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Unobtrusive occupancy and vital 
signs sensing for human building 
interactive systems
Chenyan Song 1, Amy D. Droitcour 1*, Shekh M. M. Islam 2, Avon Whitworth 1, 
Victor M. Lubecke 3 & Olga Boric‑Lubecke 3

Cognitive buildings use data on how occupants respond to the built environment to proactively 
make occupant-centric adjustments to lighting, temperature, ventilation, and other environmental 
parameters. However, sensors that unobtrusively and ubiquitously measure occupant responses 
are lacking. Here we show that Doppler-radar based sensors, which can sense small physiological 
motions, provide accurate occupancy detection and estimation of vital signs in challenging, realistic 
circumstances. Occupancy was differentiated from an empty room over 93% of the time in a 
3.4 m × 8.5 m conference room with a single sensor in both wall and ceiling-mounted configurations. 
Occupancy was successfully detected while an occupant was under the table, visibly blocked from the 
sensor, a scenario where infrared, ultrasound, and video-based occupancy sensors would fail. Heart 
and respiratory rates were detected in all seats in the conference room with a single ceiling-mounted 
sensor. The occupancy sensor can be used to control HVAC and lighting with a short, 1–2 min delay 
and to provide information for space utilization optimization. Heart and respiratory rate sensing 
could provide additional feedback to future human-building interactive systems that use vital signs to 
determine how occupant comfort and wellness is changing with time.

An occupant-centric approach to building management requires sensing how occupants use and interact with 
their environment and using that data to proactively adjust the environment to improve occupant comfort, 
optimize space utilization, and reduce energy consumption1. Wearable sensors that measure skin temperature, 
respiration rate, and heart rate have been proposed to provide information on vital signs and changes in vital 
signs to provide data about human responses to enable more effective human building interactions2,3. A limitation 
of using wearable sensors is that it relies on occupants using the devices and opting to share that data with the 
building management system. Non-intrusive infrared thermography4,5 and optical imaging6 have been proposed 
as alternative non-contact methods to evaluate thermal comfort. These methods provide an indirect assessment 
of skin temperature, which is a limited measure of overall physiological response to the built environment. Real-
time visual perception using human eye pupil size measurements has been proposed to evaluate human response 
to lighting parameters7. However, pupil size measurement requires interaction with a computer screen and does 
not provide feedback on other parameters. Innovative sensing, data analytics, algorithms, and tools are required 
to make Human Building Interaction (HBI) a reality. It remains a challenge to estimate the comfort and response 
of all occupants unobtrusively and ubiquitously.

Occupancy and vital signs sensors may help to create healthy occupant experiences and provide sustainable 
solutions for the built environment. Following COVID shutdowns, people are returning to offices with more 
awareness of the importance of environmental conditions to employee health and productivity. Companies 
are more aware of the potential cost savings from reduction in real-estate footprint, which can be facilitated by 
room-level occupancy data8. Employees need positive workplace experiences and respectful safety and security 
to be happy and productive in working and collaborating in offices9,10; buildings that sense occupant needs and 
proactively adjust lighting and ventilation can meet those demands. Occupancy sensors can provide HBI systems 
with data required to optimize space utilization. In the future, occupant vital signs and changes in these param-
eters may be used with other sensors to provide information about wellness and comfort of occupants. Informa-
tion about occupancy and comfort may enable proactive adjustment of lighting, temperature, and ventilation to 
maintain occupant wellness, comfort, and productivity while reducing energy consumption8–10.
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Motion-sensing occupancy sensors, such as those using passive infrared (PIR) and ultrasound (US), are popu-
lar as a means to control lighting to save energy, although they have significant failure rates when occupants are 
sedentary, which leads to setting long delay periods, during which rooms are assumed to be occupied following 
movement, diminishing accuracy of occupancy information and its energy saving potential11. Carbon dioxide 
sensors are sometimes used to infer occupancy and even the number of occupants, but there is a considerable 
lag between occupancy and increases in carbon dioxide levels12. Image sensors tend to be more accurate, but 
many occupants are uncomfortable with the potential privacy implications of cameras in every room13. Arrayed 
occupancy sensor technologies such as floor pressure pads14 and time of flight infrared15 measurements have 
significant installation challenges and costs, making them unlikely choices for retrofit applications. Doppler 
radar sensors can provide room-level occupancy with high accuracy for sedentary occupants, without long lag 
times, without introducing privacy concerns, and in a low-cost, easy-to-install form factor, while also providing 
the potential for non-contact vital signs sensing.

