

A review of the characterizations of soft tissues used in human body modeling: Scope, limitations, and the path forward

Nicole Arnold, Justin Scott, Tamara Reid Bush*

Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, Rm. 2555 Engineering Building, East Lansing, MI, 48824-1226, USA

ARTICLE INFO

Keywords:
Soft tissue
Material properties
Human body properties
Material model
Review

ABSTRACT

Soft tissue material properties are vital to human body models that evaluate interactions between the human body and its environment. Such models evaluate internal stress/strain responses in soft tissues to investigate issues like pressure injuries. Numerous constitutive models and parameters have been used to represent mechanical behavior of soft tissues in biomechanical models under quasi-static loading. However, researchers reported that generic material properties cannot accurately represent specific target populations due to large inter-individual variability. Two challenges that exist are experimental mechanical characterization and constitutive modeling of biological soft tissues and personalization of constitutive parameters using non-invasive, non-destructive bedside testing methods. It is imperative to understand the scope and appropriate applications for reported material properties. Thus, the goal of this paper was to compile studies from which soft tissue material properties were obtained and categorize them by source of tissue samples, methods used to quantify deformation, and material models used to describe tissues. The collected studies displayed wide ranges of material properties, and factors that affected the properties included whether tissue samples were *in vivo* or *ex vivo*, from humans or animals, the body region tested, body position during *in vivo* studies, deformation measurements, and material models used to describe tissues. Because of the factors that affected reported material properties, it is clear that much progress has been made in understanding soft tissue responses to loading, yet there is a need to broaden the scope of reported soft tissue material properties and better match reported properties to appropriate human body models.

1. Introduction

Appropriate soft tissue material properties are integral to modeling the human body, particularly during interactions with objects in its environment (e.g. chairs, assistive devices, etc.). Finite element (FE) models are important tools that describe internal stresses and strains in the body's soft tissues resulting from such interactions and have been used to evaluate automotive seating comfort, office seating, and the risk of pressure injuries (PIs) for wheelchair users [1–4]. Models that predict PI risk are particularly good examples of the need for appropriate material properties, specifically because internal stresses and strains have been related to PI formation and were shown to be affected by marginal changes in tissue stiffness [5]. Several researchers investigated the sensitivity of models to differences in material properties, showing that differences in material properties within one order of magnitude, particularly the muscle material properties, changed tissues stresses and strains by as much as 70% [6,7]. Furthermore, such models that evaluate

stresses and strains should use material properties from populations of elderly people and wheelchair using individuals, since they are at the highest risk and also experience significant changes in their tissue composition [8,9]. However, recent models have used soft tissue properties of animals for two main reasons, 1) there is a dearth of material properties representing human tissue and 2) in general, testing with animals is easier than testing with humans for material property collection [10,11]. These challenges are compounded ever further if one wishes to obtain personalized, human material property data in the clinic, or at the bedside. Though there is a clear need for material property data for use in models that evaluate risk of PI formation, the need for appropriate material properties extends to all human body models.

Ideally, each human body model would use personalized data in the model, however there have been numerous barriers to doing so. Historically, it has been easier for researchers to obtain data from animals than humans. If human data were collected, it also was most typically in

* Corresponding author.

E-mail address: reidtama@msu.edu (T.R. Bush).

a laboratory setting. However, recently, some researchers conducted studies to determine soft tissue properties and geometries in clinical settings [12–15]. Of these studies, two of the four used magnetic resonance imaging (MRI) or ultrasound (US), both of which were available in clinical settings, whereas the third sought to develop a relatively affordable tool to determine anatomical geometry without the use of MRI or US, and the last determined material properties without imaging. One of the more common methods for determining soft tissue properties has been shear wave elastography, which was able to use MRI or US images provided that the proper loading data were collected as well [16, 17]. A commonality between these studies was that the results were obtainable in a relatively short time frame (under half an hour), which made them possible to implement during a scheduled clinical visit. Yet, while there have been efforts to obtain personalized, in-clinic soft tissue property, these situations were very limited. Therefore, a need still exists for new measurement approaches to quickly and easily obtain data sets from a broad range of body regions for use in soft tissue material property determination.

Several factors have been shown to affect material properties used in models, namely, the tissue being *in vivo* or *ex vivo*, whether the tissue properties were from humans or animals, the body region of the properties, and the body position. Material properties of tissues have been obtained from a variety of sources, including *in vivo* and *ex vivo* animal and human tissues. Though it was noted as a limitation, FE models still used tissue properties from animal tissue (rats, sheep, pigs, and cows) when appropriate data from humans were not available [5, 18–22]. Limited data from *in vivo* human tissue have been collected from multiple body regions in humans in different body positions; whereas both body region and position were found to affect material properties [23–25]. Further, the inclusion or exclusion of persons with physical disabilities, such as persons with spinal cord injuries, has been shown to affect the material properties, as tissue compositions from the individuals with spinal cord injury differed from those of able-bodied individuals [9, 26–35]. Considering factors such as the source of tissues properties from animals or humans, whether the tissues were *in vivo* or *ex vivo*, population, body position, and anatomical region is crucial to the accuracy of the FE models.

Another challenge with the application of material properties is consideration of the experimental setup used to collect the material property data, as several types of experimental methods were used to collect load and deformation data from tissue samples. Load data have been collected in the form of force during indentation of specific regions of tissue or by recording pressures on support surfaces that contact tissue [36, 37]. Deformation was defined several ways, including displacement, strain, or stretch in the tissue, and several methods have been used to obtain the deformation measurements of the tissues [34, 38–51]. These methods included tensile testing, suction testing, indentation testing, compression testing, shear wave elastography, ultrasound, magnetic resonance elastography, and digital image correlation. The numerous methods used to collect load and deformation data may confound reported properties as well.

Lastly, several material models were used to describe the mechanical behavior of soft tissues. Early experiments described tissues as linear elastic materials, however more recent investigations characterized tissue as either non-linear materials (e.g. Neo Hookean, Fung) or viscoelastic materials [43, 47, 52]. The choice of material model determined the resulting material parameters, which were specific to each model [53–55]. The models typically used to describe each type of tissue (muscle, fat, and skin) were not the same, meaning the reported parameters were different, and thus difficult to compare to one another. Further complicating comparisons between existing characterizations of soft tissues was the lack of a consistently defined stress-free, or reference, state. This is important because it could not be assumed that tissues *in vivo* or *ex vivo* were stress-free; and as such, tissues in past studies likely had differing pre-strain histories, affecting results [56, 57]. Though there is ongoing research with the goal of defining stress-free

states for soft tissues, a consistent method of determining stress-free states has not been used across studies [58–61]. Since many of the models used to describe soft tissue were non-linear or viscoelastic, their behavior was dependent on residual stresses and strains in the tissues, which were not comparable between studies. A method has yet to be developed to convert between sets of material parameters designated for each material model without the original load and deformation data, even before considering pre-strain histories. This means that, although there are preferred material models for each tissue, there is no standard material characterization for each tissue.

Numerous studies have been conducted to quantify the material properties of soft tissues over the past few decades. However, many human body model creators acknowledged that the material properties they used for their models may not have been appropriate for the target population of their study [11, 62–64]. Because there are ranges of material properties for each soft tissue, depending on the experimental conditions in which they were determined, numerous researchers have called for, and provided, guidelines for their usage in any biomechanical model [65–70]. Among these guidelines are sensitivity, verification, and validation studies to quantify the effects of using marginally different material properties on the outputs of models. These studies allow for easier communication of models between researchers by explaining, identifying, and quantifying areas of uncertainty. This is especially true when explaining if and how differences between model predictions of measurable outputs, and experimental measurements of those outputs themselves, occur. Because of all the factors that have been shown to affect reported soft tissue material properties, and how those properties affected model outputs when implemented, a detailed documentation the material properties used and how they were obtained is needed. By documenting the tissue properties that have been reported and under what experimental circumstances (i.e. from what body region, *in vivo* or *ex vivo*, from humans or animals, etc.), it will be possible to evaluate what tissues properties will need to be studied to be implemented in forthcoming human body models. The properties reported can also serve as a benchmark against which future personalized soft tissue property results may be compared. Thus, the goal of this paper was to compile the studies from which material properties have been obtained and categorize them by the sources of their tissue samples (*in vivo* human, *ex vivo* human or animal tissue), the methods used to quantify deformation during experiments, and the material models used to describe the tissues. This collection of methods and data will be an invaluable tool for those who determine and use the material properties of soft tissues.

2. Methods

The authors searched for studies reporting material properties for soft tissues of humans and animals. A literature search was conducted from multiple sources: PubMed, Google Scholar, Science Direct, Elsevier, Taylor and Francis Group, Scientific Research, Springer Link, and the Wiley Online Library. The following keywords were used to search for such topics: mechanical properties of human tissue, tissue parameters, material parameters, *in vivo* tissue properties of humans, *in vivo* tissue properties of animals, *ex vivo* tissue properties of humans, and *ex vivo* tissue properties of animals. 76 papers were included in this review. The references of these publications were further analyzed for additional articles to add to the initial search results.

3. Results

The results from this literature review are represented in Tables 1–6. Studies were placed into tables by whether they included *ex vivo* human or *in vivo* human tissue samples or animal samples. They were then further categorized by the type of soft tissue in Tables 1–4 and ordered by the chronology of their reference in this review. Each entry of a reference includes the type of tissue investigated, the location on the body from which the sample was taken, the sample size, the testing position

(if applicable), the material parameters found, the model used to describe the tissue, the method used to take deformation measurements, and the location of the equation used to determine the parameters in either Table 5 or 6. To find the equation used to determine the parameters for each entry, the number before the period in the penultimate column gives the table number to use, and the number after the period gives the equation number (i.e. 5.12 is Table 5, equation number 12).

3.1. Ex vivo human tissue properties

15 studies were found that reported on *ex vivo* human muscle, fat, and skin tissues, all of which included a Young's modulus, shear modulus, ultimate stress or strength of the tissue, and/or isotropic material constants [24,71–84]. These studies are listed in Table 1.

Table 1

Ex vivo human material properties. Each column provides information about the tissue type, sample location, sample size, parameters found, the model used, mechanical test (deformation definition in parentheses), where the foundational equation can be found in Tables 5 and 6, and the reference.

Tissue Type	Sample Location	Sample Size	Parameters	Constitutive Law	Mechanical Test	Table 5/6	Ref.
Muscle	Leg	N=70 N=13(m) N=11(f)	E = 20-33 kPa (m) E = 12-38 kPa (f)	Linear elastic	Compression test (not reported)	5.1	[71]
	Levator ani	N=9	$k = 4.69 \times 10^3 \pm 2.91 \times 10^3$ kPa $q = 0.44 \pm 0.08$	Power-law	Tensile test (stretch and Green-St. Venant strain)	6.10	[72]
	Multifidus	N=23	$E_{\text{single fiber}} = 33.7 \pm 1.9$ kPa $E_{\text{fiber bundle}} = 91.3 \pm 6.9$ kPa	Linear elastic	Microindentation (engineering strain)	5.1	[73]
	Longissimus	N=7	$E_{\text{single fiber}} = 32.8 \pm 3.2$ kPa $E_{\text{fiber bundle}} = 62.9 \pm 14.7$ kPa	Linear elastic	Microindentation (engineering strain)	5.1	[73]
	Iliocostalis	N=7	$E_{\text{single fiber}} = 37.1 \pm 3.7$ kPa $E_{\text{fiber bundle}} = 58.8 \pm 7.7$ kPa	Linear elastic	Microindentation (engineering strain)	5.1	[73]
	BB, ECR, FCU, PT, SS, FDS, ECL *see legend at end of table	N=21 (healthy) N=9 (spastic)	UTS = $150.4 \times 10^3 \pm 25.7 \times 10^3$ kPa (Healthy), $50.3 \times 10^3 \pm 11.7 \times 10^3$ kPa (Spastic)	Linear elastic	Tensile test (engineering strain)	5.1	[74]
	Medial Gastrocnemius muscle	N=6	G = 17.9-23 kPa (0°-30° plantarflexion)	Linear elastic	Ultrasound, shear-wave elastography (not reported)	5.1	[75]
	Deltoid (Regions A1, A2, M, P1, P2) ** see legend at end of table	N=8	Elastic moduli (E, kPa) at 0 mm, 5 mm, 10 mm, and 15 mm of elongation A1: 55.9 ± 8.9 , 60.3 ± 11.1 , 71.2 ± 10.8 , 76.2 ± 11.6 A2: 72.4 ± 9.1 , 77.6 ± 9.8 , 109.9 ± 20.0 , 129.3 ± 34.9 M: 63.0 ± 13.1 , 69.7 ± 15.7 , 97.4 ± 12.1 , 123.5 ± 33.9 P1: 50.2 ± 9.9 , 57.2 ± 17.5 , 71.4 ± 14.9 , 89.0 ± 27.1 P2: 39.1 ± 11.9 , 42.8 ± 13.3 , 52.2 ± 15.4 , 61.3 ± 14.4	Linear elastic	Ultrasound, shear wave elastography (not reported)	5.1	[76]
Fat	Cadaver leg	N=70 N=13(m) N=11(f)	E = 23-61 kPa (m) E = 18-42 kPa (f)	Linear elastic	Compression test (not reported)	5.1	[71]
	Abdominal	N=9	Biaxial (Triaxial) Test Parameter $C = 0.3$ kPa (0.02 kPa) $k_1 = 0.8$ kPa (0.3 kPa) $k_2 = 47.3$ (40.0) $\kappa = 0.09$ (0.14) $\varphi = 47.2^\circ$ (51.4°)	Extended Neo-Hookean	Biaxial tensile test, triaxial shear test (stretch and right Cauchy-Green Deformation Tensor)	5.4	[77]
	Heel pad	N=10 (6 M, 4 F)	350 mm/s $C_{100} = C_{010} = 0.01 \times 10^{-3}$ kPa $C_{110} = 0$ kPa $C_{200} = C_{020} = 0.1 \times 10^{-3}$ kPa $\tau_1 = 0.5$ s 175 mm/s $g_1 = 28 \times 10^{-3}$ kPa	Viscoelastic Mooney-Rivlin	Unconfined compression tests (stretch, deformation tensor not reported)	5.7	[78]

