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As the application of composite materials in structural parts continues to increase, so does the importance to
monitor the structure’s health condition during their entire service life. This paper presents a comprehensive
review on damage monitoring methods focusing on fiber-reinforced polymer joints: adhesively bonded, me-
chanically fastened, and welded. In this review, structural health monitoring (SHM) methods are classified into
two major groups: intrinsic sensing (embedded at the bond line) and extrinsic sensing (placed outside the
interface). Main intrinsic techniques include fiber optic sensors, piezoelectric sensors (e.g., electromechanical
impedance), and nanocomposite-based monitoring. The latter has attracted significant interest in the past years
and is emphasized from its applications for different joining methods. For extrinsic sensing, several non-
destructive testing techniques are considered to evaluate the integrity of composite joints, including acoustic
emission, acousto-ultrasonic wave (e.g., guided wave), structural vibrations and acoustics, laser shock adhesion
test, electromechanical impedance (e.g., piezoelectric sensors), and ultrasonic non-destructive testing (NDT). For
each sensing method, damage monitoring is discussed from three aspects: i) damage type, ii) damage location,
and iii) damage severity. Novel methods, significant results, current trends, and challenges are summarized.

Finally, further research efforts needed in this field are recommended.

1. Introduction

The past few decades have witnessed the sustained growth of com-
posite materials’ applications due to their light weight, high corrosion
resistance, excellent mechanical properties, and capability to be shaped
into complex geometries, making them promising metal substitutes
[1-7]. Nowadays, an increasing number of large or integrated structural
components in aerospace, automotive, energy, civil engineering, and
marine industries are made of composite materials, in which assembly
technologies are usually required. Consequently, the rapid growth in the
use of composite materials has resulted in a growing interest and need
for reliable joining techniques.

Joining is an important step in the manufacturing of large and
complex composite structures. To date, widely used joining techniques
for composite materials can be divided into three major categories:
mechanical fastening, adhesive bonding, and fusion bonding (welding).
Mechanical fasteners come in many forms, such as bolts, rivets, screws,
anchors, and inserts, providing several advantages, such as ease of
quality control, disassembly, and repair [8]. However, on the other
hand, mechanical fasteners are usually vulnerable to galvanic corrosion
and lead to increased composite weight, stress concentrations, and
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failures [9,10]. For this reason, over the past decades, adhesive bonding
for composite structures has attracted attention and been extensively
explored in the literature [11-26]. Compared to mechanical fasteners,
adhesively bonded joints overcome some disadvantages and offer
additional advantages: i) eliminating mechanical elements may lower
overall weight and cost, ii) suitable to join dissimilar materials, and iii)
providing more uniform stress distribution, better damage tolerance and
corrosion resistance, while maintaining the adherends’ structural
integrity and providing a smoother appearance [20,26]. Despite the
advantages of adhesive bonding, there are still some drawbacks, for
example, rigorous surface preparation requirements, long curing time,
sensitive to environmental factors like temperature and humidity, and
not suitable to bond all thermoplastic matrices [10,18,21].

The third joining category, fusion bonding (welding), has shown
possibility as an alternative to conventional techniques (e.g., mechanical
fastening and adhesive bonding). It is traditionally employed for unre-
inforced and reinforced thermoplastics, but also has potential for vitri-
mers, recyclable thermosets, liquid thermoplastics, and dissimilar
materials [27-30]. Fusion bonding occurs via melting of the joint
interface, while being heated above the matrix’ glass transition tem-
perature or melting temperature, and then consolidating under pressure
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when cooling down [10,31]. Like adhesive bonding, welding addresses
some of the inadequacies of mechanical fastening, eliminating stress
concentrations introduced by holes, as well as potentially reducing
processing time and manufacturing cost. Additionally, in contrast with
adhesively bonded joints, fusion bonding does not need long curing
times or vigorous surface preparation. Inevitably, some disadvantages
include: i) nonuniform heat distribution, ii) limited joint complexity for
some welding techniques, and iii) foreign materials may be needed at
the interface to enable fusion bonding. Based on heat generation
mechanisms, fusion bonding is further separated into four types: i) bulk
heating, ii) frictional heating, iii) electromagnetic heating, and iv) two-
stage techniques [32]. Among all these fusion bonding techniques,
resistance welding and induction welding, belonging to electromagnetic
welding, as well as ultrasonic welding, a member of friction welding, are
the topics of much interest in recent years [31,33-68].

Since joints are typically the weakest points in assembled composite
structures, during use, they will fail first. Therefore, it is essential to
develop non-destructive testing (NDT) and structural health monitoring
(SHM) techniques, which can not only provide a warning at the initial
stage of damage, but also, effective and reliable information regarding
joint condition throughout service life to initiate repair or replacement
when necessary. Failure modes in mechanically fastened composite
joints include a combination of matrix cracking, delamination, fiber
breakage, bearing, net-tension, shear-out, and tear-out failure. In
adhesively bonded composite joints, failure can be divided into two
categories: i) adherend failure, including interlaminar delamination,
matrix cracking, fiber breakage, and adherend fracture and ii) adhesive
failure, such as cohesive failure and adhesive/adherend interfacial
failure [69]. Major failure modes within welded composite joints typi-
cally include interfacial failure, cohesive failure, and intralaminar fail-
ure (e.g., fiber-matrix debonding, fiber breakage, or tearing of the
laminates). In addition to failure modes, bond line defects resulting from
the manufacturing process should be considered, for example, unbonded
areas, weak “kissing” bonds, and loose fasteners. Given the wide range
of failure modes and defects for each joint type, developing SHM tech-
niques capable of identifying them individually is challenging.

When performing damage detection, damage monitoring methods
for composite joints should consider three aspects: i) type of damage, ii)
location of damage (e.g., within the joint or in the adherends), and iii)
severity of damage (e.g., crack length, unbonded area). Over the last
years, several SHM methods have been used for composite joints, which
can be divided into two general categories, as detailed in Table 1: i)
intrinsic sensing (directly embedded at the joint interface) and ii)
extrinsic sensing (monitoring device placed outside the interface).
Embedded methods include, among others, fiber optic sensors (FOSs),
piezoelectric sensors, and nanocomposite-based monitoring. The latter
typically involves a polymer adhesive or film, modified with electrically
conductive nanoparticles, placed at the bond line. It is one of the most
diverse approaches in terms of materials in recent literature. External
NDT techniques for monitoring composite joints include acoustic
emission (AE), guided waves, structural vibrations and acoustics, laser
shock adhesion test, ultrasonic scanning, thermography, dielectric
sensing, and piezoelectric sensors. Table 1 lists some of the main fea-
tures, advantages, and disadvantages for each method, as applied to
composite joints, including frequency range (if relevant) and inspection
area. Local and global inspection techniques are classified with respect
to the overall joined structure’s dimensions. Local techniques can
monitor a specific area along the joint and detect small defects like
cracks or disbonds, while global methods cover a larger joint area, but
may have lower resolution.

A study of the existing work on damage monitoring of fiber-
reinforced polymer joints shows that there is still a lack of comprehen-
sive and state-of-the-art literature review in this critical area. Towards
this end, in this paper, advances in intrinsic and extrinsic monitoring
methods for adhesively bonded, mechanically fastened, and welded
composite joints, including repair patches, were scrutinized. We define a
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composite joint as having at least one adherend made from fiber-
reinforced polymer. Main types of embedded sensors at the joint inter-
face were reviewed, focusing first on nanocomposite-based sensing ap-
proaches (Section 2), as they incorporate a wide range of material types.
They are followed by Section 3, which covers other intrinsic methods,
such as fiber optic and piezoelectric sensors. Then, valuable research on
extrinsic techniques for SHM of composite joints are summarized in
Section 4. At the beginning of each sub-section, a summary of the main
applications (joint types) for the corresponding SHM technique is
included. Finally, through an analysis of gaps and limitations, future
work needed to explore and improve real-time damage monitoring
methods for composite joints is identified.

2. Nanocomposite-based monitoring
2.1. Theory and background

Incorporation of electrically conductive nanoparticles, like carbon
nanotubes (CNTs), into non-conductive polymer matrices can create
electrical networks, which will be disrupted under mechanical strain.
For instance, upon tensile loading, the distance between CNTs
embedded in the polymer matrix increases, leading to a rise of electrical
resistance in the nanocomposite. The relationship between the change of
electrical resistance (AR/Ry) and applied strain (¢) is known as the gauge
factor (Gp), the piezoresistive sensitivity of materials, and is written as
follows [177]:

_ AR/R,
- &

Gr (€]

Where Ry is the baseline resistance at time tp and AR is the resistance
difference between time t and ty. As a consequence, it has led to an
increased interest in damage detection in composite laminates with
nanocomposite matrices or interleaved films, with potential for in-situ
self-sensing of composite joints without using additional, external sen-
sors. In this respect, the electrical resistance measurement method is a
promising alternative to NDT techniques due to its simplicity and inte-
gration at the bond line through nanocomposite adhesives or films.
Several related comprehensive literature reviews have been reported in
the past five years, focusing on damage monitoring of composite lami-
nates. For example, Park et al. [79] presented a detailed review on
electrical resistance measurements for damage self-sensing and inter-
facial evaluation of CNT- or carbon fiber (CF)-reinforced composites
subjected to mechanical loading. It covered studies based on experi-
mental research. Studies on CNT-based damage monitoring using elec-
trical resistance measurements for CNT-dispersed single fiber
composites and laminated composites via physical or chemical disper-
sion methods under different loading conditions were summarized in
[85]. It indicated that CNT concentration and dispersion level played a
crucial role in damage sensing for composites. Zhang et al. also pre-
sented a summary of other damage detection sensing techniques using
surface-mounted or embedded sensors. In addition, they provided a
systematic review on damage detection under standardized tests,
contributing to a good understanding and providing confidence for in-
dustrial applications.