Literature review
The research published in recent years on occupancy sensing using Doppler radar indicates that activity and 
physiological sensing could be used to remotely evaluate occupant response to environmental conditions, which 
would lead to major changes in HBI. Gennarelli et al.16 achieve an occupancy/vacancy accuracy of greater than 
96% by applying standard deviation, histogram and Doppler spectrum energy methods to a continuous wave 
quadrature Doppler radar for real-time occupancy sensing in indoor environments. Lurz et al.17 emulate human 
respiration using a metallic plate mounted on a linear stage and demonstrate a human subject at null point still 
can be detected with a single channel low-power 24 GHz receiver. The work in18 exhibits the feasibility of utiliz-
ing Doppler radar sensor (RFBeam K-LC3) and Infrared Thermal Array Sensors with a Deep Neural Network 
(DNN) model to build an effective occupancy detection framework. In19,20, ranging Doppler radar systems using 
60 GHz and 24 GHz Infineon Radar chip sets (BGT60TR24B and BGT24MTR11, respectively) are used to detect 
the occupants’ presence and count occupant number for up to 3 occupants in a typical office environment. In 
addition to active radar systems, passive radar receivers have been used for occupancy detection and activity 
recognition by harvesting RF signals in the environment. Examples include a Passive Wi- Fi Radar (PWR) tech-
nique for occupancy detection and people counting in21,22 and a Passive IoT Radar (PIoTR) system that uses RF 
transmissions from IoT devices for human monitoring in23.

While the progress in works cited above is notable, these works have some limitations, such as short experi-
mental duration (up to 60 s for16–20), the inferior sensitivity of passive radar systems for detecting stationary 
persons21,22,23, and detection of stationary persons only at 2–3 m from the sensor16,17. The True Presence Occu-
pancy Detection Sensor (TruePODS™) presented in this paper is a Doppler radar-sensor that detects physiological 
motion to indicate whether a space is occupied or vacant24. With additional algorithms, this sensor can be used 
to provide occupant vital signs over time, as well as occupant count. It has been developed by a start-up company 
Adnoviv in collaboration with the University of Hawaii building on previously published work24–28. Compared 
with previous works published by the authors and the work demonstrated by other groups mentioned above, 
this work presents the first fully integrated prototype using simple, low-cost single channel radar that has been 
validated under realistic conditions (Fig. 1a).

The TruePODS was tested in the LESA Smart Conference Room, shown in Fig. 1a, and the data was analyzed 
to determine accuracy of occupancy/vacancy estimation with different algorithms, and to assess accuracy of 
estimated heart and respiratory rates. Occupancy and vacancy were accurately differentiated over 93% of the 
time, using two-minute or shorter data segments, and using both wall and ceiling-mounted configurations, select-
ing challenging data sets where occupants were mostly stationary. Heart and respiratory rates were accurately 
detected in all seats in the conference room with a single ceiling-mounted sensor.

Method and materials
TruePODS occupancy and vital signs sensor.  The TruePODS radar transceiver transmits an electro-
magnetic signal. When this signal hits objects in the room, it reflects with a phase shift that is proportional to 
the object’s distance, and over time, this phase shift is proportional to the objects’ motion. If a stationary person 
is present, the phase shift of the reflected signal is proportional to the tiny movement of the chest surface due to 
cardiorespiratory activity. This reflected signal is received by the radar, where it is downconverted so the phase 
of the signal can be demodulated. This phase signal is proportional to the physiological motion, which is then 
used with a detection algorithm to determine occupancy/vacancy, and an estimation algorithm to determine 
heart and respiratory rates29.

