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Abstract

Storm surge flooding caused by tropical cyclones is a devastating threat to coastal regions,
and this threat is growing due to sea-level rise (SLR). Therefore, accurate and rapid projection of
the storm surge hazard is critical for coastal communities. This study focuses on developing a new
framework that can rapidly predict storm surges under SLR scenarios for any random synthetic
storms of interest and assign a probability to its likelihood. The framework leverages the Joint
Probability Method with Response Surfaces (JPM-RS) for probabilistic hazard characterization, a
storm surge machine learning model, and a SLR model. The JPM probabilities are based on
historical tropical cyclone track observations. The storm surge machine learning model was trained
based on high-fidelity storm surge simulations provided by the U.S. Army Corps of Engineers
(USACE). The SLR was considered by adding the product of the normalized nonlinearity, arising
from surge-SLR interaction, and the sea-level change from 1992 to the target year, where
nonlinearities are based on high-fidelity storm surge simulations and subsequent analysis by
USACE. In this study, this framework was applied to the Chesapeake Bay region of the U.S. and
used to estimate the SLR-adjusted probabilistic tropical cyclone flood hazard in two areas: One is
an urban Virginia site, and the other is a rural Maryland site. This new framework has the potential
to aid in reducing future coastal storm risks in coastal communities by providing robust and rapid
hazard assessment that accounts for future sea-level rise.

Keywords Probabilistic hazard assessment - Joint probability method - Machine learning - Sea
level rise - Storm Surge

Abbreviations

ADCIRC Advanced CIRCulation model

AEP Annual Exceedance Probability

CNN Convolutional Neural Network

HURDAT2 HURricane DATa 2" generation

JPM Joint Probability Method

JPM-0OS Joint Probability with Optimal Sampling
JPM-RS Joint Probability Method with Response Surfaces
MBE Mean Bias Error

ML Machine Learning

MSL Mean Sea Level

NACCS North Atlantic Comprehensive Coastal Study



NOAA National Oceanographic and Atmospheric Administration

PBL Planetary Boundary Layer numerical model
PCA Principal Component Analysis

RMSE Root Mean Square Error

SLR Sea Level Rise

SRR Storm Recurrence Rate

SWAN Simulating Waves Nearshore model

TC Tropical Cyclone

USACE U.S. Army Corps of Engineers

1. Introduction

Storm surges due to tropical cyclones (TCs) are a major threat to coastal communities, and
more frequent intense storms (Emanuel 2013; Knutson et al. 2019) are projected to occur due to
global warming impacts (Sweet et al. 2017). In the United States, around 2,500 people lost their
lives from Atlantic tropical cyclones from 1963 to 2012, and storm surges were responsible for
about 50% of these deaths (Rappaport 2014). Nonetheless, millions of people still live in coastal
regions, and more people are moving to the coasts every year.

To reduce storm surge damage, a robust probabilistic storm surge hazard assessment is
important. There are several statistical approaches to assessing storm surges (Resio et al. 2017).
The joint probability method considers all plausible combinations of TC parameters and has been
widely adopted in the United States for probabilistic tropical cyclone surge characterization.
However, one of the key challenges of the JPM is the computational burden of the physics-based
numerical simulations to estimate storm surges. Thus, many studies used the Joint Probability
Method with Optimal Sampling (JPM-OS) to reduce the number of TCs required for populating
the parameter space by optimizing the sampling of the storm parameters (Resio et al. 2007; Toro
et al. 2008; Vickery and Blanton 2008).

In recent years, machine learning models have been developed in order to predict storm
surges rapidly with relatively high accuracy, compared to the physics-based numerical models
(e.g., Al Kajbaf and Bensi 2020; Kyprioti et al. 2021; Lee et al. 2021). Although these machine
learning models have paved the way for the direct application of JPM in storm surge hazard
assessment, there are still few related studies.

Using the advantage of the ML model , we adopt the Joint Probability Method (JPM, Myers,
1975) with Response Surface (JPM-RS) for its simultaneous ability to capture the natural structure
present in storm surge response (Resio et al. 2017) and to provide a statistically stable hazard
estimate (e.g., Irish et al. 2009, Irish et al. 2011).