The next sub-sections summarize most recent advancements in
nanocomposite-based damage monitoring for various joint types: ad-
hesive, bolted, and welded joints. Table 2 lists main materials (for
nanocomposite and adherend), joints parameters (bond line thickness
and configuration), characterization tests, and lap shear strength (LSS).
It highlights that most studies have been conducted on adhesively
bonded joints for thermoset composites, while research on mechanically
fastened and welded joints is minimal.



Table 1

Summary of sensing technologies for damage monitoring in composite joints.

Intrinsic methods (embedded sensing)

Technology

Main features and advantages

Main disadvantages

Ref.

Nanocomposite-based sensing
Inspection area: local / global

Fiber optic sensor (FOS)
Inspection area: local / global

Minimally invasive with polymer matrix similar to adherends
Possibility of in-situ, real-time damage monitoring

Can provide more sensitivity than conventional SHM
techniques

Accurately measures strain and temperature

Can be locally embedded at interface and spatially distributed
Potential for detection of damage type, size, and location

May affect mechanical performance at high nanofiller content
Effectiveness depends on filler content and dispersion
Limitations regarding detection of damage location and type

May affect mechanical performance
Relatively expensive
Potentially complex systems and data analysis

[5,11,12,15,16,19,22,70-86]

[1,2,6,13,23-26,87-107]

e Possibility of in-situ, real-time damage monitoring
e Suitable for large structures (km)
Electromechanical impedance (EMI)) (e.g., piezoelectric e Potential to detect “kissing” bonds in adhesive joints e Multiple sensors required to monitor large structures [14,108,109]
sensor) e Can identify damage initiation based on location e May affect mechanical performance
Inspection area: local / global o Possibility of in-situ, real-time damage monitoring
Other methods: Z-pins, Eddy current (EC) sensing films e Z-pins act as crack-arresting mechanism e Time-consuming installation (Z-pins and EC films) [110-112]
Inspection area: local e Potential for crack growth monitoring (EC films) e Complex real-time data acquisition and implementation
e Possibility of in-situ, real-time damage monitoring e Limited penetration depth (EC films)
Extrinsic methods (external non-destructive testing)
Technology Main features and advantages Main disadvantages References

Acoustic emission (AE)
Frequency range (Hz): 10*-10°
Inspection area: local / global

Acousto-ultrasonic wave (e.g., guided waves)
Frequency range (Hz): 10%-10°
Inspection area: local / global

Structural vibrations and acoustics
Frequency range (Hz): 1-10*
Inspection area: local / global

Laser shock adhesion test
Inspection area: local

Electromechanical Impedance (EMI) (e.g., piezoelectric
sensor)

Frequency range (Hz): 103-10°
Inspection area: local / global

Ultrasonic scanning and phased array
Frequency range (Hz): 10°-107
Inspection area: local / global

Thermography
Inspection area: local / global

Digital image correlation (DIC)
Inspection area: local / global

Others (dielectric-based, heterodyning)
Inspection area: local / global

High sensitivity

Potential for detection of damage type and location
Can be integrated into existing structures for real-time
Fully passive method

High sensitivity

Can be implemented into existing structures for real-time
monitoring

o Sensitive to geometric changes at bond line

e Low level of measurement noise

e Can detect defect location and size

e Possibility of real-time damage monitoring

L]

.

L]

Non-contact

Can detect weak bonds

Possibility of in-situ, real-time damage monitoring
e Can quickly inspect long range defects

Can be used on large structures
Direct visualization of bond line quality/defects

Non-contact
Capable of inspecting large areas

Non-contact

Capable of inspecting large areas

Potential to detect kissing bonds

Relatively low voltage excitation signal (heterodyning)
Straightforward selection of excitation frequencies
(heterodyning)

e Can monitor water uptake in composites and joints
(dielectric-based)

Complex data analysis for damage classification
No indication of damage severity (e.g., disbond length, etc.)
May be sensitive to external noise

and severity

response
Limited sensitivity compared to higher-frequency methods
Defect position and structure design may affect effectiveness

Can damage specimens

Limited to adhesive joints

Response can be affected by joint boundaries
Multiple sensors required to monitor large structures

response
Generally cannot detect kissing bonds

Limited damage type detection

Challenging application for real-time, online monitoring
Physical access to joint area required

Generally cannot detect kissing bonds

Physical access to joint area required

Extensive sample preparation

Physical access to joint area required

Limited damage type detection

Generally cannot detect kissing bonds or damage severity
Adherends must be electrically conductive (dielectric)

Complex implementation and data analysis for damage localization, type,

Difficult to analyze complex structures as sensor configuration affects

Difficult to analyze complex structures as sensor configuration affects

Challenging application for real-time monitoring of existing structures

[74,113-128]

[7,48,96,129-147]

[148-153]

[154-159]

[160-162]

[25,163-168]

[74,169-172]

[173]

[174-176]
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Table 2

Summary of materials and process parameters for nanocomposite-based joints monitoring methods. NC: nanocomposite, t: bond line thickness, LSS: lap shear strength.

Joint NC matrix NC filler (wt%) Adherends and joint t Characterization tests LSS (MPa) Ref.
type geometry (mm)
Adhesive FM 300 K NC7000 MWCNTSs (0.1 wt%) Carbon fiber reinforced N/A e Bending tests N/A [80]
polymer (CFRP) o Electrical resistance measurements
Standard Mode-1I coupon e Scanning electron microscopy
Skin-stringer element (SEM)
Adhesive  FM 300 K NC7000 MWCNTS (0.1 wt%) CFRP N/A o Peeling tests N/A [22]
Standard Mode-I coupon e Electrical resistance measurements
Skin-stringer element e SEM
Adhesive ~ FM 300 K NC7000 MWCNTS (0.1 wt%) CFRP N/A o Fatigue tests N/A [5]
Single lap e Voltage measurements
e Optical microscope
¢ SEM
Adhesive Epoxy adhesive (Araldite LY 5052/Aradur ~ MWCNTs (0.5 wt%) CFRP prepreg 0.76 e Impedance spectroscopy 8.86 (no sensor) 8.19 (with sensor) [12]
5052) Single lap measurements
e Lap shear tests
e Transient infrared thermography
o SEM
Adhesive Hysol ® EA 9396 CVD-grown MWCNTs (1.0 wt Vinyl ester/glass composite-  0.762 e Monotonic and incremental cyclic N/A [78]
%) stainless steel tensile tests
Single lap o Electrical resistance measurements
e Acoustic emission
Adhesive Hysol 9309.3NA, nonwoven aramid fabric =~ CNTs Carbon fiber (CF)/epoxy 2 e Monotonic and incremental cyclic 14.4 (control specimens) 9.7 [15]
20601 resin-steel tensile tests (adhesive insulated specimens) 14
Single lap e Electrical resistance measurements (fabric insulated specimens)
Adhesive Epoxy adhesive (KSR 177) & hardener (G CM 95 CNTs (2 wt%) Carbon/epoxy-Al 2 o Tensile tests N/A [16]
640) Single lap e SEM
o Fatigue tests
e Equivalent resistance and
capacitance measurements
Adhesive Epoxy resin (Araldite LY 556) & hardener =~ NC7000 MWCNTs (0.1 wt%) CFRP-Ti6A14V N/A o Tensile tests Slightly decreased compared to neat adhesive [71]
(XB 3473) Single lap e Double cantilever beam tests Increased fracture toughness
e Electrical resistance measurements
Adhesive Cytec FM 300 epoxy film adhesive Highly aligned CNT-single Glass fiber (GF)/epoxy 0.26 e Quasi-static cyclic tensile tests Slightly increased compared to neat adhesive [19]
layer web (CNT-SLW) Single lap o Electrical resistance measurements
o FESEM
Adhesive Epoxy adhesive Bisphenol epoxy resin MWCNT & carbon black (CB) CFRP laminate-high- 2 e SEM Increased by 3.12 % in CB, 37.5 % in CNT:CB = 1:3, [84]
(HZ1-A) & hardener (HZ1-B) (2 wt%) strength steel e Two-electrode method and 62.5 % in CNTs
Single lap e Electrical resistance measurements
o Tensile tests
Adhesive Bisphenol-A MWCNTs & graphene (GNs) GF/epoxy prepreg 0.105 e Quasi-static and cyclic shear tests 0, 5, and 10-GC/epoxy changed by + 42 %, +10 %, [83]
Single lap e Electrical resistance measurements and —3.5 % compared to neat adhesive
e FESEM
Adhesive Epoxy resin (EPON LVEL 828) Tuball SWCNTs (0.5 wt%) CFRP prepreg N/A e Cyclic fatigue tests N/A [11]
Scarfed joints e Electrical resistance measurements
e DIC measurements
e SEM
Adhesive Epoxy resin (EPON resin 828) Tuball SWCNTs (0.5 wt%) Glass fiber reinforced N/A e Electrical resistance measurements N/A [70]
polymer (GFRP) e Drop weight impact tests
Biaxial plates o Ultrasonic measurements
o Pulse-echo method
e Optical microscope
Adhesive Epocast 52 A/B MWCNTs (0.5 wt%) CFRP prepreg N/A e Fatigue mechanical tests N/A [74]

Four-layer patch

Electrical potential change
monitoring
Acoustic emission

(continued on next page)
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Table 2 (continued)

Ref.