	Lower abdomen Subcutaneous Fat	N=19	$E_{\text{init}} (\text{kPa}) = 1.6 \pm 0.8$ $E_{\text{final}} (\text{kPa}) = 11.7 \pm 6.4$ $A_1 (\text{mN}) = 1.7 \pm 0.5$ $A_2 (\text{mN}) = 4.2 \pm 2.8$ $A_3 (\text{mN}) = -0.4 \pm 3.2$ $k_1 (\text{s}^{-1}) = 0.004 \pm 0.003$ $k_2 (\text{s}^{-1}) = 0.0004 \pm 0.0001$ $t_1 (\text{min}) = 4.2 \pm 5.6$ $t_2 (\text{min}) = 41.7 \pm 16.7$	Linear viscoelastic	Microscopy, tensile test (strain, strain definition not reported)	6.6	[79]
	Lower Abdomen Omental Fat	N=19	$E_{\text{init}} (\text{kPa}) = 2.9 \pm 1.5$ $E_{\text{final}} (\text{kPa}) = 32 \pm 15.6$ $A_1 (\text{mN}) = 6.3 \pm 2.6$ $A_2 (\text{mN}) = 12.1 \pm 5.4$ $A_3 (\text{mN}) = 6.6 \pm 3.5$ $k_1 (\text{s}^{-1}) = 0.008 \pm 0.005$ $k_2 (\text{s}^{-1}) = 0.001 \pm 0.0003$ $t_1 (\text{min}) = 2.1 \pm 3.3$ $t_2 (\text{min}) = 16.7 \pm 55.6$	Linear viscoelastic	Microscopy, tensile test (strain, strain definition not reported)	6.6	[79]
Skin	Back	N=3 (1 M, 2 F)	$UTS = 27.2 \times 10^3 \pm 9.3 \times 10^3 \text{ kPa}$ $E = 98.97 \times 10^3 \pm 97 \times 10^3 \text{ kPa}$	Linear elastic	Tensile test (stretch, deformation tensor not reported)	5.1	[24]
	N/A	N=8	$C_1 = 1.2 \text{--} 1.4 \text{ kPa}$ $C_2 = 960 \text{--} 1.37 \times 10^3 \text{ kPa}$ $C_3 = 1.26 \text{--} 14.5 \times 10^{-3} \text{ kPa}$ $C_4 = 18.5 \text{--} 50.06$	Anisotropic Veronda-Westmann	Tensile test (stretch, Right Cauchy-Green Deformation Tensor)	5.21	[80]
	Forearm, upper arm, shoulder, sternum, upper/lower back, abdomen, thigh, tibia, calf, knee	N=5	$C_{1111} = 6.1 \text{--} 17.9$ $C_{1112} = .21 \text{--} 1.3$ $C_{1122} = 1.8 \text{--} 7.4$ $C_{1212} = 1.7 \text{--} 5.2$ $C_{1222} = .25 \text{--} 1.6$ $C_{2222} = 4.7 \text{--} 15.7$ <p><i>Elasticity tensor entries were reported for each sample location.</i></p>	Linear elastic	2-D Tensile test (true strain)	5.1	[81]
	Forehead (fh), forearm (fa), Temporoparietal (tp), neck(n)	N=10	$E = 330 \pm 40 \text{ kPa (fh)}$ $E = 650 \pm 50 \text{ kPa (tp)}$ $E = 1.03 \times 10^3 \pm 60 \text{ kPa (fa)}$ $E = 1.28 \times 10^3 \pm 60 \text{ kPa (n)}$	Linear elastic	Tensile test (strain, strain definition not reported)	5.1	[82]
	Thoracic, abdominal regions, dura mater, psoas major	N=10 (6 M, 4 F)	No material parameters reported	Linear viscoelastic	Tensile test (engineering strain)	N/A	[83]
	Back and abdomen	N=10	$UTS = 2 \text{--} 15 \times 10^3 \text{ kPa}$ $E_{\text{initial}} = 100 \text{ kPa}$ $E_{\text{final}} = 18.8 \times 10^3 \text{ kPa}$ $E_{\text{viscous}} = 5.13 \times 10^3 \text{ kPa}$	Linear elastic	Strain rate test (engineering strain and true strain)	5.1	[84]
	Back	N=7 (3 M, 4 F)	<p>Parameters with angle relative to Langer Lines 0°: $E = 95 \times 10^3 \text{ kPa}$, $UTS = 23 \times 10^3 \text{ kPa}$ 45°: $E = 90 \times 10^3 \text{ kPa}$, $UTS = 23 \times 10^3 \text{ kPa}$ 90°: $E = 50 \times 10^3 \text{ kPa}$, $UTS = 15 \times 10^3 \text{ kPa}$</p> <p>Parameters in different back locations Bottom: $E = 60 \times 10^3 \text{ kPa}$, $UTS = 17 \times 10^3 \text{ kPa}$ Middle: $E = 90 \times 10^3 \text{ kPa}$, $UTS = 25 \times 10^3 \text{ kPa}$ Top: $E = 80 \times 10^3 \text{ kPa}$, $UTS = 24 \times 10^3 \text{ kPa}$</p>	Linear elastic	Tensile test (stretch)	5.1	[85]

*Acronyms for ref. [60]: (BB)= biceps brachialis, (ECR)=extensor carpi radialis, (FCU)=flexor carpi ulnaris, (PR)= pronator teres, (SS)=subscapularis, (FDS)=flexor digitorum superficialis, (ECL)=extensor carpi radialis longus.

**Acronyms for ref. [62]: Regions of Deltoid muscle: anterior (A1, A2), middle(M), posterior (P1, P2)

3.1.1. Muscle

Ex vivo human muscle tissue were the focus of six studies [71–76]. Two investigated muscles from the leg, two from the arm and forearm, one from the shoulder, and one on muscle from the lower back. Three studies had less than ten samples [72,75,76], while the other three studies reported sample sizes greater than 20 [71,73,74], with the maximum number of samples being 70 [71].

3.1.2. Fat

Four studies were found that experimentally quantified the material parameters for human fat tissue [71,77–79]. Of these four studies, two tested fat from the abdomen, one the heel pad, and one tested on the leg. Sample sizes of ranged from nine to 19 samples.

3.1.3. Skin

Seven studies reported data from human skin samples [24,80–85]. These studies evaluated samples from the forehead, forearm, neck, back,

Table 2

In vivo human material properties. Each column provides information about the tissue type, sample location, sample size, testing position, parameters found, the model used, mechanical test (deformation definition in parentheses), where the foundational equation can be found in Tables 5 and 6, and the reference. *See acronyms used throughout the table after the last entry.

Tissue Type	Sample location	Sample size	Testing position	Parameters	Constitutive Law	Mechanical Test	Table 5/6	Ref.
Muscle	Medial gastrocnemius (MG), lateral gastrocnemius (LG), tibialis anterior (TA), soleus (S)	AB=4	Supine	Parameters in different locations MG: G = 24.86±0.71 kPa LG: G = 16.16±0.19 kPa TA: G = 12.03±0.39 kPa S: G = 16.77±0.24 kPa	Linear elastic	MRE, Shear wave elastography (not reported)	5.1	[33]
	Medial gastrocnemius (MG), lateral gastrocnemius (LG), tibialis anterior (TA), soleus (S)	DA=3	Supine	Parameters in different locations MG: G = 41.65±1.15 kPa LG: G = 39.28±0.90 kPa TA: G = 43.16±2.10 kPa S: G = 53.17±1.61 kPa	Linear elastic	MRE, Shear wave elastography (not reported)	5.1	[33]
	Brachialis: muscle fibers parallel (//) and perpendicular (⊥)	AB=5 (M)	90° elbow flexion	Elasticity ($\mu = \rho \cdot V_g^2$) $\mu_{\parallel} = 5.86 \pm 0.20$, 41.32±1.86, 57.58 ±0.91, 96.28±7.13, 100.80±3.22, $\mu_{\perp} = 1.58 \pm 0.15$, 1.07±0.05, 1.97±0.52, 1.12±0.11, 1.12±0.21, Viscosity $\eta_{\parallel} = 0.65 \pm 0.10$, 5.10±0.38, 6.72±0.19, 2.55±3.50, 3.80±2.15, $\eta_{\perp} = 0.92 \pm 0.06$, 2.47±0.04, 2.89±0.33, 2.39±0.10, 2.50±0.29	Voigt	Ultrasound (strain, strain definition not reported)	6.11	[42]
	Quadriceps (Q), sartorius (S), gracilis (G)	AB=1 (M)	Supine	Parameters in Different Locations Q: C ₁₀ = 1.75 kPa, D = 18x10 ³ kPa ⁻¹ G: C ₁₀ = 2.2 kPa, D = 18x103 kPa ⁻¹ S: C ₁₀ = 3.75 kPa, D = 18x10 ³ kPa ⁻¹	Neo-Hookean	Ultrasound, DIC (Deformation Gradient and Right Cauchy-Green Deformation Tensor)	5.2	[43]
	Biceps brachii (BB), gastrocnemius (G), flexor digitorum profundus (FDP), and soleus (S)	AB=12 (8 M, 4 F)	Seated	Parameters in Different Locations BB: 17.9±5.5 kPa G: 9.9±6.8 kPa FDP: 8.7±2.8 kPa S: 12.5±7.3 kPa	Linear elastic	MRE, Shear wave elastography (not reported)	5.1	[46]
	Buttocks	AB=1	Prone	$\mu_{1M} = 0.103 \times 10^{-2}$, $\mu_{2M} = .145 \times 10^{-6}$ $G_{s,M} = 1.025$ kPa $E_{s,M} = 3.1$ kPa $D_{1M} = 0.195 \times 10^2$, $D_{2M} = 0.166 \times 10^3$ $\alpha_{1M} = 1.32$, $\alpha_{2M} = -18.4$	Viscoelastic Ogden	MRI (Left Cauchy-Green Deformation Tensor)	5.11	[47]
	Heel pad	AB= 6 (3M, 3 F)	Seated	Mooney-Rivlin (5.6): $c_1 = -1.12 \times 10^{-6}$ kPa, $c_2 = 4.7 \times 10^{-6}$ kPa Generalized Rivlin (5.8): $c_{10} = 4.6 \times 10^{-6}$ kPa, $c_{20} = 2.34 \times 10^{-7}$ kPa $c_{30} = 2.3 \times 10^{-6}$ kPa Ogden (5.11): $\mu_k = 10.2 \times 10^{-6}$ kPa, $\alpha = 8.04$, $c = 10.2 \times 10^{-6}$ kPa	Strain determined by geometric relationship (stretch, Hertz strain, volumetric strain)	5.6, 5.8, 5.11	[53]	
	Medial gastrocnemius	AB=14 (11 M, 3 F)	Prone + supine	Shear Modulus, Pre-Therapy (Post-Therapy) Therapy Group $G_{neutral} = 19.0 \pm 5.9$ (18.2±4.7) kPa $G_{dorsiflexion} = 112.3 \pm 39.5$ (107.4±31.5) kPa Control Group $G_{neutral} = 19.2 \pm 6.0$ (20.2±6.4) kPa $G_{dorsiflexion} = 108.4 \pm 40.0$ (111.5±37.5) kPa	Linear elastic	Shear wave elastography, isokinetic dynamometer (not reported)	5.1	[86]
	Soleus	AB=14 (11 M, 3 F)	Prone + supine	Shear Modulus, Pre-Therapy (Post-Therapy) Therapy Group $G_{neutral} = 10.8 \pm 5.7$ (11.0±4.3) kPa	Linear elastic	Shear wave elastography,	5.1	[86]

