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Abstract
In this paper, we approach the two weighted bounded-
ness of commutators via matrix weights. This approach
provides both a sufficient and a necessary condition for
the two weighted boundedness of commutators with an
arbitrary linear operator in terms of onematrix weighted
norm inequalities for this operator. Furthermore, using
this approach, we surprisingly provide conditions that
almost characterize the two matrix weighted bounded-
ness of commutators with CZOs and completely arbi-
trary matrix weights, which is even new in the fully
scalar one weighted setting. Finally, our method allows
us to extend the two weighted Holmes/Lacey/Wick
results to the fully matrix setting (two matrix weights
and a matrix symbol), completing a line of research ini-
tiated by the first two authors.
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1 INTRODUCTION ANDMAIN RESULTS

Let 𝑤 be a weight on ℝ𝑑 and let 𝐿𝑝(𝑤) be the standard weighted Lebesgue space with respect to
the norm

‖𝑓‖𝐿𝑝(𝑤) =

(
∫ℝ𝑑

|𝑓(𝑥)|𝑝𝑤(𝑥) 𝑑𝑥

) 1
𝑝

.
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2 ISRALOWITZ et al.

Furthermore, let A𝑝 be the Muckenhoupt class of weights 𝑤 satisfying

sup
𝑄⊆ℝ𝑑

𝑄 is a cube

(
⨏𝑄

𝑤(𝑥) 𝑑𝑥

)(
⨏𝑄

𝑤
− 1

𝑝−1 (𝑥) 𝑑𝑥

)𝑝−1

< ∞

where ⨏𝑄 is the unweighted average over 𝑄 (which will also occasionally be denoted by𝑚𝑄).
Given a weight 𝜈, we say 𝑏 ∈ BMO𝜈 if

‖𝑏‖BMO𝜈
= sup

𝑄⊆ℝ𝑑

𝑄 is a cube

1
𝜈(𝑄) ∫𝑄

|𝑏(𝑥) − 𝑚𝑄𝑏|𝑑𝑥 < ∞

(where 𝜈(𝑄) = ∫𝑄 𝜈) so that clearly BMO = BMO𝜈 when 𝜈 ≡ 1. Further, given a linear operator 𝑇,
define the commutator [𝑀𝑏, 𝑇] = 𝑀𝑏𝑇 − 𝑇𝑀𝑏 with 𝑀𝑏 being multiplication by 𝑏. In the papers
[9, 10], the authors extended earlier work of Bloom [1] and proved that if 𝑢, 𝑣 ∈ A𝑝 and 𝑇 is any
Calderón–Zygmund operator (CZO), then

‖[𝑀𝑏, 𝑇]‖𝐿𝑝(𝑢)→𝐿𝑝(𝑣) ≲ ‖𝑏‖BMO𝜈
(1.1)

where 𝜈 = (𝑢𝑣−1)
1
𝑝 and it was proved in [10] that if 𝑅𝑠 is the 𝑠th Riesz transform, then

‖𝑏‖BMO𝜈
≲ max

1⩽𝑠⩽𝑑
‖[𝑀𝑏, 𝑅𝑠]‖𝐿𝑝(𝑢)→𝐿𝑝(𝑣). (1.2)

The purpose of this paper is to give largely self contained proofs of (1.1) and (1.2) and to
extend both to the case of two matrix A𝑝 weights and a matrix symbol 𝐵 by using arguments
inspired by thematrix weighted techniques developed in [6]. Furthermore, as byproducts of some
of our results, we will provide both a sufficient and a necessary condition for the two weight
boundedness of commutators with an arbitrary linear operator in terms of matrix weighted norm
inequalities for this operator. Furthermore, we will provide conditions that almost characterize
the twomatrixweighted boundedness of commutatorswithCZOs and completely arbitrarymatrix
weights, which is even new in the fully scalar one weighted setting.
In particular, let 𝑊 ∶ ℝ𝑑 → 𝕄𝑛×𝑛 be an 𝑛 × 𝑛 matrix weight (a positive definite almost every-

where 𝕄𝑛×𝑛 valued function on ℝ𝑑) and let 𝐿𝑝(𝑊) be the space of ℂ𝑛 valued functions 𝑓 such
that

‖𝑓‖𝐿𝑝(𝑊) =

(
∫ℝ𝑑

|𝑊 1
𝑝 (𝑥)𝑓(𝑥)|𝑝 𝑑𝑥

) 1
𝑝

< ∞.

Furthermore, we will say that a matrix weight𝑊 is a matrix A𝑝 weight (see [22]) if it satisfies

[𝑊]A𝑝
= sup

𝑄⊂ℝ𝑑

𝑄 is a cube

⨏𝑄

(
⨏𝑄

‖𝑊 1
𝑝 (𝑥)𝑊

− 1
𝑝 (𝑦)‖𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥 < ∞.

