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Room-level occupancy estimation is a critical input for real estate management, including building utilization
optimization, energy-efficient building control, building security, and occupant health and well-being. Knowing
how many people are using a room at a time can enable businesses to use their real estate, energy and human

‘S’ersli;m capital more efficiently, reducing operating expenses as well as carbon footprint. Radar-based occupancy esti-
Segmintation mation is attractive because it is unobtrusive and does not introduce the privacy issues brought with video

imaging-based sensors. In this paper, we present an occupant estimation approach based on continuous wave
Doppler radar and wavelet-based signal processing techniques. Theoretical background provides a rational for
using a wavelet-based time-frequency approach, and comprehensive simulation and experimental results
demonstrate the effectiveness of the proposed approaches on a data set that includes 1-10 occupants. These
results indicate that Doppler radar with wavelet-based signal processing may be an effective tool for occupant

Occupant count
Occupancy sensing
Time-frequency methods

count in smart building applications.

1. Introduction

Businesses can significantly reduce their real estate and energy ex-
penses by minimizing the amount of space they rent and by more effi-
ciently controlling the environment of their indoor spaces [1]. The
number of occupants in each space over time is a key input to optimizing
square footage, ventilation, lighting, and cleaning, yet occupancy is
rarely measured comprehensively enough to enable data-driven opti-
mization of these parameters. Proactively changing the environment can
improve employee’s mental health [2-6], physical health,
decision-making performance [7] and productivity [8-10]. Moreover,
occupancy estimation and detection in commercial and residential
buildings can play an important role in security management and
emergency evacuations [3] and can enable monitoring of the ability of
occupants to maintain physical distance when necessary for safety in a
pandemic with the airborne viral transmission.

Residential and commercial buildings account for 40% of the total
amount of energy used worldwide [11,14]. Globally 28% of CO, emis-
sions are caused by buildings, mostly from climate control (e.g., powering
lighting, heating, and cooling) [12]. The key to eliminating waste in
climate control systems is to provide heating, cooling, ventilation, and
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lighting only when, where, and as much as they are needed, and this re-
quires high-resolution occupancy information [13]. Demand-controlled
ventilation (DCV) systems provide the appropriate amount of ventila-
tion based on the estimated number of occupants in each room or zone
rather than ventilating at a rate set for the maximum occupancy [13] but
are not broadly implemented because of the lack of a cost-effective, pri-
vacy-preserving, low-lag, accurate occupant count sensor.
Motion-sensing occupancy sensors, such as those using passive
infrared (PIR) and ultrasound (US), are popular for lighting control,
although they have significant failure rates when occupants are seden-
tary [13,15,18]. These systems only detect whether someone is moving
in the space, and not the number of people present; therefore, they have
very limited application in DCV systems, where they are only useful in
single-occupancy rooms, such as private offices. Even in these spaces,
they risk underventilation when a sedentary occupant causes a false
vacancy signal [19]. Occupancy schedules can be suitable for controlling
ventilation in spaces for which occupancy levels change on a predictable
basis, such as in some classrooms. Spaces with irregular or unforeseen
occupancy fluctuations (such as open offices, meeting rooms, perfor-
mance venues, lobbies, transient spaces, and retail outlets) need a
real-time, accurate estimate of the number of occupants for a DCV
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system to provide the right level of ventilation, maximizing energy
savings while maintaining air quality.

Currently, carbon dioxide (CO3) sensors are the most used method of
estimating room occupant count, assuming that the rate of CO, gener-
ation indoors is proportional to the number of occupants. However, the
CO9-based DCV market has grown very slowly since 1990. Studies have
indicated that there are numerous issues with using COy sensors for
ventilation control that need to be addressed, including the accuracy of
the sensors, maintenance/calibration requirements, and the sensor lag
times [3,16,17,20-24].

Advanced occupant counting sensors that provide a near instanta-
neous, accurate estimate of the number of people present in a room can
enable DCV systems to meet their true potential for energy savings and
reliability. Technologies currently available and in development include
computer vision systems, doorway sensors using different technologies
to detect persons entering or leaving a room, sensors integrated into
floor tiles, arrays of time-of-flight sensors in ceiling tiles, and analysis of
reflections from WiFi signals. Many people are uncomfortable with the
privacy risks of ubiquitous video-based sensors, even if they are
designed not to record any images, and this has slowed the uptake of
these sensors [23,24]. Doorway sensors are not always accurate at
determining whether people are entering or leaving, or mis-count peo-
ple passing through doorways side-by-side, and errors in count accu-
mulate through the day [25]; they are suitable for determining the flow
of people in space but insufficiently accurate for broad use in DCV sys-
tems. Systems that require arrays of sensors in the floor or ceiling are
expensive and complicated to install, especially in retrofit applications.
Received signal strength (RSS) of WiFi signals has been used to measure
the number of occupants; however, this method is not accurate if one
occupant blocks the sensor’s line of sight to another occupant [27]. New
technologies and algorithms are necessary to accurately determine
occupant number while protecting privacy, at a reasonable installation
cost.

