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A B S T R A C T   

Room-level occupancy estimation is a critical input for real estate management, including building utilization 
optimization, energy-efficient building control, building security, and occupant health and well-being. Knowing 
how many people are using a room at a time can enable businesses to use their real estate, energy and human 
capital more efficiently, reducing operating expenses as well as carbon footprint. Radar-based occupancy esti
mation is attractive because it is unobtrusive and does not introduce the privacy issues brought with video 
imaging-based sensors. In this paper, we present an occupant estimation approach based on continuous wave 
Doppler radar and wavelet-based signal processing techniques. Theoretical background provides a rational for 
using a wavelet-based time-frequency approach, and comprehensive simulation and experimental results 
demonstrate the effectiveness of the proposed approaches on a data set that includes 1–10 occupants. These 
results indicate that Doppler radar with wavelet-based signal processing may be an effective tool for occupant 
count in smart building applications.   

1. Introduction 

Businesses can significantly reduce their real estate and energy ex
penses by minimizing the amount of space they rent and by more effi
ciently controlling the environment of their indoor spaces [1]. The 
number of occupants in each space over time is a key input to optimizing 
square footage, ventilation, lighting, and cleaning, yet occupancy is 
rarely measured comprehensively enough to enable data-driven opti
mization of these parameters. Proactively changing the environment can 
improve employee’s mental health [2–6], physical health, 
decision-making performance [7] and productivity [8–10]. Moreover, 
occupancy estimation and detection in commercial and residential 
buildings can play an important role in security management and 
emergency evacuations [3] and can enable monitoring of the ability of 
occupants to maintain physical distance when necessary for safety in a 
pandemic with the airborne viral transmission. 

Residential and commercial buildings account for 40% of the total 
amount of energy used worldwide [11,14]. Globally 28% of CO2 emis
sions are caused by buildings, mostly from climate control (e.g., powering 
lighting, heating, and cooling) [12]. The key to eliminating waste in 
climate control systems is to provide heating, cooling, ventilation, and 

lighting only when, where, and as much as they are needed, and this re
quires high-resolution occupancy information [13]. Demand-controlled 
ventilation (DCV) systems provide the appropriate amount of ventila
tion based on the estimated number of occupants in each room or zone 
rather than ventilating at a rate set for the maximum occupancy [13] but 
are not broadly implemented because of the lack of a cost-effective, pri
vacy-preserving, low-lag, accurate occupant count sensor. 

Motion-sensing occupancy sensors, such as those using passive 
infrared (PIR) and ultrasound (US), are popular for lighting control, 
although they have significant failure rates when occupants are seden
tary [13,15,18]. These systems only detect whether someone is moving 
in the space, and not the number of people present; therefore, they have 
very limited application in DCV systems, where they are only useful in 
single-occupancy rooms, such as private offices. Even in these spaces, 
they risk underventilation when a sedentary occupant causes a false 
vacancy signal [19]. Occupancy schedules can be suitable for controlling 
ventilation in spaces for which occupancy levels change on a predictable 
basis, such as in some classrooms. Spaces with irregular or unforeseen 
occupancy fluctuations (such as open offices, meeting rooms, perfor
mance venues, lobbies, transient spaces, and retail outlets) need a 
real-time, accurate estimate of the number of occupants for a DCV 
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system to provide the right level of ventilation, maximizing energy 
savings while maintaining air quality. 

Currently, carbon dioxide (CO2) sensors are the most used method of 
estimating room occupant count, assuming that the rate of CO2 gener
ation indoors is proportional to the number of occupants. However, the 
CO2-based DCV market has grown very slowly since 1990. Studies have 
indicated that there are numerous issues with using CO2 sensors for 
ventilation control that need to be addressed, including the accuracy of 
the sensors, maintenance/calibration requirements, and the sensor lag 
times [3,16,17,20–24]. 

Advanced occupant counting sensors that provide a near instanta
neous, accurate estimate of the number of people present in a room can 
enable DCV systems to meet their true potential for energy savings and 
reliability. Technologies currently available and in development include 
computer vision systems, doorway sensors using different technologies 
to detect persons entering or leaving a room, sensors integrated into 
floor tiles, arrays of time-of-flight sensors in ceiling tiles, and analysis of 
reflections from WiFi signals. Many people are uncomfortable with the 
privacy risks of ubiquitous video-based sensors, even if they are 
designed not to record any images, and this has slowed the uptake of 
these sensors [23,24]. Doorway sensors are not always accurate at 
determining whether people are entering or leaving, or mis-count peo
ple passing through doorways side-by-side, and errors in count accu
mulate through the day [25]; they are suitable for determining the flow 
of people in space but insufficiently accurate for broad use in DCV sys
tems. Systems that require arrays of sensors in the floor or ceiling are 
expensive and complicated to install, especially in retrofit applications. 
Received signal strength (RSS) of WiFi signals has been used to measure 
the number of occupants; however, this method is not accurate if one 
occupant blocks the sensor’s line of sight to another occupant [27]. New 
technologies and algorithms are necessary to accurately determine 
occupant number while protecting privacy, at a reasonable installation 
cost. 