Beforewe state our results, let us rewrite Bloom’s BMOcondition in away that naturally extends
to the matrix weighted setting. First, by multiple uses of the A𝑝 property and Hölder’s inequality,
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COMMUTATORS IN THE TWOWEIGHTED SETTING 3

it is easy to see that

𝑚𝑄𝜈 ≈ (𝑚𝑄𝑢)
1
𝑝 (𝑚𝑄𝑣

−𝑝′

𝑝 )
1
𝑝′ ≈ (𝑚𝑄𝑢)

1
𝑝 (𝑚𝑄𝑣)

− 1
𝑝 ≈ (𝑚𝑄𝑢

1
𝑝 )(𝑚𝑄𝑣

1
𝑝 )−1

(where again, 𝑚𝑄 denotes unweighted average) so that 𝑏 ∈ BMO𝜈 when 𝑢 and 𝑣 are A𝑝 weights
if and only if

sup
𝑄⊆ℝ

𝑄 is a cube
⨏𝑄

(𝑚𝑄𝑣
1
𝑝 )(𝑚𝑄𝑢

1
𝑝 )−1|𝑏(𝑥) − 𝑚𝑄𝑏|𝑑𝑥 < ∞.

Now if 𝑈,𝑉 are matrix A𝑝 weights, then we define BMO
𝑝
𝑉,𝑈 to be the space of 𝑛 × 𝑛 locally inte-

grable matrix functions 𝐵 where

‖𝐵‖BMO𝑝
𝑉,𝑈

= sup
𝑄⊆ℝ𝑑

𝑄 is a cube

(
⨏𝑄

‖(𝑚𝑄𝑉
1
𝑝 )(𝐵(𝑥) − 𝑚𝑄𝐵)(𝑚𝑄𝑈

1
𝑝 )−1‖𝑑𝑥

) 1
𝑝

< ∞

so that ‖𝑏‖BMO𝑝
𝑉,𝑈

≈ ‖𝑏‖BMO𝜈 if 𝑈,𝑉 are scalar weights and 𝑏 is a scalar function. Note that the

BMO𝑝
𝑉,𝑈 condition is much more naturally defined in terms of reducing matrices, which will be

discussed in the next section.
In this paper, we will prove the following two theorems, the first of which is a generalization of

a similar but much weaker result proved in [11].

Theorem 1.1. Let 𝑇 be any linear operator defined on scalar valued function where its canonical
vector-valued extension𝑇 ⊗ 𝐈𝑛 is bounded on𝐿𝑝(𝑊) for all𝑛 × 𝑛matrixA𝑝 weights𝑊 andall𝑛 ∈ ℕ

with bound depending on 𝑇, 𝑛, 𝑑, 𝑝, and [𝑊]A𝑝
(which is known to be true for all CZOs, see [2] for a

very easy proof). If 𝑈,𝑉 are𝑚 × 𝑚 matrix A𝑝 weights and 𝐵 is an𝑚 × 𝑚 locally integrable matrix
function for some𝑚 ∈ ℕ, then

‖[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) ≲ ‖𝐵‖BMO𝑝
𝑉,𝑈

with bounds depending on 𝑇,𝑚, 𝑑, 𝑝, [𝑈]A𝑝
and [𝑉]A𝑝

.

In particular, let 𝐈𝑛 denote the 𝑛 × 𝑛 identity matrix. In the case when 𝑢, 𝑣, and 𝑏 are scalar valued
(that is, 𝑚 = 1), we have that (1.1) holds for any linear operator 𝑇 such that 𝑇 ⊗ 𝐈𝑛 is bounded
on 𝐿𝑝(𝑊) for all 𝑛 × 𝑛 matrix A𝑝 weights𝑊 and all 𝑛 ∈ ℕ (and in particular we have (1.1) for all
CZOs).
We will need one more definition before we state our second main result. Given a finite collec-

tion 𝑅 = {𝑅𝑠}
𝑁
𝑠=1 of linear operators defined on scalar valued functions, we say that 𝑅 is a lower

bound collection if for any 𝑛 ∈ ℕ and any 𝑛 × 𝑛matrix weight𝑊 we have

[𝑊]
1
𝑝

A𝑝
≲ max

1⩽𝑠⩽𝑁
‖𝑅𝑠 ⊗ 𝐈𝑛‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊) (1.3)

with the bound independent of 𝑊 (but not necessarily independent of 𝑛), and each 𝑅𝑠 ⊗ 𝐈𝑛 is
bounded on 𝐿𝑝(𝑊) if𝑊 is a matrix A𝑝 weight. It should be noted that, as one would expect, the
Hilbert transform itself and more generally the collection {𝑅𝓁}

𝑑
𝓁=1

of Riesz transforms are lower
bound collections (which will be proved in Lemma 3.5.)
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4 ISRALOWITZ et al.

Theorem 1.2. If 𝑅 = {𝑅𝑠}
𝑁
𝑠=1 is a lower bound collection, then for any 𝑚 × 𝑚 matrix A𝑝 weights

𝑈,𝑉 and any𝑚 × 𝑚 locally integrable matrix symbol 𝐵 we have

‖𝐵‖BMO𝑝
𝑉,𝑈

≲ max
1⩽𝑠⩽𝑁

‖[𝑀𝐵, 𝑅𝑠 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉).

Here, the bound depends possibly on𝑚,𝑅, 𝑝, 𝑑 and 𝑅 but is independent of𝑈 and 𝑉.

