source that are to be used in nuclear many-body calculations. The combination of SM EFT, LQCD, chiral
EFT, and ab initio (first-principles) nuclear many-body methods, each of which has the ability to control uncertainty,
therefore provides a path—the only path, in fact—toward the reliable estimation of uncertainties in M0⌫ .

Chiral EFT is key to the progress made to this point, and to future e↵orts to quantify uncertainties. Chiral EFT [27–
30] is the extension of chiral perturbation theory to the few-nucleon problem. Just as with chiral perturbation theory,
chiral EFT is organized as an expansion in powers of p/⇤ or m⇡/⇤, where p is a typical nucleon momentum, m⇡ is the
pion mass and ⇤ is the theory’s “breakdown scale” of about 500 MeV. But chiral EFT is not a perturbative theory,
because it has to account for nuclear binding. Although discussions of exactly how to do that continue (see, e.g., [31])
chiral EFT has the virtue of delivering consistent nuclear forces and 0⌫�� operators up to a given order in the chiral
EFT expansion. Even better, these operators include the consequences of QCD’s chiral symmetry, e.g., connections
between pionic operators and the axial current that governs beta decay. Perhaps most significantly for the purposes
of this document, chiral EFT permits estimation of the uncertainty associated with the model of the nuclear force
and the interactions that govern 0⌫�� decay. A kth order chiral EFT calculation should have a fractional error of
O({p,m⇡}

k+1/⇤k+1). It follows that di↵erent implementations of chiral EFT—di↵erent orders of the calculation,
di↵erent regulator choices—should give answers that are consistent with one another once this error estimate is taken
into account. Bayesian techniques have recently been employed to quantify this error [32], and show that—provided
the chiral EFT calculation is implemented carefully—the error estimate provides a good account of the predictive
accuracy of chiral EFT in light nuclei [33, 34]. Chiral-EFT forces and operators therefore provide the starting point
for ab initio calculations that use the nuclear many-body methods described below.

The nuclear-theory community has made significant progress, at all the levels in this tower of EFTs, toward more
accurate calculations of M0⌫ . But this progress has in part served to confirm that there are O(1) uncertainties in
M0⌫ . These uncertainties (unless reduced) will prevent us from learning about the sources of LNV, even if several
experiments detect the process.

There is therefore still much to do. In particular:

• The 0⌫�� transition operators used in nuclear-structure physics are now written in terms of “low-energy con-
stants” (LECs) that multiply terms in the chiral-EFT Lagrangian that is used at the hadronic scale. In chiral
EFT, the LECs multiplying the terms at the lowest orders are thus the most important. Previously unrecognized
LECs associated with zero-range nn ! pp transition operators appear even at leading order in the 0⌫�� piece
of the chiral Lagrangian, for both light-Majorana neutrino exchange [36] and TeV scale LNV [35]. We must
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FIG. 1. A “tower of theories” leading to the computation of the nuclear matrix elements M0⌫ that control the rate of 0⌫��
decay. At the highest level, above the cuto↵ ⇤LNV for all e↵ective theories, is the ultimate BSM LNV. It manifests itself at
the quark and gluon level through Standard-Model EFT, at the nucleon and pion level through chiral perturbation theory
(ChiPT), at the nucleon-only level (i.e., with pions no longer part of the Hilbert space, but instead accounted for in multi-
nucleon operators) through chiral EFT, and at the nuclear level through the techniques of nuclear-structure theory. Figure
adapted from Ref. [35].

improve our knowledge of these LECs, both by relating 0⌫�� decay to other �I = 2 processes and by direct
calculation within LQCD.

• To use the results of EFT and LQCD in the computation of nuclear matrix elements—that is, to use the chiral-
EFT Hamiltonians and transition operators that these methods supply in many-body calculations—we need to
improve ab initio methods. The improvement will involve an increase in accuracy, the use of a wide range of
chiral-EFT Hamiltonians (to allow uncertainty quantification), and a careful analysis of the way such methods
employ the EFT operators. The first two of these will require, in addition to analytic work, more e�cient use
of our best supercomputing resources. Existing codes and their extensions will need to be reworked to leverage
accelerators such as GPUs. Benchmarking with methods that are known to give very accurate results (so-called
“quasi-exact” methods that have thus far been restricted by complexity to light nuclei) is also important.

• At both the hadronic and nuclear scales, we need a consistent and unified quantification of uncertainties. We
must be able to both propagate parameter uncertainties to observables and to account for and disentangle
deficiencies in our calculations. The innovative use of Bayesian methods will be essential.

In short, the framework developed in the last few years to combine LQCD, EFT, and ab initio nuclear structure is not
yet e�cient enough to allow a genuine assessment of uncertainty. To be of real use in the search for new physics, all
three ingredients must be improved in the coming decade and made more computationally e�cient; their uncertainty
also needs to be reliably addressed. But these kinds of intelligent improvements will not, on their own, be enough:
increased access to computing resources and dedicated exascale allocations will also be important.

The NSF Project Scoping Workshop that led to this white paper was organized by Jon Engel, Witek Nazarewicz,
and Daniel Phillips, and held virtually on January 31 and February 1, 2022. After reviewing the experimental and
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theoretical status of the field and discussing recent developments, the attendees set forth the challenges to interpreting
experimental results, discussed ways to address those challenges, mapped out a path forward, and planned this report.
More details about the workshop (list of participants, program, presentations) can be found on its website.

A recent Snowmass white paper [37] provides a particle-physics perspective on these issues. The Project Scoping
Workshop, and this report, are focused more on the nuclear-theory aspects of 0⌫�� calculations. The nuclear- and
particle-theory for 0⌫�� decay is also reviewed—together with the experimental situation—in Ref. [38]. Our workshop
and this report di↵er from these papers in the detail in which they discuss modern methods and the accompanying
uncertainty quantification that will allow a meaningful error bar in the prediction of M0⌫ for any particular BSM
mechanism.

In the next section we provide a summary of the current state-of-the-art in both the nuclear-physics aspects of M0⌫

(Sec. II A) and uncertainty quantifcation (UQ) in nuclear theory (Sec. II B). Section III then discusses the innovations
and calculations that are needed to advance the nuclear theory of M0⌫ , while Sec. IV describes a plan to quantify
uncertainty in those calculations. Because of the significant emphasis on UQ for 0⌫�� matrix elements in this report
Secs. IV and IIB are quite detailed and explicit about how we think that UQ can be carried out. We close in Sec. V
with a summary of the theory advances and collaborative structures that are needed in order to establish precise and
accurate calculations of neutrinoless double-beta decay.

II. SUMMARY OF THE CURRENT STATE OF THE ART

A. Physics

Much of the current state of the art in the computation of M0⌫ arose from work in the DBD Topical Theory
Collaboration. LQCD, EFT, and nuclear many-body methods all played a role in the multi-scale problem. We discuss
recent developments in each of these areas.