LSS (MPa)

Characterization tests

Adherends and joint

NC filler (Wt%)
geometry

NC matrix

Joint
type

(mm)

o Lock-in thermography

o Fatigue tests

[75]

N/A

CF/epoxy prepreg

Vapour-grown carbon

Bisphenol A ‘105’ & harder ‘206

Adhesive

e Four probe resistance

Double-cantilever beam

nanofibers (CNFs) (0.7 wt%)

measurements
o Electrical resistance measurements

e Thermography

[86]

No significant difference with and without sensor

adhesive

0.11

GFRP

Nickel-coated carbon veil

Hexcel M26T epoxy

Adhesive

Single lap

e Short beam interlaminar shear tests

e Quasi-static tensile tests
e DIC measurements

[81]

N/A

N/A e Quasi-static monotonic and

Glass/epoxy-CNT/GF

Single lap

MWCNTs (0.5 wt%)

Bisphenol-fepichlorohydrin epoxy (EPON

862)

Bolted

increasing cyclic tensile tests
o Electrical resistance measurements

e Quasi-static monotonic and cyclic

Double lap

[73]

N/A

N/A

CNT/E-glass/vinyl eater-
fiberglass composite

Double lap

CNTs (0.75 wt%)

Bisphenol-f epoxy monomer (EPON 862)

Bolted

tensile tests
o Electrical resistance measurements

o Tensile tests

e SEM

[82]

Increased compared to neat composite

WGF/epoxy
T-joint

MWCNTs

Woven GF cloth (WGF)

Bolted

o Electrical resistance measurements

o Tensile tests
o Bending tests

[72]

Sightly decreased

0.5

GF/PP

MWCNTs (15 and 20 wt%)

PP

Welded

compared to neat PP films

Single lap

o Electrical resistance measurements

o Tensile tests

[76]

Sightly decreased

0.5

GF/PP

MWCNTs (15, 20, and 25 wt%)

PP

Welded

compared to neat PP films

o Electrical resistance measurements

e SEM

Single lap
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2.2. Application to adhesive joints

2.2.1. CNT/adhesive-based damage monitoring

Introducing CNTs into epoxy adhesive can significantly improve the
electrical conductivity of the latter. This feature is used to evaluate the
ability of CNT networks to detect and monitor, in-situ, the onset and
propagation of damage in adhesively bonded joints through various
testing techniques. Some efforts have been made in composite/metal
hybrid joints, which have employed CNT/adhesives for damage sensing
[16,71,78,84]. However, it is worth noting that the majority of previous
research directly introduced CNTs into the adhesive, which usually
resulted in an increase in viscosity, affecting dispersion, and leading to a
decrease in mechanical properties (such as strength of single lap joints).
To overcome these issues, Doshi et al. [15] proposed a novel method by
applying a CNT-based sensing layer in adhesively bonded CF composite/
steel joints for damage detection. A well-mixed CNT sizing (sizing:ultra-
pure water = 1:2) was deposited onto a nonwoven aramid fabric for 20
min and then dried in an oven for 30 min at 150 °C. Two approaches to
insulate the sensing layer from the steel adherend were investigated, as
shown in Fig. 1: i) a cured adhesive layer and ii) a non-conductive fabric.
Fabric insulation showed no significant effect on lap shear strength (LSS)
subjected to monotonic tension loading. Additionally, there was no
damage at the sensing layer for samples insulated by non-conductive
fabric, which also presented a more linear resistance response than ad-
hesive insulation under gradually increasing cyclic loading. This
demonstrated that CNT-based sensing layers might have the ability to
identify failure modes within the bond line.

With the increase of industrial demand for lightweight and high-
strength components, adhesively bonded fiber-reinforced composite-
to-composite joints are the subject of high interest nowadays. In this
regard, SHM techniques for composite/composite joints, especially
CNT-based monitoring methods, have gained momentum in the past five
years [5,11,12,19,22,70,74,80,178]. For example, Sanchez-Romate
et al. [178] developed a CNT doped adhesive film by dispersing CNTs in
water with 0.1 wt% sodium dodecyl sulfate (SDS) surfactant under
sonication and applied it to join CFRP adherends. They found that 20
min sonication produced good CNT dispersion, and SDS helped disag-
gregate CNTs, while CFRP joints with 0.25 wt% SDS showed the highest
LSS and electrical conductivity among 0, 0.1, 0.25, and 1 wt% SDS.
Following adhesive film development, fracture growth monitoring for
single lap CFRP joints with CNT doped adhesive films via electrical
resistance change under fatigue loading was discussed by this research
group [5]. However, achieving an excellent dispersion of randomly
oriented CNTs in solvent remains a challenge because of their aggre-
gation and increased adhesive viscosity. Toward this end, a method
positioning highly aligned CNT single layer web (CNT-SLW) over ad-
hesive film sandwiched between two glass fiber (GF) laminate adher-
ends was proposed to detect damage initiation and progression in single
lap joints subjected to quasi-static and cyclic loading in [19]. The au-
thors placed horizontally drawn CNT-SLW on adhesive film in a direc-
tion parallel or perpendicular to tensile loading. Under quasi-static
loading, joints bonded with CNT-SLW perpendicular to loading dis-
played a very small change in resistance compared to the parallel di-
rection, which showed a high sensitivity of AR/Ry (%) at damage
initiation, damage accumulation, and final failure jumping to 1631 %.
These two CNT-SLW sensing mechanisms are clearly depicted in Fig. 2.
Moreover, an example of sensor response for displacement-controlled
experiments with a maximum displacement of 1.5 mm (Fig. 3a) was
also presented. In cycles 1 ~ 10, the maximum resistance increased
linearly with a large slope, indicating that numerous CNTs were
disconnected, while minimum resistance was almost constant, suggest-
ing CNTs reconnected during unloading due to their high alignment.
Detailed damage information is observed from the magnified image in
Fig. 3b. On the contrary, CNT-SLW perpendicular to loading showed
poor sensitivity under both quasi-static loading and cyclic loading.
Highly aligned CNT-SLWs are promising for SHM due to their higher
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L

Fig. 1. A schematic diagram showing two approaches to insulate CNT sensor layer from the steel adherend: (a) adhesive-insulated adherend with two-step curing

and (b) fabric-insulated adherend with one-step curing [15].

cyclic stability and sensing sensitivity compared to conventional CNT
dispersion mentioned above.

Additionally, several research groups have shown interest in damage
monitoring of complex structural composite joints, such as scarfed joints
and skin-stringer assemblies. Augustin et al. [11] manufactured a 0.5 wt
% single wall carbon nanotube (SWCNT) modified epoxy adhesive film
using a three-roll mill and applied it to scarfed CFRP joints with a scarf
angle of 2.86°, where inkjet-printed conductive paths were placed on
opposite sides of the film. By this means, crack initiation and growth
subjected to cyclic loading were detected via electrical resistance mea-
surements and translated into heat maps. An example of electrical
resistance change using damage mapping is shown in Fig. 4. They
pointed out that crack initiation could be detected by a sudden increase
in electrical resistance, while a continuous increase in resistance over
lifetime represented crack growth. Furthermore, interpreting the

Overlapped F
CNTs

R
CNTs-SLW integrated hung
into adhesive matrix

Zero displacement
/Load

Displacement <1.4 mm Displacement =1.4 mm

/

F

T~ Displacement <1.03 mm.
,‘ |

difference in resistance between different conductive paths could be
used as a basis for determining the crack location. Augustin et al. [70]
relied on this SWCNT-modified adhesive film to investigate the damage
detection and localization for GFRP plates under impacts via inkjet-
printed conductive paths. After that, CNTs doped adhesive films pro-
posed in [178] were used for monitoring damage propagation of co-
bonding and secondary bonding of skin-stringer elements with two
different artificial defects, namely liquid release agent and Teflon insert,
through electrical resistance measurements subjected to peeling tests.
For the electromechanical curves of the two bonding methods, three
regions were established, corresponding to different defect mechanisms.
No matter which bonding technology the skin-stinger elements was
bonded with or defect types attached, a sudden decrease in mechanical
loading was always accompanied by a sharp jump in resistance [22].
Sanchez-Romate et al. [80] also investigated the detection capability of

Displacement >1.38

Displacement > 1.03 mm.

Increased tunnelling gap Significantly reduced
and reduced number of contacts and broken
CNT-CNT contacts. CNTs.
(a)
R

Displacement >1.8 mm

(b)

Fig. 2. Representation of the damage sensing mechanism for CNT-SLW (a) parallel and (b) perpendicular to load direction with increasing end-displacement

(deformation) (Reproduced with permission from [19]).
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Fig. 3. (a) Sensor response at a maximum end-displacement well above the damage initiation threshold and (b) expanded view of subsequent cycle highlighting the
re-opening of a crack and formation of new damage (Reproduced with permission from [19]).

the same CNTs doped adhesive film for crack growth in Mode-II coupons
and skin-stringer sub-elements under static bending loading until fail-
ure. They found that incorporating CNTs increased Mode-II energy
fracture, resulting in a slower crack propagation compared to the neat
adhesive. Furthermore, electrical resistance increased with crack
opening in both CFRP structures due to the breakage of conductive
pathways, showing a potential for SHM applications.

2.2.2. Hybrid nanoparticle-based damage monitoring

As aforementioned, CNTs show potential for SHM of adhesive joints
due to their excellent electrical properties with a low percolation
threshold, but cost and tendency to create large agglomerates due to
their high aspect ratio are notable issues [179], as well as relatively poor
sensitivity [180]. Several researchers have proved that incorporating
hybrid conductive fillers into adhesives can effectively compensate for

the limitations of CNTs. For instance, Ke et al. [181] combined CNTs and
carbon black (CB) due to the latter’s low cost and high sensitivity to tune
the electrical conductivity and piezoresistive sensitivity of poly (vinyl-
idene fluoride) (PVDF) and found that a high CNT/CB ratio provided a
high electrical conductivity, while a low CNT/CB ratio led to a high
piezoresistive sensitivity. Studies on mechanical properties [21,84,179],
rheological properties[182], and strain sensing behaviors [180] of CNT/
CB-based adhesive were also reported. Recently, Yang et al. [83]
employed a filtration method to develop CNT/epoxy adhesives with 0, 5,
and 10 wt% of layered graphene nanoplates (GNs), namely 0-GC/epoxy,
5-GC/epoxy, and 10-GC/epoxy. This approach introduced not only line-
to-surface contacts between CNTs and GNs, but also surface-to-surface
contacts between GNs, except for the original point-to-point contacts
between CNTs, allowing to improve the monitoring sensitivity for
adhesively bonded GF/epoxy joints. Under quasi-static shear loading,
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location (Reproduced with permission from [11]).

electrical resistance change exhibited a slow linear increase with shear
strain, about 1.0-4.0 % for three types of GC/epoxy at undamaged stage.
When shear strain reached a certain value, resistance changes increased
suddenly, indicating damage initiation and conductive networks crack,
as shown in Fig. 5. In Fig. 5e, 5-GC/epoxy and 10-GC/epoxy had a
reduced shear strain y compared to 0-GC/epoxy, while their AR/Rg (%)
were as high as 191 % and 140 %, respectively. From this perspective, 5-
GC/epoxy film was more sensitive than the other two, validated by
acoustic emission energy. Moreover, 5-GC/epoxy films provided a
higher stable sensitivity of 160 % AR/Rg (%) than 0-GC/epoxy films [32
% AR/Rg (%)] under cyclic shear loading when shear damage began.
These proposed hybrid nanocomposites showed a new perspective and
applicability for damage monitoring of adhesively bonded composite
joints.