Let us briefly outline the strategy for proving Theorems 1.1 and 1.2. In the next section, we
will use matrix weighted arguments inspired by [6] to prove Theorems 1.1 and 1.2 in terms of a
weighted BMO quantity ‖𝐵‖B̃MO𝑝

𝑉,𝑈
that is equivalent to ‖𝐵‖BMO𝑝

𝑉,𝑈
when𝑈 and 𝑉 are matrix A𝑝

weights (see Corollary 4.7) but is much more natural for more arbitrary matrix weights 𝑈 and 𝑉.
More precisely, define

‖𝐵‖𝑝
B̃MO𝑝

𝑉,𝑈

= sup
𝑄⊆ℝ𝑑

𝑄 is a cube

⨏𝑄

(
⨏𝑄

‖‖‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)

‖‖‖‖𝑝
′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥.

In particular, in the case of two scalar weights 𝑢, 𝑣 and a scalar symbol 𝑏, note that

‖𝑏‖𝑝
𝐵𝑀𝑂

𝑝
𝑢,𝑣

= sup
𝑄⊆ℝ𝑑

𝑄 is a cube

⨏𝑄

(
⨏𝑄

|𝑏(𝑥) − 𝑏(𝑦)|𝑝′
𝑢
−𝑝′

𝑝 (𝑦) 𝑑𝑦

) 𝑝
𝑝′

𝑣(𝑥)𝑑𝑥

which has a particulary simple and appealing appearance when 𝑝 = 2, namely

‖𝑏‖2
𝐵𝑀𝑂

2
𝑢,𝑣

= sup
𝑄⊆ℝ𝑑

𝑄 is a cube

⨏𝑄 ⨏𝑄
𝑣(𝑥)|𝑏(𝑥) − 𝑏(𝑦)|2𝑢−1(𝑦) 𝑑𝑦𝑑𝑥

We will then give relatively short proofs of the following two results in Section 2.

Lemma 1.3. Let 𝑇 be any linear operator defined on scalar valued functions where its canonical
vector-valued extension 𝑇 ⊗ 𝐈𝑛 satisfies

‖𝑇 ⊗ 𝐈𝑛‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊) ⩽ 𝜙([𝑊]A𝑝
)

for some positive increasing function 𝜙 (possibly depending on 𝑇, 𝑑, 𝑛 and 𝑝.) If 𝑈,𝑉 are 𝑚 × 𝑚
matrix A𝑝 weights and 𝐵 is a locally integrable𝑚 × 𝑚matrix valued function for some𝑚 ∈ ℕ, then

‖[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) ⩽ ‖𝐵‖B̃MO𝑝
𝑉,𝑈

𝜙

(
3

𝑝
𝑝′
(
[𝑈]A𝑝

+ [𝑉]A𝑝

)
+ 1

)
.

Lemma 1.4. If 𝑅 = {𝑅𝑠}
𝑁
𝑠=1 is a lower bound collection of operators, then for any𝑚 × 𝑚matrix A𝑝

weights𝑈,𝑉 and an𝑚 × 𝑚matrix symbol 𝐵, we have

‖𝐵‖B̃MO𝑝
𝑉,𝑈

≲ max
1⩽𝑠⩽𝑁

‖[𝑀𝐵, 𝑅𝑠 ⊗ 𝐈𝑛]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉)

where the bound depends possibly on 𝑛, 𝑝, 𝑑 and 𝑅 but is independent of𝑈 and 𝑉.
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COMMUTATORS IN THE TWOWEIGHTED SETTING 5

Recall that a scalar weight 𝑤 on ℝ𝑑 is said to satisfy the A∞ condition if we have

[𝑤]A∞
= sup

𝑄⊆ℝ𝑑

𝑄 is a cube

1
𝑤(𝑄) ∫𝑄

𝑀(𝑤1𝑄) < ∞,

where𝑀 is the ordinary Hardy–Littlewood maximal function onℝ𝑑. Further, for a matrix weight
𝑈 we define the ‘scalar A∞ characteristic’ as in [2, 21] by

[𝑈]Asc
𝑝,∞

= sup
𝑒∈ℂ𝑛

[||||𝑈 1
𝑝 𝑒
||||𝑝
]
A∞

which for any 1 < 𝑝 < ∞ obviously reduces to the ordinaryA∞ characteristic in the scalar setting.
At the end of Section 2, we will estimate ‖𝑏‖B̃MO𝑝

𝑈,𝑈
for a scalar function 𝑏 and a matrix A𝑝

weight 𝑈 to give us the following quantitative version of Theorem 1.1.

Proposition 1.5. Assume 𝑇 satisfies the hypothesis of Lemma 1.3. Then there exists 𝐶 independent
of𝑈,𝑉, 𝑏 and 𝑇 where

‖[𝑀𝑏, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑈) ⩽ ‖𝑏‖BMO

⎛⎜⎜⎝[𝑈]Asc
𝑝,∞

+

[
𝑈

−𝑝′

𝑝

]
Asc

𝑝′,∞

⎞⎟⎟⎠𝜙
(
𝐶[𝑈]A𝑝

)
.