A Doppler-radar-based sensor has potential to meet all the needs of
an occupant count sensor for ventilation control. This type of sensor has
been used for non-contact detection of individual vital signs [28-32,
45-47], and occupancy vs. vacancy [26,27,33], but only recently has it
been applied to occupant count. Methods used previously [26,48] with
Doppler radar estimated the occupancy based on the strength of the
received reflected signal and had similar accuracy challenges as the WiFi
RSS method mentioned above. In this work, we show that analysis of the
time and frequency content of the signal can increase the robustness of
the occupant count with the Doppler radar system. The Wavelet
Transform (WT) [34] has shown its efficacy to analyze and extract the
characteristics of signals that have non-stationary behavior [35-40] in
applications such as radar fall detection. Prior attempts for estimating
the number of building occupants from room temperature and CO2
concentration using WT also proved its efficacy [41,42]. However, to the
authors’ knowledge, none of the work in the literature to date has uti-
lized WT or time-frequency analysis for radar-based occupant count.

A single radar-based motion sensor with the wavelet-based algo-
rithms described in this paper can be used to estimate the number of
occupants in a room. This technology can potentially be used to optimize
real estate utilization and ventilation rate in DCV HVAC systems,
reducing real estate and energy costs while keeping occupants

My occupanis (1) = cos(2xf.t)
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productive and comfortable. It could also be used to calibrate a pre-
dictive model for ventilation control, or to calibrate occupancy models
to support building simulation, which can in turn support building and
systems design. These radar-based sensors can provide occupant count
without the errors introduced by doorway sensors, without the delays
and inaccuracies of CO» sensors, without the privacy issues introduced
by video-based sensors, and without the high up-front cost of systems
that require a dense array of sensors.

In this paper, Doppler radar detection and count of multiple occu-
pants is described theoretically, explaining the spectrum broadening
that occurs with increasing numbers of occupants. Wavelet time-
frequency analysis using the Morlet wavelet transform and maximum
wavelet coefficient frequency (MWCF) and wavelet coefficient energy
(WCE) is proposed for occupant estimation. A comprehensive simulation
and experimental results demonstrate that MWCF and WCE parameters
increase monotonically with the number of occupants. Data analysis
with varying wavelet effective support and Doppler radar data window
size demonstrate robustness and potential for near real-time imple-
mentation of this approach.

2. Theory and simulation

2.1. Microwave Doppler radar detection of respiration of multiple
occupants

A microwave Doppler radar transmits an electromagnetic signal;
when the signal reflects off objects in the room, it has a phase shift
proportional to the motion of those objects and a magnitude propor-
tional to the radar cross section of those objects. If a stationary person is
present, the phase shift of the reflected signal is proportional to the tiny
movement of the chest surface due to cardiorespiratory activity [43,44].
The phase shift from an occupant can be described as:

0, (t)cx%”dl ) %)

where 1 is the wavelength of the transmitted signal and d; (t) represents
a single occupant’s chest displacement due to heartbeat and respiration.

Mixers used in radio and radar receivers are inherently nonlinear,
and therefore generate intermodulation and harmonic responses [49]. In
Doppler radar physiological sensing of multiple stationary occupants,
the fundamental tones are those proportional to chest surface motion
due to cardio-respiratory activity of each occupant. The intermodulation
generates signals at sums and differences of various combinations of
multiples of these frequencies, effectively broadening the signal’s
spectrum at the mixer output.