						displacement for thickness and strain (not reported)		
	Forearm Skin	AB 20 (F)	N/A	$E^* = 8.3 \pm 2.1 \text{ kPa}$ $G^* = 2.8 \pm 0.46 \text{ kPa}$	Linear elastic	Indentation (displacement)	5.22	[95]
	Forearm	AB J (M)	N/A	Hypodermis: $C10 = 0.06 \text{ kPa}$, $K = 0 \text{ kPa}$ Epidermis+ Dermis: $C10 = 0.80 \text{ kPa}$, $K = 0 \text{ kPa}$	Neo-Hookean	MRJ (Deformation Gradient)	5.3	[96]
	Volar forearm	AB 3 (F)	Seated	Coefficient of friction = 0.7	Friction	Indentation (displacement)	6.18	[97]
	Anterior forearm	AB J0 (M)	N/A	$E = 129 \pm 88 \text{ kPa}$	Linear elastic	Ultrasound (strain, strain definition not reported)	5.1	[98]
	Palmar skin, dorsal forearm skin, ventral forearm skin	AB 17	N/A	Rate of energy damping (α , time dependent) Palm: $\alpha = 0.077 \pm 0.058$ Dorsal Forearm: $\alpha = 0.049 \pm 0.008$ Ventral Forearm: $\alpha = 0.044 \pm 0.006$	N/A	Ballistometer (displacement)	N/A	[99]
	Forearm	AB 138	N/A	Younger (<30 years): $E = 420 \text{ kPa}$ Older (>30 years): $E = 850 \text{ kPa}$	Linear elastic	Torque measurement (strain, strain definition not reported)	6.1	[100]
	PH, DH, AF, PF, AL, PL ** see legend at end of table	AB J0	N/A	Static coefficient of friction (μ) PH: $\mu = 0.62 \pm 0.22$ OH: $\mu = 0.47 \pm 0.12$ AF: $\mu = 0.46 \pm 0.10$ PF: $\mu = 0.43 \pm 0.10$ AL: $\mu = 0.40 \pm 0.10$ PL: $\mu = 0.40 \pm 0.09$	Friction	Probe indentation (displacement)	6.19	[101]
	Arm and leg	AB 95 (47 M, 48 F)	Supine	Only plots and soft tissue thickness reported	Linear elastic	Ultrasound, Indentation (displacement)	5.1	[102]
	Forearm, dorsal forearm, calf, thigh, back, palm of hand	N JJ (II M)	N/A	Parameters in different locations Forearm: $\mu = 11.13 \pm 5.62 \text{ kPa}$, $8.96 \times 10^{-3} \pm 6.06 \times 10^{-3} \text{ kPa}^2$ Dorsal Forearm: $\mu = 14.50 \pm 9.34 \text{ kPa}$, $10.09 \times 10^{-3} \pm 10.37 \times 10^{-3} \text{ kPa}^2$ Calf: $\mu = 22.33 \pm 8.77 \text{ kPa}$, $7.76 \times 10^{-3} \pm 5.77 \times 10^{-3} \text{ kPa}^2$ Thigh: $\mu = 11.37 \pm 5.41 \text{ kPa}$, $1.04 \times 10^{-3} \pm 12.97 \times 10^{-3} \text{ kPa}^2$ Back: $\mu = 6.63 \pm 3.40 \text{ kPa}$, $8.16 \times 10^{-3} \pm 7.31 \times 10^{-3} \text{ kPa}^2$ Palm: $\mu = 28.41 \pm 13.32 \text{ kPa}$, $32.94 \times 10^{-3} \pm 22.97 \times 10^{-3} \text{ kPa}^2$	Voigt Model	Scanning laser vibrometer (displacement)	6.11	[103]
Bulk Tissue	Buttocks and Thighs [Muscle +Skin+ Fat]	AB 20 (10 M, 10 F)	Seated, Quadruped, and Prone	Parameters in different positions Seated: $\mu = 4.8 \text{--} 6 \text{ kPa}$, $\alpha = 3.5 \text{--} 7.5$ Quadruped: $\mu = 4.6 \text{--} 6.5 \text{ kPa}$, $\alpha = 3 \text{--} 6$ Prone: $\mu = 2.5 \text{--} 4 \text{ kPa}$, $\alpha = 9.5 \text{--} 13.5$	Ogden	Indentation (stretch)	5.10	[23]
	Buttocks and Thighs [Muscle +Skin+ Fat]	AB 20 (10 M, 10 F), DA JJ (9 M, 2 F)	Quadruped	Parameters in different populations DA Males: $\mu = 3.51 \text{--} 4.54 \text{ kPa}$, $\alpha = 4.42 \text{--} 6.37$ DA Females: $\mu = 2.31 \text{--} 3.95 \text{ kPa}$, $\alpha = 4.98 \text{--} 6.40$ AB Males: $\mu = 4.78 \text{--} 5.35 \text{ kPa}$, $\alpha = 3.84 \text{--} 5.72$ AB Females: $\mu = 4.39 \text{--} 6.65 \text{ kPa}$, $\alpha = 3.26 \text{--} 5.53$	Ogden	Indentation (stretch)	5.10	[34]
	Buttocks [Skin+Fat]	AB J	Prone	$\mu = 0.1 \text{ I} \times 10^{-2}$, $\mu = 0.644 \times 10^{-2}$ $\alpha = -0.1076$, $\alpha = -0.03189 \times 10^2$ $D_1 = 0.169 \times 10^2$, $D_2 = 0.477 \times 10^1$ $G = 1.182 \text{ kPa}$; $E = 3.53 \text{ kPa}$	Ogden	MRI (Left Cauchy-Green Deformation Tensor)	5.11	[47]
	Lower back, buttocks, thighs [Muscle +Skin+ Fat]	AB 20 (10 M, 10 F)	Seated	Parameters in different locations, male (female) LB: $c_1 = 0.2 \text{ kPa}$ (0.04 kPa), $c_2 = 9.9 \text{ kPa}$ (4.9 kPa) PB: $c_1 = 2, I \times 10^{-6} \text{ kPa}$ (0.39 kPa), $c_2 = 11.3 \text{ kPa}$ (7.2 kPa) 18: $c_1 = 0.81 \text{ kPa}$ (1.4 kPa), $c_2 = 2.9 \text{ kPa}$ (2.7 kPa) PT: $c_1 = 3.2 \times 10^{-3} \text{ kPa}$ ($1.2 \times 10^{-3} \text{ kPa}$), $c_2 = 22.8 \text{ kPa}$ (18.6 kPa) MT: $c_1 = 1.6 \text{ kPa}$ (1.0 kPa), $c_2 = 5.3 \text{ kPa}$ (4.5 kPa) OT: $c_1 = 3.4 \text{ kPa}$ (2.2 kPa), $c_2 = 0.73 \text{ kPa}$ (1.3 kPa)	Mooney-Rivlin	Motion Capture (Right Cauchy-Green Deformation Tensor)	5.6	[48]

***see legend at end of table

	Thigh [Muscle +Skin + Fat]	AB=20 (10 M, 10 F)	Seated	Semi-3D: $C_1 = 3.6\text{--}11.9 \text{ kPa}$, $K = 0 \text{ kPa}$ 3D: $C_1 = 3.02\text{--}8.5 \text{ kPa}$, $K = 0 \text{ kPa}$	Neo-Hookean	Motion Capture (Right Cauchy- Green Deformation Tensor)	5.3	[49]
	Thigh [Muscle +Skin + Fat]	AB=20 (10 M, 10 F)	Seated	Semi-3D: $\mu = 2.3\text{--}3.4 \text{ kPa}$, $\alpha = 3.5\text{--}13.0$, $K = 0 \text{ kPa}$ 3D: $\mu = 0.49\text{--}1.7 \text{ kPa}$, $\alpha = 5.4\text{--}35.8$, $K = 0 \text{ kPa}$	Ogden	Motion Capture (Deformation Gradient)	5.12	[49]
	Thigh [Muscle +Skin + Fat]	AB=20 (10 M, 10 F)	Seated	Semi-3D: $C_1 = 1.7\text{--}2.2 \text{ kPa}$, $C_2 = 1.8\text{--}9.7$, $K = 0 \text{ kPa}$ 3D: $C_1 = 1.5\text{--}2.2 \text{ kPa}$, $C_2 = 0.62\text{--}6.0$, $K = 0 \text{ kPa}$	Mooney-Rivlin	Motion Capture (Deformation Gradient, Right Cauchy- Green Deformation Tensor)	5.6	[49]
	Thigh [Muscle +Skin + Fat]	AB=20 (10 M, 10 F)	Seated	Semi-3D: $E = 3.2\text{--}18.3 \text{ kPa}$, $c = 0.95\text{--}16.3 \text{ kPa}$ 3D: $E = 2.7\text{--}25.3 \text{ kPa}$, $c = 3.2\text{--}23.3 \text{ kPa}$	Fung	Motion Capture (Deformation Gradient, Right Cauchy- Green Deformation Tensor)	5.9	[49]
	Skin+fat	N=1	Prone	No material parameters reported	N/A	MRI, indentation (not reported)	N/A	[50]
	Arm and leg [Muscle +Skin + Fat]	AB=100 (50 M, 50 F)	Supine	No material parameters reported	N/A	Ultrasound, Indentation (not reported)	N/A	[51]
	Gluteal Tissue [Skin+Fat]	AB=1 (M)	prone	$G_{e,S/F} = 1.854 \text{ kPa}$; $G_{u,S/F} = 1.92 \text{ kPa}$ $K_{e,S/F} = 719 \text{ kPa}$ Time-independent Constants $c_{1S}(\text{kPa}) = 0.928$ $D_{S/F}(M^{-1}\text{kPa}^{-1}) = 2.78 \times 10^{-3}$ $k_{1S/F}(\text{kPa}) = 6.56 \times 10^{-6}$ $k_{2S/F} = 1.51 \times 10^2$ $K_{S/F} = \frac{1}{3}$ Time-Dependent Constants $g_1 = 1.33 \times 10^{-1}$, $k_1 = 1.32 \times 10^{-2}$, $\tau_1 = 2 \text{ s}$ $g_2 = 3.64 \times 10^{-1}$, $k_2 = 3.25 \times 10^{-4}$, $\tau_2 = 40 \text{ s}$ $g_3 = 3.85 \times 10^{-4}$, $k_3 = 5.60 \times 10^{-4}$, $\tau_3 = 80 \text{ s}$ $g_4 = 1.60 \times 10^{-2}$, $k_4 = 1.89 \times 10^{-5}$, $\tau_4 = 200 \text{ s}$	Viscoelastic Holzapfel- Gasser-Ogden	MRI (modified right Cauchy- Green Deformation Tensor)	5.14	[91]

* AB = able-bodied, DA = disabled, MRE = magnetic resonance elastography, MRI = magnetic resonance imaging, DIC = digital image correlation

** Acronyms for ref. [78]: PH = palm of hand, DH = dorsum of the hand, AF = anterior side of the forearm, PF = posterior side of the forearm, AL = anterior leg,

PL = posterior leg, E* = reduced young's modulus, E_r* = Young's modulus of the skin

***Acronyms for ref. [35]: LB = lower back, PB = posterior buttocks, IB = inferior buttocks, PT = proximal thigh, MT = middle thigh, DT = distal thigh

and abdomen. Three studies reported a sample size of at least 10 [82–84], one had eight samples [80], one had seven samples [85], one tested five samples [81], and one tested three samples [24].

3.2. In vivo human tissue properties

34 studies were found that included *in vivo* properties of human muscle, fat, skin, and bulk tissue (defined as a homogeneous material of muscle, fat, and skin by lumping the parameters), as presented in Table 2. Factors that differed between the studies included region of the body tested, number of participants, body position, and whether the study included able-bodied people or persons with disabilities.

3.2.1. Muscle

Material property values were obtained from multiple body regions in multiple body positions and from both able-bodied people and those

with disabilities. 12 studies reported tissue parameters from muscles of the lower limb, including the gastrocnemius, gracilis, sartorius, quadriceps, posterior thigh, heel pad of the foot, tibialis anterior, rectus femoris, buttocks, and triceps surae [33,43,44,46,47,53,86–91]. Five studies reported on tissue from the upper limb including the biceps brachii, flexor digitorum profundus, and brachialis [42,46,92–94]. Six studies were conducted while participants were in the supine position (lying on their back) [33,43,44,86,90,94], three studies were conducted in the seated position [46,53,88], and four studies the prone position (lying on their stomach) [47,86,87,91]. Four studies did not report the testing position or tested in a different manner than supine, prone or seated [42,89,92,93]. Three studies included able-bodied sample sizes of 10 or greater [46,86,88], and 11 studies tested able-bodied participants with a sample size less than 10 [33,42,43,47,53,87,89–94]. One study included individuals with physical disabilities with a sample size less than 10 [33], and two studies did not report whether the

Table 3

Ex vivo Animal Material Properties *acronyms used in this Table are written out after the last entry. Each column provides information about the tissue type, animal, sample location, sample size, parameters found, the model used, mechanical test (deformation definition in parentheses), where the foundational equation can be found in [Tables 5 and 6](#), and the reference. *See acronyms used throughout the table after the last entry.

Tissue Type	Animal	Sample Location	Sample Size	Parameters	Constitutive Law	Mechanical Test	Table 5/6	Ref.
Muscle	Pig	Buttock	N=17 N=19 N=17 N=23 N=24 N=23	Non-Preconditioned Parameter (Preconditioned Parameter) G_r (kPa) = 0.58±.17 (0.81±0.41) G_s (kPa) = 8.51±3.9 (5.71±1.79) G_l (kPa) = 0.61±0.22 (0.81±0.41)	Linear viscoelastic	Indentation (displacement)	6.5	[22]
	Frog	N/A	N=7	Resting Parameter (Contracted Parameter) E (kPa) = 2.64×10^6 (2.65×10^6) E (kPa) = 4.40×10^6 (4.57×10^6) G (kPa) = 3.39×10^6 (3.43×10^6)	Linear anisotropic	Ultrasound (not reported)	5.1	[45]
	Pig	Spine region and abdomen	N=1	Mooney-Rivlin (5.6): $C_1 = 190$ kPa, $C_2 = -210$ kPa, $K = 0$ Yeoh (5.15): $C_1 = 4.2$ kPa, $C_2 = 51$ kPa, $C_3 = -13$ kPa Neo-Hookean (5.3): $C_1 = 54$ kPa, $K = 0$ Ogden (5.12): $\mu = 5$ kPa, $\alpha = 5.7$, $K = 0$ Humphrey (5.16): $C_1 = 9$ kPa, $C_2 = 1.5$ Martins (5.18): $C_1 = 540$ kPa, $C_2 = -0.22$, $C_3 = 790$ kPa, $C_4 = 0.43$ Veronda-Westmann (5.19): $C_1 = 21$ kPa, $C_2 = 1.1$	Uniaxial tensile test (Right Cauchy-Green Deformation Tensor and Left Cauchy-Green Deformation Tensor)	5.6, 5.16, 5.3, 5.12, 5.17, 5.19, 5.20	[55]	
	Cow	Beef sirloin	N=2	No parameters reported	N/A	Sonoelastography (not reported)	N/A	[89]
	Cow	Peroneus tertius and extensor digitorum longus	N=10	$G = 23.8 \pm 6.68$ kPa	Linear elastic	MRE, Shear wave elastography (not reported)	5.1	[94]
	Pig	Semitendinosus	N=5	No (muscle) parameters reported	Linear elastic	MRE, Shear wave elastography (not reported)	5.1	[104]
	Pig	Pelvic limb	N=4	$c_1 = 0.948 \pm .024$ $c_2 = 11.36 \pm 0.085$ $c_3 = .880 \pm .009$ $c_4 = -.070 \pm 0.176$ $c_5 = 2.873 \pm 0.039$	Humphrey	Uniaxial unconfined compression (stretch, true strain)	5.18	[105]
	Pig	Buttock	N=3	Stiffness (S) = 8.5–347 kN/m Damping (D) = 0–556 Ns/m	Kelvin–Voigt	Cyclic compression (not reported)	6.14	[106]
	Rabbit	Extensor digitorum longus	N=6	$E_{\text{longitudinal}} = 447 \pm 97.7$ kPa $E_{\text{transverse}} = 24.4 \pm 14.7$ kPa $G = 3.87 \pm 3.39$ kPa	Linear elastic	Tension test (Green Strain)	5.1	[107]
	Cow	Rectal wall	Transverse, N=2; Longitudinal, N=1	$E = 14$ kPa $v = 0.495$ (for all)	Linear elastic	Compression test, analog displacement measurements (strain, strain definition not reported)	5.1	[108]
Fat	Pig	Buttock	N=3	$G_d = 14.9 \pm 4.8$ kPa	Linear viscoelastic	Oscillatory shear experiment, frequency sweep (strain, strain definition not reported)	6.7	[109]
	Sheep	Buttock	N=20	Non-Preconditioned Parameter (Preconditioned Parameter) H_{long} (Pa) = 10.6±4.2 (10.1±4.0) H_{short} (Pa) = 28.9±14.9 (18.2±6.9) E_{inden} (Pa) = 860±440 (840±200) E_{swell} (Pa) = 22.6±10 (16.3±9.9)	Linear Viscoelastic	Distance measurements (strain, strain definition not reported)	6.2, 6.5	[110]
Skin	Mouse	Back	N=14	$C_1 = 0.278 \pm 0.118$ kPa $C_2 = 10.2 \pm 2.7$ $C_3 = 4.32 \pm 5.28$ kPa $C_4 = 21.1 \pm 29.0$ kPa *C5 and C6 are dependent on the other constants	Anisotropic Veronda-Westmann	Tensile test (stretch, Right Cauchy-Green Deformation Tensor)	5.21	[80]