It is interesting to remark that Lemma 1.3 and Proposition 1.5 would provide new quantitative
one and two weight commutator bounds in the scalar setting if the ‘matrix A𝑝 conjecture’

‖𝑇 ⊗ 𝐈𝑚‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊) ≲ [𝑊]
max{1, 1

𝑝−1
}

A𝑝

were to hold for all CZOs 𝑇, even in the case 𝑝 = 2. Also, we will prove that the collection of Riesz
transforms form a lower bound operator in Section 3 by utilizing the Schur multiplier/Wiener
algebra ideas from [18], and thus recovering (1.2). In fact, we will show much more and prove the
following surprising result.

Theorem 1.6. Let {𝑅𝓁}
𝑑
𝓁=1

be the collection of Riesz transforms, and let𝑈 and 𝑉 be any (not neces-
sarily A𝑝) matrix weights. If 𝐵 is any locally integrable𝑚 × 𝑚matrix valued function, then

max

{‖𝐵‖B̃MO𝑝
𝑉,𝑈

, ‖𝐵‖
B̃MO𝑝′

𝑈′,𝑉′

}
≲ max

1⩽𝓁⩽𝑑
‖[𝑀𝐵, 𝑅𝓁 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉). (1.4)

Moreover, we will show that an Orlicz ‘bumped’ version of these conditions are sufficient for
the general twomatrix weighted boundedness of a CZO. In particular, we will prove the following
result in Section 2, which is similar in statement and proof of [14, Lemma 4].

Proposition 1.7. Let 𝑇 be a CZO, 𝑈 and 𝑉 be any 𝑚 × 𝑚 matrix weights, and 𝐵 be any locally
integrable𝑚 × 𝑚matrix valued function. Let𝐶 and𝐷 be Young functions with𝐶 ∈ B𝑝′ and𝐷 ∈ 𝐵𝑝
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6 ISRALOWITZ et al.

where 𝐶 and 𝐷 are the conjugate Young functions to 𝐶 and 𝐷, respectively. Then

‖[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) ≲ min{𝜅1, 𝜅2},

where

𝜅1 = sup
𝑄

‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)‖𝐶𝑥,𝑄

‖𝐷𝑦,𝑄

𝜅2 = sup
𝑄

‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)‖𝐷𝑦,𝑄

‖𝐶𝑥,𝑄
.

We refer the reader to [14, Section 5.2] for the standard Orlicz space related definitions used in the
statement of the Proposition 1.7 (and in particular the definition of the classes B𝑝 and B𝑝′).
It is important to emphasize that Theorem 1.6 and Proposition 1.7 are new, even in the scalar

𝑝 = 2 setting of a single weight. It is also interesting to note that formally ‘removing’ 𝑏 from the
condition ‖𝑏‖𝑝

B̃MO𝑝
𝑣,𝑢

< ∞ in the case of two scalar weights 𝑢 and 𝑣 reduces to the classical two

weight A𝑝 condition (𝑢, 𝑣) ∈ A𝑝. From this perspective, ‖𝑏‖𝑝
B̃MO𝑝

𝑣,𝑢

can be thought of as a first-

order analogy of the ‘zero-order’ condition (𝑢, 𝑣) ∈ A𝑝. In particular, it is well known (see [19])
that (𝑢, 𝑣) ∈ A𝑝 is necessary for the twoweightednormboundedness of theHilbert transform, and
that anOrlicz bumped version of (𝑢, 𝑣) ∈ A𝑝 is sufficient for the twoweighted boundedness of any
CZO 𝑇, see [15]. More precisely, either of the equivalent conditions in Proposition 1.7 when again
𝑏 is ‘removed’ is sufficient for the two weighted boundedness of any CZO 𝑇. Thus, Theorem 1.6
and Proposition 1.7 should be thought of as a first-order commutator version of the well-known
‘zero order’ scalar results above.
A key tool for the proof of Proposition 1.7 is a new convex body domination theorem, which

is interesting in its own right and therefore stated here. It was essentially proven in [14] (though
not explicitly stated) and is more suitable for us here than the sparse convex body domination of
commutators in [14, Theorem 4].
To state the result, we need some notation. Let  be a dyadic grid of cubes in ℝ𝑑. Recall that

 ⊂  is a sparse family if for every 𝑄 ∈  there exists a measurable subset 𝐸𝑄 ⊂ 𝑄 such that:

(1) |𝑄| ⩽ 2|𝐸𝑄|;
(2) The sets 𝐸𝑄 are pairwise disjoint.

Theorem 1.8. Let 𝑇 be a CZO. For every ℂ𝑚 valued function 𝑓 with compact support and every
𝑚 × 𝑚 valued matrix function 𝐵 such that 𝐵𝑓 ∈ 𝐿1, there exists 3𝑑 sparse collections 𝑗 of dyadic
cubes, a constant 𝑐𝑑,𝑚,𝑇 , and for each 𝑄 ∈ 𝑗 a function 𝑘𝑄 ∶ 𝑄 × 𝑄 → ℝ with ‖𝑘𝑄‖𝐿∞(𝑄×𝑄) ⩽ 1
such that

[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]𝑓(𝑥) = 𝑐𝑑,𝑚,𝑇

3𝑑∑
𝑗=1

∑
𝑄∈𝑗

1𝑄(𝑥)⨏𝑄
𝑘𝑄(𝑥, 𝑦)(𝐵(𝑥) − 𝐵(𝑦))𝑓(𝑦) 𝑑𝑦 (𝑥 ∈ ℝ𝑑). (1.5)