This study proposes a framework that provides a robust and rapid SLR-adjusted
probabilistic tropical cyclone flood hazard assessment. The basic function of the framework
consists of several processes, such as generating many possible combinations of TCs parameters,
determining each combination’s probability, and estimating each combination’s flood elevation
for the SLR scenarios of interest. From this information, the probabilistic flood hazard is estimated
over a range of annual exceedance probabilities. The following sections first present the datasets



and analysis of each component of the framework, then present the case study results of the
framework.

2. Study Area and Data

The Chesapeake Bay is the largest estuary on the East Coast, US, and is in the Mid-Atlantic
coastal region. The Chesapeake Bay is adjacent to several high-density metropolitan areas,
industrial areas, and residential areas with complex transportation networks (Sanchez 2012). Over
the past 20 years, the Chesapeake Bay has been impacted by tropical cyclones (Garzon et al. 2018),
and more than 20 hurricanes and tropical cyclones have passed the Chesapeake Bay (Li et al.,
2020). Significant hurricanes impacting the region in recent decades include: (1) Hurricanes Isabel
(2003), (2) Irene (2011), and (3) Sandy (2012) (Callahan et al. 2021). For example, the estimated
total economic loss from Hurricane Isabel (2003) was approximately $3.37 billion, and Isabel was
directly responsible for 17 deaths (NOAA 2004). In addition, the Chesapeake Bay is vulnerable
since the sea level rise leads to more extreme coastal hazards in this region (Hallegatte et al. 2013;
2014). The sea level of the Chesapeake Bay increased by 3-4 mm per year over the twentieth
century; This is about two times larger than the global SLR average (Zervas 2001; 2009). Herein,
we used two NOAA tide gauge stations to show the future SLR impacts. The Sewells Point (Station
ID: 8638610) in Virginia is used to represent the urban Virginia site, and it sits in the city of
Norfolk in Virginia (Loftis 2018). The Cambridge (Station ID: 8571892) is used to represent the
rural Maryland site since Cambridge is located relatively rural area in Maryland compared to
Sewells Point.

To develop the JPM, we used historical TC datasets and the historical TCs datasets
collected from the National Oceanographic and Atmospheric Administration (NOAA) National
Hurricane Center HURDAT2 (HURricane DATa 2™ generation) for the 1938 — 2013 period
(Landsea et al. 2015). We also used the marginal distributions of TC parameters which are
analyzed by the USACE based on the historical TC datasets from NOAA (Nadal-Caraballo et al.
2015). The ML model (Lee et al. 2021) was trained based on the U.S. Army Corps of Engineers’
North Atlantic Comprehensive Coastal Study (NACCS) synthetic tropical cyclone surge database
(Figure 1, Cialone et al. 2015). The NACCS database contains high-fidelity storm surge
simulations for 1,031 synthetic tropical cyclones, simulated using ADCIRC coupled with SWAN
(Luettich et al. 1992; Dietrich et al. 2011) with a PBL model for wind/pressure forcing (Thompson
and Cardone 1996); where we made use of 3,111 model save points within the Chesapeake Bay
study region. To demonstrate the application of sea level rise in the framework, we used the NOAA
(2017) intermediate sea-level rise projections. The global mean sea level rise range for 2100 is
discretized by 0.5m increments and aligned with emissions-based, conditional probabilistic
storylines and global model projects. The intermediate scenario corresponds to global mean sea
level rise of 1.0m (Sweet et al. 2017). In this study, the intermediate sea level rise scenarios are
applied as sea level change values from the base year to the year of interest.
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Figure 1 Study area: The left map represents the Chesapeake Bay, Maryland and Virginia, USA and the two study stations. In the
left map, the black dots represent the NACCS save point. The red triangle represents Cambridge, Maryland and the yellow triangle
represents Sewells Pt, Virginia. In the right map, the grey lines are the storm tracks used in the U.S. Army Corps NACCS study

(Source: Nadal-Caraballo et al., 2015).

