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Abstract—Respiration rate and heart rate variability (HRV)
due to respiratory sinus arrhythmia (RSA) are physiological
measurements that can offer useful diagnostics for a variety
of medical conditions. This study uses a wrist-worn wearable
development platform from Maxim Integrated and Doppler radar
sensor developed by Adnoviv, Inc. to non-invasively measure these
physiological signals. Six datasets are recorded comprising of five
different individuals in varying physical environments breath-
ing at different respiration rates. First, respiration rates are
extracted from photoplethysmography (PPG) and accelerometer
data and compared to Doppler radar. The average maximum and
minimum difference between Doppler radar extracted RR and
PPG, HRV RSA, and accelerometer extracted RR is 0.342 b/m
and 0.171 b/m, respectively. Then, waveforms for Doppler radar,
PPG, and HRV RSA signals are plotted in time domain and an
analysis discusses the physical phenomena associated with the
phase alignment of the signals.

Index Terms—Accelerometer, Doppler radar, photoplethys-
mography (PPG), respiration, wearable

I. INTRODUCTION

The adoption of connected, wearable technology is be-
coming increasingly popular. The consumer market is filled
with a variety of smart watches and fitness trackers that can
be used to track daily health metrics, such as step count,
calories burned, or sleep duration. The increasing use of these
metrics by consumers means there is utility in the development
of new techniques to extract useful physiological data using
commercially available, off-the-shelf hardware.

Commonly measured and useful health metrics include heart
rate, heart rate variability (HRV), and respiration rate (RR).
This paper focuses on RR and HRV. HRV is a measure of
the variation in time between consecutive heart beats. HRV is
an important metric that can be used to study cardiovascular
health and potentially diagnose a number of medical condi-
tions, such as cardiovascular disease [1], atrial fibrillation [2],
or risk of hypertension [3]

The study of RR is equally important. Changes in respi-
ratory rate can assist in diagnosing medical conditions such
as sleep apnea [4] or chronic obstructive pulmonary disease
(COPD) exacerbation events [5]. Respiratory sinus arrhythmia
(RSA) is one way that respiration can affect cardiovascular
measurement. RSA is a phenomenon where heart rate varies
due to respiration. RSA affects HRV in that the timing between
heart beats decreases during inspiration and increases during
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expiration. This paper will extract RR and calculate HRV due
to RSA using data gathered from a wrist-worn photoplethys-
mography (PPG) sensor using the Maxim Integrated Health
Sensor Platform 2.0 (HSP).

Additionally, non-contact Doppler radar allows for the study
of physiological signal waveforms. Doppler radar is currently
being developed for use in occupancy sensing for smart build-
ing applications under Adnoviv, Inc. Doppler radar can be used
as a non-contact method to obtain physiological signals such
as respiration from the rising and falling motion of a patient’s
chest. Doppler radar has been previously demonstrated as an
accurate and effective reference measurement [6,7]. Coupling
the use of a PPG sensor and Doppler radar affords a patient
access to comfortable contact and non-contact options that can
be used to monitor vital signs.

This research presents the usage of a PPG sensor to sense
RR at the wrist. Measurement of RR from a wrist-worn
PPG sensor has been demonstrated with various techniques
employed [8,9], as well as measurement of HRV from a
wrist-worn PPG sensor [10]. Furthermore, PPG has been used
previously to extract RSA [11]. This work is unique in that
it extracts RR, HRV, and the effects of RSA, along with
accelerometer data and Doppler radar data simultaneously
for varying RRs using commercially available hardware. One
sleep study was performed using 10.5 GHz Doppler radar,
PPG, and accelerometer sensing. [12]. No other study found
has directly compared 2.4 GHz Doppler radar, PPG, and
accelerometer signals using common wearable sensors. No
other study has performed a signal analysis in time domain
of phase alignment between Doppler, PPG, and HRV RSA
signals.

II. METHODS

Experiments for this study were conducted according to the
Committee on Human Studies (CHS) protocol number 14884,
which was approved by the CHS of the University of Hawai‘i
system. The subject is seated in a chair with arms resting on
the arms of the chair to minimize body movement. The HSP
is affixed to the wrist just behind the wrist bone as seen in
Fig. 1. Maxim Integrated software controls the PPG sensor and
logs sensor data to disk via a USB connection. The computer
timestamp, PPG ADC counts, and accelerometer data are the



Fig. 1. Placement of HSP watch on subject, plugged in to computer

Fig. 2. Doppler radar sensor setup (not to scale)

data points used for this analysis. PPG effective sampling rate
is set to 100 samples per second, or 100 Hz.

The Doppler radar sensor is set up about three to five feet
away from the subject. The patch antenna is aimed at the chest
of the subject as seen in Fig. 2. A Python program reads and
saves serial data to a text file and insert timestamps every
second, and timestamps for individual samples are calculated.
A computer provides one clock source for timestamping both
signals, allowing simultaneous data recording from the HSP
and Doppler radar sensor.

The app Pro Metronome by EUMLab is installed on a
smartphone to assist with maintaining a consistent RR. A test
conducted at a RR of 15 breaths per minute (b/m) is set with a
tempo of 30 beats per minute at 1/1-time signature. An inhale
occurs with the first audible tick of the metronome, then an
exhale with the next tick, and so on. The subject practices
breathing at the set RR before beginning data collection.
During data collection, the subject sits still and breathes with
the set RR to the best of their ability. The data collection
period can be ended at any time. Data was collected for a
duration of four to five minutes for each RRs.