Note that this result is even new in the scalar case. It is important to remark that even in the
scalar setting, it seems unclear whether the by now standard ideas from the proof of [16, Theorem
1.1] can be used to prove our sparse domination. A version of our sparse domination for iterated
commutators will be the subject of a future paper.
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COMMUTATORS IN THE TWOWEIGHTED SETTING 7

In the last section, we will prove the equivalence of the quantities ‖𝐵‖B̃MO𝑝
𝑉,𝑈

and ‖𝐵‖BMO𝑝
𝑉,𝑈

when𝑈 and 𝑉 are matrix A𝑝 weights, completing a line of work initiated in [11, 13]. Additionally,
we will prove that the quantities ‖𝐵‖B̃MO𝑝

𝑉,𝑈
and ‖𝐵‖

B̃MO𝑝′

𝑈′,𝑉′

are equivalent again when 𝑈 and

𝑉 are matrix A𝑝 weights. In particular, we will make use of the ideas and results from [11, 13] in
conjunction with an ‘extrapolation of inverse Hölder inequality’ argument from [23]. For the sake
of completion, however, we will reprove all relevant results from [11, 13], the proofs of which are
more technical than those in Sections 2 and 3.
We will end this introduction with three remarks and an outline of the organization of the rest

of the paper. First, it is an obvious question as to whether the techniques and results of this paper
can be extended to the iterated commutator setting, and whether we can recover the more recent
iterated commutator Bloom type results from [17] or the very recent unweighted two symbolled
iterated commutator results of [8]. This will be pursued in a forthcoming paper. Second, for the
reader who is either unfamiliar with matrix weighted norm inequalities or is primarily interested
in the implications of our results in the scalar setting, we have attempted tomake this paper almost
entirely self-contained.
Third, if

𝜆1 = sup
𝑄

(
⨏𝑄

‖‖‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝑄𝐵) −1

𝑄

‖‖‖‖𝑝 𝑑𝑥

) 1
𝑝

𝜆2 = sup
𝑄

(
⨏𝑄

‖‖‖‖𝑈− 1
𝑝 (𝑥)(𝐵∗(𝑥) − 𝑚𝑄𝐵

∗)( ′
𝑄)

−1‖‖‖‖𝑝
′

𝑑𝑥

) 1
𝑝′

where 𝑄 is an 𝐿𝑝 reducing matrix for 𝑈 on 𝑄 and  ′
𝑄
is an 𝐿𝑝′ reducing matrix for 𝑉− 1

𝑝 on 𝑄
(again, see Section 2), then an easy use of Hölder’s inequality (see the proof of Corollary 4.7) says
that 𝜆1 ≲ ‖𝐵‖B̃MO𝑝

𝑉,𝑈
and 𝜆2 ≲ ‖𝐵‖

B̃MO𝑝′

𝑈′,𝑉′

for arbitrary matrix weights 𝑈 and 𝑉 (and as previ-

ously mentioned, all four quantities are equivalent for matrix A𝑝 weights 𝑈 and 𝑉, see Corol-
lary 4.7). Additionally, in the purely scalar two weighted setting, we have that

𝜆1 = sup
𝑄

(
1

𝑢(𝑄) ∫𝑄

|||𝑏(𝑥) − 𝑚𝑄𝑏
|||𝑝𝑣(𝑥) 𝑑𝑥

) 1
𝑝

𝜆2 = sup
𝑄

⎛⎜⎜⎝ 1

𝑣
−𝑝′

𝑝 (𝑄)
∫𝑄

|||𝑏(𝑥) − 𝑚𝑄𝑏
|||𝑝′

𝑢
−𝑝′

𝑝 (𝑥) 𝑑𝑥
⎞⎟⎟⎠

1
𝑝′

which proves very natural arbitrary two scalarweighted necessary conditions for the boundedness
of commutators with all of the Riesz transforms.
Also, we can prove a version of Proposition 1.7 involving subtracted averages. Namely, arguing

in a manner very similar to the proof of [14, Lemma 4] and the proof of Proposition 1.7 we have
that if 𝐶,𝐷, 𝐸, 𝐹 are Young function with 𝐶̄, 𝐸̄ ∈ 𝐵𝑝′ and 𝐷̄, 𝐹̄ ∈ 𝐵𝑝, then

‖[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉)≲Λ1 + Λ2
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8 ISRALOWITZ et al.