The TruePODS is a custom homodyne Doppler radar, with a block diagram shown in Fig. 1b. The hardware 
includes a programmable microcontroller with a built-in 2.4-GHz ISM band radio, two RF power splitters and 
a power amplifier, a single custom airgap patch antenna with a 60° beamwidth that is used for both transmitting 
and receiving, and signal-conditioning electronics that filter and amplify the baseband signal prior to digitization. 
A continuous wave radio signal in the 2.4 GHz ISM band is generated by the RF signal source on the program-
mable microcontroller. This RF signal is split in two with a power splitter so it can be used for both transmission 
and downconversion. The transmit portion of the signal is amplified and fed to the antenna through other power 
splitter, and the local oscillator signal for downconversion is fed to the RF mixer’s local oscillator input port. The 
signal is transmitted by the antenna, and the reflected signal is received by the same antenna. The power splitter 
directs the received signal to the mixer’s RF input port. The mixer downconverts the signal to baseband, and its 
output is a baseband signal proportional to the motion of the objects in the room. This baseband signal is ampli-
fied and filtered before being digitized. Although the processor can perform real-time processing, in this work 
the digitized baseband data was stored on an SD card for subsequent processing and analysis. The radio can be 
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programmed to operate between 2.4 and 2.5 GHz, and in this work it was programmed to operate at 2.4 GHz, 
and the transmit power at the antenna port was about 16 dBm (40 mW). The radio and antenna were placed 
inside a plastic enclosure that measures 12 cm × 12 cm × 10 cm, as shown in Fig. 1a. The sensor was powered 
via wall power with a USB adapter.

Validation testing in smart conference room testbed.  TruePODS modules have been tested in the 
Smart Conference Room testbed in the LESA (Light Enabled Systems & Applications) Center at Rensselaer Poly-
technic Institute. The Smart Conference Room (SCR), shown in Fig. 1a, has dimensions of 3.4 m × 8.5 m, seats up 
to 23 people, has occupancy and lighting sensors, and color changeable lighting30. Infrared time-of-flight sensors 
detect occupant location and pose (sitting, falling, standing). A mesh network of color sensors provides coarse 
occupancy sensing and measures reflected sunlight and solar heat flux31. Over 27 h of data has been collected 
with the TruePODS system in the SCR, covering a number of variables, which are outlined in Table 1. Data 
was collected with an empty room on each day that the sensor was tested. Data has been collected with a single 
person sitting quietly in all the different seats at the conference table and in the corners of the room, and with a 
single person moving with fine motion (typing, fidgeting, or swiping on a phone), and with larger motion such 
as walking or gesticulating. Data has also been collected with 2–10 people sitting quietly, with fine motion, and 
with large motion in different positions in the room. Data has been collected in controlled settings and during 
regular meetings that occur in the conference room. These measurements involved human subjects, and as such 
were performed in accordance with a protocol approved by the Rensselaer Polytechnic Institute Internal Review 
Board (protocol ID#2023). All research was performed in accordance with the protocol and with relevant guide-
lines and regulations, and all test subjects gave informed consent.

Figure 1.   (a) The 3.4 m × 8.5 m LESA Smart Conference Room, with the TruePODS sensor mounted above the 
window on the wall—this is the “wall-mounted” configuration. The TruePODS sensor enclosure dimensions are 
12 cm × 12 cm × 10 cm. Photographs originally taken by Michelle Simkulet, and modified with permission by the 
authors. (b) Block diagram of the TruePODS radar transceiver. An RF signal is generated on the programmable 
microcontroller and split into two signals for transmitting and downconversion. Recorded data is output to an 
SD card for further analysis.

Table 1.   Variables in Smart Conference Room data collection, with the amount of time each option was used 
rounded to the nearest quarter hour.

Mounting
Wall mounting Ceiling mounting

4.25 h 22.75 h

Occupancy
Empty Single occupant Multiple occupants

9.25 h 6.75 h 11 h

Reference
Video Time of flight

22 h 6.5 h

Vital signs
Breathing normally, HR not noted Breathing in Sync HR recorded

22 h 2.5 h 2.5 h
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Occupancy/vacancy detection algorithms.  The data obtained with an empty room and with primarily 
stationary occupants were analyzed to evaluate the detection accuracy of the TruePODS sensor. The TruePODS 
can easily discern the signals produced by human locomotion and fidgeting, so the algorithm testing focused on 
the most challenging cases of stationary occupants, where the only motion is breathing.