3. Methodology

The framework consists of three components: (1)
JPM, (2) ML model, and (3) SLR model (Figure 2). First, the
JPM creates the six TC parameter time series and
probabilities of each TC. Secondly, the ML model predicts
the peak storm surges in the study areas. And lastly, the SLR
model applies the impacts of the sea-level change under
different future SLR scenarios.

3.1 Joint Probability Method with Response Surfaces (JPM-
RS)

The JPM is a method to estimate flood elevation due
to storm surges (Divoky et al. 2007). The JPM attempts to
considers the range of possible combinations of TC
parameters at the coastal reference line and it widely used in
the United States to estimate the annual exceedance
probabilities of storm surges (Eq. 3). However, computational
time using high-fidelity surge model precludes simulation of
all storm possibilities represented within the JPM parameter
space (Toro et al. 2010). For this reason, the joint probability
method with optimal sampling (JPM-OS) has been widely
applied to represent storm surges within the parameter
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space based on a small number of simulated storms. A ML model was developed in 2021 (Lee et
al. 2021), and the ML model can rapidly predict the pick storm surges. By taking advantage of the
ML model, we applied the JPM to create the TC parameter in time-series and probabilities of
synthetic TCs. In practice, two approaches have been commonly used to minimize the
computational burden when the JPM for tropical cyclone hazard assessment: (1) surface response
function, and (2) Bayesian quadrature. The major difference between those two approaches is that
the surface response function approach creates continuous surfaces, and the Bayesian quadrature
approach optimizes a set of probability masses. Another difference between those two approaches
is that the surface response function can be interpolated or extrapolated on a fine scale but the
Bayesian quadrature approach cannot (Resio et al. 2017). Herein, we used a response surface
approach (JPM-RS) to specify surge within the parameters space. In JPM-RS, six parameters are
considered (latitude and longitude at the landfall reference location, heading direction, central
pressure, radius of maximum winds, and translational speed). The response surface is derived
using a machine-learning model developed in 2021 (Lee et al. 2021). Using the ML model, we
discretized the JPM TC parameter space into 10,000 unique synthetic storm track combinations,
then estimated storm surge for each of these 10,000 unique storms using the ML model.

To calculate the probability of synthetic tropical cyclones, we used the SRR and discrete weights
of four TC marginal distributions (Eq. 1).

du(e) du(p) dU(R) du(v)
Py = Ay f £(0) dO x f f(p) dp x f f(R) dR x f f(V) dv (1)
dL(e) dL(p) dL(R) dL(V)

Where: pr=probability of synthetic tropical cyclones, A,=storm recurrence rate at the best reference
location, dL=lower value of discretization of TC marginal distribution, dU=upper value of
discretization of TC marginal distribution.

3.1.1 Storm Recurrence Rate (SRR)

Statistical computation of storm recurrence rate can be estimated using several different
approaches. In this study, we applied a circular window capture zone with a Gaussian kernel
function (Chouinard and Liu 1997) based on the historical TCs in the HURDAT?2 database with
Ap > 28 hPa within the 19382013 period (Egs. 2 & 3).

1 n
1 1 /d;\?
w(d;) = Vanha exp [~7 <E) ] )

Where A = SRR in storms/yr/km, T: record length in year (1938-2013), w(di)=distance-adjusted
weights from the Gaussian probability density function (km), di=distance from location of
interest to a storm track point (km), hg=optimal kernel size (km). In applying Egs. 2 and 3 the
HURDAT database, the storm recurrence rate (SRR) at the reference location is determined to be
0.000279 storms/yr/km (0.1116 storms/yr).