EFT. Before the Topical Collaboration, the connection of nucleon operators with fundamental sources of lepton-
number violation tended to be ad hoc, with BSM models analyzed individually, and unsystematically. The first
application of the framework of chiral EFT to the problem, for 0⌫�� decay induced by heavy-particle exchange,
appeared in Ref. [39]. In the last few years, work of this kind has grown much more systematic. References [35, 40, 41]
systematized the work of Ref. [39], showing how the parameters that determine the rates of very heavy-particle lepton-
number violating physics work their way down into nucleon-level �� operators. At around the same time, Ref. [42]
treated light-neutrino exchange, showing that working to N2LO requires “non-factorizable” diagrams (those that
cannot be broken in two by cutting the line representing the exchanged neutrino) that had never been considered
before. Shortly after that, researchers made the surprising discovery [36] that a contact interaction, representing the
e↵ects of high virtual-neutrino momenta that are integrated out of the chiral EFT, occurs at leading order. Though the
coe�cient of the contact operator was initially unknown, it was later determined approximately through a resonance-
model-based interpolation between perturbative QCD and low-energy pion and nucleon dynamics. [43, 44]. For the
first time, nuclear many-body computations of M0⌫ in the nuclei used in experiments are taking the contact term into
account. So far it has caused all ab initio matrix elements to increase.

LQCD. The hope is that LQCD will soon be able to directly supply the coe�cient of the aforementioned contact
terms, as well all other relevant LECs. In the last few years, the field has made significant progress toward that goal.
A contribution to 0⌫�� decay with TeV-scale LNV is produced by the exchange of BSM heavy particles between two
pions, each of which are then absorbed by protons as they turn into neutrons. The exchange between these virtual
pions is easier to compute with LQCD than the direct exchange between nucleons, and in recent work the dependence
of the resulting 0⌫�� nucleon-level matrix elements on parameters that specify BSM models has been calculated
[45, 46]. Pionic matrix elements in the light-neutrino exchange scenario have also been computed in LQCD, and
the corresponding LECs in chiral perturbation theory have been constrained [47, 48]. We anticipate progress toward
direct calculations of nn ! pp matrix elements and are developing the formalism for constraining contact LECs from
future LQCD calculations [49, 50].

Nuclear Structure. At the nuclear-structure scale, recent progress has been mostly in applying newly developed
non-perturbative ab initio many-body methods to �� decay. Such methods start with interactions and operators
determined from QCD and/or fit to data in very light nuclei (A = 2 , 3, or 4), and then produce (approximate)
solutions to the Schrödinger equation in heavier nuclei. Three distinct ab initio methods have been applied together
with chiral-EFT interactions to the heavy open-shell nuclei of interest for 0⌫�� experiments. The first two, the
In-Medium Generator Coordinate Method (IM-GCM) and the Valence Space IMSRG (VS-IMSRG) are variants of
the In-Medium Similarity Renormalization Group (IMSRG), an approach in which one uses renormalization-group
flow equations to decouple a predefined “reference” state, ensemble, or subspace from the bulk of the many-body
Hilbert space. The third method is Coupled Cluster (CC) Theory; it uses an ansatz for the ground state in which

https://a51.lbl.gov/~0nubb/nsf_0nubb/
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FIG. 2. The light-neutrino-exchange M0⌫ for the transition 48Ca !48 Ti, computed in various approaches. The four right-
most values, in green, all result from the the same chiral-EFT interaction. References: EDF [51, 52], IBM [53], QRPA [54],
SM-pf [55, 56], SM-sdpf [57], SM-MBPT [58], RSM[59], QMC+SM [60], IM-GCM [61], VS-IMSRG [62], CCSD,CCSD-T1 [63].

particle-hole excitation operators are exponentiated before being applied to a Slater determinant.
All three of these methods, along with many older and more phenomenological schemes, have been applied to the

computation of M0⌫ for light-neutrino exchange in 48Ca, the lightest isotope that can be used in an experiment.
Figure 2 displays the compiled results. Those produced by the methods just described—the “most ab initio”—are
shown in green on the right of the figure. The uncertainty range is more significant for these than for other methods,
but still omits most systematic error.

The next section reviews the state of the art in uncertainty quantification. The rest of this document then discusses
both the ways in which physics methods can be improved in accuracy, and the ways in which remaining uncertainty
in their predictions for M0⌫ can be reliably estimated.

B. Uncertainty quantification

In 2011 Physical Review A published an Editorial that stated “. . . there is a broad class of papers where estimates
of theoretical uncertainties can and should be made. Papers presenting the results of theoretical calculations are
expected to include uncertainty estimates for the calculations whenever practicable.” [64]. Uncertainty quantification
is crucial for calculations of 0⌫��-decay in nuclei. The planning and—eventually, we hope—the interpretation of 0⌫��-
decay measurements requires that theorists deliver not just a expectation value for M0⌫ , but also an uncertainty that
represents the range of probable values that matrix element can take and does so in a statistically meaningful way.
The goal of the uncertainty quantification (UQ) is not a precise evaluation of whatever is missing from the calculation.
Quoting again from Ref. [64]: “The aim is to estimate the uncertainty, not to state the exact amount of the error or
provide a rigorous bound.”

UQ in nuclear-physics calculations pre-dated that Editorial but standard regression analysis was prevalent for many
years [65]. Since then, nuclear-theory UQ has become much more sophisticated. This progress has taken place on
several fronts.

The first, and most straightforward kind of UQ, is the estimation of error bars on the parameters ✓ in the nuclear-
physics model being employed, then the propagation of those uncertainties—including their correlations—to model
predictions. An early example of such an e↵ort is the estimation of the parameters in a sophisticated nuclear energy-
density functional [66]. There are many recent examples of nuclear-structure calculations that do this, but a partic-
ularly striking one from the ab initio world constrained the parameters of nuclear forces using data from light nuclei
and propagated the resulting uncertainties to predictions for properties of 208Pb [67].

Three pieces of theory technology are commonly employed in such studies:

• Bayes’ theorem, which relates the multi-dimensional posterior probability density p of the model parameters ✓
to the data, y, used to constrain those parameters, according to:

p(✓|y) / p(y|✓)p(✓), (1)

where p(✓) is the a priori distribution of the parameters ✓.
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• A method by which a representative set of samples of the posterior probability distribution p(✓|y) can be
obtained. Markov Chain Monte Carlo (MCMC) sampling is commonly employed, and was combined with
a technique called “history matching” in Ref. [67]. We note that with such a set of samples in hand, it is
conceptually straightforward to obtain a predictive probability distribution for, say, M0⌫ . That distribution is
found by repeated forward evaluation of the model for M0⌫ at the di↵erent parameter values ✓ in the set of
samples.

• Emulators that allow rapid evaluation of the (approximate) model at di↵erent values of the parameters ✓. This
makes practical the computation of the likelihood p(y|✓) within whatever sampling framework is chosen.

Nuclear theorists have also become more attuned to the imperfections in their models. The inclusion of a “model
discrepancy” term in the analysis of data is known to be crucial for accurate parameter estimation [68, 69]. This
means that one must admit that not just data, but also calculations, have imperfections that may cause a mismatch
between theory and experiment. This idea can be formalized as,

yexp(x) = yth(x; ✓) + �yexp(x) + �yth(x), (2)

where the last two terms encode, respectively, the experimental error (often taken to be independent at the x’s
corresponding to di↵erent data y) and the theory uncertainty (which is almost certainly not independent, i.e., we expect
to be correlated across di↵erent x’s). Significant e↵ort has gone into building models of �yth for EFT calculations [32,
70]; since EFT methods are characterized by a systematic expansion in a small parameter, one can predict how they
will fail and so write down candidate functional forms for �yth. But, even when such control is not available, model
defects can still be productively introduced, e.g., Gaussian processes can be used to model the discrepancy between
density-functional-theory calculations of masses and experimental data thereon [71].