	Pig	Belly	N=1	Load rate dependency (0.25–10 % s⁻¹) $\mu = 0.2\text{--}3.1 \text{ kPa}$ $\alpha = 7.772\text{--}10.46$ Temperature dependency (10–60°) $\mu = 0.368\text{--}3.909 \text{ kPa}$ $\alpha = 8.504\text{--}9.677$	Ogden	Tensile test (stretch)	5.13	[111]
	Cow	Buttock	N=4	$\mu = 400 \text{ kPa}$ $\alpha = 4.6$ $K = 0$	Ogden	Uniaxial tensile test (stretch)	5.12	[112]
	Pig	Abdomen, Spine	N=1	Abdomen Neo-Hookean: $C_1 = 0.28$ Mooney-Rivlin: $C_1 = 1.06$, $C_2 = -1.57$ Ogden: $C_1 = 0.06$, $C_2 = 7.73$ Yeoh: $C_1 = -0.02$, $C_2 = 0.05$, $C_3 = 0.003$ Humphrey: $C_1 = 0.13$, $C_2 = 0.55$ Martins: $C_1 = 0.87$, $C_2 = 0.45$, $C_3 = 1.41$, $C_4 = -0.62$ Veronda-Westmann: $C_1 = 0.47$, $C_2 = 0.40$ Spine Neo-Hookean: $C_1 = 5.40$ Mooney-Rivlin: $C_1 = 80.5$, $C_2 = -82.3$ Ogden: $C_1 = 3.58$, $C_2 = 27.4$ Yeoh: $C_1 = 0.69$, $C_2 = 104$, $C_3 = -400$ Humphrey: $C_1 = 0.09$, $C_2 = 26.8$ Martins: $C_1 = 3.13$, $C_2 = -10.5$, $C_3 = 12.5$, $C_4 = 7.98$ Veronda-Westmann: $C_1 = 0.35$, $C_2 = 15.0$	Uniaxial tensile test (engineering strain, stretch, Cauchy-Green Deformation Tensor – orientation not reported)	5.3, 5.6, 5.11, 5.16, 5.17, 5.19, 5.20	[113]	
	Pig	Abdomen	N=1	$C_0 = 50 \text{ m/s}$ $S = 4.3$	Hugoniot relationship	Uniaxial tensile testing, DIC (true strain)	6.26	[114]
	Rat	Back	N=63 (M)	1 month Tangent Modulus = $14 \times 10^3 \text{ kPa}$ 4 months Tangent Modulus = $36 \times 10^3 \text{ kPa}$	Elastic with a statistical recruitment of fibers	Tensile test (displacement, engineering strain)	6.4	[115]
	Rat	Posterior hind limbs	N=30 (M)	Stiffness = 2.3–4.4 N/mm	Linear elastic	Tensiometer (displacement)	5.1	[116]
	Pig	Buttock	N/A	Parameters at different strain rates 0.004 s⁻¹: $\mu \text{ (kPa)} = 400$, $\alpha = 12$, $K = 0$ 0.4 s⁻¹: $\mu \text{ (kPa)} = 1.2 \times 10^3$, $\alpha = 12$, $K = 0$ 40 s⁻¹: $\mu \text{ (kPa)} = 2.2 \times 10^3$, $\alpha = 12$, $K = 0$ 4000 s⁻¹: $\mu \text{ (kPa)} = 7.5 \times 10^3$, $\alpha = 12$, $K = 0$	Ogden	Uniaxial compression (engineering strain, stretch)	5.12	[117]

* MRE=magnetic resonance elastography, G_s=shear modulus, G_l=long-term shear modulus, G(t)=transient shear modulus, E^{indent}=short term elastic moduli, G_d=dynamic shear modulus

** C_1 is C_{10} for the Neo-Hookean model in MPa; C_1 is C_1 for the Mooney-Rivlin model in MPa, C_2 is C_2 for the Mooney-Rivlin model in MPa; C_1 is μ for the Ogden model in MPa, C_2 is α for the Ogden model; C_1 is C_1 for the Yeoh model in MPa, C_2 is C_2 for the Yeoh model in MPa, C_3 is C_3 for the Yeoh model in MPa; C_1 is C_1 for the Humphrey model in MPa, C_2 is C_2 for the Humphrey model; C_1 is C_1 for the Martins model in MPa, C_2 is C_2 for the Martins model, C_3 is C_3 for the Martins model in MPa, C_4 is C_4 for the Martins model; C_1 is C_1 for the Veronda-Westmann model in MPa, C_2 is C_2 for the Veronda-Westmann model

participants were able-bodied or had a disability [92,93].

3.2.2. Fat

Fat tissue was included in one study that only included able-bodied participants [90]. The sample location was not identified, and one male was tested in the supine position.

3.2.3. Skin

In vivo samples of human skin from several regions of the body have been tested. The testing regions included the forearm, palm, back, shoulder, thigh, and calf, leading to a range of tissue parameters [39–41, 95–103]. Testing positions varied as well, as three studies tested while seated [39,40,97], and eight studies did not report the testing position [41,95,96,98–101,103]. None tested individuals with disabilities. Nine studies included at least 10 able-bodied individuals, with some testing up to 138 participants [39–41,95,98–103]. Two studies tested less than five participants [96,97].

3.2.4. Bulk tissue

While some *in vivo* experiments separated the muscle, fat, and skin into separate components, there were several that described the tissues as a homogeneous material, using lumped parameters. All studies that described the bulk soft tissue behavior in humans collected data from the buttocks and thigh regions. Five of these studies had at least 20 participants [23,34,48,49,51], while three had a single participant [47, 50,91]. Three studies determined tissue properties in the seated position [23,48,49], four in the prone position [23,47,50,91], two in the quadruped position [23,34], and one in the supine position [51]. Eight studies included data from able-bodied people, while one study reported material parameters in people with spinal cord injuries and able-bodied people [23,34,47–51,91,102].

3.3. Using animal properties for human modeling data

26 studies on *in vivo* and *ex vivo* animal muscle, fat, and skin tissue were published between 1987 and 2014, but the authors found no more

Table 4

In vivo Animal Material Properties. Each column provides information about the tissue type, animal, sample location, sample size, test position, parameters found, the model used, mechanical test (deformation definition in parentheses), where the foundational equation can be found in Tables 5 and 6, and the reference. *See acronyms used throughout the table after the last entry.

Tissue Type	Animal	Sample location	Sample size	Test position	Parameter	Constitutive Law	Mechanical Test	Table 5/6	Ref.
Muscle	Pig	Buttock	N=1	Prone	$\mu = 6 \text{ kPa}$ $\alpha = 5$ $K = 0$ $G = 15 \text{ kPa}$	Ogden	MRI (stretch, Green-Lagrange Strain Tensor)	5.12	[5]
	Rat	Hind limb muscles	N=4	Supine	No material parameters reported	Neo-Hookean	MRI, indentation (Left Cauchy-Green Deformation Tensor)	N/A	[18]
	Rat	Gracilis, tibialis anterior	N=33	Prone	No material parameters reported	Polynomial Stress Relationship	Compression, uniaxial tensile test (stretch, true strain)	6.20	[19]
	Rat	Tibialis anterior	N=2	N/A	$\mu = 15.6 \pm 5.4 \text{ kPa}$ $\alpha = 21.4 \pm 5.7$ $\delta = 0.549 \pm 0.056$ $\tau = 6.01 \pm 0.42 \text{ s}$ $G = 15.6 \pm 5.4 \text{ kPa}$	Viscoelastic Ogden	Indentation, compression (stretch, Green-Lagrange Strain Tensor)	5.14	[20]
	Rat	Gracilis	N=32	Prone	$G_s = 0.348-0.730 \text{ kPa}$	Linear Viscoelastic	Constant pressure, displacement transducer (displacement)	6.8	[118]
	Rat	Tibialis anterior	N=15	N/A	No material parameters reported	N/A	Waveform, motion analysis (engineering strain)	N/A	[119]
	Rabbit	Tibialis anterior and extensor digitorum longus	N=7	N/A	$C = 0.62 \pm 0.08 \text{ kPa}$ $\tau_1 = 0.012 \pm 0.005$ $\tau_2 = 300 \text{ s}$	Quasi-Linear Viscoelastic	Force-displacement (displacement, strain, strain definition not reported)	6.9	[120]
Fat	Pig	Buttock	N=1	Prone	$\mu = 3 \text{ kPa}$ $\alpha = 5$ $K = 0$ $G = 7.5 \text{ kPa}$	Ogden	MRI (stretch, Green-Lagrange Strain Tensor)	5.12	[5]
	Rat	Gracilis (Gr), tibialis anterior (TA)	N=33	Prone	No material parameters reported	Polynomial relationship	Compression <i>in vivo</i> , uniaxial tensile test (stretch, true strain)	6.20	[19]
Skin	Pig	Buttock	N=1	Prone	$\mu = 8 \text{ kPa}$ $\alpha = 5$ $K = 0$ $G = 20 \text{ kPa}$	Ogden	MRI (stretch, Green-Lagrange Strain Tensor)	5.12	[5]
	Rat	Gracilis (Gr), tibialis anterior (TA)	N=33	Prone	No material parameters reported	Polynomial relationship	Compression, uniaxial tensile test (stretch, true strain)	6.20	[19]
	Pig	Abdomen, shoulder	N=2	N/A	No material parameters reported	N/A	Extensometer - compression measurements (displacement)	N/A	[21]
	Rat	Posterior hind limbs	N=10 (M)	N/A	Stiffness = 14.8-52.1 N/m	Linear elastic	Optical coherence tomography-based air-jet indentation (displacement)	5.1	[116]

* MRI= magnetic resonance imaging

recent studies. Samples were taken from sheep, pigs, mice, rats, rabbits, cows, and frogs.

3.3.1. Ex vivo

The studies on *ex vivo* animal tissue sample included properties from muscle, fat, and skin. The animals from which the tissue samples were

taken are identified in **Table 3**. Muscle tissue data were collected from the extensor digitorum longus, peroneus tertius, thoracic muscle, gluteus, semitendinosus, abdomen, and pelvic muscles [22,45,55,89,94, 104–108]. Two studies included sample sizes of 10 or more [22,94]. Eight studies included a sample size less than 10 [45,55,89,104–108]. Two studies included fat properties taken from the gluteus, with sample

Table 5

Strain energy density equations to determine material parameters.