where Λ1 = min{𝜇1, 𝜇2} with

𝜇1 = sup
𝑄

‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝑄𝐵)𝑈

− 1
𝑝 (𝑦)‖𝐸𝑥,𝑄

‖𝐹𝑦,𝑄

𝜇2 = sup
𝑄

‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝑄𝐵)𝑈

− 1
𝑝 (𝑦)‖𝐹𝑦,𝑄

‖𝐸𝑥,𝑄

and Λ2 = min{𝜇3, 𝜇4} with

𝜇3 = sup
𝑄

‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑦) − 𝑚𝑄𝐵)𝑈

− 1
𝑝 (𝑦)‖𝐶𝑥,𝑄

‖𝐷𝑦,𝑄

𝜇4 = sup
𝑄

‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑦) − 𝑚𝑄𝐵)𝑈

− 1
𝑝 (𝑦)‖𝐷𝑦,𝑄

‖𝐶𝑥,𝑄

which in the unbumped (that is, when 𝐶(𝑥) = 𝐸(𝑥) = 𝑥𝑝∕𝑝 and 𝐷(𝑥) = 𝐹(𝑥) = 𝑥𝑝′
∕𝑝′) scalar

two weighted setting gives us

Λ1 ≈

(
𝑚𝑄𝑢

−𝑝′

𝑝

) 1
𝑝′
(
⨏𝑄

|𝑏(𝑥) − 𝑚𝑄𝑏|𝑝𝑣(𝑥) 𝑑𝑥) 1
𝑝

Λ2 ≈
(
𝑚𝑄𝑣

) 1
𝑝

(
⨏𝑄

|𝑏(𝑥) − 𝑚𝑄𝑏|𝑝′
𝑢
−𝑝′

𝑝 (𝑥) 𝑑𝑥

) 1
𝑝′

which are natural joint BMO/A𝑝 conditions. Further, by adding and subtracting𝑚𝑄𝐵, it is trivial
that in general 𝜅1 ≲ 𝜇1 + 𝜇2 and 𝜅2 ≲ 𝜇3 + 𝜇4 when 𝐶 = 𝐸 and 𝐷 = 𝐹. Despite all this, it seems
unclear what the precise connection between all of these weighted (unbumped) BMO conditions
are when dealing with not necessarily matrix A𝑝 weights (even in the one weighted fully scalar
setting.)
Finally, the paper is organized as follows. In Section 2, we will prove Lemma 1.3, Lemma 1.4,

Proposition 1.5, Proposition 1.7, and Theorem 1.8. In Section 3, we will prove Theorem 1.6, and in
the last section we will prove the equivalence of the quantities ‖𝐵‖B̃MO𝑝

𝑉,𝑈
and ‖𝐵‖BMO𝑝

𝑉,𝑈
when

𝑈 and 𝑉 are matrix A𝑝 weights, which will complete the proofs of Theorems 1.1 and 1.2.

2 INTERMEDIATE UPPER AND LOWER BOUNDS

In this section, we will give a short proofs of Theorem 1.8, Lemma 1.3, Lemma 1.4, and Proposi-
tion 1.7, starting with Lemma 1.3.

2.1 Proof of lemma 1.3

We first assume that ‖𝐵‖B̃MO𝑝
𝑉,𝑈

= 1. Define the 2 × 2 block matrix function Φ by

Φ =
⎛⎜⎜⎝
𝑉

1
𝑝 𝑉

1
𝑝 𝐵

0 𝑈
1
𝑝

⎞⎟⎟⎠
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COMMUTATORS IN THE TWOWEIGHTED SETTING 9

so that

Φ−1 =
⎛⎜⎜⎝
𝑉

− 1
𝑝 −𝐵𝑈

− 1
𝑝

0 𝑈
− 1

𝑝 .

⎞⎟⎟⎠
and

Φ(𝑇 ⊗ 𝐈2𝑚)Φ−1 = Φ

(
𝑇 ⊗ 𝐈𝑚 0

0 𝑇 ⊗ 𝐈𝑚

)
Φ−1 =

⎛⎜⎜⎝
𝑉

1
𝑝 (𝑇 ⊗ 𝐈𝑚)𝑉

− 1
𝑝 𝑉

1
𝑝 [𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]𝑈

− 1
𝑝

0 𝑈
1
𝑝 (𝑇 ⊗ 𝐈𝑚)𝑈

− 1
𝑝

⎞⎟⎟⎠.
Let𝑊 = (Φ∗Φ)

𝑝
2 . Then using the polar decomposition, we can write

Φ = 𝑊
1
𝑝

where  is unitary valued almost everywhere (a.e.). Supposing that 𝑊 is a 2𝑚 × 2𝑚 matrix A𝑝

weight, we have by assumption that

‖[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) = ‖𝑉 1
𝑝 [𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]𝑈

− 1
𝑝 ‖𝐿𝑝→𝐿𝑝

⩽ ‖Φ(𝑇 ⊗ 𝐈2𝑚)Φ−1‖𝐿𝑝→𝐿𝑝

= ‖𝑊 1
𝑝 (𝑇 ⊗ 𝐈2𝑚)𝑊

− 1
𝑝 ‖𝐿𝑝→𝐿𝑝

= ‖𝑇 ⊗ 𝐈2𝑚‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊)

⩽ 𝜙([𝑊]A𝑝
).

To finish the proof of Lemma 1.3, note that

Φ(𝑥)Φ(𝑦)−1 =
⎛⎜⎜⎝
𝑉

1
𝑝 (𝑥)𝑉

− 1
𝑝 (𝑦) 𝑉

1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)

0 𝑈
1
𝑝 (𝑥)𝑈

− 1
𝑝 (𝑦)

⎞⎟⎟⎠
so that

⨏𝑄

(
⨏𝑄

‖𝑊 1
𝑝 (𝑥)𝑊

− 1
𝑝 (𝑦)‖𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

= ⨏𝑄

(
⨏𝑄

‖Φ(𝑥)Φ−1(𝑦)‖𝑝′
𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

⩽ 3
𝑝
𝑝′

(
[𝑈]A𝑝

+ [𝑉]A𝑝
+ ⨏𝑄

(
⨏𝑄

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)‖𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

)
and thus

‖[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) ⩽ 𝜙

(
3

𝑝
𝑝′
(
[𝑈]A𝑝

+ [𝑉]A𝑝
+ 1

))
.
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10 ISRALOWITZ et al.