2.3. Application to mechanically fastened and welded joints

2.3.1. Damage monitoring for mechanically fastened composite joints
Since mechanically fastened composite joints have high stress con-
centration, they are susceptible to damage around fasteners. Therefore,
it is critical to evaluate their failure behavior. However, external NDT
techniques usually require disassembly of mechanically fastened joints,
resulting in a long downtime. To this end, CNTs were gradually intro-
duced into composites for sensing. For example, Thostenson and Chou
[81] detected local damage of composites and bolt loosening subjected
to quasi-static monotonic tensile loading and increasing cyclic loading
with mixed CNT/epoxy resin infused through the glass fibers. Fig. 6a
illustrates unidirectional GF/epoxy composite specimens with single-lap
and double-lap joints fastened by fully threaded steel bolts and flange
hex nuts. In that work, a stick/slip fracture appeared in these two types
of lap joints under loading (Fig. 6b), which was different from the load
curves of adhesively bonded joints after the initial damage, as discussed
in Fig. 5. Furthermore, every drop in load was accompanied by a jump in
electrical resistance. It was worth noting that the whole resistance
change of the single-lap joints was very small, less than 3 %. On one
hand, it might be caused by the direct contact between bolt and com-
posite laminate, leading to new conductive paths. On the other hand,
thin composite bending reduced the electrical resistance. However,
double-lap joints addressed each of these shortcomings. In this respect,
the same research group continued their study on CNT/resin-based
bolted cross-ply double-lap shear E-glass composite joints under
monotonic and cyclic tensile loading using electrical resistance mea-
surements [73]. Different from unidirectional joints with a shear-out
failure mode due to low shear strength along the fiber direction, cross-

ply composite joints exhibited complex damage modes, such as net-
tension, bearing, shear-out, and tear-out, which might be associated
with interlaced fiber direction and complex internal networks. In [73],
Friedrich et al. investigated the correlation between electrical resistance
response and damage of joints through ultrasonic C-scan and optical
microscopy. Electrical resistance measurements were more sensitive to
matrix cracks and delamination between 0° and 90° layers due to their
disturbance on CNT conductive networks compared to bearing, shear-
out, as well as tear-out failures, which did not severely disturb the
conductive networks, giving rise to weaker sensitivity to resistance data.
Therefore, CNT networks can be excellent candidates for SHM of me-
chanically fastened joints.

More recently, Wan et al. [82] embedded a nanocomposite-based
sensor, MWCNT-coated woven GF cloth (MWCNT@WGF), into the
bottom and the web of bolt-fastened WGF/epoxy T-joints for damage
monitoring under tensile loading. As depicted in Fig. 7, resistance
Tunnel-2, along the bottom of the T-joint, showed a first sharp growth
due to the onset of delamination, leading to the MWCNT@WGF sensor
cracks. Under continuous loading, this propagation would decrease
when the delamination encounters bolts, consequently, followed by a
slight change in the resistance curves. However, since there was
delamination along the web direction, corresponding to resistance
Tunnel-1, the latter kept increasing until final failure. In addition, their
method also demonstrated the ability to significantly enhance the
strength of T-joints.

2.3.2. Damage monitoring for welded composite joints

Unlike adhesively bonded joints, there is very limited published
research related to nanocomposite-modified welded composite joints,
especially for both induction and resistance welding. Farahani and Dube
[42] developed heating elements (HEs) using Ag-coated carbon nano-
fibers (CNFs), Ni-coated CNFs, and Ag-coated CNFs with magnetic Fe3O4
nanoparticles casted on a pure polyphenylene sulfide (PPS) film used for
induction welding. In that work, the mechanical performance and
welding quality of unidirectional and cross-ply CF/PPS joints, as well as
heating behavior of different HEs, were investigated and discussed. The
following year, Farahani et al. [43] continued their research on PPS
films casted by nAg as a HE. Apart from this application, nano-
composites were incorporated into resistance welding as well. Brassard
et al. [33] examined the mechanical properties and welded surface of
resistance welded single lap shear CF/poly (ether ether ketone) (PEEK)
joints with MWCNT-based polyetherimide (PEI), as a new HE. Numeri-
cal research regarding enhancing mechanical performance through
study of welding parameters and temperature distribution during
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welding with a finite element model was also conducted by the same
group [34]. However, the presented work all focused on studying
welding parameters and mechanical properties of welded joints. To the
authors’ knowledge, nanocomposite-based damage monitoring in wel-
ded composite joints has never been done in induction welding and
resistance welding.

Similarly, although a large amount of research has been conducted in
ultrasonically welded composite joints in recent years, most work fo-
cuses on the welding process, welding quality, and mechanical behavior
of the joints [3,4,27,28,46,47,49,55,61,62,65,67,68,183-187]. There-
fore, a comprehensive understanding of the application of nano-
composites for damage sensing of ultrasonically welded joints has not

been reported. Recently, multifunctional films containing MWCNTs
dispersed into a thermoplastic matrix were proposed to enable ultra-
sonic welding, SHM, and resistive heating for disassembly of welded
thermoplastic composite joints [72,76,77,188,189]. For instance,
Frederick et al. [72] manufactured 0.06, 0.25, and 0.50 mm-thick 15
and 20 wt% MWCNT/polypropylene (PP) films via compression mold-
ing. The authors confirmed that electrical resistance changes were
linked to applied strain to the films through DMA tests under tension.
Films with a thickness of 0.50 mm were selected to successfully weld
GF/PP adherends in a single lap configuration. In this respect, electrical
resistance was measured when welded joints were subjected to cyclic
bending loading, showing a clear correlation with bending duration.
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Based on these results, Li et al. [76] investigated the damage sensing
capabilities of 0.50 mm-thick 15, 20, and 25 wt% MWCNT/PP films in
ultrasonically welded GF/PP joints, subjected to tension loading until
failure. During this process, the electrical resistance at the welded
interface was measured. They reported that every sudden drop in stress
inevitably led to a significant jump in resistance for all joints welded
with 15 and 20 wt% MWCNT/PP films, while 25 wt% MWCNT/PP film-
welded joints failed immediately when stress reached its maximum,
leading to a sharp resistance increase, attributed to a brittle interface.
Overall, 15 and 20 wt% MWCNT/PP multifunctional films developed in
that work presented a novel method for damage monitoring of ther-
moplastic composite joints. However, for those particular materials, the
nanocomposite films led to a decrease in lap shear strength (less than 20
%), which needs to be addressed in future work. The potential for in-situ
strain and damage monitoring of nanocomposite films (based on 5, 10,
15, and 20 wt% MWCNTs) under static and cyclic flexural loads was also
studied for welded GF/PP single lap joints (SLJs) and 3-point bending
joints (3PBJs) [189]. The crack initiation and propagation at the welded

10

interface can lead to resistance changes and double-film 3PBJs showed a
high sensitivity with AR/Rg (%) up to 300 % subjected to monotonic
3PB loads. Furthermore, 15 wt% MWCNT/PP films embedded away
from the neutral axis also presented sensing capability under cyclic
flexural loading. It is worth noting that nanocomposite films increased
the flexural strength by an average of 20.6 %.

3. Embedded sensors for damage monitoring
3.1. Fiber optic sensors (FOSs)

Fiber optic sensors (FOSs), including distributed FOS (DFOS) and
fiber Bragg grating (FBG) sensors, have been used for SHM of various
types of composite joints: i) adhesively bonded GFRP and CFRP joints,
including single, double, and step lap joints
[1,2,6,13,23,87,88,90,97,99-101] under static and cyclic loading
[24,25,96,98,106], ii) adhesively bonded hybrid composite/metal joints
[89,91,103,107], iii) adhesively bonded composite repair patches
[95,102], and iv) welded thermoplastic composite joints [94,105].
Table 1 summarizes the main features, advantages, and disadvantages of
FOSs for composite joints. Due to their small size, they are usually
embedded in the composite adherends (under top layer), at the adher-
end/adhesive layer interface, or in the bond line. They have been shown
suitable to monitor strain changes at the interface, disbond initiation,
crack growth, and disbond length. Optical fibers are typically made of
glass or polymer, which can transmit light over large distances. FBG is
among the most popular sensor type for SHM of composite structures
and joints. Bragg gratings are etched micro-structures inside an optical
fiber core, reflecting a specific light wavelength [190]. When an FBG
sensor is subjected to an external load (mechanical or thermal), the
wavelength changes, allowing accurate strain measurements. A series of
FBG sensors can be present along the length of the same optical fiber,
leading to simultaneous strain readings at several locations.

More recently, Yashiro et al. [25] studied adhesively bonded CFRP
double-lap joints under cyclic loading. They embedded three FBG sen-
sors in the top 0° layer of the adherends and created a known disbond
length (2 mm-long) to insure crack initiation under the sensors. They
proposed an approach using the reflection spectrum and peak intensity
ratio to estimate the disbond length. The high sensitivity of FBGs to non-
uniform strain distribution suggests they are suitable for early
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assessment of moving disbond tip, compared to ultrasonic C-scan testing
(see Fig. 8). Zeng et al. [26] embedded FBG sensors at the skin-core
interface of sandwich composite L-joints subjected to bending load.
They compared strain measurements with traditional resistance strain
gauges mounted on the outer surface, and with finite element (FE)
simulations. Embedded FBG sensors could adequately detect internal
damage-induced strain changes (damage initiation, accumulation, and
propagation), while outer strain gauges were insensitive to internal
damage. However, given the curved interface, the reflection spectrum
was too complex to detect wavelengths and therefore, the full spectral
signal was a better option to measure strain.

