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Abstract: Autonomous systems are increasingly being used for the purpose of training humans
to attain new skills or perform new tasks. In these contexts, autonomous systems should be
responsive to, and guide, human behavior such that skill or task performance is maximized.
These systems generally rely on human performance to determine if assistance is needed.
However, it is recognized that these systems should also respond to human cognitive factors,
such as self-confidence, that are relevant for human learning. We propose and experimentally
validate a heuristic control strategy, based on both a user’s performance and self-reported
self-confidence as they, that determines whether or not they receive automated assistance in
learning how to land a quadrotor in a simulated environment. Through a human subject study
involving a benchmark strategy that is solely performance-based, we show that the proposed
strategy not only successfully calibrates the self-confidence of the participants, but also leads
to statistically significant improvements in participants’ task performance and consistency after

20 trials relative to outcomes for participants who experience the benchmark strategy.
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NOMENCLATURE
¥ Change in performance threshold
) Performance threshold
o Self-confidence threshold
0 Landing attitude

Maximum distance possible between quadrotor and
landing pad
k Trial number

Ly n Landing type at trial k, n € {1, 2, 3} for unsuccessful,
unsafe, and safe landing respectively

My n, Control mode at trial k, n € {1,2} for manual and
shared control respectively

Sk,0 Attitude score out of 100 points

Sk,p Position score out of 100 points

Skt Time score out of 100 points

Sk.v Velocity score out of 100 points

Sk Overall score out of 1000 points

SCl Self-confidence at trial k&

Vg Landing velocity

Ty Landing = coordinate

Yk Landing y coordinate

1. INTRODUCTION

Interactions between humans and automation continue to
grow in ubiquity and complexity, in contexts including
autonomous vehicles (Knight, 2021; Barfield and Dingus,
2014), military operations (Feickert et al., 2018; Franke,
2014), and product design and manufacturing (Ma et al.,

* This material is based upon work supported by the National
Science Foundation under Award No. 1836952.

2019). In some contexts, automation is specifically being
used for the purpose of training humans in attaining new
skills or performing new tasks (Manzey et al., 2011; Kanu-
muri et al., 2008). Typically, performance-based feedback
is used to adapt the automation to the human (Wright
et al., 2018; Kaber and Endsley, 2004). Existing systems,
e.g., intelligent tutoring systems (ITS), already rely on
human performance feedback to predict decision making
behavior (Woolf, 2008; Wright et al., 2018; Kaber and End-
sley, 2004). However, it has also been shown that cognitive
factors, including self-confidence, play an important role
in the design of effective human-automation interaction
(HAI) (Peters et al., 2015; Hussein et al., 2020; Lee and
See, 2004; Gao and Lee, 2006) and how humans learn
(Woolf, 2008; Akbari and Sahibzada, 2020; Arroyo et al.,
2009; Tao et al., 2020).

Current ITSs select teaching strategies based on student
needs, such as improving self-confidence in addition to
responding to performance (Akbari and Sahibzada, 2020;
Arroyo et al., 2009). Despite this, however, cognitive-state
based feedback is not used to adapt automation to the
human in learning contexts outside of the classroom. Ac-
complishing this requires an understanding of how self-
confidence evolves in HAI contexts outside the classroom,
and in turn, algorithms that adapt the automation ac-
cordingly. While the dynamics of self-confidence have been
studied (Gao and Lee, 2006; Lee and See, 2004), there has
been comparatively little research on how to close-the-
loop between human and automation. However, existing
work by (Roll et al., 2011) has shown that improving stu-

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2023.01.111



108 Madeleine S. Yuh et al. / IFAC PapersOnLine 55-41 (2022) 107-112

dent self-regulation skills by calibrating self-assessment
to performance in an in—classroom context improves stu-
dents’ capability to learn independently. In other words,
automation assistance that is designed to calibrate the self-
confidence of the human in real time has the potential to
improve learning outcomes.

Therefore, in this paper we propose and validate a heuris-
tic strategy that considers both self-confidence and user
performance to determine the need for autonomous inter-
vention in a learning task. Through a human subject study
involving a benchmark strategy that is solely performance-
based, we show that the proposed strategy not only suc-
cessfully calibrates the self-confidence of the participants,
but also leads to statistically significant improvements in
participants’ task performance and consistency after 20
trials relative to outcomes for participants who experience
the benchmark strategy.