Ultimately, though, the complex dynamics of nuclei means that di↵erent theoretical models will be employed to
describe them. This diversity of models is advantageous because the methods have complementary strengths but
also di↵erent systematic model discrepancies. This becomes a virtue by exploiting the third area of progress, which
has been in the use of forms of Bayesian Model Averaging (BMA) or Bayesian Model Mixing (BMM) to incorporate
insights from di↵erent models into a unified prediction in a statistically rigorous way. BMM can only be done reliably
if individual models Mk have had their uncertainties quantified in the ways described in the previous two paragraphs.
Once that has taken place, the predictions of those models for the observable of interest y⇤ can be weighted according
to “scoring criteria”:

p(y⇤|y, yev) =
X

k

wk(yev)p(y
⇤
|y,Mk). (3)

Here, p(y⇤|y,Mk) is the posterior for the observable y⇤, given the data y, in a particular model Mk, and wk(yev) is
a weight that is determined by the model’s performance on a target (or evidence) dataset, yev. While in the BMA
expression (3) the weights are constant across the domain, in the more advanced BMM they can also depend on x.
We pause here to make two crucial points:

• The data, yev that are used to assess the aspects of model performance that are pertinent for predicting y⇤ need
not be the same as the data set(s) used to calibrate the models. Ideally, the data yev will be chosen because
they are understood to be, or analyzed to be, a good proxy for the quantity of interest, y⇤, i.e., models’ ability
to predict y⇤ is highly correlated with their ability to predict whatever observables are selected to be part of
yev.

• We note that that performance will almost certainly be addressed within the context of the model discrepancy
�yth of each model, and hence an understanding of those model discrepancies plays a critical role in between-
model UQ.

Early nuclear-physics applications of model averaging can be found in Refs. [72, 73].
In 2020, the Bayesian Analysis of Nuclear Dynamics (BAND) collaboration [74] began its e↵ort to lower the barrier

for nuclear theorists to perform all three of these types of uncertainty quantification. A particular interest within
BAND is methodological work on BMM. The main product the collaboration seeks to deliver is software packages
and use cases that facilitate emulation, model calibration, and model mixing. The goals of BAND are described in
Ref. [75].

Within the context of the 0⌫�� Topical Collaboration, some e↵orts were proposed to quantify the uncertainties
in calculations of ab initio M0⌫ . However, these e↵orts were limited by the ability to rapidly evaluate these matrix
elements for the nuclei of interest in 0⌫�� experiments. This made it di�cult to even accomplish the first, parametric,
kind of UQ. The determination of model discrepancy for the di↵erent many-body methods employed in 0⌫�� studies
remains a topic of forefront research, see Sec. IV.
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III. PHYSICS PROGRESS REQUIRED

Future e↵orts in the community to deliver reliable 0⌫�� nuclear matrix elements will probably focus on advancing
LQCD and EFT calculations of the underlying matrix elements in the few-nucleon sector, ab initio nuclear many-body
calculations that use the LQCD and EFT input in experimentally-relevant isotopes. We discuss these subjects in this
section and lay out a path for rigorous UQ in the next section.

A. Lattice QCD and E↵ective Field Theory

The goal of a combined EFT and LQCD e↵ort in the 0⌫�� program will be the identification and computation of
the LECs multiplying nn ! pp transition operators in chiral EFT. Because BSM LNV interactions originally involve
leptons and quarks, one has to evaluate matrix elements of quark operators in hadronic states in order to link LNV
parameters such as m�� to the LECs. The program of constructing consistent and predictive nuclear EFTs has a
long history and a recent review summarizing its status and prospects can be found in Ref. [30].

As mentioned in Sec. IIA, analyses of the nn ! pp 0⌫�� amplitude revealed that new nn ! pp contact interactions
are needed at leading order in chiral EFT, even for light Majorana-neutrino exchange [36, 42]. The associated LEC,
called gNN

⌫ , is not determined by symmetry considerations or experiment (at least not in a straightforward way) and
so must be obtained theoretically. The LEC gNN

⌫ has been studied so far by applying both large-Nc and dispersive
methods, while LQCD studies require methods that are still under development. Large-Nc QCD [76] relates gNN

⌫
to LECs that can be extracted from the charge-independence-breaking combination of nucleon-nucleon scattering
lengths in the 1S0 channel. Meanwhile, the dispersion-theory approach, inspired by the Cottingham formula for
electromagnetic hadron masses [77, 78], leads to a prediction for the nn ! pp amplitude near threshold, from which
gNN
⌫ can be extracted in any EFT regularization and renormalization scheme, including those used in nuclear many-
body theory. (See Ref. [79] for an early use of this nn ! pp input in ab initio nuclear many-body calculations.) The
main uncertainty in this approach comes from inelastic intermediate states that can appear between the two insertions
of the weak current (e.g. NN⇡ states). The existing estimates of gNN

⌫ can be improved by analyzing suitable �I = 2
observables, thus anchoring gNN

⌫ to data. Finally, as discussed below, LQCD can play a major role in a first-principles
determination of gNN

⌫ [50, 80, 81].
The leading-order LECs associated with TeV-scale LNV operators are currently completely unknown. Their deter-

mination will be possible through the use of dispersion-theory techniques similar to those developed in Ref. [77, 78],
as well as by through a direct calculation in LQCD. In fact, direct LQCD calculations can in principle determine
the entire nn ! pp amplitude. (See Refs. [82, 83] for recent reviews of the role of LQCD in constraining nuclear
observables). The interplay between LQCD and EFT is symbiotic: On one hand, matching EFT and LQCD will
enable an assessment of the theoretical foundation of nuclear EFT and a calibration of its truncation scheme. On
the other hand, EFT descriptions allow better quantification of the systematic uncertainties in LQCD calculations,
providing reasonable extrapolation forms for taking continuum and infinite-volume limits. Furthermore, in order to
play a role in the 0⌫�� program, LQCD calculations need to be performed at quark masses that are su�ciently close
to the physical values to allow reliable extrapolations to the physical point. Such extrapolations rely on EFTs, which
in turn rely upon LQCD input to determine the relevant LECs. Thus, an interplay between LQCD calculations of
two-nucleon (NN) observables and EFT will be necessary to determine at which quark masses one may trust results
for 0⌫��-decay observables.

Before calculating the nn ! pp amplitudes with LQCD, however, the low-energy spectra and scattering amplitudes
in the NN system need to be calculated with precision. Doing so allows one to determine which operators couple
su�ciently well to the ground states of interest, to understand the systematic uncertainties inherent to NN systems,
and to match finite-volume Euclidean matrix elements to infinite-volume transition amplitudes. The NN studies to
date have been largely carried out at very large quark masses, where extrapolation to the physical point cannot be
controlled. Fully understanding the systematic uncertainties will become even more crucial as the quark masses are
lowered toward their physical values because of a signal-to-noise problem for nucleons, in which statistical noise grows
exponentially with the pion mass, atomic number, and Euclidean time [84–86]. Furthermore, in calculations at lighter
quark masses (which require larger lattice volumes), the energy gaps that dictate the exponential decay of excited
states with Euclidean time become very small, causing a slow approach to the ground state that may be obscured
by the growth in noise. Thus, improved operators, analysis, and understanding of excited-state contamination are of
critical importance.