For simplicity, we will take the case of two occupants to describe how
the intermodulation term is theoretically generated [49]. A mixer has
two input ports; the reflected signals are applied to the mixer’s RF port.
Each reflected signal has a carrier frequency f, and its phase modulated
0(t). In a continuous wave, direct conversion radar transceiver, the local
oscillator (LO) is derived from the transmitted radar signal at frequency
fe, and is applied to the mixer’s LO port. An ideal mixer would multiply
the RF port signals by the LO port signal, generating sum and difference
frequencies. In the case of two occupants, the ideal mixer is acting on
two summed RF input signals, generating an output M2 occupants(t):

Al(t)
2

{cos {27” (2do,1 + 24 (z))} +cos [4@2,: + 2/1—” (2do,1 + 24, (r))} }

(2
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Where f, is the carrier frequency, A,(t) is the amplitude modulation on
the signal reflected by occupant n, dy , is the distance to occupant n, and
dn(t) is occupant n’s time-varying physiological displacement. The
output of the mixer consists of modulated components at the sum and
difference frequencies. The sum frequency is easily rejected by a lowpass
filter, leaving only the difference frequencies, which are at baseband and
shown as By occupants():

Bs seenpons (1) :A‘z(’) {cos [27” (24, +2d; (t))”
n Azz(t) {cos {27” (2do> + 2d2(t))] } 3)

However, in practice, a mixer is a nonideal multiplier, and in addi-
tion to the sum and difference frequencies, it generates harmonics and
mixing products other than the desired outputs. The use of a nonideal
multiplier can be illustrated by describing the current/voltage (I/V)
characteristics of the nonlinear device (the mixer) via a power series,

I=ay+a\V+aV+aV’ + - ()]

and letting V equal the sum of the two inputs to the mixer and I equal the
mixer output current.
In the case of two breathing occupants,
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analytically generating them here.

In radar measurement of physiological motion, the largest signal is
respiration, and amplitude modulation A,(t) is minimal and can be
estimated as a constant A,,. Simplifying the phase modulation to include
only the respiratory signal, and simplifying the respiratory signal to a
cosine, occupant n’s physiological motion can be estimated as

d, (1) = cos(2xf,t) C))

where f, is occupant n’s breathing frequency.

With a direct conversion radar, the DC phase shift dy, can be
removed in hardware or software. It also can be assumed that the
voltage of the modulated input signal is much smaller than that of the
LO. With these simplifications, and after an appreciable amount of
algebraic and trigonometric manipulations, when two occupants are
present with breathing frequencies f; and f;, the mixer output current
contains small-signal components at the frequencies:

fun =afy + by, where,a,b = 0, +1,—1,42, -2, ... ©

Frequencies other than the fundamental respiratory frequencies are
harmonics (where one of a or b is equal to 0 and the other is greater than
1) and intermodulation tones (where both a and b are non-zero). The
order of the intermodulation is calculated by a-+b. For example, if there

V = cos(2xf.t) + A, (f)cos (2nﬁ,t + 27” (2do + 24 (z))) +A, (t)cos (2@3 t+ 2/1—” (2do +2d, (z))) (5)

where the first term is the local oscillator, the second term is the
reflection from the first occupant, and the third term is the reflection
from the second occupant. When this is input to equation (4), the first
term, ao, is a DC offset, and the second term, a; V, leaves the signals at
the RF frequency which are typically removed by the lowpass filter. The
third term, where the voltage is squared, generates a DC offset, the terms
where the LO is multiplied by each input, and introduces intermodula-
tion where the signals from the two occupants are multiplied together.
With all the DC values lumped together, the baseband signal after
lowpass filtering is:

is a presence of two subjects at a breathing rate of f; =0.25Hz and f, =
0.3 Hz, then a second order intermodulation tone f; + f, will be at 0.55
Hz. The intermodulation products are theoretically infinite, because
there are no bounds on a or b, but in practice, the amplitude of inter-
modulation products decreases with increasing order [49].

As the number of occupants increases, there are more signals that
intermodulate (f1,f2, ......... ,fv with N being the number of occupants
present). For example with N occupants present, intermodulation
products occur at:

188 squared rerm =DC + A, (f)cos (% (2do,1 + 24 (r))) +A4, (t)cos (27” (2doy +2d, (z))) +A,(1)A; (f)cos (27” (2do,1 + 24 (t)))cos (27” (2do2 + 2d2(t))) (6)

The last term is the intermodulation term

A1 (I)Az (t)

fu,_ag,ag,...uN :a]fl + aZfZ + a&f} + ... +aNfN Where,al,az,a3, - dyn

=0,+1,-1,42,-2,... 10)

2n 2n
Lintermodutation =——"5—— (COS (7 (2do,1 +2dy +2d, (1) +2d, (0)) +cos (7 (2do,1 —2do, +2d, (1) — 2d, (’)))) @

2

where the sum and difference of the respiratory terms occur inside the
cosine, spreading the output spectrum. When higher order intermodu-
lation terms are included, the intermodulation terms get more complex,
and as such are generated the simulation in the next section rather than

and the order of intermodulation is the sum of coefficients a,.