2. HEURISTIC STRATEGY

In order to use human self-confidence information to im-
prove the way automation adapts to a human user, we
propose a heuristic control strategy that considers the
human’s self-reported self-confidence and performance on
a trial basis. We assume that the context is one involving
a human learning a new skill through repeated trials, in
which they can either execute the skill manually or with
assistance from an autonomous aid. We define these as
manual mode M; and shared control mode Ms, respec-
tively. This heuristic strategy aims to calibrate the user’s
self-confidence to their performance. If self-confidence is
high relative to the threshold o (SCy > o), performance
is consistently low relative to the threshold v (ASk < 7),
and performance is low relative to threshold ¢ (S; < ¢),
the participant is likely to be over—confident. In this case,
they are assigned manual mode (M) for the subsequent
trial, followed by two trials in shared control mode (Mx), as
determined by the conditions shown in Table 1. The logic
behind this approach is that the participant will perform
better in the two trials of shared control mode than in
the one trial of manual mode, thereby demonstrating to
the participant that they are still in need of assistance.
This should, in turn, decrease their self-confidence. If self-
confidence is low and performance is consistently high,
the participant is likely under—confident. In this case, two
trials of manual mode (M) are given, with the logic that
the participant will recognize that they are performing well
without assistance. This aims to increase the participant’s
self—confidence. On the other hand, the participant’s per-
formance is calibrated if their self-confidence is low when
performance decreases or is consistently low, and if their
self—confidence is high when when performance improves
or is consistently high. In this case, the strategy allocates
shared (Ms) and manual (M;) control to the next trials
for low and high self-confidence respectively. It should be
noted that aiming to maximize self-confidence is not ideal
for task performance (Lee and Moray, 1994). This may
lead to mis—calibration of self-confidence and consequently
the misuse of the automation (Lee and See, 2004).

As a baseline, we consider a performance-only based
heuristic for determining whether the autonomous aid
should intervene. If the participant achieves a low score,

they are given assistance for the next two trials. If they
achieve a high score, manual mode is assigned to the next
two trials.

3. HUMAN SUBJECT STUDY
3.1 Participants

Forty participants completed the human subject study (17
male and 22 female). Participants were randomly placed
in two groups, resulting in 20 participants per group.
Participant ages ranged between 18-57 years (mean =
24 years). Each participant was compensated at a rate of
$20/hr. Institutional Review Board at Purdue University
approved the study.

3.2 FExperimental Design

We designed a between subject human study in which
participants practice landing a quadrotor in a simulated
training module. In the experiment, the participant’s goal
is to learn to manually land the quadrotor within 20 trials.
Participants control the quadrotor using a Thrustmaster
T.Flight Hotas controller, as shown in Figure 1, in which
the throttle controls the thrust force of the quadrotor and
the joystick controls the quadrotor attitude (tilt angle).

[_i;‘ ‘ _‘:'\i—

Landing Pad

Fig. 1. The quadrotor landing experimental platform.

The training module is equipped with a shared control
mode in which they are assisted by a static control law
that augments the human’s input to successfully land the
quadrotor. In each trial, participants practice landing the
quadrotor in either manual mode M; or shared control
mode M. The quadrotor input in shared control mode
is a convex combination of the human input wu, and
the automation input wu, such that the input to the

Table 1. Heuristic strategy using performance
metrics and self-confidence cognitive feedback

Performance Change

[ASE| > [ASK| <y [ASk| <~ [ASk| >
ASE <0 Sk < ¢ Sk > ¢ ASE >0
SC, <o 2 Mo 2 Mo 2 My 2 M,
2M2 1 M, — M1 2M1
SCy > o 2 Mo

Table 2. Heuristic strategy using performance
metrics.