To determine the occupancy status of the conference room with the data collected via TruePODS, algorithms 
based on Riemann Integral (RI) and Band Power (BP) were developed in MATLAB32–34. In both the RI and BP 
algorithms, a sliding window method was used, i.e., the data in each recorded file were divided into continuous 
windows of a specified length. Each window contains samples overlapped with the previous window. The sig-
nals detected and recorded by TruePODS contain DC offsets that are induced by reflections from static objects; 
these DC offsets are removed by subtracting the mean of the raw data in each window from each sample. Since 
respiration signals are below 1 Hz, a low-pass filter is also employed in each window to remove high-frequency 
noise. After the signals are windowed, filtered, and have their DC offset removed, these conditioned signals are 
analyzed with either the RI or the BP method, as described below.

RI method.  In each window, the RI algorithm integrates all the samples and compares the result with a preset 
threshold. The following equation shows the calculation of RI in the k-th sliding window of the conditioned 
radar signal x(t) as:

where N denotes the total number of samples in each window. The RI in each window is compared to a pre-set 
threshold to determine occupancy; if the RI is above the threshold, the room is considered occupied, and if the 
RI is below the threshold, the room is considered vacant. The RI threshold is calculated from data recorded in 
an empty room as the average value plus 1.5 times the standard deviation.

BP method.  In each window, the BP algorithm calculates the average power in a specified frequency band cor-
responding to a typical range of respiration rates and compares that value to a pre-set threshold. In this work, 
the frequency band used was 0.1–0.3 Hz, corresponding to a wide range of adult resting respiration rates of 
6–18 breaths per minute. The average power in the specified respiratory frequency range was determined by the 
Matlab bandpower function, which applies a modified periodogram to the signal. The BP threshold is calculated 
as the average power plus 1.5 times the standard deviation from data recorded when the room is empty. If the 
BP value exceeds this threshold, the room is considered occupied, and if it is below the threshold, the room is 
considered vacant.

Vital signs estimation.  In this analysis, respiratory and heart rates were determined by segmenting the 
signal to remove sections with high amplitude (indicating large motion), and then analyzing segments that 
were 10–30 s long. This segment is long enough to typically include at least three respiration cycles. To estimate 
respiration rate, the segmented signals were filtered with a Finite Impulse Response (FIR) bandpass filter with 
corner frequencies at 0.05 Hz and 1 Hz to remove out-of-band noise and DC offsets. To estimate heart rate, the 
segmented signals were filtered with a FIR bandpass filter with corner frequencies at 0.8 Hz and 3 Hz to remove 
respiration and out-of-band noise, while still digitizing the fundamental and the second harmonic of the heart 
signal. Adult resting heart rates are typically 50–90 beats per minute, or 0.83–1.5 Hz, so the second harmonics 
are at 1.67–3 Hz. The Fast Fourier Transform (FFT) was applied to the filtered signals to generate the signals’ 
frequency spectra. The frequency associated with the maximum amplitude of the FFT was converted to breaths 
per minute to estimate the respiratory rate and to beats per minute to estimate the heart rate. This process is 
represented with experimental data in Fig. 4.

To determine the accuracy of vital signs estimation, in some measurements, occupants were instructed to 
breathe at a specific frequency: 8, 10, 12, 15, or 18 breaths/min, and heart rate was periodically recorded from 
a Fitbit Charge 4 Smart Watch.

Results
Occupancy/vacancy sensing.  The detection accuracy of the RI and BP methods was quantified as the 
amount of time vacancy or occupancy was correctly detected by TruePODS using each method divided by the 
total time measured, converted to a percentage. The higher the percentage, the more accurate the method is. The 
true vacant or occupied time was determined by the video reference data for most measurements except for the 
cases where video was not recorded (to preserve privacy during meetings) and the LESA infrared time-of-flight 
sensor data were used for reference.

With the 100 Hz sampling rate of TruePODS, to achieve 0.1 Hz resolution, a minimum window size of 10 s 
or 1000 samples is required for the BP calculation. However, when analyzing the data, we found the selection 
of the window size impacts the accuracy of the method. This may be because respiration is not a constant activ-
ity—it varies with time—and a longer window will capture more variation. After studying the impact of various 
window sizes on the detection accuracy of occupancy status for both BP and RI methods, a 1-min window with 
30 s overlap for wall-mounted TruePODS and 2-min window with 1-min overlap for ceiling mounted TruePODS 
were determined to produce the best accuracy when using BP method, while 1-min window with 30 s overlap 
was optimum for both installation configurations when using the RI method.