When more occupants are present, more high-frequency content is
included in the baseband signal, and the baseband signal frequencies are
spread more broadly. By analyzing the time-frequency content of the
baseband signal to quantify the amount of higher frequency content
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and/or the degree of spectrum spreading, the number of occupants can
be estimated.

2.2. Wavelet-based time-frequency analysis

The wavelet transform (WT) is suitable for analyzing non-stationary
signals that change in frequency and time [34-37]. Radar-based occu-
pancy sensing in realistic environments involves the detection of mul-
tiple people, and the resulting signals include multiple fundamental
respiratory frequencies as well as signals at mixtures of these fre-
quencies, such as fi +fa,fi —f2,2f>+f1, and so on. This signal
behavior makes the WT a good choice for analyzing the signal in
time-frequency space.

The continuous WT of a signal x(t) is defined as [34,50]:

t

x(La):%/x(t)f*( T a

where x(t) is the time series signal being processed, 7 (r > 0) is a shift
factor, a s a scaling factor, and f*(7) is the daughter wavelet which is a
scaled and shifted version of the mother wavelet f(t). The basic idea
behind the WT is that the mother wavelet is scaled by a, which changes
the center frequency, and shifted in time along x(t) by 7 to form a
daughter wavelet f(%). The similarity of the daughter wavelet to x(t) is
computed and recorded as the wavelet coefficient corresponding at a
and 7. By repeating the above steps for all a and 7 until the whole time-
series signal and all frequencies of the interests are covered, we obtain a
coefficient matrix [34,50]. This approach not only provides spectral
information through scaling but also provides the time domain infor-
mation via shifting the wavelet across the signal. Each wavelet coeffi-
cient represents the amplitude of the signal with scaling factor a, which
can be converted to frequency, and shift z, which can be used to identify
the time.

In general, the continuous wavelet transform provides excellent time

11

One Occupant

FFT
Magnitude
[

o
o
o

1 2 3
Three Occupants

FFT
Magnitude
()
o
o
o o
O ? )
-

1 2 3
Five Occupants

FFT
Magnitude
o o
o o
o o
o o o

0 1 2 3
Seven Occupants

FFT
Magnitude
o o
o o
o o
o o o

0 1 2 3
Nine Occupants

FFT
Magnitude
o o
o o
o o
o o o

FFT
Magnitude

F

0 1 2 3
Frequency (Hz)

Building and Environment 236 (2023) 110233

resolution for higher-frequency high-order intermodulation products
and good frequency resolution for slower events such as single occupant
respiration. In physiological processing, the Morlet wavelet is commonly
used because its multiple, evenly spaced maxima effectively enable time
and frequency localization of periodic physiologic signals [35-39]. This
is also important to identify the frequency content of high order inter-
modulation products from signals with many occupants, as well as the
sub-Hertz frequency content of individual respiratory signals.

The Morlet wavelet has a simple numerical implementation,

e s cos(5x), which corresponds to about 4 cycles of a sinusoidal signal
with its amplitude windowed by a Gaussian function. The Morlet
wavelet has what is known as “effective support,” which represents the
non-zero interval of the mother wavelet. The default effective support of
the Morlet wavelet is [—4 4]. However, the effective support can be
changed to adjust the lower and upper limits of the integral. The
fundamental frequency in the spectrum is around 0.8 Hz when the
effective support is at the default setting of 8 ([—4 4]). When the
effective support is increased to 16 ([—8 8]), then the spectrum broadens
and the fundamental frequency increases to around 1.6 Hz.

In this work, two wavelet parameters, the Maximum Wavelet Coef-
ficient Frequency (MWCF) and Wavelet Coefficient Energy (WCE), are
analyzed for their potential to estimate the number of occupants. When
the wavelet transform is performed, a two-dimensional set of co-
efficients is generated, each representing the amplitude of the signal at a
specific frequency and point in time. The maximum wavelet coefficient
is identified, and the frequency associated with this coefficient is the
MWCF. This parameter, sometimes referred to as the “vibrational fre-
quency,” has been used for finding resonant frequencies in the fields of
geophysics, biomechanics, seismology, and others [57], and seems
promising for quantifying spreading of the spectrum time-frequency
data. Wavelet Coefficient Energy (WCE) is the other approach
explored here to estimate the number of occupants. Like calculation of
MWCF, the two-dimensional set of wavelet coefficients, each repre-
senting the complex amplitude of the signal at a specific frequency and
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Fig. 1. Frequency spectra of the simulated signal with one to ten occupants. The spectrum broadens as the number of occupants increases.
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Fig. 2. Wavelet scalogram of the subsampled, lowpass filtered baseband signal from a simulation for (a) one occupant, (b) four occupants, (c) seven occupants, and
(d) ten occupants. The spectrum has more variation in both time and frequency as the number of occupants increases, and the frequency associated with the
maximum value in time-frequency space also increases with the number of occupants with values of 0.23Hz for one occupant, 0.46Hz for 4 occupants, 0.58Hz for 7

occupants, and 1.2Hz for 10 occupants.