We chose the circular window capture zone as follows. The coastal reference line
represents the coastline where the TCs make landfall. The NACCS-defined coastal reference line
is located 250 km from the coastal reference line. (Nadal-Caraballo et al. 2015). The coastal
reference line consists of with coastal reference points (Figure 3). In this study, we chose one point
of the coastal reference point as the best reference point (Latitude: 37.9208°N and Longitude:
75.3853°W) that has the minimum distance from the points of the coastal reference point to any
save points in the study area. Using Eqgs. 2 and 3, the storm recurrence rate (SRR) at the reference
location was 0.000279 storms/yr/km (0.1116 storms/yr). We used a 200 km capture zone size,
which covers the Chesapeake Bay region, and the maximum distance from the reference point to
the furthest save point in the Chesapeake Bay region was 198 km (Figure 3). Then we generated
the synthetic TCs passing through the capture zone centered at the best reference point.
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Figure 3 Coastal reference points with 200 km capture zone centered at the best reference point. The red circles represent the coastal
reference points. The yellow star represents the best reference point. The dashed black line represents the 200 km capture zone.
The red triangle represents the Cambridge NOAA station in Maryland and the yellow triangle represents the Sewell Pt NOAA
station in Virginia.



3.1.2 Marginal TC parameter probability distributions

To develop synthetic tropical storms including landfalling and bypassing storms covering
the entire Virginia-to-Maine coastal region, four TC parameter s(heading direction, central
pressure, radius of maximum winds, and translational speed) are used, and the tracks of the
synthetic TCs were decided based on the SRR of the coastal reference points and natural spline
curve. The NACCS divided the northeast Atlantic coastal region into three subregions for the
computation of TC statistics (Nadal-Caraballo et al. 2015) and the capture zone centered at the
best reference point (Figure 3) located within the NACCS Subregions 2 (Cialone et al. 2015).
Therefore, herein we applied the marginal distribution parameters of four TC parameters of the
NACCS Subregion 2 (Table 1; Nadal-Caraballo et al. 2015). The storm recurrence rates of TCs
passing the capture zone are calculated based on the HURDAT?2 database for the 1938-2013 period
(Landsea et al. 2015), except for weak storms (Ap < 28 hPa). In this study, we created 10,000
synthetic storms passing the capture zone, and we discretized four TC marginal distributions into
ten.

Table 1 TC marginal distribution type and parameters (Source: Nadal-Caraballo et al. 2015)

Probability Distribution Type | Marginal distribution parameters
Heading direction (0) Normal distribution u (deg): 16.48
o (deg): 36.17
Central pressure deficit | Doubly truncated Weibull U (hPa): 35.77
(Ap) distribution k: 1.00
Api(hPa): 25
Ap2(hPa): 93
Radius of maximum Lognormal distribution u (km): 4.22
winds (Ri) o (km): 0.45
Translational speed (Vi) | Normal distribution u (km/h): 44.05
o (km/h): 16.06

Where: p=mean value of marginal distribution, c=standard deviation of marginal distribution,
U=scale parameter, k=shape parameter, Api=lower limit of Ap, and Ap>=upper limit of Ap

3.2 ML model

The ML model called CIPKNet was applied to the framework (Lee et al. 2021). This ML
model consists of three components: (1) k-means clustering, (2) principal component analysis
(PCA), and (3) one-dimensional convolutional neural network (CNN). Firstly, the k-means
clustering groups the storm surge data among geospatial points with similar storm surges responses
to increase the accuracy of the ML model. Secondly, the PCA reduces the dimensionality of the
clustered storm surge data. Thirdly, the CNN captures the features of TC conditions over time. By
taking advantage of CNN, this ML model allows the model considers the time-series of TC
parameters rather than consider one representative time-step. This ML model was trained using
1,031 synthetic TCs (Figure 1) and it can rapidly predict the peak storm surges in the Chesapeake
Bay region (3,111 save points) from the 40-hr TC parameter time series. This ML model was
evaluated by not only the synthetic TCs of the NACCS database but also three observed historical
hurricanes: 1. Isabel (2003), (2) Irene (2011), and (3) Sandy (2012).