III. MATLAB PROCESSING

Data was processed using Matlab R2021a Update 3. Multi-
ple subjects in different environments are evaluated for RRs of
13 b/m (0.217 Hz), 15 b/m (0.25 Hz), 18 b/m (0.3 Hz), and
one trial at 10 b/m (0.16667 Hz). With different respiration
rates, twenty trials total were recorded.

Doppler radar data is filtered for respiration using the
Matlab bandpass filter with the passband frequency range set

TABLE I
COMPARISON OF EXTRACTED RESPIRATION RATES, SUBJECT A,
BREATHING RATE IN B/M (Hz)

Breathing | Doppler | PPG HRV | Accelerometer

Rate FFT FFT RSA (axis)

13 13.047 13.147 | 13.089 13.147 (2)
(0.217) (0.217) | (0.219) | (0.218) (0.219)

15 14.953 15.066 | 15.034 15272 (2)
(0.25) (0.249) | (0.251) | (0.251) (0.254)

18 18.072 18.211 | 18.385 18.211 (Y)
(0.3) (0.301) | (0.303) | (0.306) (0.303)

from 0.1 to 0.5 Hz, and a FFT is computed to determine
the dominant frequencies in the signal. PPG data undergoes
filtering and FFT computation is performed to extract the low
frequency respiration component from the raw PPG signal.

To determine respiration rate from HRV RSA, the PPG
signal must first be filtered to remove low-frequency respi-
ration noise. A 10th order IIR Bandpass Butterworth filter is
designed to filter the PPG heart signal with the passband set
from 0.8 to 5 Hz. Then, heart peaks are selected and timing
between neighboring heart peaks is calculated to extract the
peak-to-peak timing variability over time. Finally, the Matlab
bandpass filter is applied from 0.1 to 0.4 Hz, and the low
frequency component corresponding to RR from HRV RSA
can be extracted by computing a FFT of the resulting signal

A FFT of the raw accelerometer data is performed to
identify the low-frequency respiration component in the raw
signal. The accelerometer axis that is selected is dependent on
each trial. This is noted in Table I.

IV. RESULTS

Subject A has been chosen to display data as an example. In
most trials across subjects, the RR extracted from accelerom-
eter data matches the RR extracted from PPG FFT.

All trials show high agreeability with Doppler radar ex-
tracted RR. Across all datasets, the average maximum and
minimum difference between Doppler radar extracted RR and
PPG, HRV RSA, and accelerometer extracted RR is 0.342 b/m
and 0.171 b/m, respectively. The largest maximum difference
of 0.781 b/m occurs with Subject E at 13 b/m. The smallest
minimum difference of 0.006 b/m occurs with Subject E at 15
b/m.

For Table 1, the smallest maximum difference between
Doppler RR and PPG, HRV RSA, and accelerometer methods
of 0.01 b/m occurs at 13b/m, and the largest maximum differ-
ence of 0.318 b/m occurs at 15 b/m. The smallest minimum
difference of 0.042 b/m occurs at 13 b/m, and the largest
minimum difference of 0.139 b/m at 18 b/m. It is notable that
the HRV RSA RR is closer to Doppler RR in two of three
trials

V. WAVEFORM COMPARISON

A waveform comparison of the filtered Doppler, filtered
PPG, and filtered peak-to-peak timing signals in time domain
is performed to analyze how physical phenomena can affect
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Fig. 3. Waveform comparison for Subject A, 15 b/m

the phase relationship of these signals relative to each other.
Four datasets are used for this comparison because Doppler
radar data was timestamped. Fig. 3 shows a zoomed-in graph
used to study the waveforms.

Each subject exhibited similar characteristics in the wave-
forms across all trials. However, though some characteristics
are shared across subjects, no two subjects’ waveforms looked
exactly similar, and more similarity exists within individual
subjects rather than across subjects.

The strongest relationship exists between the filtered PPG
signal and filtered Doppler radar signal across subjects, with
the PPG signal generally 180° out of phase with the Doppler
signal. This agrees with previous studies, demonstrating blood
volume change is consistently affected by respiration [13], and
inspiration causing lower skin blood flow [14, 15]

Subjects may exhibit stronger RSA correlations than others.
Strong RSA correlation is present when the filtered PPG signal
is 180° out of phase with the peak-to-peak timing signal. The
closer to in-phase the signals become indicates weak RSA
correlation. The strength of RSA is an important health metric
to consider because age, cardiac health, or even effective
regulation of stress and emotions can affect HRV and the
strength of RSA [16]-[18].

For Subject A in Fig. 3, the filtered PPG signal is 180° out
of phase compared to the filtered Doppler signal. The peak-
to-peak timing signal is slightly out of phase from the filtered
Doppler signal, and the peak-peak timing signal phase is closer
to the filtered PPG signal across the trial. The filtered PPG and
peak-to-peak timing signal RSA correlation is present but not
as strong for Subject A at 13 b/m.

VI. CONCLUSION

Processing methods for PPG and Doppler radar data is
discussed. High agreeability is shown from the wrist-based
extracted RR rate compared to Doppler radar. A waveform
comparison is performed the phase alignment of signals is
analyzed.
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