A Doppler-radar-based sensor has potential to meet all the needs of 
an occupant count sensor for ventilation control. This type of sensor has 
been used for non-contact detection of individual vital signs [28–32, 
45–47], and occupancy vs. vacancy [26,27,33], but only recently has it 
been applied to occupant count. Methods used previously [26,48] with 
Doppler radar estimated the occupancy based on the strength of the 
received reflected signal and had similar accuracy challenges as the WiFi 
RSS method mentioned above. In this work, we show that analysis of the 
time and frequency content of the signal can increase the robustness of 
the occupant count with the Doppler radar system. The Wavelet 
Transform (WT) [34] has shown its efficacy to analyze and extract the 
characteristics of signals that have non-stationary behavior [35–40] in 
applications such as radar fall detection. Prior attempts for estimating 
the number of building occupants from room temperature and CO2 
concentration using WT also proved its efficacy [41,42]. However, to the 
authors’ knowledge, none of the work in the literature to date has uti
lized WT or time-frequency analysis for radar-based occupant count. 

A single radar-based motion sensor with the wavelet-based algo
rithms described in this paper can be used to estimate the number of 
occupants in a room. This technology can potentially be used to optimize 
real estate utilization and ventilation rate in DCV HVAC systems, 
reducing real estate and energy costs while keeping occupants 

productive and comfortable. It could also be used to calibrate a pre
dictive model for ventilation control, or to calibrate occupancy models 
to support building simulation, which can in turn support building and 
systems design. These radar-based sensors can provide occupant count 
without the errors introduced by doorway sensors, without the delays 
and inaccuracies of CO2 sensors, without the privacy issues introduced 
by video-based sensors, and without the high up-front cost of systems 
that require a dense array of sensors. 

In this paper, Doppler radar detection and count of multiple occu
pants is described theoretically, explaining the spectrum broadening 
that occurs with increasing numbers of occupants. Wavelet time- 
frequency analysis using the Morlet wavelet transform and maximum 
wavelet coefficient frequency (MWCF) and wavelet coefficient energy 
(WCE) is proposed for occupant estimation. A comprehensive simulation 
and experimental results demonstrate that MWCF and WCE parameters 
increase monotonically with the number of occupants. Data analysis 
with varying wavelet effective support and Doppler radar data window 
size demonstrate robustness and potential for near real-time imple
mentation of this approach. 

2. Theory and simulation 

2.1. Microwave Doppler radar detection of respiration of multiple 
occupants 

A microwave Doppler radar transmits an electromagnetic signal; 
when the signal reflects off objects in the room, it has a phase shift 
proportional to the motion of those objects and a magnitude propor
tional to the radar cross section of those objects. If a stationary person is 
present, the phase shift of the reflected signal is proportional to the tiny 
movement of the chest surface due to cardiorespiratory activity [43,44]. 
The phase shift from an occupant can be described as: 

θ1(t)∝
4π
λ

d1(t) (1)  

where λ is the wavelength of the transmitted signal and d1(t) represents 
a single occupant’s chest displacement due to heartbeat and respiration. 

Mixers used in radio and radar receivers are inherently nonlinear, 
and therefore generate intermodulation and harmonic responses [49]. In 
Doppler radar physiological sensing of multiple stationary occupants, 
the fundamental tones are those proportional to chest surface motion 
due to cardio-respiratory activity of each occupant. The intermodulation 
generates signals at sums and differences of various combinations of 
multiples of these frequencies, effectively broadening the signal’s 
spectrum at the mixer output. 