These complications mean that we still do not know whether two nucleons form bound states, even at large
quark masses that make precise calculations easier. Recent work within the LQCD community has highlighted the
importance of fully-controlled calculations in the NN sector. First, the use of improved interpolating-operator sets
and analysis techniques based on the variational principle of quantum mechanics has led to results [87–89] that cast
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doubt on earlier spectroscopy calculations at similar quark masses. Second, a preliminary study of the discretization
e↵ects of two-baryon calculations has shown large shifts in the binding energies away from the continuum limit [90].
The latter finding, in particular, needs to be verified by di↵erent groups with di↵erent lattice actions, and may indicate
that NN calculations must be performed at multiple fine lattice spacings. This would significantly increase the cost
of calculations.

To use LQCD to access the 0⌫�� amplitude, one needs to develop indirect mapping relations. This is because the
notion of asymptotic states is absent in the finite Euclidean spacetime that is that used in the LQCD setting. A
general mapping exists to obtain matrix elements of local (short-range) operators such as those appearing in the high-
scale models of 0⌫�� decay within two-nucleon states [49]. As an input, this mapping requires two-nucleon spectra
and the energy dependence of elastic scattering amplitudes. The existing mapping for the matrix element associated
with light neutrino-exchange involves a matching to the leading-order nucleonic EFT [50], and requires as input the
two-nucleon spectra and scattering amplitudes. The mappings for such long-range matrix elements are in general
more complex than those for local matrix elements because a straightforward analytic continuation in the presence of
on-shell intermediate states is not possible [91–94]. With properly infrared-regulated neutrino propagators, however,
analytic continuation will be straightforward in future calculations of the 0⌫�� amplitude [47, 48]. Techniques for
computing both the short- and long-distance contributions to 0⌫�� processes have already been developed and applied
in studies of the ⇡�

! ⇡+e�e� and ⇡�⇡�
! e�e� processes [45, 47, 48], which also constrain pionic contributions

within nuclear 0⌫�� decays. Calculations of the nn ! ppe�e� process will be significantly more involved for the
reasons discussed above, but will be a crucial next step.

With the broad goal of achieving a systematic quantification of nuclear uncertainties, we must face the challenges
of extending the analysis of the 0⌫�� transition operator beyond leading order in chiral EFT, especially in the case
of light-neutrino exchange. We must also go beyond two-nucleon observables to reliably determine the role of multi-
nucleon e↵ects in double-beta decay. Regarding the nn ! pp amplitude, both in Weinberg’s power counting (WPC)
and in renormalized chiral EFT, the first corrections arise at next-to-next-to-leading order (N2LO) [95]. In the two-
body sector, the transition operator includes contributions from the nucleon vector, axial, and induced pseudoscalar
form factors (which are customarily included in nuclear calculations), from pion-neutrino loops [42], and from new
contact interactions required to absorb the divergences in these loops. These include the couplings of two electrons
to two pions (g⇡⇡⌫ ), to two nucleons and one pion (g⇡N⌫ ), and to four nucleons (a correction to gNN

⌫ ). g⇡⇡⌫ is well
determined by LQCD [47, 48], while extracting the correction to gNN

⌫ will require the matching of LQCD and chiral-
EFT amplitudes at higher orders. The short-range structure of the two-body 0⌫�� operator at N2LO is at the moment
unknown beyond WPC. Reference [95] pointed out that the promotion of gNN

⌫ to LO implies that certain derivative
operators in the spin-singlet channel are also more important than in WPC, but a full analysis of the LNV scattering
amplitudes to N2LO does not yet exist, and needs to be developed to interpret anticipated LQCD results. A deeper
question is whether the chiral and momentum expansions of chiral EFT converge (and converge to what is observed
in Nature). This question is open even for single baryons [83, 96] and relatively light systems [97–99], and needs to be
answered as the community moves beyond purely phenomenological approaches. LQCD input for the unknown LECs
at successively higher orders can help resolve power-counting questions for LNV processes.

Moving to the question of multi-nucleon corrections, we note that two-body currents, which are important in the
gA-quenching problem in � decays [100, 101], first contribute to 0⌫�� decay at N2LO, by generating three-body
corrections to the operator. These corrections were considered in Refs. [102, 103] and found to be compatible with
power-counting estimates. Furthermore, in the three-body sector, a goal for the chiral-EFT community is to validate
or falsify WPC’s expectations, by studying suitable few-body amplitudes. Once calculations of two-body transitions
have been achieved with systematic control, LQCD studies of 0⌫�� decay of A 2 {4, 6} systems, if they can be carried
out, will provide valuable additional information. Such calculations can reduce systematic uncertainties in the process
of matching 0⌫�� amplitudes to the chiral EFT used in nuclear many-body calculations. In particular, constraining
the same LECs from LQCD calculations of di↵erent processes will not only reduce statistical uncertainty, but will
also, through benchmarking, reduce the uncertainties in nuclear EFTs that arise from choices of scheme or regulator.
Useful transitions will probably include the A = 4 processes 4H !

4Li e�e� and 4n !
4He e�e�, and the A = 6

transitions 6He ! 6Be e�e� (for which nuclear-structure calculations have been performed [104]), and 6H !
6Li e�e�

(which introduces additional challenges for many-body approaches because 6H is unstable). To reduce the cost of
extrapolating such LQCD calculations to infinite volume, directly matching matrix elements to finite-volume EFT
calculations [105–108] may be a valuable approach to precisely determining the LECs.

In summary, while significant outstanding challenges must be overcome to reliably determine the nn ! pp am-
plitude, for both the light-neutrino exchange and the short-distance �I = 2 4-quark operators, there exists a clear
road map for addressing them. Following it will require a concerted e↵ort in LQCD, EFT, and the coupling of these
theories, as well as computing resources at the exascale and beyond, both to quantify the uncertainties in the relevant
two-body process and to build an understanding of multi-nucleon corrections.
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B. Many-body methods

All experimentally relevant 0⌫�� candidate nuclei, with the exception of 48Ca, are open-shell and at least of medium
mass. Consequently, only a subset of the currently-available ab initio many-body methods can be used to compute
the nuclear matrix elements that govern their decay. First computations of the nuclear matrix elements have been
performed in coupled cluster theory [63], the IM-GCM [61], and the VS-IMSRG [62]. We describe each of these
methods and prospects for improving them next.

1. Coupled cluster method

In the coupled cluster method [109–111], the exact wave function | i is parameterized by the exponential ansatz

| i = eT̂ |�0i, where the reference |�0i is a product state, and the cluster operator T̂ generates particle-hole excitations.
One expresses T̂ in terms of single, double, triple etc. particle-hole excitations and (usually) truncates it at the so-called
doubles or triples level. This is the main approximation. The calculation of transition matrix elements in coupled
cluster theory is complicated by the fact that T̂ is purely an excitation operator, i.e. the fact that the similarity
transform e�T ÔeT of a Hermitian operator Ô is not Hermitian. This implies that the bra version of a state needs to
be parameterized through a de-excitation operator rather than an excitation operator. An additional complication
for 0⌫�� decay is that the initial and final states are the ground states of di↵erent nuclei, with each in principle
requiring its own T̂ operator and reference state. In practice, one expresses the final state as a generalized excitation
of the initial state through the equation-of-motion method as | F i = eT̂ R̂|�0i, where R̂ is a double-charge-changing
excitation operator [63]. Alternatively, one can express the initial state as an excitation of the final state. In the
absence of any truncation, these two choices should yield identical results, so the di↵erence between the two is an
indication of the truncation error.