(1)RI(k) =

N−1
∑

n=0

|xk(n)|
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Table 2 summarizes the detection accuracies of wall-mounted and ceiling-mounted TruePODS sensors using 
BP and RI methods to detect and determine the vacancy/occupancy of the room. To evaluate and assess the 
accuracy of TruePODS and the algorithms, data were collected for a various length of time over several days. 
The day-by-day accuracy of TruePODS was determined by comparing the detection results with the video or 
infrared reference as described above. The overall accuracy was determined by weighted mean of the determined 
accuracies as shown by following equation:

where n is the number of testing days, wi is the testing time for each day, xi is the accuracy for each day. The 
standard variation of the weighted mean accuracy was calculated in Eq. (3) as follows:

where n is the number of testing days, wi is the testing time for each day, xi is the accuracy for each day, x is the 
weight mean accuracy determined by Eq. (2).

The results in Table 2 show that the TruePODS sensor using the BP method can achieve day-by-day accura-
cies of above 87% and about 94% of overall accuracy with variation of about 3% when occupants are primarily 
sedentary, or the room is vacant (accuracy would be higher were data sets with high numbers of occupants and 
primarily moving occupants included). This is slightly better than the RI method, which has day-by-day accura-
cies of above 85% and about 92% of overall accuracy with variation of about 4%. The BP method is likely more 
accurate because it focuses on the power in the respiration frequency band, and most noise or interference is 
outside this band, while noise or interference can still trigger the RI threshold. This is illustrated in Fig. 2, which 
includes data collected when the smart conference room was empty. Damped oscillations appear in the first 4 min 
of the radar signal detected by the TruePODS. Since the oscillations of the data are not within the respiration 
frequency range, BP method provides 95% detection accuracy, much better than RI method which reports the 
room as occupied for almost half of duration of this data set.

Figure 3 shows an example of detection results for the ceiling-mounted TruePODS sensor, using the two 
methods described above to determine the occupancy when a person lay under the table in the Smart Confer-
ence Room. This is a particularly challenging case where the subject is not optically visible from the sensor 
and cannot be detected by infrared or ultrasonic occupancy sensors, but can potentially be detected with the 
TruePODS. The video reference showed that the occupant got under the table first, then adjusted their posture 
and fidgeted for a few minutes, and finally lay down on the floor and kept this still posture for the rest of this 
testing period. These motions were clearly detected by the TruePODS sensor, as shown in Fig. 3a where the DC-
removed and filtered radar signals are shown. The first 5 min of the data demonstrates signals of large and small 
amplitude which indicate locomotion and fidgeting, which can be discerned by the TruePODS sensor easily. 
The rest of the data are small amplitude periodic signals that indicate detection of respiratory motion while the 
occupant was lying completely still. Figure 3b shows that the calculated power in the specified frequency band 
of 0.1–0.3 Hz for each window (blue dots) is above the preset BP threshold (red line). Figure 3c shows that the 
calculated RI for each window (blue dots) are above the preset RI threshold (red line). In this testing, a 2-min 
window was updated each minute (except the first window was 2 min after the test started to fill the window). 
Both BP and RI methods determined the room is occupied when the occupant was under the table with 100% 
detection accuracy compared with the video reference, while the time-of-flight infrared sensor could not detect 
the occupant under the table.

(2)OverallAccuracy(%) =

∑n
i=1 xi × wi
∑n

i=1wi
,

(3)STD =

√

∑n
i=1wi(xi − x)2

n−1
n

∑n
i=1wi

,

Table 2.   Detection accuracy summary of wall-mounted and ceiling-mounted TruePODS sensor.