No.	Constitutive Law	Strain Energy Density Equation
1	Linear Elastic (Hookean)	$W(\epsilon_{ij}) = \frac{1}{2} \sum_{i=1}^3 \sum_{j=1}^3 \sigma_{ij} \epsilon_{ij}$
2	Neo-Hookean (1)	$W(I) = C_{10}(I_1 - 3) + \frac{1}{D^{NH}}(I - 1)^2$
3	Neo-Hookean (2)	$W(I) = C_{10}(I_1 - 3) + \frac{1}{2} K^{NH} (\ln J)^2, K^{NH} = \frac{2C_{10}}{1-2\nu}$
4	Extended Neo-Hookean	$W(I) = \frac{C}{2}(I_1 - 3) + \frac{k_1}{k_2} (e^{k_2[\kappa I_1 + (1-3\kappa)I_2 - 1]} - 1)$
5	Generalized Mooney	$W(I) = C_{10}(I_1 - 3) + C_{11}(I_1 - 3)(I_2 - 3)$
6	Mooney-Rivlin	$W(I) = C_1(I_1 - 3) + C_2(I_2 - 3) + \frac{1}{2} K^{MR} (\ln J)^2, K^{MR} = \frac{2(C_1 + C_2)}{1-2\nu}$
7	Viscoelastic Mooney-Rivlin	$W(I_1, I_2) = \sum_{i+j=1}^N C_{ij0}(I_1 - 3)^i (I_2 - 3)^j \left(1 - \sum_{k=1}^n g_k \left(1 - e^{-\frac{t}{\tau_k}} \right) \right)$
8	Generalized Rivlin	$W(I) = \sum_{i+j=1}^3 c_{ij}(I_1 - 3)^i (I_2 - 3)^j$
9	Fung	$W(I, E) = \frac{1}{2} C^F (e^Q - 1) + \frac{1}{2} K^F (\ln J)^2, K^F = \frac{E^F}{3(1-2\nu)}$ $Q = \gamma^F (I: E^F)^2 + \frac{\gamma^F (1-2\nu)}{\nu} I: E^2$ $\gamma^F = \frac{E^F \nu}{C^F (1+\nu)(1-2\nu)}$
10	Ogden (1)	$W(\lambda) = \sum_{i=1}^N \frac{\mu_i}{\alpha_i} (\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3) + \sum_{i=1}^N \frac{1}{D_i} (J - 1)^2$
11	Ogden (2)	$W(\lambda) = \sum_{k=1}^N 2 \frac{\mu_k}{\alpha_k^2} (\lambda_1^{-\alpha_k} + \lambda_2^{-\alpha_k} + \lambda_3^{-\alpha_k} - 3) + \sum_{k=1}^N \frac{1}{D_k} (J - 1)^{2k}$
12	Ogden (3)	$W(\lambda) = \sum_{i=1}^N \frac{\mu_i}{\alpha_i} (\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3) + \frac{1}{2} K (\ln J)^2$
13	Ogden (4)	$W(\lambda) = \sum_{k=1}^N 2 \frac{\mu_k}{\alpha_k^2} (\lambda_1^{-\alpha_k-1} + \lambda_2^{-\alpha_k-1} + \lambda_3^{-\alpha_k-1} - 3) + \sum_{k=1}^N \frac{1}{D_k} (J - 1)^2$
14	Viscoelastic Ogden	$W(\lambda) = \frac{\mu}{\alpha} (\lambda_1^{\alpha} + \lambda_2^{\alpha} + \lambda_3^{\alpha} - 3)$

		$S(\zeta, t) = (1 - \delta) \frac{\partial W}{\partial E} + \int_0^t \delta \frac{\partial W}{\partial E} e^{-\frac{t-\zeta}{\tau}} d\zeta$
15	Viscoelastic Holzapfel-Gasser-Ogden	$W(C, H_i) = c_1(\bar{C}_1 - 3) + \frac{k_1}{2k_2} \sum_{i=1}^N (e^{k_2 \bar{E}_i^2} - 1) + \frac{1}{D} \left[\frac{1}{2} (J^2 - 1) - \ln J \right]$ $= G_0 \left[1 - \sum_{i=1}^{N_G} g_i (1 - e^{-(t/\tau_i^G)}) \right]$ $K(t) = K_0 \left[1 - \sum_{i=1}^{N_K} k_i (1 - e^{-(t/\tau_i^K)}) \right]$
16	Yeoh	$W(I_1) = C_1(I_1 - 3) + C_2(I_1 - 3)^2 + C_3(I_1 - 3)^3$
17	Humphrey (1)	$W(I_1) = C_1(e^{C_2(I_1-3)} - 1)$
18	Humphrey (2)	$W(I_1, \lambda) = c_1(\lambda - 1)^2 + c_2(\lambda - 1)^3 + c_3(I_1 - 3) + c_4(I_1 - 3)(\lambda - 1) + c_5(I_1 - 3)^2$
19	Martins	$W(I_1, \lambda) = C_1(e^{C_2(I_1-3)} - 1) + C_3(e^{C_4(\lambda-1)} - 1)$
20	Veronda-Westmann	$W(I_1, I_2) = C_1(e^{C_2(I_1-3)} - 1) - \frac{C_1 C_2}{2} (I_2 - 3)$
21	Anisotropic Veronda-Westmann	$W(I) = C_1[e^{C_2(I_1-3)} - 1] - \frac{C_1 C_2}{2} (I_2 - 3) \text{ for } \lambda < 1$ $W(I) = C_1[e^{C_2(I_1-3)} - 1] - \frac{C_1 C_2}{2} (I_2 - 3) + C_3(e^{C_4(\lambda-1)} - 1) \text{ for } 1 < \lambda < \lambda_m$ $W(I) = C_1[e^{C_2(I_1-3)} - 1] - \frac{C_1 C_2}{2} (I_2 - 3) + C_5 + C_6 \lambda \text{ for } \lambda \geq \lambda_m$

*C5 and C6 are dependent on the other constants

sizes of three and 20 [109,110]. Eight studies reported properties from skin samples, where four studies had sample sizes less than five [111–114], three studies had 14 or more samples [80,115,116], and one study did not report a sample size [117]. Skin samples were taken from the abdomen, posterior hindlimb, back, and gluteus.

3.3.2. In vivo

In vivo studies found on animals include seven that tested muscle [5, 18–20,118–120] and two that tested skin [21,116], with two reporting on fat properties [5,19], which are listed in Table 4. Studies of animal muscle tissue included the tibialis anterior, gluteus, extensor digitorum longus and gracilis. In addition to testing occurring over multiple body regions, body position of the animals varied. Three investigations tested in the prone position [5,19,118], one in the supine position [18], and five did not report the testing position [20,21,116,119,120]. Among the studies, three had a sample size greater than 10 [19,118,119], and six studies had a sample size of 10 or less [5,18,20,21,116,120].

3.4. Material model choices

The choice of material model used to represent human tissue determined the reported material parameters. Human tissues were described using multiple different material models to represent the mechanical properties of muscle, fat, skin, and bulk tissue. 11 studies used a linear viscoelastic model with time-dependent behavior for muscle, fat, skin and bulk tissue [22,79,83,84,88,99,106,109,110,118,120]. Six studies used hyperelastic and viscoelastic terms to generate material models [20,47,77,78,87,91]. Additionally, 16 studies used a purely hyperelastic modeling approach for muscle [5,18,19,43,53], skin [40,96,111–113,117], or bulk tissues [23,34,47–49]. Four studies investigated the

differences between applying multiple material models in describing soft tissue, demonstrating the various material parameters that may be obtained for the experimental data [49,53,55,113]. Several other studies reported using linear elastic models to represent skin [24,39,81,82,84,95,98,100,102,115,116], fat [71], and muscle [33,45,46,71,73–76,86,92–94,104,107,108].

3.5. Measures of deformation in tissue

Raw displacement, strain, or stretch data in the tissues were reported. Displacement was the *absolute magnitude* of the change in tissue thickness when loaded versus unloaded. Tissue strain was the *ratio of the change* in thickness of tissue while loaded relative to its thickness in a non-loaded condition, while tissue stretch was the *ratio of the tissue thickness* in a loaded condition relative to a non-loaded one. Several definitions for deformation were used to determine tissue properties (i.e. Left Cauchy-Green Deformation Tensor, engineering strain, stretch, displacement, etc.). The mechanical test used to measure the deformation used by the authors is reported in Tables 1–4 in the ‘Mechanical Test’ column.

Measuring tissue deformation was predominantly conducted using two methods: imaging of deformation of internal tissues and measurements through external electronic sensors that measured total tissue displacement without measuring internal deformation, such as linear potentiometers or digital calipers. Imaging techniques, such as MRI and US were used with digital image correlation to generate strain or stretch fields in the planes of images [24,43,85,90,114]. Other studies used MRI or US to detect the proliferation of shear waves in tissue during magnetic resonance elastography or strain fields using ultrasound [18,33,45–47,54,75,76,86,88,91,93,94,96,102,104]. Electronic sensor measurements

of displacement that did not measure internal tissue deformation were not able to generate a strain or stretch field, but several studies used indentation to determine the displacement of tissues and estimate material properties based on the displacement values [19,22,23,34,39, 95–97,103]. Sixteen *ex vivo* studies tested in tension [24,55,72,74,77, 79–83,107,111–113,115,116], while six tested in compression [71,78, 105,106,108,117]. While the most studies used methodologies to collect deformation, data included imaging or electronic sensor measurements, other approaches were used as well. Geometric relationships and laser displacement were used to determine strain in tissue [41,53]. In some

cases, strain rate was used in animal and human tissue *ex vivo* [84,107].

4. Discussion

Our objective for this paper was to assemble a collection of studies that investigated the mechanical properties of soft tissues and categorize them by their inclusion of *ex vivo* or *in vivo* tissue samples from humans or animals, the material model used to describe tissue behavior, and the deformation measurements used during experiments. This search resulted in an extensive list of studies reporting material properties of

Table 6
Relationships used to determine material parameters.

No.	Constitutive Law	Relationship
1	Torque – Linear Elastic	$E = \frac{M}{2\pi \cdot 0.4e \cdot R_1 \cdot R_2 \theta}$
2	Elastic	$E_{\text{indentation}}^{\text{indentation}} = \frac{(1-v)^2}{\pi d \delta} P_{\text{peak}}$
3	Modified Elastic	$\mu = f_{\text{contractile}} + g_{\text{passive}} = \left(\alpha_0 \frac{T}{V} \right) + \left(\frac{k'T}{A} + C \right)$
4	Linear elastic with a statistical recruitment of fibers	$f_n = k \sum_{i=1}^n \Delta x_i \sum_{j=1}^i \left[\frac{R(x_j)}{(l_0 + x_j)} \right] \Delta x_j$ where $R(x_i) = \frac{e^{\left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]}}{\sigma \sqrt{2\pi}}$
5	Linear Viscoelastic (1)	$H(t) = H_1 e^{-\frac{t}{\tau_1}} + H_2 e^{-\frac{t}{\tau_2}} + H_{\infty}; G(t) = H(t)$
6	Linear Viscoelastic (2)	$F(t) = A_1 e^{-k_1 t} + A_2 + A_3 e^{-k_2 t}$
7	Linear Viscoelastic (3)	$\gamma(t) = \gamma_0 \sin(\omega t)$ $\tau(t) = G_d \gamma_0 \sin(\omega t + \delta)$ $G_d = \sqrt{G'^2 + G''^2}$ $\tan(\delta) = \frac{G''}{G'}$
8	Linear Viscoelastic (4)	$G(t) = \frac{3P(t)}{16\delta(t)\sqrt{R\delta(t)}}$ $G(t) = (G_{\infty} - G_i) \left(1 - e^{-\frac{t}{\tau}} \right) + G_i$
9	Quasi-Linear Viscoelastic	$F(t) = \int_0^t G_t(t-\tau) \frac{\partial F(\delta)}{\partial \delta} \frac{\partial \delta}{\partial \tau} d\tau$ $G_i(t) = \frac{1 + C [E(t/\tau_2) - E(t/\tau_1)]}{1 + C \ln(\tau_2/\tau_1)}$ * E is the exponential function
10	Power-Law	$\sigma = (k(1-q)E)^{\frac{1}{1-q}}$
11	Voigt	$V_{\varphi}(\omega) = \frac{\sqrt{2(\mu^2 + \omega^2 \eta^2)}}{\sqrt{\rho(\mu + \sqrt{\mu^2 + \omega^2 \eta^2})}}$ $\mu = G = \frac{E}{2(1+v)}$

		$\lambda = \frac{Ev}{(1+v)(1-2v)}$
12	Voigt (2)	$G_M(\omega) = \mu + i\omega\eta$
13	Voigt (3)	$T_{jk} = 2\left(\mu + \eta \frac{\partial}{\partial t}\right)\varepsilon_{jk} + \left(\lambda + \kappa \frac{\partial}{\partial t}\right)\varepsilon_{mm}\delta_{jk}$
14	Kelvin-Voigt	$T = -\frac{\omega^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\alpha^2\omega^2}} e^{-i\left(\arctan\left(\frac{2\alpha\omega}{\omega_0^2 - \omega^2}\right)\right)} + 1$ $R = -\frac{\omega^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\alpha^2\omega^2}} \cos\left[\arctan\left(\frac{2\alpha\omega}{\omega_0^2 - \omega^2}\right)\right] + 1$ $I = -\frac{\omega^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\alpha^2\omega^2}} \sin\left[\arctan\left(\frac{2\alpha\omega}{\omega_0^2 - \omega^2}\right)\right]$ $S = M\omega^2 \left[1 - \frac{R-1}{(R-1)^2 + I^2}\right]$ $D = \frac{IM\omega}{(R-1)^2 + I^2}$
15	Maxwell	$G_M(\omega) = \frac{i\omega\eta\mu}{\mu + i\omega\eta}$
16	Zener	$G_M(\omega) = \frac{\mu_1\mu_2 + i\omega\eta(\mu_1 + \mu_2)}{\mu_2 + i\omega\eta}$
17	Springpot	$G_M(\omega) = \mu^{1-\alpha}\eta^\alpha(i\omega)^\alpha$
18	Friction (1)	$\mu = \frac{F}{L}$
19	Friction (2)	$\mu = \frac{F_{fr}}{F_N}$
20	Polynomial Stress Relationship	$\sigma_{muscle} = 3707\lambda_{muscle}^3 - 12117\lambda_{muscle}^2 + 13261\lambda_{muscle} - 4850$ $\sigma_{fat}(kPa) = 2300\lambda_{fat}^3 - 7470\lambda_{fat}^2 + 8160\lambda_{fat} - 2990$ $\sigma_{skin}(kPa) = 2650\lambda_{skin}^2 - 4870\lambda_{skin} + 2227$
21	Linear Elastic (as a function of shear wave speed)	$E = \frac{\mu(3\lambda+2\mu)}{\lambda+\mu}; E = 3\rho V_s^2 \text{ where } V_s = \sqrt{\frac{\mu}{\rho}}$ $\lambda, \mu = \text{Lame' coefficients in isotropic elastic media}$
22	Reduced Elastic Modulus	$E^* = \frac{\sqrt{\pi}}{2} \frac{K_N}{\sqrt{A}}; \frac{1}{E^*} = \frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}$ $G^* = \frac{\sqrt{\pi}}{2} \frac{K_N}{\sqrt{A}}; \frac{1}{G^*} = \frac{2-v_1}{G_1} + \frac{2-v_2}{G_2}$
23	Bec/Tonck	$E^* = \frac{\pi}{2} \frac{k_Z}{\delta} \tan\left(\frac{\pi}{2} - \alpha\right);$ $\frac{1}{k_Z} = \frac{e}{f_1(a)\pi a^2 E_f^*} + \frac{1}{f_2(a)2a E_S^*};$
24	Song/Pharr	$G = \frac{(1-v^2)E^*}{2(1+v)}; 0.35 < v < 0.5$ <p>E_S^* & E_f^* are respectively the reduced Young's modulus of the substrate (muscle) and later</p>
25	Perriot/Barthel	$E^* = E_f^* + \frac{E_S^* + E_f^*}{1 + (e_{x0}/a)^n}; \beta = \frac{E_S^*}{E_f^*}$
26	Hugoniot Relationship	$\dot{s} = C_0 + SV^-; \dot{s} = \text{Lagrangian shock speed}, V^- = \text{particle speed}, C_0 = \text{velocity coefficient}$