point in time, is used to calculate WCE. The magnitude of the complex
amplitude of each wavelet coefficient is squared, and these squared
values are summed across the different points in time, and then the
square root taken, giving the energy at each frequency. Then the mean of
the energy at each frequency is taken as the WCE, or the energy of the
signal from the wavelet coefficients, with units of Joules. This approach
has been used in other fields, including EEG signal analysis [51,52] and
mechanical fault detection [53]. In the following sections, we explore
the WCE and MWCF as methods to quantify the spectral spreading,
which is expected to increase with increasing numbers of occupants.

2.3. Modelling of occupancy estimation

To better understand the time-frequency content caused by inter-
modulation of signals from a radar sensor detecting breathing from
multiple occupants, a MATLAB simulation was developed. For each
simulation run, ten sinusoidal signals were generated at different fre-
quencies within the range of the respiration signals (random values
uniformly distributed from 0.2 to 0.3 Hz), with respiratory amplitude
randomized from 0.01 to 0.03 m peak to peak. A radio frequency signal
(RF) and local oscillator signal (LO) were generated in MATLAB, each as
a sinusoidal tone. Because each occupant in a room reflects an RF signal
with its phase modulated at the respiratory frequency, a reflected RF
signal was generated for each simulated occupant. The simulated
received RF signal was the original radio frequency (RF) signal with
amplitude randomized from 0.2 to 2, with the phase of the signal having
an offset randomized from O to 2n and an additional phase component
with a cosine at the simulated respiratory frequency and amplitude. To
simulate a realistic mixer (with nonlinear characteristics) operating on
the RF and LO signals, the combined RF signal was summed with the LO

and the combined signal was input into a trinomial equation y = a;x +
a2X2+a3x3. Coefficients used were a; = 1, a5 = 1, and a3 = 0.41, chosen
to simulate a passive diode mixer. The output signals were filtered with a
100-order 25-Hz lowpass FIR filter for anti-aliasing and then down-
sampled to 100Hz.

Then we performed the fast Fourier transform (FFT) and wavelet
transform (WT) using the Morlet wavelet and an effective support of 16
(—8 to 8) of output signals to extract the time-frequency information.
Fig. 1 illustrates an example of the FFT outputs in a simulation from one
to ten occupants, and the scalograms for a subset of the numbers of
occupants is shown in Fig. 2, both from a simulated case where the 10
randomly generated frequencies were: 0.2272 Hz, 0.2291 Hz, 0.2290
Hz, 0.2839 Hz, 0.2742 Hz, 0.2424 Hz, 0.2343 Hz, 0.2203 Hz, 0.2006 Hz,
and 0.2493 Hz. The FFT for a single occupant shows the fundamental
breathing signal and its harmonics. For increasing numbers of occu-
pants, the spectrum broadens and there is frequency content at fre-
quencies other than the fundamental signals and harmonics from each
occupant; this is showing the effects of intermodulation. In Fig. 2, the
maximum values in the scalogram are highlighted — these indicate the
maximum wavelet coefficient, and the frequency associated with this
coefficient is the MWCF (maximum wavelet coefficient frequency). This
value increases with the number of occupants present with values of
0.23Hz for one occupant, 0.46Hz for 4 occupants, 0.58Hz for 7 occu-
pants, and 1.2Hz for 10 occupants.