For simplicity, we will take the case of two occupants to describe how 
the intermodulation term is theoretically generated [49]. A mixer has 
two input ports; the reflected signals are applied to the mixer’s RF port. 
Each reflected signal has a carrier frequency fc and its phase modulated 
θ(t). In a continuous wave, direct conversion radar transceiver, the local 
oscillator (LO) is derived from the transmitted radar signal at frequency 
fc, and is applied to the mixer’s LO port. An ideal mixer would multiply 
the RF port signals by the LO port signal, generating sum and difference 
frequencies. In the case of two occupants, the ideal mixer is acting on 
two summed RF input signals, generating an output M2 occupants(t): 

M2 occupants(t) = cos(2πfct)
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Where fc is the carrier frequency, An(t) is the amplitude modulation on 
the signal reflected by occupant n, d0,n is the distance to occupant n, and 
dn(t) is occupant n’s time-varying physiological displacement. The 
output of the mixer consists of modulated components at the sum and 
difference frequencies. The sum frequency is easily rejected by a lowpass 
filter, leaving only the difference frequencies, which are at baseband and 
shown as B2 occupants(t): 

B2 occupants(t) =
A1(t)

2

[

cos
[

2π
λ

(
2d0,1 + 2d1(t)

)
]]

+
A2(t)

2

[

cos
[

2π
λ

(
2d0,2 + 2d2(t)

)
]]

(3) 

However, in practice, a mixer is a nonideal multiplier, and in addi
tion to the sum and difference frequencies, it generates harmonics and 
mixing products other than the desired outputs. The use of a nonideal 
multiplier can be illustrated by describing the current/voltage (I/V) 
characteristics of the nonlinear device (the mixer) via a power series, 

I = a0 + a1V + a2V2 + a3V3 + ⋯ (4)  

and letting V equal the sum of the two inputs to the mixer and I equal the 
mixer output current. 

In the case of two breathing occupants,  

where the first term is the local oscillator, the second term is the 
reflection from the first occupant, and the third term is the reflection 
from the second occupant. When this is input to equation (4), the first 
term, a0, is a DC offset, and the second term, a1V, leaves the signals at 
the RF frequency which are typically removed by the lowpass filter. The 
third term, where the voltage is squared, generates a DC offset, the terms 
where the LO is multiplied by each input, and introduces intermodula
tion where the signals from the two occupants are multiplied together. 
With all the DC values lumped together, the baseband signal after 
lowpass filtering is:   

The last term is the intermodulation term  

where the sum and difference of the respiratory terms occur inside the 
cosine, spreading the output spectrum. When higher order intermodu
lation terms are included, the intermodulation terms get more complex, 
and as such are generated the simulation in the next section rather than 

analytically generating them here. 
In radar measurement of physiological motion, the largest signal is 

respiration, and amplitude modulation An(t) is minimal and can be 
estimated as a constant An. Simplifying the phase modulation to include 
only the respiratory signal, and simplifying the respiratory signal to a 
cosine, occupant n’s physiological motion can be estimated as 

dn(t) = cos(2πfnt) (8)  

where fn is occupant n’s breathing frequency. 
With a direct conversion radar, the DC phase shift d0,n can be 

removed in hardware or software. It also can be assumed that the 
voltage of the modulated input signal is much smaller than that of the 
LO. With these simplifications, and after an appreciable amount of 
algebraic and trigonometric manipulations, when two occupants are 
present with breathing frequencies f1 and f2, the mixer output current 
contains small-signal components at the frequencies: 

fa,b = af1 + bf2,where, a, b = 0,+1, − 1,+2, − 2,… (9) 

Frequencies other than the fundamental respiratory frequencies are 
harmonics (where one of a or b is equal to 0 and the other is greater than 
1) and intermodulation tones (where both a and b are non-zero). The 
order of the intermodulation is calculated by a+b. For example, if there 

is a presence of two subjects at a breathing rate of f1 = 0.25 Hz and f2 =

0.3 Hz, then a second order intermodulation tone f1 + f2 will be at 0.55 
Hz. The intermodulation products are theoretically infinite, because 
there are no bounds on a or b, but in practice, the amplitude of inter
modulation products decreases with increasing order [49]. 

As the number of occupants increases, there are more signals that 
intermodulate (f1, f2,………, fN with N being the number of occupants 
present). For example with N occupants present, intermodulation 
products occur at: 

fa1,a2 ,a3 ,…aN = a1f1 + a2f2 + a3f3 + … + aNfN where, a1, a2, a3,…, aN

= 0,+1, − 1,+2, − 2,… (10)  

and the order of intermodulation is the sum of coefficients ax. 
When more occupants are present, more high-frequency content is 

included in the baseband signal, and the baseband signal frequencies are 
spread more broadly. By analyzing the time-frequency content of the 
baseband signal to quantify the amount of higher frequency content 
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and/or the degree of spectrum spreading, the number of occupants can 
be estimated. 