Finally, if ‖𝐵‖B̃MO𝑝
𝑉,𝑈

≠ 1, then we may assume that 0 < ‖𝐵‖B̃MO𝑝
𝑉,𝑈

< ∞. Rescaling with 𝐵 ↦

𝐵‖𝐵‖−1

B̃MO𝑝
𝑉,𝑈

then completes the proof.

2.2 Proof of Theorem 1.8 and Proposition 1.7

We now prove Theorem 1.8.
Define the ℂ2𝑚 valued function 𝑓 by

𝑓(𝑥) =

(
𝑓(𝑥)

𝑓(𝑥)

)

and define the 2 × 2 block matrix Φ(𝑥) by

Φ(𝑥) =

(
𝐈𝑚 𝐵(𝑥)
0 𝐈𝑚

)
so that

Φ−1(𝑥) =

(
𝐈𝑚 −𝐵(𝑥)
0 𝐈𝑚

)
.

Direct computation shows

Φ(𝑥)((𝑇 ⊗ 𝐈𝑚)Φ−1𝑓)(𝑥) =

(
(𝑇 ⊗ 𝐈𝑚)𝑓(𝑥) + [𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]𝑓(𝑥)

(𝑇 ⊗ 𝐈𝑚)𝑓(𝑥)

)

and

Φ−1(𝑦)𝑓(𝑦) =

(
𝐈𝑚 −𝐵(𝑦)
0 𝐈𝑚

)(
𝑓(𝑦)

𝑓(𝑦)

)
=

(
𝑓(𝑦) − 𝐵(𝑦)𝑓(𝑦)

𝑓(𝑦)

)
.

SinceΦ−1𝑓 ∈ 𝐿1
𝑐 , Theorem 3.4 in [21] applied toΦ−1𝑓 then says that there exists 3𝑑 sparse collec-

tions 𝑗 of dyadic cubes, a constant 𝑐𝑑,𝑚,𝑇 , and for each 𝑄 ∈ 𝑗 a function 𝑘𝑄 ∶ 𝑄 × 𝑄 → ℝ with‖𝑘𝑄‖𝐿∞(𝑄×𝑄) ⩽ 1 such that(
(𝑇 ⊗ 𝐈𝑚)𝑓(𝑥) + [𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]𝑓(𝑥)

(𝑇 ⊗ 𝐈𝑚)𝑓(𝑥)

)

= 𝑐𝑑,𝑚,𝑇

3𝑑∑
𝑗=1

∑
𝑄∈𝑗

Φ(𝑥)

(⨏𝑄 𝑘𝑄(𝑥, 𝑦)(𝑓(𝑦) − 𝐵(𝑦)𝑓(𝑦)) 𝑑𝑦

⨏𝑄 𝑘𝑄(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦

)
1𝑄(𝑥)

= 𝑐𝑑,𝑚,𝑇

3𝑑∑
𝑗=1

∑
𝑄∈𝑗

(⨏𝑄 𝑘𝑄(𝑥, 𝑦)(𝑓(𝑦) − 𝐵(𝑦)𝑓(𝑦) + 𝐵(𝑥)𝑓(𝑦)) 𝑑𝑦

⨏𝑄 𝑘𝑄(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦

)
1𝑄(𝑥).
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COMMUTATORS IN THE TWOWEIGHTED SETTING 11

Subtracting

(𝑇 ⊗ 𝐈𝑚)𝑓(𝑥) = 𝑐𝑑,𝑚,𝑇

3𝑑∑
𝑗=1

∑
𝑄∈𝑗

⨏𝑄
𝑘𝑄(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦

from the first column then completes the proof.
We now prove Proposition 1.7. The easy proof is similar to the proof of [14, Lemma 4]. We only

prove that

‖[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) ≲ sup
𝑄

‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)‖𝐶𝑥,𝑄

‖𝐷𝑦,𝑄

as the other estimate is virtually the same.
By the density of bounded functions with compact support in 𝐿𝑝(𝑊) for any matrix weight𝑊

(see [3, Proposition 3.6]), we can pick 𝑓, g⃗ bounded with compact support and use (1.5) to get that
(where for notational ease we suppress the summation over 𝑗 = 1 to 3𝑑 )

||||⟨[𝑀𝐵, 𝑇 ⊗ 𝐈𝑚]𝑓, g⃗
⟩
𝐿2

||||
⩽

∑
𝑄∈ ∫𝑄 ⨏𝑄

||||⟨(𝐵(𝑥) − 𝐵(𝑦))𝑓(𝑦), g⃗(𝑥)
⟩||||𝑑𝑦𝑑𝑥

⩽
∑
𝑄∈ ∫𝑄 ⨏𝑄

‖‖‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)