Like T̂ , the excitation operator R̂ is expanded in terms of charge-changing few-nucleon “excitations” and truncated
at a doubles or triples level. This approximation may not be accurate when the initial and final nuclei are very di↵erent
in structure, because, for example, they di↵er in their intrinsic deformation. Indeed, the spherically-symmetric coupled
cluster method works well for computing properties of closed-shell nuclei such as 48Ca. However, the ground state of
48Ti (the final state in the decay of 48Ca) is open-shell and is better treated with an intrinsically deformed, (though
axially symmetric) reference state, which is computationally more expensive. In benchmarks performed so far [63], it
appears that taking |�0i to be the deformed 48Ti state yields more accurate results, though the reason is not entirely
known.

We can expect this approach to be applied to more nuclei and with more accuracy in the next few years. With
enough computation time, it can be generalized to allow triaxial deformation of the reference state (and thus a
good calculation, e.g., in 76Ge) and the restoration of rotational symmetry through projection onto states with good
total angular momentum [112]. These developments will turn the method into a much more versatile tool for the
computation of 0⌫�� nuclear matrix elements.

2. IM-GCM

The IM-GCM [61, 113] is a combination of the GCM [114] and the Multi-Reference In-Medium Similarity Renor-
malization Group (MR-IMSRG) [115, 116]. (“Multireference” refers to a generalization of the renormalization-group
flow equations to work with a reference state that is more complex than a Slater determinant.) The GCM e�ciently
captures the collective long-range correlations which are important in deformed nuclei, while the MR-IMSRG captures
short-range correlations associated with the repulsive core of realistic nuclear interactions.

On can view the IMSRG as a way to generate a unitary transformation U of the Hamiltonian that brings it to a
form more amenable to solution. The transformation is parameterized by a flow parameter s, yielding a di↵erential
equation for the transformed Hamiltonian H(s) = U(s)HU †(s) and for other consistently-transformed operators
O(s) = U(s)OU†(s). The unitary transformation, which is conveniently expressed in the Magnus formulation as
U(s) = e⌦(s) [117], is designed so that with increasing s, a reference state |�0i increasingly approximates an eigenstate
of H(s).

In the IM-GCM, the approach is to take |�0i to be the ground state of a GCM calculation. The GCM ground
state is expressed as a linear combination of configurations |�(q)i labeled by a set of generator coordinates q (e.g.
quadrupole deformation), so that |�0i =

P
q f(q)|�(q)i. The amplitudes f(q) are obtained by minimizing the energy

via the Hill-Wheeler-Gri�n equation, which amounts to a diagonalization the space of GCM states |�(q)i. As we
noted in the context of coupled cluster theory, the initial and final states in any 0⌫�� decay are di↵erent, a fact that
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complicates most computations. The transformations e⌦I(s) and e⌦F (s) that decouple the initial and final states are
not equivalent.

In Ref. [113], this complication was addressed by combining the IMSRG transformation and GCM calculations for
the initial and final states in di↵erent ways, again with the understanding that, without approximations, all these
combinations should give the same results. In more recent work, a powerful alternative was presented in the form of an
ensemble composed of reference states in both the initial and final nuclei that allows one to use a single transformation
rather than two separate ones [61].

The main approximation in the MR-IMSRG flow equations is that all operators are truncated at the normal ordered
two-body (NO2B) level. In the next few years, with enough computational capacity, we will be able to go beyond
this approximation by either exactly or approximately including the e↵ects of three-body operators that are induced
by the flow equations. A first step in this direction indicated that the correction due to induced three body operators
is sub-leading (on the order of 10% of the NO2B correction) [61, 118]. The result is encouraging, but the corrections
are large enough that they should be included.

Another approximation is in the selection of generator coordinates. In principle, one can continue to add more
coordinates that are believed to be relevant (for example, proton-neutron pairing gaps) and confirm that the answer
does not change, but it is di�cult to establish that all important degrees of freedom have been explored. Historically,
this has been a significant issue for the GCM calculations based on phenomenological interactions. In the IM-GCM,
this issue can be overcome because dependence of the transformation on the flow parameter s o↵ers a powerful
diagnostic tool: If su�cient degrees of freedom are included in the MR-IMSRG flow and the GCM basis, the unitarity
of the transformation will not be spoiled by truncation errors, and all observables should be independent of s [119, 120].

3. VS-IMSRG

In the VS-IMSRG [121], as in the IM-GCM, the strategy is to perform a unitary transformation to bring the Hamil-
tonian into a form more amenable to solution. In this case, the transformation block-diagonalizes the Hamiltonian
such that an additional diagonalization in a valence shell-model space yields exact results (assuming no truncations
are made in the transformation).

The VS-IMSRG calculations carried out thus far have generally performed the normal ordering with respect to
a closed-shell reference state or an uncorrelated “ensemble” reference that has the correct number of protons and
neutrons on average. As with coupled cluster theory, one needs to choose the initial or final state as the reference
and, in the absence of truncation, this should not a↵ect the answer. The simpler reference used in the VS-IMSRG
(compared to, e.g., the IM-GCM) is somewhat compensated for by the subsequent exact diagonalization in the valence
space, resulting in a complementary approximation scheme. Like IM-GCM, the VS-IMSRG as currently practiced
truncates operators at the two-body level after normal ordering, and the clear next step is the approximate inclusion
of the e↵ects of induced three-body operators. Again, with su�cient computational resources and personpower, this
can be done.

4. Benchmarking with quasi-exact methods

Quasi-exact ab initio methods, namely quantum Monte-Carlo (QMC) and the no-core shell model (NCSM), are
generally limited to light systems, which are not directly relevant for 0⌫�� experimental searches. They play an
important role, however, in benchmarking the methods we’ve discussed, which can reach the relevant heavier systems.
The three methods described above, coupled cluster theory, IM-GCM, and VS-IMSRG, have all been benchmarked
against the NCSM in light systems up to 14C (and up to 22O with the importance-truncated NCSM) [61, 63, 118, 122].
The benchmarks showed that coupled cluster calculations that use a deformed reference state are usually more accurate
than those that use a spherical reference.

In contrast to the NCSM, IM-GCM, VS-IMSR, and CC theory, QMC approaches do not rely on a single-particle
basis expansion. Variational Monte Carlo (VMC) approximates the solution of the many-body problem by an accurate
trial wave function  T , obtained by applying two- and three-body correlation operators to a Slater determinant of A
single-particle wave functions [123, 124]. The optimal set of variational parameters defining the trial wave function
is obtained by minimizing the energy expectation value h T |H| T i with dedicated optimization algorithms [125].
The limitations of the variational ansatz are overcome by the Green’s function Monte Carlo (GFMC) method that
propagates the trial wave function in imaginary-time to extract the ground-state of the system | 0i = lim⌧!1 | (⌧)i =
lim⌧!1 exp[�(H � E0) ⌧ ] | T i. QMC methods have no di�culty in using “sti↵” forces that can generate wave
functions with high-momentum components, but they are limited to local (or nearly local) Hamiltonians because non-
localities exacerbate the fermion-sign problem [126]. There have been QMC studies of the 0⌫��-decay nuclear matrix
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elements for light nuclei (see, e.g., [127, 128]), but the (nearly) local Hamiltonians [129–133] used in these studies pose
a substantial hurdle for direct benchmarks against the configuration-space methods that we discussed above. More
recently developed local chiral interactions with typical cuto↵s around ⇤ = 500MeV lead to much slower convergence
than their nonlocal counterparts with the same scales. Renormalization group transformations may help to mitigate
this problem, but the uncertainties due to the omission of induced contributions to the interaction and transition
operators may also be more substantial than in a nonlocal regularization scheme. Nevertheless, once RG and EFT
truncation errors have been propagated to the 0⌫�� matrix element, a comparison of QMC and configuration-space
methods will represent an important check.