2.2. Wavelet-based time-frequency analysis 

The wavelet transform (WT) is suitable for analyzing non-stationary 
signals that change in frequency and time [34–37]. Radar-based occu
pancy sensing in realistic environments involves the detection of mul
tiple people, and the resulting signals include multiple fundamental 
respiratory frequencies as well as signals at mixtures of these fre
quencies, such as f1 + f2, f1 − f2,2f2 + f1, and so on. This signal 
behavior makes the WT a good choice for analyzing the signal in 
time-frequency space. 

The continuous WT of a signal x(t) is defined as [34,50]: 

x(τ, a) =
1̅

̅̅
a

√

∫

x(t)f ∗
(t − τ

a

)
dt (11)  

where x(t) is the time series signal being processed, τ (τ > 0) is a shift 
factor, a is a scaling factor, and f∗

( t− τ
a

)
is the daughter wavelet which is a 

scaled and shifted version of the mother wavelet f(t). The basic idea 
behind the WT is that the mother wavelet is scaled by a, which changes 
the center frequency, and shifted in time along x(t) by τ to form a 
daughter wavelet f

( t− τ
a

)
. The similarity of the daughter wavelet to x(t) is 

computed and recorded as the wavelet coefficient corresponding at a 
and τ. By repeating the above steps for all a and τ until the whole time- 
series signal and all frequencies of the interests are covered, we obtain a 
coefficient matrix [34,50]. This approach not only provides spectral 
information through scaling but also provides the time domain infor
mation via shifting the wavelet across the signal. Each wavelet coeffi
cient represents the amplitude of the signal with scaling factor a, which 
can be converted to frequency, and shift τ, which can be used to identify 
the time. 

In general, the continuous wavelet transform provides excellent time 

resolution for higher-frequency high-order intermodulation products 
and good frequency resolution for slower events such as single occupant 
respiration. In physiological processing, the Morlet wavelet is commonly 
used because its multiple, evenly spaced maxima effectively enable time 
and frequency localization of periodic physiologic signals [35–39]. This 
is also important to identify the frequency content of high order inter
modulation products from signals with many occupants, as well as the 
sub-Hertz frequency content of individual respiratory signals. 

The Morlet wavelet has a simple numerical implementation, 

e− x2
2 cos(5x), which corresponds to about 4 cycles of a sinusoidal signal 

with its amplitude windowed by a Gaussian function. The Morlet 
wavelet has what is known as “effective support,” which represents the 
non-zero interval of the mother wavelet. The default effective support of 
the Morlet wavelet is [− 4 4]. However, the effective support can be 
changed to adjust the lower and upper limits of the integral. The 
fundamental frequency in the spectrum is around 0.8 Hz when the 
effective support is at the default setting of 8 ([− 4 4]). When the 
effective support is increased to 16 ([− 8 8]), then the spectrum broadens 
and the fundamental frequency increases to around 1.6 Hz. 

In this work, two wavelet parameters, the Maximum Wavelet Coef
ficient Frequency (MWCF) and Wavelet Coefficient Energy (WCE), are 
analyzed for their potential to estimate the number of occupants. When 
the wavelet transform is performed, a two-dimensional set of co
efficients is generated, each representing the amplitude of the signal at a 
specific frequency and point in time. The maximum wavelet coefficient 
is identified, and the frequency associated with this coefficient is the 
MWCF. This parameter, sometimes referred to as the “vibrational fre
quency,” has been used for finding resonant frequencies in the fields of 
geophysics, biomechanics, seismology, and others [57], and seems 
promising for quantifying spreading of the spectrum time-frequency 
data. Wavelet Coefficient Energy (WCE) is the other approach 
explored here to estimate the number of occupants. Like calculation of 
MWCF, the two-dimensional set of wavelet coefficients, each repre
senting the complex amplitude of the signal at a specific frequency and 

Fig. 1. Frequency spectra of the simulated signal with one to ten occupants. The spectrum broadens as the number of occupants increases.  
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point in time, is used to calculate WCE. The magnitude of the complex 
amplitude of each wavelet coefficient is squared, and these squared 
values are summed across the different points in time, and then the 
square root taken, giving the energy at each frequency. Then the mean of 
the energy at each frequency is taken as the WCE, or the energy of the 
signal from the wavelet coefficients, with units of Joules. This approach 
has been used in other fields, including EEG signal analysis [51,52] and 
mechanical fault detection [53]. In the following sections, we explore 
the WCE and MWCF as methods to quantify the spectral spreading, 
which is expected to increase with increasing numbers of occupants. 