Young et al. [107] monitored internal strain and stress development
in dissimilar CF sheet molded composite/aluminum adhesive joints
during manufacturing and post-processing (i.e., painting process). A
sensing system based on high-definition FOS embedded at the bonded
interface was used. Spatially resolved strain, residual strain, and thermal
expansion over bond length for two types of adhesives were successfully
measured. The collected data could allow prediction of localized strains,
as well as their variation with time, temperature, and applied mechan-
ical load. Rito et al. [102] used chirped FBG sensors for SHM of adhe-
sively bonded patch repairs for GFRP panels. The sensor was embedded
between the patch and the parent laminate, and the assembly was
subjected to quasi-static and cyclic four-point bending tests. Damage
progression (disbond from patch edges) was observed in the reflected
spectra at the low wavelength end of the sensor, in the form of a dip or
peak shift. No significant changes were seen at the high wavelength end.
Therefore, it was recommended to use two chirped FBG sensors with
their low wavelength end adjacent to the repair patch to monitor
damage development.

Shohag et al. [104] used in-situ triboluminescent optical fiber (ITOF)
sensors, combining the triboluminescence (TL) property of manganese-
doped zinc sulfide. Polymer optical fibers were coated with a TL
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Fig. 8. Comparison of the disbond length evaluated by ultrasonic C-scan
technique with the one estimated from the measured reflection spectra. Error
bars represent the error range caused by the thickness of the band of white color
tone in the C-scan images (Reproduced with permission from [25]).
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composite film by dip-coating, then incorporated into GFRP adhesive
joints in double cantilever beam (DCB) and 3PB end-notched flexure
(ENF) configurations. During DCB tests, ITOF sensor intensity increased
at crack onset propagation and with mode I fracture toughness. During
ENF tests, TL intensity changes were observed in the plastic deformation
phase and during the failure phase. However, further research needs to
address development of a damage index for TL-based detection as the
level of damage cannot yet be determined.

There is very limited work in the literature on SHM of welded
thermoplastic composite joints with FOSs. Notably, Wada et al. [105]
embedded FBG sensors in ultrasonically welded single lap CFRP joints to
evaluate the effect of welding process and applied tensile loads. Using
optical frequency domain reflectometry, they measured residual strains
after embedding, strain release after welding, and strain distribution
during tensile loading application. This suggested potential of FBG
sensors for weld quality monitoring and increased understanding of
mechanical performance. Guo at al. [94] employed FOSs to monitor
temperature profiles under different induction welding parameters for
CF thermoplastic composite single-lap joints. The fibers were looped on
the surface of the adherends and at the bond line, producing a larger
number of data points than thermocouples, and illustrated through
temperature matrices. They however did not perform damage moni-
toring under loading using the embedded FOSs.

While FOSs embedded in the bond line can monitor damage initia-
tion and progression at the interface, one potential downside is their
effect on the mechanical performance of joints. It is generally under-
stood that embedding FOS in composite laminates does not significantly
influence their mechanical properties, but there is limited literature on
this topic for composite joints [90,93]. Recently, Grundmann et al. [93]
embedded optical fibers with different coatings (polyimide and acrylate)
and diameters (between 54 and 145 pm) and studied their effect on bond
thickness and shear strength for CFRP single lap adhesive joints. Only
polyimide-coated fibers with diameters below 100 pm showed no sig-
nificant effect on quasi-static tensile shear strength. Overall, for the
tested structural adhesives and composite adherends, polyimide-coated
80 pm optical fibers were identified as most suitable while maintaining
SHM functionality.

3.2. Piezoelectric-based monitoring

While some studies experimentally tested the use of embedded
piezoelectric micro-sensors in adhesive joints with metallic adherends
[109,191], others employed them as part of external monitoring systems
(transducer and/or sensor), as will be summarized in Section 4.6. Dug-
nani et al. [108,191] implemented piezoelectric sensors into aluminum
single lap adhesive joints and developed an electromechanical imped-
ance (EMI) approach to monitor the bond’s integrity by measuring the
dynamic response of the joint, under tensile loading, resulting from the
presence of defects. This method was further refined by Zhuang et al.
[109] for the same joint configuration and adherend type but intended
for CFRP joints in aerospace applications. They proposed an EMI-based
approach to detect weak bonds (i.e., “kissing” bonds), a type of defect
that is particularly difficult to identify through typical acoustic or ul-
trasonic techniques. The 0.25 mm-thick sensors with a 3.1 mm diameter
were embedded into three to four adhesive layers, with a total bondline
thickness approximately equal to 0.45 mm. A damage index was defined
as the root mean square deviation (RMSD), describing the average
impedance change with the baseline, unloaded specimen. It was seen
that this damage index remained generally unchanged but increased
significantly when the joint was subjected to 80 % — 90 % of its failure
stress. The state of the joint (healthy or degraded) can then be predicted
according to a damage index threshold, indicating failure is eminent. As
observed in Fig. 9, the location of the micro-sensors, in the middle of the
joint or near the edges, was observed to affect the EMI response, sug-
gesting they can predict failure initiation at an earlier stage. While the
particular sensors used in this study did not affect mechanical
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Fig. 9. Representative bondline degradation monitoring results with multiple piezoelectric sensors. The sensor on the edge is more sensitive to bondline degradation

than the sensor in the middle (Reproduced with permission from [109]).

performance of the single lap joints, several of them would be required
in practice to monitor large structures, which may have an effect on
structural integrity. Moreover, incorporation of such sensors at the
interface for other types of adhesives or fusion bonding methods may
influence mechanical properties.

Deligianni et al. [14] used a different approach by incorporating PZT
(lead zirconate titanate) particles in epoxy adhesives to create thick-film
sensors intended for adhesively bonded joints. The sensors were how-
ever only tested on metal strips subjected to cyclic bending loads (four-
point bending), not embedded into composite joints, but showed po-
tential for strain monitoring.

3.3. Other embedded sensing methods

Other embedded sensing methods for composite joints include
through-thickness Z-pins or tufting for adhesive bonding and eddy

current (EC) array sensing films for bolted composite laminates
[110,111]. Kadlec et al. [110] used Z-pins embedded in adhesively
bonded CFRP adherends to assess crack-arresting mechanisms combined
with a structural health monitoring method based on electrical resis-
tance of the Z-pins. Cracked lap shear specimens (CLS) with embedded
Z-pins were tested under tensile loading. Crack growth was monitored
through visual observations and ultrasonic A-scans by stopping the tests
at selected loading intervals. At the same intervals, the electrical resis-
tance of the Z-pins was measured individually with a multimeter. It was
shown that the normalized pin resistance increased with crack length
(Fig. 10), indicating potential for localized SHM. This system needs to be
further developed for real-time, simultaneous monitoring of several Z-
pins resistance. Large-scale monitoring would require embedding Z-pins
at different locations, which could influence mechanical performance.
Liuetal. [111] investigated the use of EC array sensing films directly
bonded to bolts in mechanically fastened CFRP joints (14 mm diameter
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Fig. 10. Comparison of mean normalized electrical resistance of the Z-pins and fatigue crack length () for test specimen (Reproduced with permission from [110]).
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holes). They consisted of an exciting coil and four sensing coils. Artificial
cracks were introduced in laminates along two directions: i) radial di-
rection from O to 4 mm crack length and ii) axial direction from 0 to 20
mm crack depth. For those cases, the induced voltage was measured and
seen to generally increase with crack length, showing potential for crack
growth monitoring. However, induced voltage in the radial direction
past the 3 mm crack length remained constant, indicating a drawback
with this sensing technology as eddy current had a limited penetration
depth. Furthermore, future work should address real-time testing under
mechanical loading and discuss challenges regarding implementation
into real applications.

4. External monitoring techniques

In this paper, a damage monitoring technique that is not embedded
at the interface or bond line of a joint is defined as “external” or
“extrinsic”. The following sub-sections will summarize current trends in
main external monitoring methods for composite joints, including
acoustic emission (AE), guided waves, structural vibrations and acous-
tics, laser shock adhesion test (LASAT), ultrasonic NDT, and other
techniques such as piezoelectric sensors, thermography, and digital
image correlation (DIC).

4.1. Acoustic emission

The acoustic emission method has been extensively studied for SHM
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of composite laminates and structures, but its application to composite
joints is more limited. It is a passive method that can detect (i.e., “listen
to”) elastic energy propagating from any defect, pinpoint damage
initiation and localization, and identify damage modes (e.g., cohesive or
adhesive failure, etc.). One challenge with this method is that extensive
analysis must be performed to correctly interpret acquired AE data, for
which machine learning approaches have shown promise. For composite
joints, AE was used for single-lap adhesive joints [117,118,124,125],
finger joints [128], double-lap adhesive joints [119,123], joint adhesion
in peel and double cantilever beam (DCB) tests [121], adhesively
bonded panel/stringers [120,122], single-lap bolted joints [126], and
adhesively bonded repair patches [74,113-116].

Weak bonds (or “kissing bonds”) in adhesive joints, typically
resulting from improper surface preparation or partially cured adhe-
sives, cannot be reliably detected through traditional NDTs such as ul-
trasonic C-scanning. Teixeira de Freitas et al. [121] first studied the use
of AE for detection of weak bonds in adhesively bonded CFRP through
peel and DCB tests. They investigated the effect of surface treatments
(including contaminated areas to simulate weak bonds) on cumulative
number of hits and energy, related to failure modes (cohesive or adhe-
sive). For instance, in DCB tests, AE showed no activity over the length of
the weak bond (contaminated area), as shown in Fig. 11a. Overall, they
observed that released energy for cohesive failure was higher than for
adhesive failure mode and demonstrated the potential for AE to effec-
tively detect weak bonds.