Sk <¢ Sk>¢
2 Mo 2 My
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quadrotor is given by wu(n) = 0.9up(n) + 0.lug(n) at
each time step m. The automation input of the shared
control input was developed by Byeon et al. (2021) using
an expert control strategy represented by a linear state
feedback controller. The weights of the convex combination
were adjusted based on pilot studies such that the task’s
level of difficulty was deemed appropriate. There are
two groups of participants. Group 1 uses the heuristic
strategy that is responsive to the user’s self-confidence
and performance, as depicted in Table 1; we will refer
to this as the “confidence strategy”. Group 2 uses the
benchmark heuristic strategy that responds only to the
user’s performance, as seen in Table 2; we will refer to this
as the “benchmark”.

3.8 Score Quantification

Given that both control strategies utilize performance-
based feedback, a performance metric, or score, is defined
as a function of the context-specific metrics required to im-
prove task performance (Sarangi and Shah, 2015; Scheider
et al., 2015; Faghihi et al., 2014). As a result, the numerical
score for each trial k is calculated using six performance
metrics: time expended per trial ¢, root mean square error
RM S between the participant’s and expert’s trajectory,
final position coordinates xj and yi, landing velocity vy,
and landing attitude 6. Using these performance metrics,
sub—scores out of 100 for time, landing position, landing
velocity and landing attitude are respectively given by

1.04(ty, — 5.0)

5 100 <1 - (7 —5.0)—15.0) ) , land
k,t = 1+e 15.0
‘ RMS— 125

(1)

50 (1 - 7) , crash
5.0
100 , land
Sk.p = 2 +y? 2
kop 100 (1 ~ I YR ) rash @
max
1
Sk =100 (1= ———— (3)
l+e 30
1
Sk =126.4 (1 = ——p——7 | - (4)
l+e 50—

The final numerical score is the sum of the four sub—score
equations and is scaled such that a perfect score is 1000
points. The score equations were adjusted using pilot data
to ensure that the final score is representative of partic-
ipants’ performance. For example, Sigmoid functions are
used to shape the individual scoring functions such that
participants who are unsuccessful at landing the quadrotor
but are close to achieving safe landing conditions are not
penalized as severely as those who lose control of the
quadrotor. In the final pilot study, the 50% quantile values
from all trials and participants for score, change in score,
and numerical self-confidence data were calculated and
used as performance and self-confidence thresholds for
both heuristic strategies.

3.4 Procedure

After instruction, participants are given two 60-second
tutorials to familiarize themselves with the simulator en-
vironment. This is followed by 20 trials of the quadrotor

game. After every trial, participants are provided with
their numerical score, the amount of time they expended
in landing the quadrotor, and whether they unsuccessfully,
unsafely, or safely landed the quadrotor for all previous
trials. Participants achieve a safe landing by landing the
quadrotor on the landing pad at a speed less than or
equal to 5 m/s and an attitude between —10 and +10
degrees. An unsafe landing occurs when the quadrotor
lands on the landing pad but outside the safe landing
conditions. An unsuccessful landing is given when the
quadrotor crashes outside the landing pad. Additionally,
the participant is asked to rate their self-confidence in
their ability to land the quadrotor on a numerical scale of
0-100. The survey also asks the participant to rate their
trust in the automation, but this data is not utilized within
the scope of this paper. Definitions for trust and self-
confidence are provided to all participants as follows. The
definition of self-confidence is: “The confidence in oneself
and one’s powers and abilities.” The definition of trust is:
“The assured reliance on the character, ability, strength, or
truth of someone or something.” Note that the first two,
and last five, trials are completed in manual mode so that
each participant’s change in manual performance can be
quantified. In trials 3-15, the participant’s control mode
is determined by one of the two heuristic strategies.

4. RESULTS AND DISCUSSION

The resulting data can be analyzed and quantified in
several ways to validate the proposed cognitive state-based
feedback strategy. We first investigate and compare the
calibration of self-confidence between groups 1 and 2.
Then, to compare performance between the two groups,
we quantify each participant’s skill level after 15 trials
based upon their score in the last 5 trials of manual
performance. Finally, we investigate contributing factors
to self-confidence in both groups. The significance of
regression variables are evaluated using the t—test p—values
and the estimated coefficients.