2.3. Modelling of occupancy estimation 

To better understand the time-frequency content caused by inter
modulation of signals from a radar sensor detecting breathing from 
multiple occupants, a MATLAB simulation was developed. For each 
simulation run, ten sinusoidal signals were generated at different fre
quencies within the range of the respiration signals (random values 
uniformly distributed from 0.2 to 0.3 Hz), with respiratory amplitude 
randomized from 0.01 to 0.03 m peak to peak. A radio frequency signal 
(RF) and local oscillator signal (LO) were generated in MATLAB, each as 
a sinusoidal tone. Because each occupant in a room reflects an RF signal 
with its phase modulated at the respiratory frequency, a reflected RF 
signal was generated for each simulated occupant. The simulated 
received RF signal was the original radio frequency (RF) signal with 
amplitude randomized from 0.2 to 2, with the phase of the signal having 
an offset randomized from 0 to 2π and an additional phase component 
with a cosine at the simulated respiratory frequency and amplitude. To 
simulate a realistic mixer (with nonlinear characteristics) operating on 
the RF and LO signals, the combined RF signal was summed with the LO 

and the combined signal was input into a trinomial equation y = a1x +
a2x2+a3x3. Coefficients used were a1 = 1, a2 = 1, and a3 = 0.41, chosen 
to simulate a passive diode mixer. The output signals were filtered with a 
100-order 25-Hz lowpass FIR filter for anti-aliasing and then down
sampled to 100Hz. 

Then we performed the fast Fourier transform (FFT) and wavelet 
transform (WT) using the Morlet wavelet and an effective support of 16 
(− 8 to 8) of output signals to extract the time-frequency information. 
Fig. 1 illustrates an example of the FFT outputs in a simulation from one 
to ten occupants, and the scalograms for a subset of the numbers of 
occupants is shown in Fig. 2, both from a simulated case where the 10 
randomly generated frequencies were: 0.2272 Hz, 0.2291 Hz, 0.2290 
Hz, 0.2839 Hz, 0.2742 Hz, 0.2424 Hz, 0.2343 Hz, 0.2203 Hz, 0.2006 Hz, 
and 0.2493 Hz. The FFT for a single occupant shows the fundamental 
breathing signal and its harmonics. For increasing numbers of occu
pants, the spectrum broadens and there is frequency content at fre
quencies other than the fundamental signals and harmonics from each 
occupant; this is showing the effects of intermodulation. In Fig. 2, the 
maximum values in the scalogram are highlighted – these indicate the 
maximum wavelet coefficient, and the frequency associated with this 
coefficient is the MWCF (maximum wavelet coefficient frequency). This 
value increases with the number of occupants present with values of 
0.23Hz for one occupant, 0.46Hz for 4 occupants, 0.58Hz for 7 occu
pants, and 1.2Hz for 10 occupants. 

The simulation was then run 1000 times, with different random 
values for respiratory frequency, respiratory amplitude, received RF 
amplitude, and phase offset generated each time. For each run, the 
output for one through ten occupants was generated, the wavelet 
transform was performed using the Morlet wavelet and an effective 
support of [− 8 8]. The frequency associated with wavelet coefficient 

Fig. 2. Wavelet scalogram of the subsampled, lowpass filtered baseband signal from a simulation for (a) one occupant, (b) four occupants, (c) seven occupants, and 
(d) ten occupants. The spectrum has more variation in both time and frequency as the number of occupants increases, and the frequency associated with the 
maximum value in time-frequency space also increases with the number of occupants with values of 0.23Hz for one occupant, 0.46Hz for 4 occupants, 0.58Hz for 7 
occupants, and 1.2Hz for 10 occupants. 
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with the greatest amplitude was determined to be the MWCF. The 
magnitude of each wavelet coefficient was squared, the squares were 
summed, and the square root was taken to give the energy at each 
wavelet decomposition; these values were averaged, and the value was 
determined to be the wavelet coefficient energy (WCE). Then the 1000 
MWCF values and the 1000 WCE values identified for each number of 
occupants were averaged to determine a mean value for each, and the 
standard error of the mean was determined by calculating the popula
tion standard deviation and dividing by the square root of the number of 
simulations. Fig. 3 shows the mean MWCF (a) and the WCE (b) for each 
number of occupants when the simulation was run 1000 times, with 
error bars indicating the standard error of the mean. On average, both 
the MWCF and the WCE monotonically increase with the number of 
simulated occupants, and therefore both are potentially suitable for 
estimating occupant count. 