5. Other ab initio approaches

We have focused on the several ab initio methods that have already been applied to experimentally relevant
transitions, but there are others that may also be able to tackle these nuclei soon. Applications of QMC have
been limited almost entirely to the p-shell and below because the number of spin/isospin states scale exponentially
with particle number A (see, e.g., [134] and references therein). However, within the auxiliary field di↵usion Monte
Carlo (AFDMC) approach [135] the spin-isospin degrees of freedom are described by single-particle spinors, the
amplitudes of which are sampled with Monte Carlo techniques based on the Hubbard-Stratonovich transformation.
The transformation reduces the computational scaling from exponential to polynomial in A. AFDMC calculations
for 16O have been reported [131], and calculations of 48Ca are conceivable in the near future.

A recently proposed alternative is to use QMC to compute M0⌫ for light nuclei, and match an e↵ective shell-model
operator to these calculations [60], using the generalized contact formalism (GCF). The e↵ective operator is then
employed in shell-model calculations of heavier nuclei, where QMC is not feasible. This approach can be viewed
as the QMC providing synthetic data to which a shell-model e↵ective operator can be fit. It is justified by the
factorization of physics at the scale of nucleon-nucleon interactions from the nuclear environment. This factorization
is seen in the application of renormalization group (RG) methods to QMC wave functions, where short-distance
physics in those wave functions evolves into e↵ective operators at the lower resolution appropriate to the shell model
[136]. The GCF implements the leading-order consequences of factorization. One challenge for the future will be
quantifying the long-range correlations missed by the shell model; these will in general depend on the valence space
(see e↵ective charges for E2 transitions as an example). Such quantification is one aspect of a more general question
about what the sub-leading corrections to the GCF calculation carried out in Ref. [60] are.

The RG approach to this problem makes it clear that, in any of the approaches to the nuclear many-body problem
described here, the 0⌫�� operator must be evolved consistently with the methods used to reduce the e↵ective size
of the space in which the many-body wave functions are computed. It follows that the 0⌫�� contact operator will
not necessarily be the same as the one computed in Ref. [78], or obtained in the future from LQCD. Instead that
short-distance operator must absorb the physics between the hadronic scale of LQCD/sum-rule calculations and the
low-energy nuclear-structure scale; i.e., it will account not just for hadronic excitations that have been integrated out
of the Hilbert space, but for high-energy nuclear correlations that are integrated out too.

The NCSM may also be applied to heavier istopes in the future. Although the method in its original form is typically
limited to A . 16, the importance-truncated NCSM (IT-NCSM) [137] can significantly reduce the dimensions of the
Hamiltonian and thus reach higher in mass, conceivably up to 48Ca. One challenge will be to obtain a better
understanding of the extrapolation of M0⌫ in the importance truncation parameter min.

The symmetry-adapted no-core shell model (SA-NCSM) is a version of the NCSM that uses irreducible representa-
tions of the symplectic symmetry group Sp(3,R) rather than particle-hole energy to truncate its basis [138–141]. The
alternative truncation scheme allows it to e�ciently capture deformation, which is important in either the mother or
daughter nucleus in all experimentally relevant 0⌫��-decay candidates. Applications of the SA-NCSM have mostly
focused on p- and sd�shell nuclei so far, but first results for 48Ti have been reported in Ref. [140]. These particular
results serve as a demonstration that convergence of a SA-NCSM calculation is mainly a↵ected by the strength of the
mixing between irreps in a particular nucleus rather than the mass number: the model space dimension for 48Ti is
more than an order of magnitude smaller than the dimension for 20Ne. At present three-nucleon forces have not yet
been included in the SA-NCSM, but once this challenge is overcome, the SA-NCSM will be a valuable complementary
approach to the coupled cluster and VS-IMSRG methods that employ particle-hole based truncations. It is also
complementary to the IM-GCM because the Sp(3,R) irreps o↵er a more systematic approach to basis construction
than the selection of relevant generator coordinates.

Both the conventional NCSM and SA-NCSM can also be combined with an (MR-)IMSRG preprocessing of the
Hamiltonian and transition operators to accelerate convergence [119]. A combination of MR-IMSRG evolution and
SA-NCSM, in particular, would embrace a similar philosophy as does the IM-GCM.
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6. Other methods

Besides the ab initio methods described in the previous subsections, a variety of other methods have been used
to compute M0⌫ in nuclei of interest to experimentalists. These others can be broadly grouped into categories: the
interacting shell model [142–150], energy-density-functional (EDF) methods [151], the quasi-particle random phase
approximation (QRPA) [54, 152–155], and the interacting boson model (IBM) [156, 157].

In this report the emphasis is on methods that can, in principle, quantify the theoretical uncertainties of the underly-
ing strong-interaction Hamiltonian and of the transition operators. However, methods such as the “phenomenological”
shell model still have a valuable role to play, because they preserve underlying nuclear many-body symmetries and
thus capture the most relevant degrees of freedom. In addition, the heavy work of finding optimized e↵ective shell-
model Hamiltonians and e↵ective transition operators that capture the landscape of realistic nuclear spectra and
of the experimentally accessible nuclear observables has already been done in these approaches. We envision that
semi-phenomenological methods, such as the shell model, can be used to explore correlations between observables,
helping us identify the quantities that best reflect the accuracy of an ab initio calculation. For example, an ensemble
of shell model Hamiltonians can be generated by adding random contributions to the two-body matrix elements of
some “seed” Hamiltonians [158]. These Hamiltonians can then be used to obtain M0⌫ , as well as excitation spectra
and electroweak transitions and moments (for which data exist or could be obtained). Any observables which are
significantly correlated with M0⌫ would then be explored in the more expensive ab initio calculations, producing input
for subsequent model-mixing analysis. An initial study along these lines for the 0⌫�� decay of 48Ca-48Sc-48Ti system
can be found in Ref. [159].

IV. A PROGRAM FOR UNCERTAINTY QUANTIFICATION

The preceding sections outlined a variety of many-body methods that can be used to perform ab initio calculations
of 0⌫�� nuclear matrix elements. It might be supposed that the goal of a UQ analysis should be to determine the
“best” of these methods and that whichever method turns out to be “best” should then be used exclusively. In fact,
these methods have complementary strengths and deficiencies, so the goal instead is to use all of them to optimize the
overall predictions. Therefore in this section we outline a procedure, depicted in Fig. 3, by which the results for M0⌫

obtained in those di↵erent methods—as well as their uncertainties—can be combined into a single, unified prediction
for M0⌫ . We also explain how that procedure will naturally suggest alternative strategies for calibration of the ab
initio calculations which should, in turn, lead to refined predictions for M0⌫ .