4.1 Self-Confidence Calibration

We first validate that the confidence strategy achieved the
intended goal of calibrating participants’ self-confidence.
To do this, the median number of trials in which confidence
was calibrated is compared between the two groups of
participants. Self-confidence is considered calibrated when
it increases with improved performance and decreases with
deteriorating or consistently low performance. Confidence
calibration is assessed using data from trials 2—20 because
the change in performance between trials is used to de-
termine if self-confidence is calibrated. The results are
shown in Figure 2. Participants in group 1 achieve a higher
number of trials with calibrated self-confidence than those
in group 2. It should be noted that error—bars are included
in Figure 2 but are sufficiently small that they are almost
not visible.

The confidence strategy is further validated through in-
dependent t-tests. Using numerical score S as the re-
sponse variable and group as a categorical variable, the 20
participants in group 1 who used the confidence strategy
(u = 731.54, 0 = 251.94) compared to those in group
2 who used the benchmark (p = 634.09, 0 = 271.63)
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Fig. 2. Confidence calibration comparison between groups.

Group 1 participants had more trials with calibrated
self-confidence than participants in group 2.

achieved significantly higher scores (¢(753.75) = 5.7063,
p = 1.659 x 107%). Using numerical self-confidence as
the response variable and group as a categorical variable,
the 20 participants in group 1 (4 = 54.57, ¢ = 28.92)
compared to those in group 2 (u = 43.75, ¢ = 31.61) had
significantly higher self-confidence (¢(752.11) = 4.9213,
p = 1.057 x 107%). A power analysis was completed for
both independent t—tests to ensure that a type 2 error was
not obtained.

From these results, it can inferred that the confidence
strategy, which is designed to calibrate self-confidence, is
working as intended. Furthermore, these results provide
evidence that a heuristic strategy based on both the user’s
cognitive state and performance can lead to better task
performance after a fixed number of trials as compared to
a strategy that only considers the user’s performance.

4.2 Analysis of Participant Performance

Next, performance is compared between the two groups to
determine if the cognitive state-based strategy accelerates
learning. Recall that the last five trials are completed in
manual mode so that each participant’s skill level can be
quantified after the training is complete. Note that only
data from participants who were able to land unsafely or
safely at least three times within their last five trials were
used. For groups 1 and 2, 15 and 12 participants satisfied
this criterion, respectively.

The absolute performance scores from the last five trials
are used to compare performance between groups. Sim-
ilarly, the variance of scores from the last five trials is
used to compare the consistency in performance between
groups. The data is presented in the violin plots shown in
Figure 3 and Figure 4, respectively.

The violin plots visualize the probability density of the
numerical data for each variable (Hintze and Nelson,
1998). For example, in Figure 3, the wider regions of the
violin plots identify the scores that participants from each
group are likely to achieve. Within each violin plot is a box
plot to show the median, interquartile range, maximum,
minimum, and outliers of the numerical data. It can be
observed from Figure 3 that participants in group 1 are
more likely to achieve a higher score than those in group 2.
Furthermore, participants in group 1 who safely landed the
quadrotor on the landing pad were more consistent in their
performance than those in group 2, as shown in Figure 4.

Score

1000
750
500
250
, |.

Group 1

Group 2

Fig. 3. The comparison of absolute performance out of
1000 points between groups. Participants in group 1
are more likely to achieve higher scores than those in

group 2.

Group 1

1.5e+05

1.0e+05

Variance

5.0e+04

0.0e+00

Group 2

Fig. 4. Performance variance comparison between groups.
Group 1 participants are more likely to have lower
variance in their final score in comparison to partici-
pants in group 2.

These findings show that the confidence strategy leads to
increased performance compared to the benchmark.

We can further analyze the performance of participants
based on their completion of the quadrotor landing tasks.
The participant’s goal is to learn how to land the quadrotor
safely. Consequently, the efficacy of the two heuristic
strategies can be compared by analyzing how many times
participants were successful at landing the quadrotor. The
number of unsuccessful, unsafe, and safe landing types in
each group across all 20 trials is shown in Figure 5. It
can be observed that participants in group 1 safely land
the quadrotor more frequently in the in the last five trials
than those in group 2. Of particular interest is the fact that
the point at which safe landings outnumber unsuccessful
landings occurs sooner for participants in group 1 than
in group 2. This suggests that participants in group 1 are
learning how to safely land the quadrotor faster than those
in group 2, and similarly could be transitioning from novice
to expert faster as well.