Saeedifar et al. characterized damage in metal-to-composite
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Fig. 11. (a) Cumulative number of hits during the peel tests for CF/epoxy specimens without (top) and with (bottom) contamination (Reproduced with permission
from [121]) and (b) total cumulative AE energy and cumulative AE energy curve with classified damage modes for MMA-based DLJ specimens (CFRP adherends and

MMA adhesive) (Reproduced with permission from [119]).
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adhesively bonded structures through AE: steel-to-CFRP double-lap
joints [119] and titanium panel to CFRP omega stringers [120]. For
double-lap joints, adherends were tested individually under tensile
loading to identify their damage mechanisms and corresponding AE
features. An ensemble decision tree model was trained to classify dam-
age types. For two adhesive formulations (methacrylate and epoxy-
based), different damage modes were captured through AE, such as
cohesive and adhesive failures (see Fig. 11b for methacrylate adhesive).
The titanium panel bonded to CFRP stringers was tested under cyclic
compression until failure. It was seen that AE could reliably capture
damage initiation, its location, and its progression. AE features were
clustered through particle swarm optimization to detect damage types.
Results were favorably compared to digital image correlation (DIC) and
showed better accuracy for damage onset detection.

Xu et al. [123,124] further explored machine learning approaches to
identify damage modes from AE signals in adhesively bonded single-lap
joints (SLJ) and double-lap joints. They employed an unsupervised
clustering method by Fast Search and Find of Density Peaks (CFSFDP)
through similarities between AE signals and features selection, such as
rise time, AE counts, energy, time of duration, and peak amplitude.
Various clusters corresponding to matrix cracking, shear adhesive fail-
ure, fiber/matrix interface debonding, delamination, and fiber breakage
were created based on dB ranges. For all clustering methods and
hyperparameters investigated, shear failure of the adhesive layer was
found to be distinctive based on the selected AE features, when
compared to different damage and failure modes in the adherends.
Moreover, Xu et al. used clustering, time-domain, and frequency-domain
analyses to study the effect of hygrothermal aging on damage behavior
of SLJs. It was observed that aging reduced the AE peak amplitude for
two damage modes, i.e., matrix cracking and fiber/matrix debonding.
Generally, the ranges of peak amplitude and frequency band corre-
sponding to shear adhesive failure were 40 to 50 dB and 40 to 45 kHz,
respectively. Overall, AE shows potential for damage initiation detec-
tion, location, and progression, as well as damage mechanisms identi-
fication through clustering methods for single-lap or double-lap joints.

Contact conditions in single-lap bolted composite joints under flex-
ural vibrations and fatigue loading were characterized using intrinsic
mode functions of AE signals by Zhang et al. [126]. The effect of torque
applied to the bolted joints on cumulative energy (Fig. 12a) and AE
signals amplitude (Fig. 12b) was studied. It was observed that at low
torque values (< 3 N-m), changes in the energy release rate were more
significant than at higher torques (> 7 N-m), indicating less stable
contact conditions under this torque. Tightening conditions and
vibration-induced loosening of the joints could be detected within 4 to 7
N-m torque range.

Andrew et al. [113-116] investigated the use of AE for damage
characterization in adhesively bonded repair patches on GF/epoxy
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laminates under different load cases: bending, compression, and tension.
The mechanical response of repaired laminates with homogeneous and
hybrid patches was compared. For all load cases, cumulative counts and
events location were recorded to evaluate damage onset, location, and
type (matrix cracking, fiber/matrix debonding, and fiber breakage).
Damage was generally observed over the patch area or the whole
repaired laminate, but this AE monitoring approach could not directly
discriminate between patch/laminate matrix cracking and adhesive
damage (adhesive or cohesive failure between patch and parent
laminate).

4.2. Guided waves

Guided wave-based SHM methods are promising because they are
inexpensive, easy to implement into existing structures (with light-
weight transducers), possess large scanning areas, and are not affected
by ambient vibrations [192]. However, correct implementation and data
analysis for damage localization, type, and severity tend to be complex.
Various wave forms have been investigated for SHM, but the most
common one for composite structures is the Lamb wave because it
propagates through shell-like components (i.e., thin plate laminates). In
the literature, guided waves have been explored for different types of
composite joints, such as adhesively bonded SLJs [96], bonded skin/
stringer assemblies [7,133,140-142,146], bonded T-joints [136],
bonded repair patches [129,134,138,147], bolted joints [132,144], and
ultrasonically welded thermoplastic composite joints [48,137].

Karpenko et al. [96] monitored fatigue damage in adhesively bonded
GFRP SLJs with guided waves and FBG sensors. FBG sensors embedded
in the bond line and on adherends were used to measure damage pro-
gression. Guided waves time-of-flight (ToF) of the fundamental modes,
collected in pitch-catch mode, monitored yielding of the adhesive bond
line. As guided waves are sensitive to geometric changes (such as
deformation of adhesive layer and adherends), they can provide a more
complete assessment of fatigue damage than FBG sensors. Sherafat et al.
[141,142] used Lamb waves to monitor the quality of bonded skin-
stringer structures (Fig. 13a). CFRP panels were joined to stringers
with undamaged and damaged adhesive bonds. The in-plane and out-of-
plane velocity was measured with a 3D Laser Doppler Vibrometer for
several points in a circular grid. The guided waves behavior in reflection,
transmission, and scattering were investigated with respect to anti-
symmetric (AO0) and symmetric (SO) modes, frequency, excitation
angle, and joint quality. Wave scattering at the disbonded area under SO
mode was most promising below 350 kHz, showing 60 % increase in the
scattered field. This resulted in a modified radiation pattern for the
bond, illustrated in Fig. 13b. Overall, patterns amplitude and direction
were influenced by the presence of damage at the interface, suggesting
SHM guidelines for reliable damage identification. Yu at al. [7,146]
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Fig. 12. (a) Cumulative energy of the AE signals captured from single-lap bolted joints under fatigue and (b) averaged amplitude of the AE signals captured from
three bolted joints under different torques (I-t: insufficiently tightened, E-t: efficiently tightened, and O-t: over-tightened) (Reproduced with permission from [126]).
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Fig. 13. (a) Schematic view of skin-stringer bonded joint configuration: damaged (left) and undamaged (right) joints and (b) effect of excitation frequency and
propagating mode on the scattering behavior: diffraction pattern of A0 (left) and SO modes (right) for the undamaged (solid blue) and damaged (dashed red) joints at

200 kHz (Reproduced with permission from [141]).

studied the structural integrity of adhesively bonded Al stiffener/CFRP
composite skin assemblies through a feature guided wave (FGW)
approach using finite element analysis and experiments. FGWs are well-
suited for rapid inspection of long-range damage features by positioning
an array of sensors, e.g., placed on the composite skin close to the bond
line. A notch defect was inserted in the adhesive, which resulted in
strong diffracted waves captured by the nearby sensors. An imaging
technique (synthetic focusing algorithm) was employed to convert the
signals into enhanced intensity, providing information about defects
location and severity. This technique may be combined with traditional
guided wave systems to offer a more complete overview of the structural
condition of the entire structure.

Ochoa et al. [48,137] were the first ones to use ultrasonic guided
waves to investigate the presence of manufacturing-induced defects and
the effect of welding parameters (i.e., bond line thickness) for ultra-
sonically welded thermoplastic composite (CF/PPS) joints. To produce
defects at the weld line, triangular protrusions (also called “energy di-
rectors”) were integrated on the bottom adherend and partially melted
during the welding process, thereby creating two defective scenarios: i)
unwelded areas with interspersed welded zones and ii) fiber bundles
distortion. ToF and characteristic frequency analyses were combined to
differentiate between those two defect types, for which accuracy varied
from 60 % to 100 %, respectively. Regarding the effect of bond line
thickness (controlled during the welding process), the correlation coef-
ficient indicated signal shape differences resulting from variations at the
welded interface, such as bond line thickness and intermolecular
diffusion.

Core-junction thickness and joint disbonds in sandwich composite
panels (GFRP sheets bonded to honeycomb core) were theoretically,
numerically, and experimentally analyzed with Lamb wave propagation
by Sikdar and Ostachowicz [143]. A0 mode amplitude increased with
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joint-debond length (Fig. 14a) and debond localization was identified
through an imaging algorithm using the Hilbert-transform of the signals
and the debond-index (Di) magnitudes over the panel surface area
(Fig. 14b).

Lamb waves were also used for SHM of mechanically fastened GF/
epoxy joints under tensile load by Yang et al. [144]. The effect of pre-
tightening torque and tensile load on guided wave signals was investi-
gated for single bolt and double bolt specimens. Results indicated that SO
and A0 modes amplitudes decreased with increasing torque and load,
suggesting SO/A0 amplitude difference could be employed for failure
identification, although no clear guidelines between net tension, shear
out, and bearing failures are presented.

In the literature, several hybrid SHM systems were used alongside
guided waves (i.e., combination of more than one monitoring tech-
nique). For instance, Lambinet et al. [134] studied bonded repair
patches on impacted CFRP panels and carried out electromechanical
impedance (EMI) and Lamb wave analyses. Damage was effectively
detected in repaired panels after impact, but the localization accuracy
was lower in comparison to undamaged laminates because of reflections
coming from the patch boundaries. Bond line quality was monitored
during tensile fatigue loading at specific intervals. The Damage Index
(DI), calculated from the root mean square deviation (RMSD) between
baseline and fatigue interval signals, was used to detect damage. The DI
values increased with load and number of cycles, showing a progression
in three phases. Ma et al. [136] employed Lamb wave (with nine PZT
sensors), high-speed camera, and FBG sensors to detect interface debond
in CFRP T-joints. Guided waves characteristic parameters, such as the
peak-to-peak amplitude of the direct wave (Vpp) and total wave energy,
were extracted, then compared to center wavelength of FBG and
load-displacement curves during tensile tests (Fig. 14c). The charac-
teristic parameters were found to be in good agreement with FBG
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Fig. 14. (a) Influence of joint debond length on A0 mode amplitude difference for undamaged and damage-affected signals, (b) debond-index (Di)-map in contour
pattern showing the joint-debond location in the panel (Reproduced with permission from [143]), and (c) comparison between PZT sensors (guided wave) center
wavelength of FBG sensor and tensile load with respect to tensile displacement (Reproduced with permission from [136]).

sensors, load-displacement curves, and high-speed camera, and
captured damage evolution (including initiation) and structural failure
earlier than other methods.