soft tissues, which are key for the development of human body models. The studies reported that mechanical properties of *in vivo* soft tissue, especially in the buttocks and thighs, changed depending on factors such as the body position and the region of the tissues tested [23,25]. These

findings indicated that the position and the region of the body, whether or not persons with disabilities were included, and mechanism of deformation measurement need to be considered. For example, if a model of the buttocks in the seated position is desired, then material

properties from the buttocks in the seated position should be used. Material properties from another body position (e.g. prone) or body region (e.g. the leg) are likely to lead to unrealistic predictions of tissue stresses for the buttocks. The magnitudes of the inaccuracies may vary, as the values of material parameters of muscle, fat and skin differed by factors up to two depending on differences in test conditions, body position and body region [48,49,88,95,96,100]. For example, reported shear modulus values for the gastrocnemius varied between 19 and 112 kPa depending on the angle of ankle dorsiflexion. The shear modulus of human muscle and skin ranged from 1 kPa to over 100 kPa [33,46,47,86], and the Young's moduli of skin *in vivo* similarly varied from 8 kPa to 850 kPa [95,98,100]. Further, the elastic modulus of muscle varied from 5 kPa to 126 kPa when using the Voigt model to describe it [42,88]. These large ranges of properties were evidence that factors such as body region, body position, participants with disabilities or able bodied, and the methods of collection all played a role in the material properties reported from *in vivo* tissues.

Ex vivo data also demonstrated large differences from *in vivo* data, which would affect model outputs. Such an example of this is human skin of the forearm, where the *ex vivo* measurements of the Young's modulus were at least 10 times larger than the *in vivo* measurement in the reported studies [24,39,82,95,98,100]. The Young's moduli of *in vivo* human skin samples ranged from 8 to 850 kPa [95,98,100], and *ex vivo* was reported as 0.33–99 MPa (330–99,000 kPa) [24,82]. Samples from *in vivo* and *ex vivo* muscles also varied, as reported values were 3.1–126 kPa [42,88] and 12–129 kPa [71,76], respectively. These large ranges suggest that using the material properties of *ex vivo* tissues as opposed to *in vivo* tissues will significantly alter the results of a model, underscoring the need for material properties that represent *in vivo* human tissue when modeling humans.

Due to variability in experimental conditions and the numerous material models used, there were ranges of material parameters reported [43,53,87,91]. Most studies reported a compressibility parameter (such as D or K), a shear modulus (G or μ), a bulk modulus (κ), a stress tensor (σ), a Young's modulus (E), or material constants (C_1 , C_2 , etc.). Our review found 47 distinct relationships used to determine the material properties of soft tissues, indicating the breadth of the different models used. Even if the same material model was used, *in vivo* and *ex vivo* studies sometimes reported different parameters as well, making comparison difficult, if not impossible. Studies of the *in vivo* human bicep muscle reported bulk modulus and Young's Modulus, while some *ex vivo* studies reported ultimate tensile strength values, which with the data provided cannot be compared. These differences in models used and parameters reported can make comparisons of material properties between studies difficult if not impossible.

The type of material model to represent each tissue determined the types of material parameters reported; and there were several classes of models used. Types included elastic, hyperelastic, and viscoelastic material models. Model choice is crucial to the description of the soft tissue's mechanical behavior because it affects all computational predictions that use these data. While several models may be appropriate to describe a tissue within the parameters of an experiment or study, models may need to make predictions outside those parameters. It is therefore important to consider that the hyperelastic and viscoelastic models, commonly used to represent muscle, fat, and bulk tissue, will yield different extrapolated tissue responses as compared to linear models. Of the hyperelastic and viscoelastic models chosen to represent muscle, fat, and bulk tissue, the Neo-Hookean and Ogden models were the most common. Furthermore, recognizing the model choice is important because there is no readily available method to convert the material parameters from one model to another. A final consideration for material model choice is the dependence of the model's behavior on pre-strain and residual stresses and strains in the tissue. This is one area currently being studied that needs to be resolved before material properties can be compared between experiments. A method for the consistent determination of a stress-free reference state will eliminate a barrier

between comparing experimental results.

Much progress has been made in the characterization of soft tissue, and there is a need to continue improving in this area to better represent human soft tissues. Before material properties of human soft tissue were available, properties of animal tissues were used. However, animal studies have become less frequent as data on human tissues have become more available, and because evidence shows that the properties of the muscle, skin, and fat tissue differ between humans and animals [5,20,40,53,90,96]. As experiments progressed to humans, early properties were determined in *ex vivo* experiments, and those properties were not representative of *in vivo* tissue. More recent tests have begun to collect compressive tissue response data on *in vivo* humans, providing more appropriate data for modelers to use as compared to tensile tests. Finally, there is a growing effort to provide patient-specific soft tissue characterizations, obtained in clinic, to reduce uncertainties related to using population-based data in models [12–16]. These advances will lead to more realistic models of stress/strain predictions and interactions between the human body and its environment. The convergence between the results of any human body model and experimental measurements is integral to establish the credibility of the model. Once the model has been validated by experimental measurements, it can be used to predict behavior and determine how marginal changes in any parameter would affect potential real-life outcomes [121,122].

One tissue that was not documented in this review was fascia. Though fascia does play an important part in the contact between and transduction of forces through other soft tissues, its use in human body models has not been widespread. The exclusion of fascia has been noted as a limitation in some models, as the modelers used simplified contact relationships between skin, muscle, fat, and bone, such as tying the contact nodes together. It is worth repeating that these tissues slide across each other *in vivo*, and as such, this assumption likely affects predicted tissue stresses (i.e. by overestimating interface stresses between tissues). Some models have attempted to consider fascia by including one-layer thick membranes, however its relative thinness when compared to the other tissues, such as skin, muscle, and fat has made it difficult to implement, and even to study, its properties [123]. Several studies have investigated the properties of fascia *in vivo* and *ex vivo*, yet a stated limitation of the *in vivo* studies was that the geometry of the fascia was difficult to model, and thus three-dimensional properties like the Young's modulus have only recently been investigated using some of the methods described in this review [124–128]. The study and inclusion of fascial properties in future literature will further explain their role in force transduction in the body.

Lastly, one area that needs to be explored further is the difference between the material properties of able-bodies individuals and individuals with disabilities. One study investigated the difference in the shear properties of muscle in the legs of individuals with and without disabilities, and two investigated the differences between the soft tissue properties in the buttocks and thighs of able-bodied people and people with spinal-cord injuries [23,129,130]. However, the soft tissue material properties of other regions of the body have not been explored in individuals with disabilities. Persons who use wheelchairs are at an elevated risk of developing PIs, and many wheelchair users have disabilities, therefore it is imperative to expand the knowledge on the material properties of persons with disabilities.

Substantial effort has been dedicated over the last several decades to developing models of the human body for multiple purposes, including PI risk evaluation. However, these models have used a wide range of material properties to represent soft tissues based on a variety of experimental conditions. Recent work has suggested that experimental conditions, such as body region, body position, and whether or not a person has a disability affects the mechanical properties derived for soft tissue [25,31,34,35]. To ensure that human body models most accurately represent the real-life situation they are simulating, the assembly of data presented here show that it is essential to use material properties from analogous experimental conditions.

5. Conclusions

Over several decades, there have been advancements in the material properties used to describe soft tissue for the purposes of human body modeling and for practical applications. These advancements come in the form of determining tissue properties appropriate for wider scopes of applications, starting with *ex vivo* animal tissue properties, up to current experiments describing *in vivo* human tissue properties. Improvements have also been made in the models used to describe the experimental results, whereas early models used linear elastic models for tissue, current descriptions often include hyperelastic or viscoelastic components that capture the strain- or time-dependent properties of tissue. While there has been significant progress in the scope and models of soft tissue properties, there remain several factors that need to be explored further. Among these are body regions of the described tissue, the body position during experiments and its effect on apparent tissue properties, and the effects of physical disability, providing several avenues for future research. Further work will also evaluate current and future experimental methodologies used to deform tissue and measure the deformation.

Declaration of competing interest

There are no competing interests from any of the authors.

Acknowledgements

This work was funded by National Science Foundation Grant CBET-1603646. The funding source was not involved in the preparation of this manuscript.

References

- Cox SL, Mithraratne K, Smith NP. An anatomically based finite element model of the lower limbs in the seated posture. In: Conference proceedings : Annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference: 2007. p. 6327–30.
- Kiapour A, Kiapour AM, Kaul V, Quatman CE, Wordeman SC, Hewett TE. Finite element model of the knee for investigation of injury mechanisms: development and validation. *J Biomech Eng* 2014;136:1–14. <https://doi.org/10.1115/1.4025692>.
- Savonnet L, Wang X, Duprey S. Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review. *Comput Methods Biomed Eng* 2018;21:379–88. <https://doi.org/10.1080/10255842.2018.1466117>.
- Grujicic M, Pandurangan B, Arakere G, Bell WC, He T, Xie X. Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger-vehicle occupants. *Mater Des* 2009;30:4273–85. <https://doi.org/10.1016/j.matdes.2009.04.028>.
- Loerakker S, Solis LR, Bader DL, Baaijens FPT, Mushahwar VK, Oomens CWJ. How does muscle stiffness affect the internal deformations within the soft tissue layers of the buttocks under constant loading? *Comput Methods Biomed Eng* 2013;16:520–9. <https://doi.org/10.1080/10255842.2011.627682>.
- Luboz V, Petrizelli M, Bucki M, Diot B, Vuillerme N, Payan Y. Biomechanical modeling to prevent ischial pressure ulcers. *J Biomech* 2014;47:2231–6. <https://doi.org/10.1016/j.jbiomech.2014.05.004>.
- Macron A, Pillet H, Doridam J, Rivals I, Sadeghnia MJ, Verney A, et al. Is a simplified Finite Element model of the gluteus region able to capture the mechanical response of the internal soft tissues under compression? *Clin BiMech* 2020;71:92–100. <https://doi.org/10.1016/j.clinbiomech.2019.10.005>.
- Siparsky PN, Kirkendall DT, Garrett WE. Muscle changes in aging: understanding sarcopenia. *Sport Health* 2014;6:36–40. <https://doi.org/10.1177/1941738113502296>.
- Whitney DG, Singh H, Miller F, Barbe MF, Slade JM, Pohlig RT, et al. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy. *Bone* 2017;94:90–7. <https://doi.org/10.1016/j.bone.2016.10.005>.
- Bouten CV, Oomens CW, Baaijens FP, Bader DL. The etiology of pressure ulcers: skin deep or muscle bound? *Arch Phys Med Rehabil* 2003;84:616–9. <https://doi.org/10.1053/apmr.2003.50038>.
- Traa WA, van Turnhout MC, Moerman KM, Nelissen JL, Nederveen AJ, Strijkers GJ, et al. MRI based 3D finite element modelling to investigate deep tissue injury. *Comput Methods Biomed Eng* 2018;21:760–9. <https://doi.org/10.1080/10255842.2018.1517868>.
- Solav D, Moerman KM, Jaeger AM, Herr HM. A framework for measuring the time-varying shape and full-field deformation of residual limbs using 3-D digital image correlation. *IEEE Trans Biomed Eng* 2019;66:2740–52. <https://doi.org/10.1109/TBME.2019.2895283>.
- Fougeron N, Rohan PY, Haering D, Rose JL, Bonnet X, Pillet H. Combining freehand ultrasound-based indentation and inverse finite element modeling for the identification of hyperelastic material properties of thigh soft tissues. *J Biomech Eng* 2020;142:1–8. <https://doi.org/10.1115/1.4046444>.
- Frauziols F, Chassagne F, Badel P, Navarro L, Molimard J, Curt N, et al. In vivo identification of the passive mechanical properties of deep soft tissues in the human leg. *Strain* 2016;52:400–11. <https://doi.org/10.1111/str.12204>.
- Kappert KDR, Connesson N, Elahi SA, Boonstra S, Balm AJM, van der Heijden F, et al. In-vivo tongue stiffness measured by aspiration: resting vs general anaesthesia. *J Biomech* 2021;114:110147. <https://doi.org/10.1016/j.jbiomech.2020.110147>.
- Li H, Fle' G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, et al. Viscoelasticity imaging of biological tissues and single cells using shear wave propagation. *Front Physiol* 2021;9:1–39. <https://doi.org/10.3389/fphys.2021.666192>.
- Blank J, Blomquist M, Arant L, Cone S, Roth J. Characterizing musculoskeletal tissue mechanics based on shear wave propagation: a systematic review of current methods and reported measurements. *Ann Biomed Eng* 2022;50:751–68. <https://doi.org/10.1007/s10439-022-02935-y>.
- Ceelen KK, Stekelenburg A, Mulders JLJ, Strijkers GJ, Baaijens FPT, Nicolay K, et al. Validation of a numerical model of skeletal muscle compression with MR tagging: a contribution to pressure ulcer research. *J Biomech Eng* 2008;130. <https://doi.org/10.1115/1.2987877>.
- Linder-Ganz E. Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. *J Appl Physiol* 2004;96: 2034–49. <https://doi.org/10.1152/japplphysiol.00888.2003>.
- Bosboom EMH, Hesselink MKC, Oomens CWJ, Bouten CVC, Drost MR, Baaijens FPT. Passive transverse mechanical properties of skeletal muscle under in vivo compression. *J Biomech* 2001;34:1365–8. [https://doi.org/10.1016/S0021-9290\(01\)00083-5](https://doi.org/10.1016/S0021-9290(01)00083-5).
- Lim KH, Chew CM, Chen PCY, Jeyapalina S, Ho HN, Rappel JK, et al. New extensometer to measure in vivo uniaxial mechanical properties of human skin. *J Biomech* 2008;41:931–6. <https://doi.org/10.1016/j.jbiomech.2008.01.004>.
- Palevski A, Glaich I, Portnoy S, Linder-Ganz E, Gefen A. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling. *J Biomech Eng* 2006;128:782–7. <https://doi.org/10.1115/1.2264395>.
- Scott J, Chen S, Roccabianca S, Bush TR. The effects of body position on the material properties of soft tissue in the human thigh. *J Mech Behav Biomed Mater* 2020;110. <https://doi.org/10.1016/j.jmbbm.2020.103964>.
- Gallagher AJ, Annaidh AN, Bruyere K. Dynamic tensile properties of human skin. In: 2012 IRCOBI conference proceedings; 2012.
- Makhsoos M, Lin F, Cichowski A, Cheng I, Fasanati C, Grant T, et al. Use of MRI images to measure tissue thickness over the ischial tuberosity at different hip flexion. *Clin Anat* 2011;24:638–45. <https://doi.org/10.1002/ca.21119>.
- Slade JM, Bickel AECS, Modlesky ACM, Majumdar S, Dudley AEGA. Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. *Osteoporos Int* 2005;16:263–72. <https://doi.org/10.1007/s00198-004-1665-7>.
- Modlesky CM, Bickel CS, Slade JM, Meyer RA, Cureton KJ, Dudley GA, et al. Assessment of skeletal muscle mass in men with spinal cord injury using dual-energy X-ray absorptiometry and magnetic resonance imaging. *Journal of Applied Physiology* 2004;96:561–5.
- Mahoney ET, Bickel CS, Elder C, Black C, Slade Jr JMDA, et al. Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. *Arch Phys Med Rehabil* 2005;86. <https://doi.org/10.1016/j.apmr.2004.12.021>. 2004–6.
- Castro MJ, Apple DF, Hillegas EA, Dudley GA. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. *Eur J Appl Physiol Occup Physiol* 1999;80:373–8. <https://doi.org/10.1007/s004210050606>.
- Shah PK, Stevens JE, Gregory CM, Pathare NC, Jayaraman A, Bickel SC, et al. Lower-Extremity muscle cross-sectional area after incomplete spinal cord injury. *Arch Phys Med Rehabil* 2006;87:772–8. <https://doi.org/10.1016/j.apmr.2006.02.028>.
- Moore CD, Craven BC, Thabane L, Laing AC, Frank-Wilson AW, Kontulainen SA, et al. Lower-extremity muscle atrophy and fat infiltration after chronic spinal cord injury. *J Musculoskelet Neuronal Interact* 2015;15:32–41.
- Gorje AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. *Spinal Cord* 2007;45:304–9. <https://doi.org/10.1088/sj.sc.3101968>.
- Basford JR, Jenkyn TR, An K-N, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. *Arch Phys Med Rehabil* 2002;83:1530–6. <https://doi.org/10.1053/apmr.2002.35472>.
- Scott J, Sheridan B, Andrus R, Monday N, Selby A, Reid Bush T. Tissue matters: in-vivo tissue properties of persons with spinal cord injuries to inform clinical models for pressure ulcer prevention. *J Biomech* 2021;120:110389. <https://doi.org/10.1016/j.jbiomech.2021.110389>.
- Carda S, Invernizzi M, Cisari C. Sarcopenia or muscle modifications in neurologic diseases: a Lexical or Pathophysiological Difference?, 147; 2012. p. 135–40. <https://doi.org/10.13140/RG.2.1.5129.4169>.
- Lee SH, Park JS, Jung BK, Lee SA. Effects of different seat cushions on interface pressure distribution: a pilot study. *J Phys Ther Sci* 2016;28:227–30. <https://doi.org/10.1589/jpts.28.227>.