Throughout this section we have in mind that we are considering ab initio predictions for M0⌫ that are obtained
with chiral-EFT forces and decay operators. Di↵erences between di↵erent implementations of the chiral-EFT force
should therefore be encompassed within the uncertainty assigned due to truncation of the EFT expansion, cf. Sec. IIA
above. The source of uncertainty that is hardest to assess is therefore that due to the use of di↵erent methods for
solving the A-body problem: these are associated with di↵erent ways of truncating the A-body Hilbert space. In
what follows we denote the di↵erent many-body methods that have been, or may in the future be, adopted to solve
this problem as Mk. We treat these as di↵erent “models” in the statistical sense of the term “model” and seek to
combine their predictions into a single prediction that accurately assesses uncertainties in the evaluation of M0⌫ . We
assume that uncertainties due to the truncation of the chiral-EFT expansion are reflected in the posterior distribution
that must be provided by each many-body method, Mk.

Method Mk’s prediction also has an inherent parametric uncertainty, coming both from the parameters of the
Hamiltonian used to obtain the wave function of the initial and final state in the double-beta-decay process, and from
the contact piece of the 0⌫�� operator. In what follows we denote the low-energy constant that multiplies the contact
piece by ⌘ and the parameters of the Hamiltonian as ✓.

Recently, ⌘ has been determined [161] by reproducing the synthetic datum, ysynth provided in Refs. [43, 44].
Meanwhile, for most of this section we will assume that the parameters ✓ are calibrated to a dataset y (cf. Sec. II B)
that does not have to include observables that we expect are correlated with 0⌫�� decay. This is, after all, the stated
orientation of most ab initio approaches, which calibrate the parameters of NN and three-nucleon forces (3NFs) to
NN scattering data and a few observables in light nuclei. The posterior probability distribution for the parameters
✓ that is obtained from such an analysis is denoted p(✓|y).

From a Bayesian perspective, each many-body method’s prediction of M0⌫ also comes with a systematic error that
depends on parameters of the approach employed, e.g., Hilbert-space size, accuracy of treatment of 3NFs, etc. The
statistical modeling of this systematic error is referred to as discrepancy learning (cf. Eq. (2)). Simultaneous learning
of discrepancy and parameters is a complicated practical and theoretical exercise. Moreover, with no information
to leverage near the quantity of interest M0⌫ , verification of discrepancy can be di�cult. Nonetheless, grounded,
informed priors on the discrepancy can improve prediction—especially when we seek to leverage the predictions made
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FIG. 3. The road to calculations of M0⌫ with UQ that accounts for all limitations of the nuclear-physics calculation: truncation
errors in chiral EFT, uncertainties in the theory’s parameters, and deficiencies of the many-body methods used. Emulator
development is the first step, as it is key to facilitating subsequent calculations. Model parameters ✓ can be calibrated against
a dataset y. Weights for the di↵erent many-body methods will be obtained by assessing methods’ performance on a set of
observables {yev}. The weights wk(yev) are to be computed via scoring rules that gauge predictive accuracy [160] and will also
take account of the extent to which di↵erent members of {yev} are correlated with M0⌫ .

across several many-body methods. We therefore write:

M0⌫(true) = MM
0⌫ (✓, ⌘;�) + �MM

0⌫ (�), (4)

where MM
0⌫ (✓, ⌘;�) is the prediction obtained in method M with method hyperparameters � (and at specific Hamil-

tonian and operator parameter values) and �MM
0⌫ (�) is the corresponding model uncertainty.

If we, for the moment, ignore the issue of the discrepancy function, then the method-M prediction of M0⌫ is formed
by marginalizing over ✓ and ⌘ using the distributions established for them from the data {y, ysynth}:

p(M0⌫ |M) =

Z
p(M0⌫ |✓,M)p(✓|y,M)p(⌘|ysynth,M)d✓d⌘. (5)

Here it should be noted that we have allowed for the possibility that the probability density obtained for both the
Hamiltonian parameters and ⌘ is di↵erent for di↵erent methods, i.e., depends on the method M. We have, however,
assumed that all all methods are calibrated using a common data set y.

But the problem of model discrepancy is critical in predictions for neutrinoless double-beta decay: di↵erent ap-
proaches to the nuclear many-body problem are based on di↵erent physics assumptions, and so have di↵erent model
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discrepancies. In order to get a handle on the model discrepancy we propose to assess that method’s ability to predict
observables that may share similar physics features to the 0⌫�� decay in the nucleus of interest. Candidate processes
include:

• Single �-decay rates in neighboring nuclei, e.g., in the intermediate nucleus in 0⌫�� decay;

• �-strength distributions;

• Known 2⌫�� decay rates;

• Magnetic moments and B(M1) rates in three nuclei involved in 0⌫�� decay;

• Energies of the lowest J⇡ = 2+ states and B(E2, 2+ ! 0+) rates in initial and final nuclei;

• Charge radii;

• Observables probing a 100MeV momentum-transfer scale, e.g., in muon capture.

The idea is then that a method that performs well on these observables, which we denote collectively as yev, should
be a more accurate predictor of M0⌫ than one that does not.

But which of these observables are most important for constraining the 0⌫�� decay rates? Until now discussion
on this point has been largely driven by qualitiative arguments. We propose that, by using properly calibrated
Hamiltonians, this question can be answered by analyzing the correlations between the observables on the list above
and M0⌫ . Those correlations can be well approximated by drawing a finite number of samples from p(✓|y) (say
⇡ 100), using model M to compute each observable in the set yev and M0⌫ , and extracting the empirical correlation
coe�cient of M0⌫ and each quantity in yev for that model M. Examples of such sensitivity studies can be found in,
e.g., Refs. [162–164].

A few supplementary points regarding this correlation analysis need to be made:

• This correlation need not be the same in every method. Di↵erent methods have di↵erent discrepancy functions,
because di↵erent methods truncate the nuclear many-body problem in di↵erent ways. A particular example of
this is that methods with di↵erent resolution scales may di↵er in whether their discrepancy function reflects
errors in the long-distance physics or errors in the short-distance physics. Indeed, the balance between these
two types of errors could shift within a particular method as the value of the hyperparameters � changes. It
follows that the correlation found for method M at particular values of � may depend on either � or M. But,
analysis of these correlations, when combined with data on the observables in the set yev, will help us pin down
the discrepancy functions, or at least minimize their impact on the M0⌫ prediction.

• The prediction of the observables yev may depend on additional parameters �, that are not part of the set ✓,
and are not a priori needed to predict M0⌫ . The posterior prediction for yev is then formed by marginalizing
over �, using a probability distribution function that can be thought of as a prior for our purposes, but may be
informed by studies of the pertinent observable(s) in nuclei that are some distance from the 0⌫�� candidate

p(yev|y,M) =

Z
p(yev, ✓, �,M)p(✓|y)p(�|M)d✓d�, (6)

Marginalizing over ⌘ will certainly be necessary for the prediction of M0⌫ . Such marginalization (over ⌘ and �)
may a↵ect the correlation.

• As discussed in Sec. III B 6, the correlation analysis does not need to be initiated within computationally-
expensive ab initio calculations. In the first instance, it can be carried out using lower resolution approaches
that can be viewed as computationally less expensive emulators of ab initio methods. An example of ongoing
work along these lines can be found in Ref. [159].