Wall mounted TruePODS Ceiling mounted TruePODS

Date Test time (min) BP accuracy (%) RI accuracy (%) Date Test time (min) BP accuracy (%) RI accuracy (%)

6/11/21 35 94.29 92.86 7/23/21 65 95.38 97.62

6/14/21 28 98.21 92.86 7/29/21 51 92.16 93.00

6/17/21 45 90.00 92.22 8/3/21 56 89.29 86.96

6/18/21 36 94.44 84.72 8/9/21 52 94.23 89.11

6/21/21 14 96.43 85.71 8/28/21 16 93.75 88.24

6/22/21 13 92.31 92.31 8/30/21 16 87.50 87.50

6/28/21 23 91.30 91.30 9/3/21 51 98.04 97.12

7/9/21 64 96.09 96.09

Overall 258 94.19 91.86 Overall 307 93.49 92.32

STD – 2.64 3.74 – 3.12 4.37
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Vital signs estimation.  Vital signs estimation was evaluated for data in which a single occupant was sitting 
still and a respiratory rate and/or heart rate was known. For respiratory rate, the known rate was obtained by 
instructing the occupant to breathe at a consistent rate (selected by the subject) in accordance with a metronome. 
For heart rate, the known rate was obtained by recording the heart rate displayed on a smart watch every few 
minutes. If the respiratory rate obtained was within 1 breath per minute of the metronome rate, it was considered 
to be accurately detected. If there was no respiration reference for a location that had a TruePODS measurement, 
and the respiration signal was clearly visible and provided a rate in the typical respiration band, it was also con-
sidered to be detected. If the heart rate obtained was between the highest and lowest heart rates recorded during 
the measurement period, it was considered to be accurately detected.

In the initial experiments, the TruePODS sensor was mounted near the top of the wall, as shown in Fig. 1a. 
An occupant was breathing in accordance with a metronome at a selection of seats around the table, and in 
each corner of the room. For the wall-mounted sensor, respiratory rate was detected in every seat at the table 

Figure 2.   Vacancy detection of wall mounted TruePODS sensor for an empty room, using 1-min sliding-
window with 30 s overlapping: (a) filtered radar signals after static-background being removed still contain a lot 
of noise outside the respiration band; (b) most of the noise is correctly discerned by BP method, which shows 
the room as vacant (blue dots below the red line indicate vacancy); (c) RI method cannot discern the large 
amplitude signal in the empty room potentially caused by vibration after plugging in the sensor and it reports 
false occupied signals for the first 4 min (where blue dots are above the red line) before correctly indicating 
vacancy (when blue dots drop below the red line).
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at which it was measured, and in three corners of the room, including the two far corners which were over 9 m 
from the sensor. In the corner where respiratory rate was not detected, presence was detected from fine motion. 
Heart rates were not recorded while the TruePODS sensor was wall-mounted, so heart rate detection was not 
analyzed for the wall-mounted scenario.

In the next set of experiments, the sensor was mounted on the ceiling in the center of the room, above the 
table. For these experiments, an occupant sat at all seats at the table and stood in each corner of the room, and in 
various experiments, breathing was in accordance with a metronome and heart rates were periodically recorded 
from a smart watch. With the ceiling-mounted sensor, respiratory rates and heart rates were accurately detected 
in all positions that were tested. The corners were 5 m from the sensor, which was located on the ceiling in the 
center of the room.

These data were further analyzed to quantify the accuracy of heart and respiratory rates. For respiratory rate 
analysis, the difference between the TruePODS rate and rate at which the occupant was instructed to breathe 
was calculated, and the percentage of the reference rate was also calculated. Note that occupants do not always 
perfectly breathe at the instructed rate, even while using a metronome. In Table 3, the mean and standard devia-
tion of the difference is shown for the 6 wall-mounted respiration measurements and for the 21 ceiling-mounted 

Figure 3.   Ceiling Mounted TruePODS sensor detects a person hiding under table: (a) filtered radar signals 
after static-background being removed; (b) band power results (blue dots) are consistently above the band 
power threshold (red line), so occupancy was accurately detected 100% of the time using the BP algorithm, 
(c) Riemann Integral results (blue dots) are consistently above the RI threshold (red line), so occupancy was 
accurately detected 100% of the time using the RI algorithm.
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respiration rate measurements. The mean difference was 1.3% of the instructed rate for wall-mounted and 3% of 
the instructed rate for ceiling mounted, with standard deviations of 1.5% and 12.6%, respectively.