3. Materials and methods 

3.1. Hardware prototype 

A custom 2.4 GHz Doppler radar with a quadrature receiver, as 
illustrated in Fig. 4, was used. Agilent E4433B signal generator provided 
a 2.4 GHz continuous wave signal, split (Mini-Circuits ZFSC 2–250) 
between the receiver local oscillator (LO) and the transmit antenna 
(Antenna Specialists ASPPT 2998). Transmit power at the antenna 
connector is about 7 dBm, resulting in effective isotropic radiated power 
of about 15dBm with the antenna gain of 8 dBi. A 90-degree power 
splitter (Mini-Circuits ZX10Q-2-27) is used to drive each passive diode 
mixer (Mini-Circuits ZFM-4212+) with a 4dBm LO. The backscattered 
signal received by the antenna is split (Mini-Circuits ZFSC 2–250) be
tween RF ports of two mixers. The mixers down-convert the received RF 
signals to baseband signals, which are filtered and amplified with 
Stanford Research amplifiers SR560 with a gain of 200, and bandpass 

Fig. 3. Relationship between output parameters and 
the number of occupants when a simulation of 
Doppler radar signals was generated for one to ten 
occupants 1000 times. The bars indicate the mean 
value of the parameter and the standard error of the 
mean is shown with error bars. a) Relationship be
tween the mean of the maximum wavelet coefficient 
function (MWCF) and the number of simulated occu
pants. b. Relationship between the mean of the 
wavelet coefficient energy (WCE) and the number of 
simulated occupants. The simulation indicates that 
with an increase in the number of occupants both the 
MWCF and WCE tend to increase, and both parame
ters have potential for determining the number of 
occupants in a room from a Doppler radar occupancy 
sensor.   

Fig. 4. Block diagram of the experimental hardware setup. The quadrature radar output a RF signal, which was transmitted by the Antenna. The received (RX) signal 
is returned to the Quadrature Radar where it is split and mixed with the local oscillator signals to generate a quadrature baseband signal, which is filtered and 
amplified by low noise amplifiers (LNA) before being digitized by the data acquisition system (DAQ) and further processed on a personal computer. 
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filters cutoffs at 0.03Hz and 30Hz, and then digitized and recorded. 

3.2. Experimental setup 

The quadrature radar system described in the previous section was 
tested in a controlled experiment in a 257 ft2 classroom occupied with 
zero to ten participants. Experiments for this study were conducted ac
cording to the Committee on Human Studies (CHS) protocol number 
14884, which was approved by the CHS of the University of Hawaii 
system. All participants provided written informed consent to take part 
in the study. In the classroom, the first row of seats was 1.5 m away from 
the antenna, the second row of seats was 3 m away, and the third row of 
seats was 4.6 m away. The antenna was mounted 2.75 m above the floor, 
at an angle of 60◦ from the floor and directed towards the middle of the 
classroom. The experiment begins with one subject sitting in the front 

row, next to the wall and every 90 s, an additional occupant enters the 
room and walks to a seat every 90 s until 10 occupants were in the room 
(Fig. 5), and then occupants left the room one by one, every 90 s, until 
the room was empty [48]. The occupants were instructed to sit still and 
breathe normally while in their seats. The radar baseband output was 
recorded for a total of 23 min to complete the experiment. 

3.3. Methodology 

After data acquisition, the signal was digitally filtered with a 1000 
order lowpass FIR filter with a 20 Hz cut-off. Because the physiological 
signal bandwidth is primarily in the 0–5 Hz band [43], this filter pre
serves physiological information and respiration intermodulation 
products, while eliminating high-frequency noise. When a person is 
walking or making a major movement, there is a much larger reflection, 
and therefore a larger received signal. In this work, these motions are 
discarded by comparing the amplitude of the received signal to a 
threshold and discarding signals that exceed the threshold. Selecting a 
segment of the signal that does not include large, non-periodic motion, is 
referred to as segmentation [54]. Segmentation was performed with a 
threshold of 30% of the maximum signal amplitude to identify and 
eliminate high-amplitude signals [54]. After segmentation, a 60 s win
dow was used for analysis unless otherwise specified. This segmented, 
windowed signal was linearly demodulated to extract the phase infor
mation. Linear demodulation is a technique in which eigenvalue 
decomposition is employed to find the maximum displacement infor
mation, and the quadrature signals are projected on this vector [55,56]. 
The continuous wavelet transform was performed with the analytic 
Morlet wavelet. The highest amplitude wavelet coefficient was identi
fied, and the frequency associated with this wavelet coefficient – the 
maximum wavelet coefficient frequency, or MWCF –and the energy of 
the wavelet coefficients – the wavelet coefficient energy, or WCE - were 
compared with room occupancy. 