To validate the ML model for this study, we compared between peak storm surge of 1,031
synthetic TCs from the ML model and peak storm surges of 1,031 synthetic TCs from the physics-
based numerical model (ADCIRC) at two NOAA stations (Sewells Pt, VA and Cambridge, MD).
Figure 4 shows the comparison plots of two areas. The root mean square errors (RMSE) at Sewells
Pt and Cambridge are 0.11m and 0.07m. The mean bias errors (MBE) at Sewells Pt and Cambridge
are 0.03m and 0.02m. Furthermore, the R? values at Sewells Pt and Cambridge are about 0.96 and
0.94, respectively.
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Figure 4 Comparison between peak storm surges of 1,031 synthetic TCs from physics-based numerical model and peak storm
surges of 1,031 synthetic TCs from ML at two NOAA stations (1) comparison between numerical model and ML model at Sewells
Pt, Virginia (2) comparison between numerical model and ML model at Cambridge, Maryland

3.2.1 Prelandfall and Postlandfall of TCs

As an input of the ML model of framework, we generated 40-hour TC parameters of 10,000
synthetics TCs that passing the capture zone (Figure 3). In this section, we used the term “coastal
reference point” because the TCs combinations applied this point in this study. I explained the
difference between coastal reference line and coastal reference point in section 3.1.1. All tracks of
10,000 synthetic TCs are divided into the 30 hours before passing the coastal reference point and
10 hours after passing the coastal reference point. The central pressure, transitional speed, and
radius of maximum winds are constant until the coastal reference point (Vickery and Wadhera
2008). For the heading direction and TC tracks, all landfall tracks apply a constant heading
direction after passing the coastal reference point. A natural spline curve is applied to generate the
tracks from the beginning location of synthetic tropical cyclones to the coastal reference point.
Since no statistically significant trend was found from the historical records of central pressure
data, a 5% decay rate of central pressure deficit (Ap) was applied from the coastal reference points
of the synthetic TCs passing the capture zone to the landfall location following NACCS study
(Nadal-Caraballo et al. 2015). Again, following the NACCS study (Nadal-Caraballo et al. 2015),
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the radius of the maximum winds depends on the central pressure deficit from the coastal reference
point to landfall. The transitional speed is constant after passing the coastal reference point.

3.3 Annual Exceedance Probability of Flooding

Once we predicted the peak storm surges for all 10,000 synthetic storms using the ML
model, the annual exceedance probability (AEP) for storm surge was estimated using Eq. 4. We
calculated the AEP of each save point using the Heaviside function (Resio et al. 2017). In Eq. 4,
the uncertainty of output of the JPM, ML model, and the high-fidelity surge simulations were not
considered.

k
AEP(Y) ~ ) piHI, —n] 4)
i=1

Where: pi=probability of i" synthetic tropical cyclone (Eq. 1), fj;=modeled surge value by the i
storm, H[7);-n], n=target peak storm surge, k=total number of synthetic TCs

3.4 SLR model

To project the impact of SLR on tropical cyclone flooding in the study area, we used Eq. 5
(Bilskie et al., 2014; Smith et al., 2010).

n=mn,+SLR(1+ NNL) (5)

Where: n=storm surge, relative to mean sea level (MSL) in the base year (1992 for NACCS),
No=storm surge in the base year, SLR: sea level rise from the base year to the year of interest, and
NNL: normalized nonlinearity index (Bilskie et al. 2014).

The impact of SLR on peak storm surge is not linear and will likely be substantially biased
high or low (Bilskie et al. 2014; Liu et al. 2019, Smith et al. 2010; Mousavi et al. 2011; Nadal-
Caraballo et al. 2015). Therefore, we applied the normalized nonlinearity index (Bilskie et al.,
2014) of each save point in the Chesapeake Bay, as reported in the NACCS database (Cialone et
al. 2015; Nadal-Caraballo et al. 2015). The annual exceedance tropical cyclone surges at the
locations of interest were adjusted in reference to the 1983-2001 tidal epoch MSL datum (Cialone
et al. 2015).

4. Framework Application

Using the framework, we created peak storm surge probabilistic hazard curves under
different SLR scenarios in two NOAA stations. Furthermore, we applied linear interpolation to
extract several peak storm surge annual exceedance probabilities (AEP) from the hazard curves.
In this study, we used the SLR values for two NOAA stations based on NOAA Intermediate sea-
level change projections (Table 2; Sweet et al., 2017). Figure 5 presents the map of the 1% AEP
peak storm surges in the Chesapeake Bay and the histogram of the number of geographic stations
of the 1% AEP peak storm surges. As shown in Figure 5, the area near the urban Virginia station
has the greater 1% AEP peak storm surges compared to the area near the rural Maryland station.