The simulation was then run 1000 times, with different random
values for respiratory frequency, respiratory amplitude, received RF
amplitude, and phase offset generated each time. For each run, the
output for one through ten occupants was generated, the wavelet
transform was performed using the Morlet wavelet and an effective
support of [—8 8]. The frequency associated with wavelet coefficient
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the number of occupants when a simulation of
Doppler radar signals was generated for one to ten
occupants 1000 times. The bars indicate the mean
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tween the mean of the maximum wavelet coefficient
function (MWCF) and the number of simulated occu-
pants. b. Relationship between the mean of the
wavelet coefficient energy (WCE) and the number of
simulated occupants. The simulation indicates that
with an increase in the number of occupants both the
MWCF and WCE tend to increase, and both parame-
ters have potential for determining the number of
occupants in a room from a Doppler radar occupancy
Sensor.
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Fig. 4. Block diagram of the experimental hardware setup. The quadrature radar output a RF signal, which was transmitted by the Antenna. The received (RX) signal
is returned to the Quadrature Radar where it is split and mixed with the local oscillator signals to generate a quadrature baseband signal, which is filtered and
amplified by low noise amplifiers (LNA) before being digitized by the data acquisition system (DAQ) and further processed on a personal computer.

with the greatest amplitude was determined to be the MWCF. The
magnitude of each wavelet coefficient was squared, the squares were
summed, and the square root was taken to give the energy at each
wavelet decomposition; these values were averaged, and the value was
determined to be the wavelet coefficient energy (WCE). Then the 1000
MWTCF values and the 1000 WCE values identified for each number of
occupants were averaged to determine a mean value for each, and the
standard error of the mean was determined by calculating the popula-
tion standard deviation and dividing by the square root of the number of
simulations. Fig. 3 shows the mean MWCF (a) and the WCE (b) for each
number of occupants when the simulation was run 1000 times, with
error bars indicating the standard error of the mean. On average, both
the MWCF and the WCE monotonically increase with the number of
simulated occupants, and therefore both are potentially suitable for
estimating occupant count.

3. Materials and methods
3.1. Hardware prototype

A custom 2.4 GHz Doppler radar with a quadrature receiver, as
illustrated in Fig. 4, was used. Agilent E4433B signal generator provided
a 2.4 GHz continuous wave signal, split (Mini-Circuits ZFSC 2-250)
between the receiver local oscillator (LO) and the transmit antenna
(Antenna Specialists ASPPT 2998). Transmit power at the antenna
connector is about 7 dBm, resulting in effective isotropic radiated power
of about 15dBm with the antenna gain of 8 dBi. A 90-degree power
splitter (Mini-Circuits ZX10Q-2-27) is used to drive each passive diode
mixer (Mini-Circuits ZFM-4212+) with a 4dBm LO. The backscattered
signal received by the antenna is split (Mini-Circuits ZFSC 2-250) be-
tween RF ports of two mixers. The mixers down-convert the received RF
signals to baseband signals, which are filtered and amplified with
Stanford Research amplifiers SR560 with a gain of 200, and bandpass
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Fig. 5. Field testing setup for experiment: participants sitting in a relaxed po-
sition (people replaced with solid color sketches). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

filters cutoffs at 0.03Hz and 30Hz, and then digitized and recorded.

3.2. Experimental setup

The quadrature radar system described in the previous section was
tested in a controlled experiment in a 257 ft? classroom occupied with
zero to ten participants. Experiments for this study were conducted ac-
cording to the Committee on Human Studies (CHS) protocol number
14884, which was approved by the CHS of the University of Hawaii
system. All participants provided written informed consent to take part
in the study. In the classroom, the first row of seats was 1.5 m away from
the antenna, the second row of seats was 3 m away, and the third row of
seats was 4.6 m away. The antenna was mounted 2.75 m above the floor,
at an angle of 60° from the floor and directed towards the middle of the
classroom. The experiment begins with one subject sitting in the front
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row, next to the wall and every 90 s, an additional occupant enters the
room and walks to a seat every 90 s until 10 occupants were in the room
(Fig. 5), and then occupants left the room one by one, every 90 s, until
the room was empty [48]. The occupants were instructed to sit still and
breathe normally while in their seats. The radar baseband output was
recorded for a total of 23 min to complete the experiment.