The difference between the TruePODS heart rate and the reference heart rate was also measured. This analysis 
considers the difference between the heart rates measured by the TruePODS, and the closest in time measure-
ment of heart rate recorded manually by the occupant from the Fitbit Charge 4 smart watch. Data is divided 
into 3 categories based on how the reference was recorded, as shown in Table 4. The first data set is where the 
occupant sat in every seat at the table for 2 min per seat and recorded the smart watch heart rate in the middle of 
the 2-min interval. The mean difference was 0.1 beats/min, and the standard deviation of the difference was 4.1 
beats/min. The second set is data where the occupant sat at a handful of seats at the table and stood in 2 corners 
for 5 min per location, recording the smart watch heart rate at the beginning, middle, and end of the time in that 
location. The third data set had the heart rate was recorded every 5 min, and the occupant changed seats every 
2 min. The mean difference in this dataset was − 2.4 beats/min and the standard deviation of the difference was 
9.6 beats/min. These differences that are within 10% are similar to the accuracy numbers of the Fitbit Charge 4 
when compared with a Holter monitor35.

A sample of heart and respiration signals that were detected from occupants in different locations in the smart 
conference room, while the TruePODS sensor is mounted on the ceiling in the center of the room, are shown 
in Fig. 4. In all three shown cases, the heart rate detected via TruePODS closely matches that recorded by the 
occupant from a smart watch and the respiratory rate estimated by the TruePODS matches the rate which the 
occupant chose and maintained with the help of a metronome. At the top, still images of the room during the 
measurements are shown, with the sensor outlined with a red box, and the occupant identified with a red circle 
if in the image or pointed to with a red arrow if out of the image. On the left the occupant is at the far corner of 
the table. In the center the occupant is in the near right corner of the room, and on the right the occupant is in 
the near left corner of the room. Below the still images are 30-s samples of signals from each location filtered to 
identify respiration with a 4 Hz lowpass filter, shown in the time domain and frequency domain. At the bottom, 
10-s samples of signals from each location, filtered to identify the heartbeats with a 1–6 Hz bandpass filter, are 
shown in the time domain and frequency domain.

At left, the occupant was attempting to breathe at 8 breaths per minute and was found to be breathing at 
0.133 Hz, or 7.98 breaths/minute. Their heart rate recorded from a smart watch was 76 bpm at 0 min and 67 bpm 
at 5 min; the rate measured with the TruePODS was 1.266 Hz, or 76 bpm. At center, the occupant was attempting 
to breathe at 10 breaths per minute, and the recorded respiratory rate was 0.16 Hz, or 9.8 breaths/minute. Their 
heart rate recorded from a smart watch was 83 bpm at 0 min and 91 bpm at 5 min; the rate measured with the 
TruePODS was 1.40 Hz or 84 bpm. At right, the occupant was attempting to breathe at 10 breaths per minute, 
and their respiration was recorded at 0.16 Hz, or 9.6 breaths/min. Their heart rate recorded from a smart watch 
was 83 bpm at 0 min and 91 bpm at 5 min; the rate measured with the TruePODS was 1.44 Hz, or 86 bpm.

Discussion
The extensive testing has provided data to validate high accuracy of occupancy/vacancy detection with the 
TruePODS in the most challenging scenario (stationary occupants vs empty room) and successful respiratory 
and heart rate detection for occupants in natural positions and orientations, with a single sensor, throughout 
a 3.4 × 8.5 m conference room. When the sensor was ceiling-mounted, presence was detected from occupants 
that were completely stationary (other than respiratory motion) in all locations in the room, including under the 
table, with accuracy of 93% using short 1–2 min windows. Respiratory rates were detectable in all room loca-
tions, and heart rate was detectable when the occupant sat at each seat at the conference table and four corners 

Table 3.   Analysis of respiratory rate estimation accuracy.

Mounting Number of measurements Respiratory rate: difference between metronome rate and rate measured with TruePODS

Mean of difference(resp/min)
Std deviation of difference (resp/
min) Mean % difference (%) Std. deviation of % difference (%)

Wall 6 0.2 0.2 1.3 1.5

Ceiling 21 0.2 1.4 3.0 12.6

Table 4.   Analysis of heart rate estimation accuracy.