[37] Chen Y, Wang J, Lung CW, Yang TD, Crane BA, Jan YK. Effect of tilt and recline on ischial and coccygeal interface pressures in people with spinal cord injury. *Am J Phys Med Rehabil* 2014;93:1019–26. <https://doi.org/10.1097/PHM.0000000000000225>.

[38] Linder-Ganz E, Shabshin N, Itzchak Y, Gefen A. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. *J Biomech* 2007;40:1443–54. <https://doi.org/10.1016/j.jbiomech.2006.06.020>.

[39] Paillet-Mattei C, Bec S, Zahouani H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. *Med Eng Phys* 2008; 30:599–606. <https://doi.org/10.1016/j.medengphy.2007.06.011>.

[40] Hendriks FM, Brokken D, van Eemeren JTWM, Oomens CWJ, Baaijens FPT, Horsten JBAM. A numerical-experimental method to characterize the non-linear mechanical behavior of human skin. *Skin Res Technol* 2003;9:274–83. <https://doi.org/10.1034/j.1600-0846.2003.00019.x>.

[41] Smalls LK, Wickett RR, Visscher MO. Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties. *Skin Res Technol* 2006;12:43–9.

[42] Gennissin JL, Deffieux T, Macé E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. *Ultrasound Med Biol* 2010;36:789–801. <https://doi.org/10.1016/j.ultrasmedbio.2010.02.013>.

[43] Affagard JS, Bensamoun SF, Feissel P. Development of an inverse approach for the characterization of in vivo mechanical properties of the lower limb muscles. *J Biomech Eng* 2014;136:111012. <https://doi.org/10.1115/1.4028490>.

[44] Affagard JS, Feissel P, Bensamoun SF. Measurement of the quadriceps muscle displacement and strain fields with ultrasound and Digital Image Correlation (DIC) techniques. *Irbm* 2015;36:170–7. <https://doi.org/10.1016/j.irbm.2015.02.002>.

[45] Levinson SF. Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory. *J Biomech* 1987;20. [https://doi.org/10.1016/0021-9290\(87\)90292-2](https://doi.org/10.1016/0021-9290(87)90292-2).

[46] Uffmann K, Maderwald S, Ajaj W, Galban CG, Mateiescu S, Quick HH, et al. In vivo elasticity measurements of extremity skeletal muscle with MR elastography. *NMR Biomed* 2004;17:181–90. <https://doi.org/10.1002/nbm.887>.

[47] Then C, Menger J, Benderoth G, Alizadeh M, Vogl TJ, Hübner F, et al. A method for a mechanical characterisation of human gluteal tissue. *Technol Health Care* 2007;15:385–98.

[48] Sadler Z, Scott J, Drost J, Chen S, Rocabianca S, Bush TR. Initial estimation of the in vivo material properties of the seated human buttocks and thighs. *Int J Non Lin Mech* 2018;107:77–85. <https://doi.org/10.1016/j.ijnonlinmec.2018.09.007>.

[49] Chen S, Scott J, Bush TR, Rocabianca S. Inverse finite element characterization of the human thigh soft tissue in the seated position. *Biomech Model Mechanobiol* 2019. <https://doi.org/10.1007/s10237-019-01212-7>.

[50] Vogl TJ, Then C, Naguib NN, Nour-Eldin NE, Larson M, Zangos S, et al. Mechanical soft tissue property validation in tissue engineering using magnetic resonance imaging experimental research. *Acad Radiol* 2010;17:1486–91. <https://doi.org/10.1016/j.acra.2010.08.010>.

[51] Neumann EE, Owings TM, Schimmoeller T, Nagle TF, Colbrunn RW, Landis B, et al. Data descriptor: reference data on thickness and mechanics of tissue layers and anthropometry of musculoskeletal extremities. *Sci Data* 2018;5. <https://doi.org/10.1038/sdata.2018.193>.

[52] Maaf H, Kuhnapfel U. Noninvasive measurement of elastic properties of living tissue. European Control Conference. In: Ecc 1999 - conference proceedings; 1999. p. 2465–70. <https://doi.org/10.23919/ecc.1999.7099693>.

[53] Suzuki R, Ito K, Lee T, Oghara N. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation. *J Mech Behav Biomed Mater* 2017;65:753–60. <https://doi.org/10.1016/j.jmbbm.2016.09.027>.

[54] Chakouch MK, Charleux F, Bensamoun SF. Quantifying the elastic property of nine thigh muscles using magnetic resonance elastography. *PLoS One* 2015;10. <https://doi.org/10.1371/journal.pone.0138873>.

[55] Martins PALS, Jorge RMN, Ferreira AJM. A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. *Strain* 2006;42:135–47. <https://doi.org/10.1111/j.1475-1305.2006.00257.x>.

[56] Grobbel MR, Shavik SM, Darios E, Watts SW, Lee LC, Rocabianca S. Contribution of left ventricular residual stress by myocytes and collagen: existence of inter-constituent mechanical interaction. *Biomech Model Mechanobiol* 2018;17: 985–99. <https://doi.org/10.1007/s10237-018-1007-x>.

[57] Rausch MK, Kuhl E. On the effect of prestrain and residual stress in thin biological membranes. *J Mech Phys Solid* 2013;61:1955–69. <https://doi.org/10.1016/j.jmps.2013.04.005>.

[58] Pierce DM, Fastl TE, Rodriguez-Vila B, Verbrugge P, Fourneau I, Maleux G, et al. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. *J Mech Behav Biomed Mater* 2015;47:147–64. <https://doi.org/10.1016/j.jmbbm.2015.03.024>.

[59] Rausch MK, Genet M, Humphrey JD. An augmented iterative method for identifying a stress-free reference configuration in image-based biomechanical modeling. *J Biomech* 2017;58:227–31. <https://doi.org/10.1016/j.jbiomech.2017.04.021>.

[60] Mira A, Carton AK, Muller S, Payan Y. Breast biomechanical modeling for compression optimization in digital breast tomosynthesis. *Comput Methods Biomed Eng* 2018. https://doi.org/10.1007/978-3-319-59764-5_4. Lecture No:29–35.

[61] Rajagopal V, Chung J-H, Bullivant D, Nielsen PMF, Nash MP. Determining the finite elasticity reference state from a loaded configuration. *Int J Numer Methods Eng* 2007;72:1434–51. <https://doi.org/10.1002/nme.2045>.

[62] Oomens CWJ, Bressers OFJT, Bosboom EMH, Bouter CVC, Bader DL. Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences? *Comput Methods Biomed Eng* 2003;6:171–80. <https://doi.org/10.1080/1025584031000121034>.

[63] Levy A, Kopplin K, Gefen A. Device-related pressure ulcers from a biomechanical perspective. *J Tissue Viability* 2017;26:57–68. <https://doi.org/10.1016/j.jtv.2016.02.002>.

[64] Makhsoos M, Lim D, Hendrix R, Bankard J, Rymer WZ, Lin F. Finite element analysis for evaluation of pressure ulcer on the buttock: development and validation. *IEEE Trans Neural Syst Rehabil Eng* 2007;15:517–25. <https://doi.org/10.1109/TNSRE.2007.906967>.

[65] Erdemir A, Guess TM, Halloran J, Tadepalli SC, Morrison TM. Considerations for reporting finite element analysis studies in biomechanics. *J Biomech* 2012;45: 625–33. <https://doi.org/10.1016/j.jbiomech.2011.11.038>.

[66] Burkhardt TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. *J Biomech* 2013;46:1477–88. <https://doi.org/10.1016/j.jbiomech.2013.03.022>.

[67] Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. *J Biomech Eng* 2015;137:1–24. <https://doi.org/10.1115/1.4029304>.

[68] Oefner C, Herrmann S, Kebbach M, Lange HE, Kluess D, Woicinski M. Reporting checklist for verification and validation of finite element analysis in orthopedic and trauma biomechanics. *Med Eng Phys* 2021;92:25–32. <https://doi.org/10.1016/j.medengphy.2021.03.011>.

[69] Henninger HB, Reese SP, Anderson AE, Weiss JA. Validation of computational models in biomechanics. *Proceedings of the Institute of Mechanical Engineers H* 2010;224:801–12.

[70] Anderson AE, Ellis BJ, Weiss JA. Verification, validation and sensitivity studies in computational biomechanics. *Comput Methods Biomed Eng* 2007;10: 171–84. <https://doi.org/10.1080/10255840601160484>.

[71] Escobar P, Wittles S, Asfour S, Latta L. Mechanical characteristics of muscle, skin and fat-elastic moduli for finite element modeling of limbs. New Orleans, LA: Proceedings of the Orthopaedic Research Society; 2014. p. 15–8.

[72] Nagle AS, Barker MA, Kleeman SD, Haridas B, Douglas Mast T. Passive biomechanical properties of human cadaveric levator ani muscle at low strains. *J Biomech* 2014;47:583–6. <https://doi.org/10.1016/j.jbiomech.2013.11.033>.

[73] Ward SR, Tomiya A, Regev GJ, Thacker BE, Benzl RC, Kim CW, et al. Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer. *J Biomech* 2009;42:1384–9. <https://doi.org/10.1016/j.jbiomech.2008.09.042>.

[74] Lieber R, Runesson E, Einarsson F, Friden J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but. *Muscle Nerve* 2003. p. 464–71.