3.3. Methodology

After data acquisition, the signal was digitally filtered with a 1000
order lowpass FIR filter with a 20 Hz cut-off. Because the physiological
signal bandwidth is primarily in the 0-5 Hz band [43], this filter pre-
serves physiological information and respiration intermodulation
products, while eliminating high-frequency noise. When a person is
walking or making a major movement, there is a much larger reflection,
and therefore a larger received signal. In this work, these motions are
discarded by comparing the amplitude of the received signal to a
threshold and discarding signals that exceed the threshold. Selecting a
segment of the signal that does not include large, non-periodic motion, is
referred to as segmentation [54]. Segmentation was performed with a
threshold of 30% of the maximum signal amplitude to identify and
eliminate high-amplitude signals [54]. After segmentation, a 60 s win-
dow was used for analysis unless otherwise specified. This segmented,
windowed signal was linearly demodulated to extract the phase infor-
mation. Linear demodulation is a technique in which eigenvalue
decomposition is employed to find the maximum displacement infor-
mation, and the quadrature signals are projected on this vector [55,56].
The continuous wavelet transform was performed with the analytic
Morlet wavelet. The highest amplitude wavelet coefficient was identi-
fied, and the frequency associated with this wavelet coefficient — the
maximum wavelet coefficient frequency, or MWCF -and the energy of
the wavelet coefficients — the wavelet coefficient energy, or WCE - were
compared with room occupancy.
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Fig. 6. The FFTs of experimental radar signals from one through ten occupants. The data from a single occupant shows a peak at the breathing frequency, and there is
significant spectrum broadening as the number of occupants increases, similar to the simulation.
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Fig. 7. Wavelet scalogram of the subsampled, lowpass filtered baseband signal from experimental data for (a) one occupant, (b) four occupants, (c) seven occupants,
and (d) ten occupants. This wavelet transform was performed with the Morlet wavelet with effective support of 16 and a 60-s window of data. The spectrum has more
variation in both time and frequency as the number of occupants increases, and the frequency associated with the maximum value in time-frequency space (MWCF)
also increases with the number of occupants with values of 0.23Hz for one occupant, 0.46Hz for 4 occupants, 0.58Hz for 7 occupants, and 1.2Hz for 10 occupants.
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4. Results and discussion

4.1. Wavelet effective support

Fig. 6 illustrates the spectra of the linearly demodulated signals for
one through ten occupants and Fig. 7 shows the wavelet scalograms of
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I Effective Support:16

NS kD 6A D 0,0

Number of Occupants

Fig. 8. (left) Relationship between the MWCF of the
segmented portion of the signal and the number of
occupants in a room with wavelet effective support of
8 and 16. With the increase in the number of occu-
pants there is a more proportional trend in frequency
when the effective support function is set to 16 than
when it is 8. (right) Relationship between the WCE of
the segmented portion of the signal and the number of
occupants in a room with wavelet effective support of
8 and 16. No significant difference in this parameter is
noted with varied effective support.

the linearly demodulated signals for one, four, seven, and ten occupants.
As the number of occupants increases, signals include more frequency
content above and below breathing frequencies. When there are multi-
ple subjects present in the radar field of view, the radar receives multiple

breathing patterns and the mixer non-linearity results in intermodula-
tion products. The constructive and destructive interference of these



S.M.M. Islam et al.

Building and Environment 236 (2023) 110233

I I I Fig. 9. Relationship between the MWCF (left) and
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WCE (right) and occupant count with window length
set at 20 s, 30 s, 45 s, and 60 s. The relationship be-
tween the MWCF and the number of occupants is
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intermodulation products at different frequencies being effectively
summed makes the signals appear aperiodic [38].

The MWCF and the WCE of the segmented 60s window of data was
calculated for one to ten occupants, and as the number of participants in
the room increased, the MWCF and WCE also increased.

The impact of wavelet effective support was investigated by
increasing the effective support from 8 ([—4 4]) to 16 ([—8 8]). When
the effective support of the wavelet broadens, the MWCF varies more
consistently with the number of occupants, but the WCE does not seem
to be significantly impacted by effective support. This increase in vari-
ation of the MWCF likely occurs due to Morlet wavelet’s center fre-
quency and spectrum breadth increasing with broader effective support.
Fig. 8 illustrates the trend between the output parameters and the
number of occupants with effective supports of 8 and of 16. With an
increase in the number of occupants, there is an increase in the MWCF
and the WCE of the segmented signal, regardless of effective support.
The increase in the effective support provides better correlation between
the MWCF and the number of occupants but does not have a notable
impact on the relationship between the WCE and the number of occu-
pants. Effective supports broader than 16 were tested and showed no
noticeable change from the results with an effective support of 16 for
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20 and 30 s windows but is monotonically increasing
in all cases. The relationship between WCE shows
greater differentiation between 6 and 9 occupants
with 45 and 60 s windows than with 20 and 30 s
windows but is also monotonically increasing in all
cases.

Number of occupants

this data.