Reference measure 
frequency Number of measurements

Heart rate: difference between smart watch rate and rate measured with TruePODS

Mean of difference (beats/
min)

Std deviation of difference 
(beats/min) Mean % difference (%)

Std. deviation of % 
difference (%)

Mid-2 min measurement 18 (one per seat) 0.1 4.1 0 6

3 times per 5 min measure-
ment 6 − 7.5 5.1 − 11 8

Periodically (every 5 min, 
with seat changes every 
2 min)

24 (includes many seats and 
all 4 corners) − 2.4 9.6 − 4 12
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Figure 4.   Physiological data examples from an occupant at three locations: the far corner of the table, and 
the two near corners; each column shows a different location. The top is a picture of the room, with the sensor 
outlined with a red box, and the occupant location circled if in the image, or an arrow to the location if out of 
the image. Below the picture is a sample of a signal filtered for respiratory motion: the top is a 30-s segment 
in the time domain, and below that is the Fast Fourier Transform (FFT) of the signal, showing it in frequency 
domain, with the rate at which the subject was instructed to breathe indicated with an orange line. At the 
bottom there are samples of signals filtered for heartbeat: the top is a 10-s segment in the time domain, and 
below that is the FFT of this signal, showing it in the frequency domain, with the range of rates recorded from a 
smart watch indicated by an orange box. (Photographs originally taken by Michelle Simkulet, and modified with 
permission by the authors.).
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of the room. This is the first demonstration of a highly accurate occupancy/vacancy sensor that also provides 
physiological parameters.

This work shows greater than 93% detection of occupancy of largely stationary occupants by detecting 
breathing signals with Doppler radar. This approach provides a higher accuracy for stationary occupants than 
low-cost occupancy sensors based on passive infrared and ultrasound technology. Doppler radar sensors are 
straightforward to install, without concern for air vent location like ultrasonic sensors. Doppler radar sensors 
preserve privacy unlike camera-based sensors. Only Doppler radar technology can provide occupant vital signs 
in addition to occupancy data.

A limitation of Doppler radar for vital signs measurement is that motion from large or small body movements 
can obscure respiration and heart motion signals. This approach can, however, provide periodic snapshots of 
vital signs of occupants unobtrusively, without requiring their active participation. With additional algorithms, 
this sensor can be used to provide occupant vital signs over time, as well as occupant count36.

Another limitation of this work is that vital signs were only measured when the room had a single occupant. 
The authors have detected vital signs of multiple occupants in a room in other works28, and have plans to extend 
that work further. While addressing comfort of multiple occupants is a challenge, approaches include personal 
comfort systems such as desk fans, cooled chairs, footwarmers, and heated chairs37,38,39 that feed into HVAC 
predictive models40 to optimize both occupant comfort and energy efficiency.

Many occupants worry about privacy loss from ubiquitous sensors that measure occupancy and vital signs. 
The TruePODS sensor does not collect any personally identifiable information and cannot be used to link vital 
signs or locations to an individual.

During the COVID-19 pandemic, it became apparent that indoor environments are critical to wellness or 
illness. Because most people spend the vast majority of their time indoors, indoor environmental quality can 
have a significant impact on health. Air quality, lighting, temperature, humidity, water quality, and noise can 
all affect the well-being of a building’s occupants. While these parameters can be sensed directly, sensing the 
impact on humans has been challenging to date. Future work will include finding correlations between heart 
rates and respiratory rates and changes in these values with occupant wellness and comfort, so the vital signs 
can be used to proactively make positive changes in the environment to benefit occupants without requiring 
their active participation.

This work includes the first extensive data collection for a Doppler-radar based occupancy sensing and vital 
signs detection system in a realistic office environment. Hours of data with different occupants in different loca-
tions and positions were tested. Occupancy and vacancy were accurately differentiated over 93% of the time 
using both wall and ceiling-mounted configurations, in challenging circumstances where occupants were mostly 
stationary. Heart and respiratory rates were accurately detected in all seats in the conference room with a single 
ceiling-mounted sensor.

Data availability
The datasets generated and analyzed during this work and code developed in this work can be made available 
on reasonable request to the corresponding author.
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