[75] Yoshitake Y, Miyamoto N, Taniguchi K, Katayose M, Kanehisa H. The skin acts to maintain muscle shear modulus. *Ultrasound Med Biol* 2016;42:674–82. <https://doi.org/10.1016/j.ultrasmedbio.2015.11.022>.

[76] Hatta T, Giambini H, Sukegawa K, Yamanaka Y, Sperling JW, Steinmann SP, et al. Quantified mechanical properties of the deltoid muscle using the shear wave elastography: potential implications for reverse shoulder arthroplasty. *PLoS One* 2016;11. <https://doi.org/10.1371/journal.pone.0155102>.

[77] Sommer G, Eder M, Kovacs L, Pathak H, Bonitz L, Mueller C, et al. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. *Acta Biomater* 2013;9:9036–48. <https://doi.org/10.1016/j.actbio.2013.06.011>.

[78] Miller-Young JE, Duncan NA, Baroud G. Material properties of the human calcaneal fat pad in compression: experiment and theory. *J Biomech* 2002;35: 1523–31. [https://doi.org/10.1016/S0021-9290\(02\)00090-8](https://doi.org/10.1016/S0021-9290(02)00090-8).

[79] Alkhouri N, Mansfield J, Green E, Bell J, Knight B, Livesedge N, et al. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. *Am J Physiol Endocrinol Metab* 2013;305:1427–35. <https://doi.org/10.1152/ajpendo.00111.2013>.

[80] Groves RB, Coulman SA, Birchall JC, Evans SL. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. *J Mech Behav Biomed Mater* 2013;18:167–80. <https://doi.org/10.1016/j.jmbbm.2012.10.021>.

[81] Reihnsper R, Baloghx B, Menzel EJ. Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. *Med Eng Phys* 1995;17:304–13.

[82] Griffin MF, Leung BC, Premakumar Y, Szarko M, Butler PE. Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction. *Journal of Otolaryngology - Head & Neck Surgery* 2017;46.

[83] Dunn MG, Silver FH. Viscoelastic behavior of human connective tissues: relative contribution of viscous and elastic components. *Connect Tissue Res* 1983;12: 59–70. <https://doi.org/10.3109/03008208309005612>.

[84] Silver FH, Freeman JW, Devore D. Viscoelastic properties of human skin and processed dermis. *Skin Res Technol* 2001;7:18–23.

[85] Ni Annaidh A, Bruy'ree K, Destrade M, Gilchrist MD, Ott'eno M. Characterization of the anisotropic mechanical properties of excised human skin. *J Mech Behav Biomed Mater* 2012;5:139–48. <https://doi.org/10.1016/j.jmbbm.2011.08.016>.

[86] Ikeda N, Otsuka S, Kawanishi Y, Kawakami Y. Effects of instrument-assisted soft tissue mobilization on musculoskeletal properties. *Med Sci Sports Exerc* 2019;51:2166–72. <https://doi.org/10.1249/MSS.0000000000002035>.

[87] Chakouch MK, Poulettaut P, Charleux F, Bensamoun SF. Viscoelastic shear properties of in vivo thigh muscles measured by MR elastography. *J Magn Reson Imag* 2016;43:1423–33. <https://doi.org/10.1002/jmri.25105>.

[88] Levinson SF, Shinagawa M, Sato T. Sonoelastic determination of human skeletal muscle elasticity. *J Biomech* 1995;28:1145–54. [https://doi.org/10.1016/0021-9290\(94\)00173-2](https://doi.org/10.1016/0021-9290(94)00173-2).

[89] Hoyt K, Castaneda B, Parker KJ. Muscle tissue characterization using quantitative sonoelastography: preliminary results. *Ultrason Symp* 2007;365–8. <https://doi.org/10.1109/ULTSYM.2007.101>.

[90] Affagard J-S, Feissel P, Bensamoun SF. Identification of hyperelastic properties of passive thigh muscle under compression with an inverse method from a displacement field measurement. *J Biomech* 2015;48:4081–6. <https://doi.org/10.1016/j.jbiomech.2015.10.007>.

[91] Then C, Vogl TJ, Silber G. Method for characterizing viscoelasticity of human gluteal tissue. *J Biomech* 2012;45:1252–8. <https://doi.org/10.1016/j.jbiomech.2012.01.037>.

[92] Gennisson J-L, Catheline S, Chaffai S, Fink M. Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. *J Acoust Soc Am* 2003;114:536–41. <https://doi.org/10.1121/1.1579008>.

[93] Papazoglou S, Braun J, Hamhaber U, Sack I. Two-dimensional waveform analysis in MR elastography of skeletal muscles. *Phys Med Biol* 2005;50:1313–25. <https://doi.org/10.1088/0031-9155/50/6/018>.

[94] Dresner M, Rose G, Rossman P, Muthupillai R, Manduca A, Ehman R. Magnetic resonance elastography of skeletal muscle. *J Magn Reson Imag* 2001;13:269–76.

[95] Zahouani H, Pailler-Mattei C, Sohn B, Vargiuoli R, Cenizo V, Debret R. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. *Skin Res Technol* 2009;15:68–76. <https://doi.org/10.1111/j.1600-0846.2008.00329.x>.

[96] Fabrice C, Ehrlicher A, Mohamed R, Ho Ba, Tho MC, Tran V. The in vivo characterization of the mechanical properties of human skin by MRI and indentation techniques. *Comput Methods Biomech Biomed Eng* 2007;12:1–2. <https://doi.org/10.1080/10255840701479438>.

[97] Asserin J, Zahouani H, Humbert P, Couturaud V, Mougin D. Measurement of the friction coefficient of the human skin in vivo: quantification of the cutaneous smoothness. *Colloids Surf B Biointerfaces* 2000;19:1–12. [https://doi.org/10.1016/S0927-7765\(99\)00169-1](https://doi.org/10.1016/S0927-7765(99)00169-1).

[98] Diridolou S, Patat F, Gens F, Vaillant L, Black D, Lagarde JM, et al. In vivo model of the mechanical properties of the human skin under suction. *Skin Res Technol* 2000;6:214–21. <https://doi.org/10.1034/j.1600-0846.2000.006004214.x>.

[99] Jemec GBE, Selvaag E, Ågren M, Wulf HC. Measurement of the mechanical properties of skin with ballistometer and suction cup. *Skin Res Technol* 2001;7:122–6. <https://doi.org/10.1034/j.1600-0846.2001.70211.x>.

[100] Agache PG, Monneur C, Leveque JL, Rigal J de. Mechanical properties and young's modulus of human skin in vivo. *Arch Dermatol Res* 1980;232:1–12.

[101] Zhang M, Mak AFT. In vivo friction properties of human skin. *Prosthet Orthot Int* 1999;23:135–41. <https://doi.org/10.3109/03093649909071625>.

[102] Neumann EE, Owings TM, Erdemir A. Regional variations of in vivo surface stiffness of soft tissue layers of musculoskeletal extremities. *J Biomech* 2019;95. <https://doi.org/10.1016/j.jbiomech.2019.08.001>.

[103] Zhang X, Kinnick RR, Pittelkow MR, Greenleaf JF. Skin viscoelasticity with surface wave method. *Ultrason Symp* 2008. <https://doi.org/10.1109/ULTSYM.2008.0156>, 651–3.

[104] Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, et al. Tissue characterization using magnetic resonance elastography: preliminary results. *Phys Med Biol* 2000;45:1579–90. <https://doi.org/10.1088/0031-9155/45/6/313>.

[105] van Loocke M, Lyons CG, Simms CK. A validated model of passive muscle in compression. *J Biomech* 2006;39:2999–3009. <https://doi.org/10.1016/j.jbiomech.2005.10.016>.

[106] Aimedieu P, Mitton D, Faure JP, Denninger L, Lavaste F. Dynamic stiffness and damping of porcine muscle specimens. *Med Eng Phys* 2003;25:795–9. [https://doi.org/10.1016/S1350-4533\(03\)00103-6](https://doi.org/10.1016/S1350-4533(03)00103-6).

[107] Morrow DA, Haut Donahue TL, Odegaard GM, Kaufman KR. Transversely isotropic tensile material properties of skeletal muscle tissue. *J Mech Behav Biomed Mater* 2010;3:124–9. <https://doi.org/10.1016/j.jmbbm.2009.03.004>.

[108] Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for “sonoelasticity” imaging. *Ultrasound Med Biol* 1990;16:241–6. [https://doi.org/10.1016/0301-5629\(90\)90003-U](https://doi.org/10.1016/0301-5629(90)90003-U).

[109] Geerlings M, Peters GWM, Ackermans PAJ, Oomens CWJ, Baaijens FPT. Linear viscoelastic behavior of subcutaneous adipose tissue. *Biorheology* 2008;45:677–88. <https://doi.org/10.3233/BIR-2008-0517>.

[110] Gefen A, Haberman E. Viscoelastic properties of ovine adipose tissue covering the gluteus muscles. *J Biomed Eng* 2007;129:924–30. <https://doi.org/10.1115/1.2800830>.

[111] Zhou B, Xu F, Chen CQ, Lu TJ. Strain rate sensitivity of skin tissue under thermomechanical loading. *Phil Trans Math Phys Eng Sci* 2010;368:679–90. <https://doi.org/10.1098/rsta.2009.0238>.

[112] Manan NFA, Mahmud J, Ismail MH. Quantifying the biomechanical properties of bovine skin under uniaxial tension. *J Med Bioeng* 2013;2:45–8. <https://doi.org/10.12720/jomb.2.1.45-48>.

[113] Lagan SD, Liber-Kne'c A. Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue. *Acta Bioeng Biomech* 2017;19:93–102. <https://doi.org/10.5277/ABB-00755-2016-02>.

[114] Khatam H, Liu Q, Ravi-Chandar K. Dynamic tensile characterization of pig skin. *Acta Mechanica Sinica/Lixue Xuebao* 2014;30:125–32. <https://doi.org/10.1007/s10409-014-0042-9>.

[115] Belkoff SM, Haut RC. A structural model used to evaluate the changing microstructure of maturing rat skin. *J Biomech* 1991;24:711–20. [https://doi.org/10.1016/0021-9290\(91\)90335-K](https://doi.org/10.1016/0021-9290(91)90335-K).

[116] Chao CYL, Ng GYF, Cheung K-K, Zheng Y-P, Wang L-K, Cheung GLY. In vivo and ex vivo approaches to studying the biomechanical properties of healing wounds in rat skin. *J Biomed Eng* 2013;135. <https://doi.org/10.1115/1.4025109>.

[117] Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. *Int J Impact Eng* 2006;32:1384–402. <https://doi.org/10.1016/j.ijimpeng.2004.11.010>.

[118] Gefen A, Gefen N, Linder-Ganz E, Margulies SS. In vivo muscle stiffening under bone compression promotes deep pressure sores. *J Biomed Eng* 2005;127:512. <https://doi.org/10.1115/1.1894386>.

[119] Hawkins D, Bey M. Muscle and tendon force-length properties and their interactions in vitro. *J Biomed* 1997;30:63–70. [https://doi.org/10.1016/S0021-9290\(96\)00094-2](https://doi.org/10.1016/S0021-9290(96)00094-2).

[120] Best TM, McElhaney J, Garrett WE, Myers BS. Characterization of the passive responses of live skeletal muscle using the quasi-linear theory of viscoelasticity. *J Biomed* 1994;27:413–9. [https://doi.org/10.1016/0021-9290\(94\)90017-5](https://doi.org/10.1016/0021-9290(94)90017-5).

[121] Benemerito I, Modenesi L, Montefiori E, Mazzuca C, Viceconti M, Lacroix D, et al. An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase. *Proc Inst Mech Eng H* 2020;234:507–16. <https://doi.org/10.1177/0954411920905434>.

[122] Reggiani B, Cristofolini L, Varini E, Viceconti M. Subject-specific FE model for the prediction of the relative micromotion in a total hip implant: verification and validation. *Cleveland, OH: ISB XXth Congress - ASB 29th Annual Meeting*; 2004.

[123] Al-Dirini RMA, Reed MP, Hu J, Thewlis D. Development and validation of a high anatomical fidelity FE model for the buttock and thigh of a seated individual. *Ann Biomed Eng* 2016;44:1–12. <https://doi.org/10.1007/s10439-016-1560-3>.

[124] The in vivo elastic properties of the plantar fascia during the contact phase of walking n.d.

[125] Kitaoka HB, Ping Luo Z, Grownay ES, Lawrence Berglund SJ, An K-N. Material properties of the plantar aponeurosis. 1994.

[126] Otsuka S, Shan X, Kawakami Y. Dependence of muscle and deep fascia stiffness on the contraction levels of the quadriceps: an in vivo supersonic shear imaging study. *J Electromyogr Kinesiol* 2019;45:33–40. <https://doi.org/10.1016/j.jelekin.2019.02.003>.

[127] Wang K, Liu J, Wu J, Qian Z, Ren L, Ren L. Noninvasive in vivo study of the morphology and mechanical properties of plantar fascia based on ultrasound. *IEEE Access* 2019;7:53641–9. <https://doi.org/10.1109/ACCESS.2019.2909409>.

[128] Bonaldi L, Giulia Fontanella C, Stecco C, Berardo A. Biomechanics of human Fascia Lata: a review of the design, implementation and effectiveness of its mechanical characterization for tissue engineering applications Statement of Significance. [n.d.]

[129] Sonnenblum SE, Sprigle SH. Buttock tissue response to loading in men with spinal cord injury. *PLoS One* 2018;13:1–15. <https://doi.org/10.1371/journal.pone.0191868>.

[130] Linder-Ganz E, Shabshin N, Itzchak Y, Yizhar Z, Siev-Ner I, Gefen A. Strains and stresses in sub-dermal tissues of the buttocks are greater in paraplegics than in healthy during sitting. *J Biomed* 2008;41:567–80. <https://doi.org/10.1016/j.jbiomech.2007.10.011>.