Fig. 5. Field testing setup for experiment: participants sitting in a relaxed po
sition (people replaced with solid color sketches). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 6. The FFTs of experimental radar signals from one through ten occupants. The data from a single occupant shows a peak at the breathing frequency, and there is 
significant spectrum broadening as the number of occupants increases, similar to the simulation. 
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4. Results and discussion 

4.1. Wavelet effective support 

Fig. 6 illustrates the spectra of the linearly demodulated signals for 
one through ten occupants and Fig. 7 shows the wavelet scalograms of 

the linearly demodulated signals for one, four, seven, and ten occupants. 
As the number of occupants increases, signals include more frequency 
content above and below breathing frequencies. When there are multi
ple subjects present in the radar field of view, the radar receives multiple 
breathing patterns and the mixer non-linearity results in intermodula
tion products. The constructive and destructive interference of these 

Fig. 7. Wavelet scalogram of the subsampled, lowpass filtered baseband signal from experimental data for (a) one occupant, (b) four occupants, (c) seven occupants, 
and (d) ten occupants. This wavelet transform was performed with the Morlet wavelet with effective support of 16 and a 60-s window of data. The spectrum has more 
variation in both time and frequency as the number of occupants increases, and the frequency associated with the maximum value in time-frequency space (MWCF) 
also increases with the number of occupants with values of 0.23Hz for one occupant, 0.46Hz for 4 occupants, 0.58Hz for 7 occupants, and 1.2Hz for 10 occupants. 

Fig. 8. (left) Relationship between the MWCF of the 
segmented portion of the signal and the number of 
occupants in a room with wavelet effective support of 
8 and 16. With the increase in the number of occu
pants there is a more proportional trend in frequency 
when the effective support function is set to 16 than 
when it is 8. (right) Relationship between the WCE of 
the segmented portion of the signal and the number of 
occupants in a room with wavelet effective support of 
8 and 16. No significant difference in this parameter is 
noted with varied effective support.   
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intermodulation products at different frequencies being effectively 
summed makes the signals appear aperiodic [38]. 

The MWCF and the WCE of the segmented 60s window of data was 
calculated for one to ten occupants, and as the number of participants in 
the room increased, the MWCF and WCE also increased. 

The impact of wavelet effective support was investigated by 
increasing the effective support from 8 ([− 4 4]) to 16 ([− 8 8]). When 
the effective support of the wavelet broadens, the MWCF varies more 
consistently with the number of occupants, but the WCE does not seem 
to be significantly impacted by effective support. This increase in vari
ation of the MWCF likely occurs due to Morlet wavelet’s center fre
quency and spectrum breadth increasing with broader effective support. 
Fig. 8 illustrates the trend between the output parameters and the 
number of occupants with effective supports of 8 and of 16. With an 
increase in the number of occupants, there is an increase in the MWCF 
and the WCE of the segmented signal, regardless of effective support. 
The increase in the effective support provides better correlation between 
the MWCF and the number of occupants but does not have a notable 
impact on the relationship between the WCE and the number of occu
pants. Effective supports broader than 16 were tested and showed no 
noticeable change from the results with an effective support of 16 for 

this data. 

4.2. Window length 

Additionally, we explored the dependence of the output on the 
window length of the analyzed signal [59]. There is no analytical 
equation to calculate the optimum window length because this algo
rithm extracts MWCF and WCE using numerical methods [59], thus we 
experimentally investigated the reliability of the relationship between 
MWCF and WCE and the number of occupants with different window 
sizes. We used variable sliding windows for the segmented portion of the 
signal to evaluate the relationship between each of MWCF and WCE and 
the number of occupants. We found that with the change of window 
length, both MWCF and WCE change in some cases; this is expected 
because their values depend on the signal pattern within the window. 
However, there is still a monotonically increasing relationship between 
each of MWCF and WCE and the number of occupants with all tested 
window lengths. Fig. 9 illustrates the relationship between both MWCF 
and WCE and the number of occupants for window lengths from 20 to 
60 s. We observed that once the window size crosses above 40 s, the 
MWCF and WCE perfectly match the full 60-s periodic segmented 

Fig. 9. Relationship between the MWCF (left) and 
WCE (right) and occupant count with window length 
set at 20 s, 30 s, 45 s, and 60 s. The relationship be
tween the MWCF and the number of occupants is 
more linear with 45 and 60 s windows than it is with 
20 and 30 s windows but is monotonically increasing 
in all cases. The relationship between WCE shows 
greater differentiation between 6 and 9 occupants 
with 45 and 60 s windows than with 20 and 30 s 
windows but is also monotonically increasing in all 
cases.   