4.3. Structural vibrations and acoustics

Low-frequency structural vibration-based approaches are attracting
interest of researchers for damage identification [193], but there are still
limited studies on fiber-reinforced polymer joints. Successful application
was demonstrated for single lap metal-composite adhesive joints, skin-
stiffener joints, and single lap bolted joints [148-153]. Those ap-
proaches may be classified based on their damage features in the time
domain, frequency domain, or modal domain (mode shape curvatures,
natural frequencies, or mode shapes). Medeiros et al. [148] investigated
the debonding in bi-clamped adhesively bonded titanium-CFRP joints
through structural vibrations, which compared the Frequency Response
Functions (FRFs) of three case studies: i) identifying the effect of
piezoelectric transducer (PZT sensor) on FRFs, ii) assessing the effect of
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artificial defect (Teflon layer) using accelerometers, and iii) damage
monitoring via PZT. Mickens’ damage metric and modified Mickens’
damage metric, comparing the magnitudes and phase angles of FRFs for
undamaged and damaged samples, were employed within a frequency
range of 50 to 350 Hz. Representative results of the computational
model are displayed in Fig. 15a. The results indicated that PZT (attached
to the titanium) led to a reduction in natural frequencies at higher fre-
quencies (> 200 Hz), pre-debonding damage also shifted natural fre-
quencies to smaller values, but more significantly than PZT, and both
metrics provided potential for SHM applications.

The vibro-acoustic modulation (VAM) approach was extended to
composite-composite joints. For instance, single lap CFRP bolted joints
were monitored using VAM for bolt loosening subjected to a low-
frequency vibration (pump excitation) of 758 Hz and a high-frequency
acoustic wave (carrier excitation) of 14.89 kHz [153]. Both numerical
and experimental results showed an increase in sideband magnitudes,
quantitatively related to bolt loosening, with the decrease of residual
torque. An illustration of sideband magnitudes is shown in Fig. 15b. The
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Fig. 15. (a) Computational results of specimen S1P0O (without damage/without PZT sensor) and S1P1 (without damage/with PZT sensor) (Reproduced with
permission from [148]), (b) Experimental sideband response of the CFRP bolted joints under bolt torque of 1 N-m (A;: magnitude of actual left sideband, Ay:
magnitude of probing wave at fy, and Ag: magnitude of actual right sideband) (Reproduced with permission from [153]), and (c) original (A) and bandpass filtered
(B) (40-60 kHz) velocity response measured at node line “Y2” of damaged structure (Reproduced with permission from [150]).

authors also proved that the VAM-based method had a higher sensitivity
to bolt loosening compared to an elastic wave-based linear approach. In
addition, the VAM approach was employed to monitor complex bonded
structures, such as skin-stiffener. In [150], impact damage between CF/
PEKK skin and stiffener was identified via the modulation of carrier
excitation by pump excitation. During the test, velocity response was
captured and then decomposed through bandpass filter and Hilbert
transform to get instantaneous amplitude/frequency of carrier, their
changes corresponding to the damage in composite structures. As
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depicted in Fig. 15c, the locally high amplitude modulation in region I
and III clearly demonstrated the presence, location, and even the length
of damage in skin-stiffener joints, which shows the potential of VAM for
damage identification. In [152], the same group also demonstrated the
use of mode shape curvature changes and modal strain energy damage
index to identify defects in skin-stiffener joints. They however point out
that the design of the structure and defect position influence the effec-
tiveness of this SHM method.
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Fig. 16. (a) Sketch of laser shock adhesion test method (Reproduced with permission from [196]), (b) time-space diagram showing the behavior of shock waves
within the sample [154], (c) cross-section of reference (LA) and two weak bond samples (LE and LB) (Reproduced with permission from [155]), (d) fracture
toughness energy of LA, LE, and LB samples (fracture surface in insert) (Reproduced with permission from [155]), and (e) LASAT results of uncontaminated and

contaminated samples [154].
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4.4. Laser shock adhesion test (LASAT)

LASAT is a technique to evaluate the quality of an adhesive bondline.
This approach generates shocks using a high-power laser. As illustrated
in Fig. 16a, when laser beam is focused on the target surface via focal
lens, the irradiated surface is rapidly transformed into a dense plasma,
which is confined using water to increase the pressure, allowing more
compact lasers to be used. Subsequently, shock waves are created by the
expansion of plasma and propagate through the sample. When reaching
the sample back-face, the shock waves are reflected as release waves.
They fold back and cross with the incident release waves, resulting in
locally high tensile stress, circled in Fig. 16b. As a result, corresponding
damage may occur if the tensile stress exceeds the bonding threshold.

LASAT was first introduced by Vossen [194] to measure the bond
strength of film-substrates. In the past decade, this NDT method has
been further developed for bonded composites [154-159,195,196]. For
example, Ehrhart et al. [155] evaluated adhesion strength of uncon-
taminated and contaminated CFRP joints by two types of release agents
(noted LB and LE). Under the same highest intensity laser shock level
(~2.3 GW/cmz), only transverse cracks and delamination occurred
without any debonding in uncontaminated composite joints compared
to the two contaminated cases, as shown in Fig. 16¢c. This outcome
demonstrated the feasibility of LASAT to discriminate adhesion quality.
In addition, the observations for both types of contaminated samples
showed good agreement, indicating a similar adhesion level identified
by double cantilever beam test in Fig. 16d. However, in this technique,
the highest tensile stress cannot be optimally located when the interface
is far away from the back of the sample. Subsequently, Sagnard et al.
[159] developed symmetrical LASAT, which generated shock waves on
both sides of the sample, with the highest tensile stress occurring at the
intersection of the two reflected shock waves. Moreover, this location
can be shifted through time delay. As a result, the limitation of single
LASAT was overcome. More recently, a book [154] summarized LASAT
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used to assess adhesive bonding of CFRP. Samples were subjected to
increasing laser intensity and ultrasound scanning was used to deter-
mine whether the bond had failed. If it failed, that energy was assumed
to be the bonding threshold, whereas if not, the energy was increased. If
the obtained threshold was lower than the standard value from the
reference sample, it indicated that LASAT successfully detected the
problematic samples. A representative example is clearly depicted in
Fig. 16e, where the height of each bar represents the amount of energy
required to fracture the bond. Therefore, LASAT successfully discrimi-
nated eight out of nine release agent (RA), moisture (MO), and finger-
print (FP) contaminated samples. Nevertheless, the LASAT technique
requires optimization since it can damage samples.

4.5. Ultrasonic NDT

Ultrasonic scanning is one of the most commonly used NDT tech-
niques for evaluating the integrity of composite structures. In ultrasonic
NDT, a wave propagating through the inspected media is reflected,
transmitted, or scattered from the interface, which is received by a
transducer. In general, the travelling speed and time of waves, as well as
a series of obtained images, can be used to determine material quality
and joint integrity. For example, the attenuation coefficient was used to
distinguish between good and poor bonding in [166]. Amplitude images
were captured to detect flaws in GFRP joints in [163]. Yashiro et al. [25]
employed ultrasonic C-scanning technique to evaluate the disbond area
(created by inserting a PTFE film) in adhesively bonded CFRP double-lap
joints subjected to cyclic loading. Ultrasonic C-scan images in Fig. 17a-f
showed that disbonds extended as the number of cycles increased.
However, the initial disbonded area could not be detected before cyclic
testing began, indicating that this conventional NDT technique was not
suitable for detecting small disbonds like kissing bonds. In recent years,
efforts have also been made in developing other new techniques in this
field, such as pulse-echo immersion ultrasonic technique [165,166] and

(b)

(e)

Fig. 17. Ultrasonic C-scan images observing crack extension in CFRP double-lap joints with initial disbond at: (a) N = 0, (b) N = 2000, (c) N = 4000, (d) N = 6000,
(e) N = 8000, and (f) N = 10,000 (Reproduced with permission from [25]); (g) maximum amplitude images for a cross-ply CFRP/Al specimen with a 5 mm square

disbond by transmitted ultrasonic wave (Reproduced with permission from [168]).
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phased array ultrasonic testing [163,164,167].

Additionally, Toyama et al. [168] monitored disbonds in adhesively
bonded CFRP/Al joints through pulsed laser scanning ultrasonic in-
spection technique. Firstly, a quick inspection was carried out in the
entire bonded joint regions and 200-kHz low-frequency Lamb waves
were visualized. Distinct phase delays, reflected waves, and high am-
plitudes were observed at the artificial disbonds (PTFE films), which
confirmed defect location. In order to further determine the shape and
size of disbonds, secondly, detailed inspection using laser ultrasonic
transmission method with high frequencies (8 MHz) was performed in
an area including a small disbond detected by the quick inspection. As
the disbond between PTFE films and adhesive layer prevented the ul-
trasonic waves to propagate through, a slightly higher amplitude was
generated along the disbond. Consequently, the shape of the defect was
clearly imaged, and its size was easily measured (Fig. 17g).