4.2. Window length

Additionally, we explored the dependence of the output on the
window length of the analyzed signal [59]. There is no analytical
equation to calculate the optimum window length because this algo-
rithm extracts MWCF and WCE using numerical methods [59], thus we
experimentally investigated the reliability of the relationship between
MWCF and WCE and the number of occupants with different window
sizes. We used variable sliding windows for the segmented portion of the
signal to evaluate the relationship between each of MWCF and WCE and
the number of occupants. We found that with the change of window
length, both MWCF and WCE change in some cases; this is expected
because their values depend on the signal pattern within the window.
However, there is still a monotonically increasing relationship between
each of MWCF and WCE and the number of occupants with all tested
window lengths. Fig. 9 illustrates the relationship between both MWCF
and WCE and the number of occupants for window lengths from 20 to
60 s. We observed that once the window size crosses above 40 s, the
MWCF and WCE perfectly match the full 60-s periodic segmented
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Fig. 10. Comparative analysis between MWCF and received signal strength (RSS) with the number of occupants (left) and between WCE and received signal strength
(RSS) with the number of occupants (right). The MWCF and WCE correlate more closely with the number of occupants than RSS does, and the MWCF and WCE are
monotonically increasing with the number of occupants while the RSS is not.
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window. Regardless of window size, there exists a strong relationship
between the MWCF and WCE and the number of occupants. Although
the optimal value is at least 45 s for this data set, the algorithms work
well with a 20-s window as well, thus windows between 20 and 45 s can
be used for occupant estimation if a segment greater than or equal to 45 s
is not available.

4.3. Comparative analysis with the proposed method with methods in
existing literature

To test how this method compares with previous work, we compared
our proposed wavelet-based method results with the received signal
strength (RSS) method [48]. The RSS was calculated as the root mean
square of the linearly demodulated segmented signals [48]. Fig. 10
shows the comparative graph between the variation of the MWCF, WCE,
and RSS vs the number of occupants. Because the MWCF and WCE are
monotonically increasing with occupant count, and RSS is not, the
wavelet-based methods offer a more robust approach for occupant count
estimation. Irregularity in the RSS signal can be caused by some subjects
being obscured by others, resulting in a smaller effective radar
cross-section [48] and by sensitivity to antenna placement; if the an-
tenna is more focused on a subset of occupants, or if some occupants are
closer to the antenna than others, the signal from those occupants can
dominate the received signal. On the other hand, varying signal strength
from multiple occupants has less impact on wavelet time-frequency
mapping, making wavelet coefficients, and therefore WMCF and WCE,
less sensitive to individual occupant placement.

4.4. Limitations of this work

One limitation in radar-based occupancy detection is that motion
from large body movements obscures the respiration signals, which are
required for this approach to estimating occupant count. In this work,
we have mitigated this concern by segmenting the signal to eliminate
portions that have large body motion [58,59]. This means that this al-
gorithm only estimates the number of occupants while occupants are all
stationary. Since the minimum required window size was determined to
be only 20-40 s, it is feasible that such data segments, when occupants
are mostly stationary, will be available in realistic occupant scenarios.
This approach could be useful in conjunction with other occupancy
sensors that do not accurately count stationary occupants, or those that
accumulate errors (such as doorway sensors) and could use periodic
corrections when all occupants are stationary.

Additionally, although low-cost, accurate occupant count sensing is a
missing element in demand-controlled ventilation, it is not trivial to
control the building environment based on the number of occupants.
Because fresh airflow is supplied via a network of ventilation ducts, it
can take time to supply fresh air and reduce CO2 and pollutants, even
with real-time occupancy data. Several authors have developed algo-
rithms that use occupancy data to predict future occupancy profiles, so
the ventilation needs can be forecast [60-63]. Furthermore, occupant
activity levels and metabolism can impact required ventilation, and risk
of respiratory infection may further inform ventilation rates [64-66].

5. Conclusion

This work presented theoretical background, and comprehensive
simulation and experimental results that demonstrated the potential of
using Doppler radar and wavelet-based signal processing techniques for
estimating the number of occupants. Extensive simulations and testing,
including varying wavelet effective support and Doppler radar data
window sizes, confirmed that both MWCF and WCE exhibit a robust,
monotonically increasing trend as the number of occupants increases.
The strong relationship between the MWCF and WCE determined with
these methods and the number of occupants encourages us for further
algorithm development. For our future work, we will test these
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algorithms in more settings and in less controlled scenarios and establish
thresholds to estimate the number of occupants after determining the
MWCF and WCE. Testing in additional environments will help deter-
mine how to best leverage these two parameters for accurate occupant
count. Minimum required window size of 20-45 s may enable near real-
time implementation of this approach for DCV and other smart building
applications.
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