In addition, the urban Virginia area has greater SLR values than the rural Maryland area in the
future (Table 2).
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Figure 5 1% AEP peak storm surge map and histogram from the framework under current-day sea level condition. The left figure
shows a map of 1% AEP peak storm surge in Chesapeake Bay. The right figure shows histogram of counts of 1% AEP peak storm
surge in Chesapeake Bay. The bluish triangle symbol represents Sewell Pt station in Virginia and the red triangle symbol represents
Cambridge station in Maryland. Astronomical tides, precipitation and uncertainty are not considered.

Table 2 Table of SLR (cm) from the base year (1992) to the year of interest in two NOAA stations.

Year of interest Sewells Point (ID:8638610) Cambridge (ID:8571892)
2000 3 3

2030 33 31

2060 73 68

2090 123 117

Figure 6 shows the hazard curves, namely annual exceedance probability (x-axis) versus peak
storm surges at the two NOAA stations (y-axis). This case study indicates that the SLR-adjusted
1% AEP peak storm surge will be 3.11 m in 2060 in Urban Virginia, which is about 26% greater
than the 1% AEP peak storm surge based on current-day mean sea level (MSL). The SLR-adjusted

10



1% AEP peak storm surge will be 2.30 m in 2060 in Rural Maryland, which is about 41% greater
than the 1% AEP peak storm surge based on the current-day mean sea level (MSL).
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5. Discussion and Conclusions

This paper presents a robust and rapid framework that consists of three models: (1) joint
probability method, (2) machine learning model, and (3) sea-level rise model. The framework
provides robust and rapid hazard assessment, and has been demonstrated in the Chesapeake Bay,
USA region. The framework generates many possible combinations of synthetic TCs inside the
capture zone, determining each combination’s storm surges using the ML model and estimating
the AEP for storm surges under SLR scenarios of interest. For this study, 10,000 combinations of
synthetic TCs were generated. The framework applied the sea level change on the 1% AEP peak
storm surges in two areas using the SLR model. This case study indicates that the 1% AEP peak
storm surge (MSL) in Urban Virginia is greater than in Rural Maryland and the SLR values from
the base year to the year of interest (2030, 2060, and 2090) in Urban Virginia is greater than Rural
Maryland. Nonetheless, the percent change in 1% AEP peak storm surge in response to SLR in
Urban Virginia (26% by 2060) is smaller than in Rural Maryland (41% by 2060).

Although the framework can provide rapid storm surge hazard assessment in the
Chesapeake Bay region, there are still several factors that need to be tested. First, a limitation of
this study is the neglect of uncertainty in tropical cyclone hazard assessment. Therefore, for a more
reliable tropical cyclone hazard assessment, an uncertainty analysis related to the framework has
to be conducted in future work. Secondly, in this study, we used only a 200 km capture zone size
centered at the best reference point. This capture zone included the entire Chesapeake Bay region,
but this means we only generated the combinations of synthetic TCs passing this capture zone.
Therefore, the influence of storms outside the capture zone is not captured in the hazard curves;
there is a need to investigate the impact of capture zone size on the flood hazard estimate. Thirdly,
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the framework provides a tropical cyclone flood hazard assessment using 10,000 synthetic TCs.
Taking advantage of the framework, we can increase the total synthetic TCs (e.g., from 10* to 10°
or 10% synthetic TCs) and determine how the total number of synthetic TCs, namely the degree to
which the JPM probability space is resolved, affects the results. Lastly, astronomical tides
influence coastal flooding, but this factor was not considered in this study. Likewise, compound
storm surge and precipitation flooding are known to be significant in some regions of the
Chesapeake study area. Therefore, future study is needed to evaluate the interaction between TCs
peak storm surges, astronomical tide, and precipitation in the Chesapeake Bay and to integrate
precipitation and tides in the hazard assessment.
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