Although ultrasonic NDT techniques have been widely used for
inspecting joint integrity, they still face some challenges: i) high atten-
uation and low signal-to-noise ratio result from the inherent anisotropy
and heterogeneity of composite materials, ii) difficult to detect zero
volume interfacial disbonds, i.e., kissing bonds, for conventional ultra-
sonic techniques due to their transparency for ultrasonic waves, and iii)
not readily capable of online, real-time monitoring. However, Brother-
hood et al. [197] investigated the detectability of kissing bonds in Al-Al
adhesive joints using conventional longitudinal wave and shear wave
ultrasonic inspection and high power ultrasonic inspections through
determining the reflection coefficient of imperfect bonds and comparing
the non-linear behavior of disbonded interfaces, respectively. The
experimental results indicated that high power techniques had the
highest sensitivity only under low contact pressures, while longitudinal
wave inspection showed better sensitivity subjected to high contact
pressures and higher than shear wave throughout the whole testing
process.

4.6. Other external monitoring techniques

Other external damage monitoring techniques include EMI (e.g.,
piezoelectric sensors placed outside bond line), thermography, and
digital image correlation (DIC). While guided waves is a more common
approach with external piezoelectric sensors for SHM of composite
joints, EMI has also been investigated for SLJs [162] and bonded plates
[160,161]. Malinowski et al. [161] showed that weak adhesive bonds
could be detected with the root mean square index and conductance
peak frequency change. Zhu et al. [162] used an EMI-based approach to
monitor single lap CFRP adhesive joints under quasi-static tensile
loading. They leveraged the root mean square deviation index of raw
impedance signals and the effective structural mechanical impedance
(ESMI) signatures. This monitoring technique showed that reduced data
processing could effectively lead to evaluation of joints structural
integrity. Some future work should however include higher strain rates
and cyclic loading, and correlation with damage type.
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Pulsed phase thermography (PPT), capable of rapidly imaging large
areas, has been employed to monitor composite joints as well
[169,170,172]. PPT applies a square pulse to the surface of a sample to
heat it. Consequently, the temperature of the sample surface changes as
the heat propagates along its thickness. If the performance of heat
transfer below the surface is uniform, the displayed surface temperature
will be uniform. On the contrary, if the surface temperature of the tested
area is inconsistent, it indicates that the heat transfer performance of a
certain part of the materials is different, and thus, this area is likely to
contain defects. In PPT, phase contrast value, Ag, is an important
parameter in determining defects. Tighe et al. [171] studied the
detectability of three artifical defects including polytetrafluoroethene
(PTFE) insert, Frekote mould release agent, and silicon grease in adhe-
sively bonded CFRP joints using PPT. They found that PTFE insert might
not introduce a debond in adhesive joints (Fig. 18a), with an unchanging
A@ under loads. In addition, Frekote release agent was not suitable for
creating kissing defects either. Not only because it penerated into ad-
hesive causing it to be removed from the bond region, but also, its low
viscosity made it spread out to a large area. Unlike them, silicon grease
was capable of similuating kissing defects. However, thses kissing bonds
were undetecable using PPT when joints were unloaded due to its
negligible influence on heat transfer without sufficient thermal contact.
However, upon loading, defects opened, leading to a detectable Ag,
which is clearly illustrated in Fig. 18b with a significant increase of
phase contrast subjected to loads. In this way, defects could be idendi-
fied effectively.

Another NDT method, digital image correlation (DIC), has been used
to monitor kissing bonds. Kumar et al. [173] investigated the detectivity
of dry contact kissing bonds in adhesively bonded single lap GFRP joints
with different defect areas (25 %, 48 %, and 70 % kissing bond area)
under different loads until failure, through DIC technique. A represen-
tative DIC strain field (eyy) for a 48 % kissing bond area is presented in
Fig. 19, showing an obvious separation between kissing bonds and
healthy area. Based on the strain field characteristics, the sizes of kissing
bond defects were calculated with MATLAB. Finally, they proved that
DIC was effective for detecting kissing bond defects under 50 % failure
load. Furthermore, the failure load of joints decreased as the kissing
defect area increased, especially when kissing bond area percentage was
large (70 %). Aside from the aforementioned techniques, high-frequency
dielectric measurements [174] and heterodyne effect [175] were also
developed.

5. Conclusions

Although damage monitoring techniques for composite joints have
attracted significant interest in the literature, they are facing several
challenges for which future research is still needed. In the present work,
substantial assessment of current approaches to address various aspects
of damage detection for fiber-reinforced polymer joints (adhesive, me-
chanical, and welded) was summarized (see Table 1 for overview).
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Fig. 18. PPT phase contrast data taken along the profile line across (a) PTFE insert and (b) silicon grease contamination for both the unloaded and 3 kN static loaded
cases. Vertical dashed lines mark the extent of the defect (Reproduced with permission from [171]).
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Due to kissing bond

Due to edge failure

Fig. 19. DIC strain field (e,y) images for a K48 adhesive joint (48 % kissing bond area). (a) No load, (b) 50 % of failure load, (c) 75 % of failure load, and (d) just

before failure (Reproduced with permission from [173]).

Based on the above review, the following conclusions can be drawn, first
for nanocomposite-based sensing:

e Nanoparticle concentration and dispersion have a significant effect
on sensing sensitivity and may affect mechanical properties of
composite joints (e.g., lap shear strength). The electrical resistance
response, the most researched approach in nanocomposite-based
sensing, is highly affected by nanofiller concentration, loading di-
rection, and joint configuration, which are dominant in determining
failure modes. However, so far, relating electrical resistance changes
to specific failure modes and locations remains a challenge.
Related research on welding technologies, such as resistance weld-
ing, induction welding, and ultrasonic welding, is mostly limited to
heating element design, mechanical performance, welding parame-
ters, and weld quality. Efforts toward development of damage
monitoring methods for ultrasonically welded thermoplastic com-
posite joints are recent, but there is an imminent need for further
investigation encompassing a range of fusion bonding methods.

Second, for intrinsic sensing methods:

Embedded FOSs are the most widely used sensors for SHM of com-
posite joints. In addition to temperature changes, FOSs are capable of
monitoring strain changes at the interface, disbond initiation, crack
propagation, and disbond length. It is worth noting that mechanical
properties of composite joints are susceptible to the embedded sen-
sors in the bond line or at the interface. Moreover, systems and data
analysis for damage type identification can be complex for large
structures.

Finally, for external sensing methods, acoustic emission and guided
waves are the most widely studied approaches for reliable, real-time
damage monitoring:

e AE demonstrates relatively high reliability in detecting damage
initiation, location, and progression, and distinguishes between
different failure types. Furthermore, it has shown potential to
monitor kissing bonds as well. However, data analysis is complex for

20

automated damage classification, with recent advances leveraging

machine learning algorithms.
e Guided waves have been employed for SHM of adhesive, bolted, and
welded composite joints. The implementation of this method is
complex, especially regarding sensor placement, and data analysis
for damage localization, type, and severity is challenging.
Structural vibration-based methods have shown potential for dam-
age detection in adhesively bonded and bolted joints, including bolt
loosening, location, and size. However, it is noted that this method’s
effectiveness depends on structure design and defect position.
Ultrasonic NDT methods have been used in academia and industry
for reliable damage detection, including defect location and size.
However, it presents particular challenges for composite joints,
especially for detection of weak bonds. Moreover, other methods,
such as FOSs, have been shown to detect damage initiation more
accurately than ultrasonic NDT.

5.1. Gap analysis and future research needs

By reviewing the existing publications, numerous techniques have
been employed and improved to monitor damage in fiber-reinforced
polymer joints, including considerations toward type, severity, and
localization. However, there are still some issues to be addressed.
Overall, SHM methods cannot quantify joints’ mechanical properties,
but some can relatively classify good versus weak bonds, more specif-
ically for adhesive joints (e.g., AE, EMI). It is therefore expected that to
obtain a complete overview of the damage state, more than one SHM
technique should be combined, which remains a challenge for large and
complex structures in industrial applications. Toward this end, machine
learning approaches and the combination of multiple techniques is
particularly important. In this respect, the fusion of different techniques,
such as raw data fusion, feature-level fusion, decision-making-level
fusion, etc., is a promising research direction. AE, guided waves, or
structural vibration-based methods are attractive because they can be
distributed on large, existing structures, but differentiating damage at
the bond line or within laminates/adherends necessitates an extensive
database encompassing all scenarios and corresponding signatures. It
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may be advantageous to incorporate additional sensors localized at the
bond line, such as embedded nanocomposite films or FOSs. However,
identification of damage sensitive features and classifiers toward high
detection probability, while avoiding false warnings, remains an
important challenge for SHM.

Some areas for improvement depend on joining technique. For
instance, significant advances have been made in adhesively bonded
joints, especially in detecting damage initiation and progression under
load. On the other hand, welded composite joints have seen very little
attention in the literature regarding their failure behavior and SHM. As
weldable polymer composites (e.g., traditional thermoplastic, liquid
thermoplastic vitrimer, or recyclable epoxy matrices) gain popularity in
various industries due to their sustainability, there is a need for further
research toward reliable SHM.

For nanocomposite-based sensing, correlation between electrical
resistance changes, failure modes, damage type, and location within the
joint requires more in-depth analysis leading to robust detection sys-
tems. This includes novel designs with controlled nanoparticles orien-
tation and distribution, capturing behavior over the entire bond line. In
addition, incorporating nanoparticles or embedding sensors at the bond
line or at the adhesive/adherend interface, i.e., FOSs, may affect the
mechanical performance of joints. Therefore, this field requires further
study.

In general, damage detection of adhesively bonded, mechanically
fastened, and welded joints subjected to static monotonic and cyclic
tensile loading through various techniques has been well characterized.
However, the failure behavior of composite joints under a combination
of loading scenarios that consider operational and environmental vari-
ability (e.g., temperature, humidity, loading mode, and boundary con-
ditions) has not been investigated in depth. While statistical techniques
may compensate for this variability, increased confidence in such
methods is needed, especially for joints.

Finally, experimental results have shown that embedded sensors and
external non-destructive techniques can evaluate the structural health of
composite joints, but there is limited research toward modeling ap-
proaches capable of predicting damage behavior and optimizing in-situ
SHM techniques and their implementation, especially for
nanocomposite-based sensing.
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