4.8 Contributing factors to self-confidence:

Finally, to further evaluate the efficacy of the proposed
cognitive state-based strategy, multivariate linear regres-
sion is used to determine which factors contribute to self-
confidence. Participant data from trial 2—20 is utilized for
regression analysis as self-confidence of the previous trial
SC_1 is used as a regression variable. Two models are
created, one for each group of participants. The coefficient
estimates and p—values are provided in Figure 6 and Ta-
ble 3, respectively.
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Fig. 5. Bar plot showing number of unsuccessful, unsafe, and safe landings in group 1 and 2 over 20 trials.

Table 3. p-values and significance for self-
confidence regression model. Recall that the
analysis uses participant data from trials k €
[2,20]. Note: *p < 0.05, **p < 0.01, ***p <

0.001.
p—values and Significance
Regressor Group 1 Group 2
Intercept 0.750 0.387
k 0.349 0.900
SCr_1 < 2e—16 ok < 2e—16 HoAk
My 2 0.008 *x 0.465
RMS 0.075 0.045 *
L1 1.2103 — 05  *** 0.001 Hox
L2 2.690e — 04  FFK | 7.750e — 05  ***
Sk 0.011 * 0.144
T 0.205 0.313
Yk 0.512 6.140e — 05 ***
Vg 0.059 0.331
05 0.402 0.337
tr 0.036 * 0.383
Multiple R? 0.8479 0.8497
Adjusted R? 0.8429 0.8448

From Table 3, for both groups, previous self-confidence
SC—1, unsuccessful landing type Ly 1, and unsafe landing
type Ly o are all significant. From Figure 6, it follows that
for both groups, unsuccessful and unsafe landings have the
largest predicted effect on self-confidence. For participants
in group 1, Score Sk, landing speed v, and time per trial ¢,
are significant. For those in group 2, the root mean square
error RM S and landing position y; are significant. One
interpretation of these results is that group 1 participants
develop sufficient skill in controlling the quadrotor such
that they are able to focus on advanced metrics such as
landing speed and how quickly they land, whereas group 2
participants require the majority of the 20 trials to simply
develop the skill of flying the quadrotor to the landing pad.

Additionally, shared control mode Mj, 5 is more significant
in group 1 than in group 2, and has a positive coefficient.
Considering the analysis from Section 4.1, the positive
correlation may be due to participants using shared control
mode to learn how to better execute the task. This
may further indicate that participants in group 1 are
learning more from shared control than those in group 2. It
should be noted that all variables identified as significant
in each regression model have 95% confidence interval
coefficient ranges that do not include zero, meaning that

the significant regression variables are likely to have some
effect on self-confidence.

5. CONCLUSION

We designed and validated a heuristic strategy aimed
toward calibrating human self-confidence during human
interactions with autonomous in learning contexts. The
heuristic strategy utilized both the user’s self-reported self-
confidence and task performance to determine whether
automated assistance would be given to the user at sub-
sequent trials, with an underlying goal of mitigating the
adverse effects of over- or under-confidence. We conducted
a between subjects study with 40 participants to validate
the proposed strategy and compare it against a baseline
approach that considers only the user’s performance. We
showed that participants who received the self-confidence-
based strategy were more likely to successfully land the
quadrotor manually in the last 5 trials of the experi-
ment, as well as demonstrate consistency in their per-
formance (relative to participants who experienced the
baseline strategy). We also showed that participants who
used the confidence strategy improved their skill to the
point of being able to focus on more advanced landing
features, while those who used the baseline strategy may
have only focused on flying the quadrotor to the landing
pad. This suggests that automation designed for learning
contexts should respond to human cognitive state feedback
with the intention of calibrating cognitive states, such as
self—confidence, to task performance. Future work will be
aimed at understanding points of transition from novice to
expert, and the design of cognitive state-based strategies
that can accelerate such transitions. Furthermore, the pro-
posed heuristic strategy should be implemented for other
learning contexts to evaluate its generalizability.
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