Fig. 10. Comparative analysis between MWCF and received signal strength (RSS) with the number of occupants (left) and between WCE and received signal strength 
(RSS) with the number of occupants (right). The MWCF and WCE correlate more closely with the number of occupants than RSS does, and the MWCF and WCE are 
monotonically increasing with the number of occupants while the RSS is not. 
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window. Regardless of window size, there exists a strong relationship 
between the MWCF and WCE and the number of occupants. Although 
the optimal value is at least 45 s for this data set, the algorithms work 
well with a 20-s window as well, thus windows between 20 and 45 s can 
be used for occupant estimation if a segment greater than or equal to 45 s 
is not available. 

4.3. Comparative analysis with the proposed method with methods in 
existing literature 

To test how this method compares with previous work, we compared 
our proposed wavelet-based method results with the received signal 
strength (RSS) method [48]. The RSS was calculated as the root mean 
square of the linearly demodulated segmented signals [48]. Fig. 10 
shows the comparative graph between the variation of the MWCF, WCE, 
and RSS vs the number of occupants. Because the MWCF and WCE are 
monotonically increasing with occupant count, and RSS is not, the 
wavelet-based methods offer a more robust approach for occupant count 
estimation. Irregularity in the RSS signal can be caused by some subjects 
being obscured by others, resulting in a smaller effective radar 
cross-section [48] and by sensitivity to antenna placement; if the an
tenna is more focused on a subset of occupants, or if some occupants are 
closer to the antenna than others, the signal from those occupants can 
dominate the received signal. On the other hand, varying signal strength 
from multiple occupants has less impact on wavelet time-frequency 
mapping, making wavelet coefficients, and therefore WMCF and WCE, 
less sensitive to individual occupant placement. 

4.4. Limitations of this work 

One limitation in radar-based occupancy detection is that motion 
from large body movements obscures the respiration signals, which are 
required for this approach to estimating occupant count. In this work, 
we have mitigated this concern by segmenting the signal to eliminate 
portions that have large body motion [58,59]. This means that this al
gorithm only estimates the number of occupants while occupants are all 
stationary. Since the minimum required window size was determined to 
be only 20–40 s, it is feasible that such data segments, when occupants 
are mostly stationary, will be available in realistic occupant scenarios. 
This approach could be useful in conjunction with other occupancy 
sensors that do not accurately count stationary occupants, or those that 
accumulate errors (such as doorway sensors) and could use periodic 
corrections when all occupants are stationary. 

Additionally, although low-cost, accurate occupant count sensing is a 
missing element in demand-controlled ventilation, it is not trivial to 
control the building environment based on the number of occupants. 
Because fresh airflow is supplied via a network of ventilation ducts, it 
can take time to supply fresh air and reduce CO2 and pollutants, even 
with real-time occupancy data. Several authors have developed algo
rithms that use occupancy data to predict future occupancy profiles, so 
the ventilation needs can be forecast [60–63]. Furthermore, occupant 
activity levels and metabolism can impact required ventilation, and risk 
of respiratory infection may further inform ventilation rates [64–66]. 

5. Conclusion 

This work presented theoretical background, and comprehensive 
simulation and experimental results that demonstrated the potential of 
using Doppler radar and wavelet-based signal processing techniques for 
estimating the number of occupants. Extensive simulations and testing, 
including varying wavelet effective support and Doppler radar data 
window sizes, confirmed that both MWCF and WCE exhibit a robust, 
monotonically increasing trend as the number of occupants increases. 
The strong relationship between the MWCF and WCE determined with 
these methods and the number of occupants encourages us for further 
algorithm development. For our future work, we will test these 

algorithms in more settings and in less controlled scenarios and establish 
thresholds to estimate the number of occupants after determining the 
MWCF and WCE. Testing in additional environments will help deter
mine how to best leverage these two parameters for accurate occupant 
count. Minimum required window size of 20–45 s may enable near real- 
time implementation of this approach for DCV and other smart building 
applications. 
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