Such a correlation analysis is useful in its own right. But, with these correlation coe�cients in hand we can form
an “improved Bayesian Model Average” of the results from the di↵erent many-body methods M. In BMA [75], a set
of candidate methods M1, . . . ,Mp are combined to form a predictive distribution via Eq. (3):

p(M0⌫ |yev, y) =
pX

k=1

wk(yev)p(M0⌫ |y,Mk), (7)

where wk(yev) represents the underlying weight given to each method. The weight wk is proportional to p(yev|Mk)⇥
p(Mk), where p(yev|Mk) represents the evidence for method Mk present in data yev and p(Mk) is a prior probability
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that method k is correct. This prior is usually taken to be flat across the methods Mk, i.e., the methods are all taken
to be equally plausible. The formula (7) is aspirational in that there are complications in its deployment that are
both practical and theoretical.

The selection of the weights requires careful documentation of the source of the systematic errors between method
predictions and observables. Extraneous observables, i.e., observables that are no more than weakly related to 0⌫��,
are less dangerous to the resulting inference if all error sources were only experimental and independent throughout
the observable space as no method has a specific advantageous bias. However, in the context of 0⌫�� one expects that
a significant portion of the error can be attributed to systematic method deficiencies �yth. The result is significantly
related error that exists across the observable space.

It is therefore critical to carefully select observables in yev. Observables that are closely related to the target
observable, y⇤ = M0⌫ should receive higher weights—something that classical BMA does not do. If observables in
yev that are not singificantly related to M0⌫ can influence the weight of a method in the BMA formula (7), they
are likely to dilute—or even bias—the prediction for M0⌫ . Parsimony is also important for a practical reason: the
Bayesian model averaging formula requires the same yev should be used across all many-body methods, meaning all
of them need to be able to produce predictions of these quantities. A parsimonious choice of observables makes it
more feasible that yev can be predicted in all candidate approaches to the nuclear many-body problem.

The program for UQ that we have laid out up to this point in the section could be carried out using ab initio
methods and already calibrated chiral-EFT forces and operators. We now discuss a longer-term strategy for refining
the prediction of M0⌫ . Once it has been established which observables in yev are strongly correlated with M0⌫ the
predictive power of the methods Mk can be improved by including those members of the dataset yev in the dataset
used to calibrate the nuclear Hamiltonian and decay operators. The parameter vector ✓ would then be readjusted
within each calculation Mk. This would open a window for a more refined combined prediction of the di↵erent
many-body methods.

One critical challenge to overcome is providing predictions of quantities for various values of ✓, ⌘, and � for all
methods. Part of this is needed for the integration to compute p(y|Mk), where MCMC must be leveraged for both
the core Hamiltonian parameters ✓ as well as the ancillary parameters � and the 0⌫�� parameter ⌘. This problem is
amplified in the case of high-dimensional parameter space.

There are a few statistical and computational tools that can be deployed to resolve this problem. Firstly, reducing
the space of parameters through screening will be critical for each method, thereby including only the parameters that
are critical for predicting yev and M0⌫ . Secondly, emulators (or surrogates) can play a vital role to conduct Bayesian
inference from only a few full ab initio evaluations of the matrix element. Emulators can take on a variety of forms but
the function is shared: to provide a computationally inexpensive approximation of yev and M0⌫ for any value of ✓, ⌘,
and �. Gaussian process-type emulators exploit smoothness in the computation’s response to the parameters. Other
reduced-basis emulators instead build modified, cheaper alternatives to the full ab initio result when it is subject to
specific structure [165–170]. Variational machine learning methods [171–173] form another path that produce e�cient
emulators that intrinsically learn the optimal latent parameter space needed for robust interpolation and prediction.
These methods have an advantage over many forms of emulation as they can learn highly non-linear manifolds while
still generating a notion of the emulators’ internal uncertainty.

One common theme across all methods is they rely on using specific computations at designated parameter combi-
nations to build predictions on other ones. The amount of computations needed to build an adequate emulator varies
across methodologies. Classical literature on Gaussian process-type emulators suggest computing at ten times the
dimension of the parameters, but that suggestion has recently been reconsidered and higher-dimensional parameter
spaces perhaps need more computation. Good emulators will naturally come with their own uncertainty quantification,
which is critical for producing valid approximations of p(yev|Mk) as well as predictions of p(M0⌫ |Mk).

As mentioned above, lower resolution approaches, such as DFT, can be used to construct emulators of higher
resolution ab initio methods. This construction can follow Eq. (2) in which yexp(x; ✓) is replaced by ab initio predictions
and the model discrepancy �yth would model the di↵erence between predictions of ab initio and lower resolution models.

V. SUMMARY

Accurate calculation of the nuclear matrix elements governing neutrinoless double-beta decay, with quantified un-
certainty, is essential for the success of the impressive experimental and theoretical worldwide e↵ort in this area
[37, 174]. The purpose of this report is to lay out the challenges to the nuclear-theory community—in regard to
both nuclear-physics calculations and uncertainty quantification therein—and map out a path for near- and long-term
progress.

It will require a concerted e↵ort in both LQCD and EFT, as well as the coupling of these theories, to fully quantify
the theoretical uncertainties related to the 0⌫��-decay operator and associated matrix elements at the hadronic
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level. Systematic improvements in nuclear many-body methods are underway, and should be ready to produce a new
generation of M0⌫ matrix elements in the next few years. The complexity of the problem makes the use of multiple
many-body methods well worthwhile. Their complementary strengths and deficiencies can not only be exploited for
validation but also combined through Bayesian methods to yield better overall predictions.

The implementation and application of both QCD/chiral EFT and nuclear many-body approaches will require
exascale computing resources and beyond. It will also require an investment in personnel to advance EFT calculations
of 0⌫�� operators and to develop and maintain the codes that implement new theoretical methods. Without such an
investment computing time cannot be used e�ciently. One focus of future work in this area will be ensuring optimal
use of the heterogeneous architectures that characterize leadership-class computers.

In addition, the cohesion within and among research groups needs to be strengthened, e.g., through the establish-
ment of joint project resources and inter-institutional collaborations in both pure and computational theory. The
first wave of ab initio nuclear matrix elements came from the combined e↵orts of multiple groups, each with its own
computing resources, and were often obtained at the expense of other groups. Wait times were long, not only because
of a lack of computing resources but also because certain implementation steps required the work of a single specific
(and busy) person, or because large amounts of data needed to be moved between computing systems. The community
needs structures that reduce the severity of these kinds of bottlenecks.

A crucial feature of this report is the emphasis it places on UQ. Without principled UQ, the usefulness of predicted
M0⌫ values for guiding experimental e↵orts, interpreting measurements, and assessing new physics will be limited. At
present, few physicists working on the problem of M0⌫ make informed choices about UQ, understand the modern UQ
glossary, or consider UQ to be an essential part of “the answer”. This situation can be improved through coherent
inter-disciplinary collaboration of nuclear physicists with applied mathematicians, statisticians, and computer-science
experts.

Such a collaboration could carry out the concrete, multi-staged, and interwoven program of nuclear-physics and
UQ methodological improvements and computations laid out in this report. In concert with continued strong support
for the e↵orts of PIs and research groups working on 0⌫�� decay, this will make the ultimate goal of accurate and
precise M0⌫ predictions achievable.
•
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