‖‖‖‖||||𝑈 1
𝑝 (𝑦)𝑓(𝑦)

||||||||𝑉− 1
𝑝 (𝑥)g⃗(𝑥)

|||| 𝑑𝑥 𝑑𝑦

⩽ 2
⎛⎜⎜⎝sup𝑄

‖‖‖‖‖‖‖‖‖𝑉
1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)

‖‖‖‖𝐶𝑥,𝑄

‖‖‖‖‖𝐷𝑦,𝑄

⎞⎟⎟⎠
∑
𝑄∈

|𝐸𝑄|‖‖‖‖𝑉− 1
𝑝 g⃗

‖‖‖‖𝐶,𝑄

‖‖‖‖𝑈 1
𝑝 𝑓

‖‖‖‖𝐷,𝑄

⩽ 2𝜅1‖𝑀𝐷(𝑈
1
𝑝 𝑓)‖𝐿𝑝‖𝑀𝐶(𝑉

− 1
𝑝 g⃗)‖𝐿𝑝′

≲ 𝜅1‖𝑓‖𝐿𝑝(𝑈)‖g⃗‖
𝐿𝑝′ (𝑉

−
𝑝′
𝑝 )

where𝑀𝐶(𝑉
− 1

𝑝 g⃗) is the Orlicz maximal function defined by

𝑀𝐶(𝑉
− 1

𝑝 g⃗)(𝑥) = sup
ℝ𝑑⊇𝑄∋𝑥
𝑄 is a cube

‖‖‖‖𝑉− 1
𝑝 g⃗

‖‖‖‖𝐶,𝑄

(with 𝑀𝐷(𝑈
1
𝑝 𝑓) defined similarly) and where last line follows from the fact that 𝐶 ∈ B𝑝′ and

𝐷 ∈ B𝑝. This completes the proof.
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12 ISRALOWITZ et al.

2.3 Proof of lemma 1.4

We now give a short proof of Lemma 1.4. Defining 𝑊 and Φ as before, we have by the previous
computations and by assumption that(

[𝑈]A𝑝
+ [𝑉]A𝑝

+ ‖𝐵‖𝑝
B̃MO𝑝

𝑉,𝑈

) 1
𝑝

≈ [𝑊]
1
𝑝

A𝑝

≲ max
1⩽𝑠⩽𝑁

‖𝑅𝑠 ⊗ 𝐈2𝑚‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊)

⩽ max
1⩽𝑠⩽𝑁

(‖[𝑀𝐵, 𝑅𝑠 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) + ‖𝑅𝑠 ⊗ 𝐈𝑚‖𝐿𝑝(𝑈)→𝐿𝑝(𝑈) + ‖𝑅𝑠 ⊗ 𝐈𝑚‖𝐿𝑝(𝑉)→𝐿𝑝(𝑉)

)
.

Rescaling, and in particular letting 𝐵 ↦ 𝑟𝐵 for 𝑟 > 0 gives(
[𝑈]A𝑝

+ [𝑉]A𝑝
+ 𝑟𝑝‖𝐵‖𝑝

B̃MO𝑝
𝑉,𝑈

) 1
𝑝

≲ max
1⩽𝑠⩽𝑁

(
𝑟‖[𝑀𝐵, 𝑅𝑠 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) + ‖𝑅𝑠 ⊗ 𝐈𝑚‖𝐿𝑝(𝑈)→𝐿𝑝(𝑈) + ‖𝑅𝑠 ⊗ 𝐈𝑚‖𝐿𝑝(𝑉)→𝐿𝑝(𝑉)

)
.

Finally dividing both sides by 𝑟 and letting 𝑟 → ∞ gives us that

‖𝐵‖B̃MO𝑝
𝑉,𝑈

≲ max
1⩽𝑠⩽𝑁

‖[𝑀𝐵, 𝑅𝑠 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉).

2.4 Proof of proposition 1.5

We finally give a very short proof of Proposition 1.5 by estimating ‖𝑏‖B̃MO𝑝
𝑈,𝑈

. Namely, fix a cube
𝑄. Then

⨏𝑄

(
⨏𝑄

‖𝑈 1
𝑝 (𝑥)𝑈

− 1
𝑝 (𝑦)‖𝑝′ |𝑏(𝑥) − 𝑏(𝑦)|𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

≲ ⨏𝑄

(
⨏𝑄

‖𝑈 1
𝑝 (𝑥)𝑈

− 1
𝑝 (𝑦)‖𝑝′ |𝑏(𝑥) − 𝑚𝑄𝑏|𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

+ ⨏𝑄

(
⨏𝑄

‖𝑈 1
𝑝 (𝑥)𝑈

− 1
𝑝 (𝑦)‖𝑝′ |𝑏(𝑦) − 𝑚𝑄𝑏|𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

= (𝐴) + (𝐵).

We only estimate (𝐴) as (𝐵) can be similarly estimated. By the classical scalar sharp reverse
Hölder inequality, we can pick 𝜖 ≈ [𝑈]−1

Asc
𝑝,∞

where for any 𝑒 ∈ ℂ, we have

(
⨏𝑄

||||𝑈 1
𝑝 (𝑥)𝒰′

𝑄𝑒
||||

𝑝
1−𝜖

)1−𝜖

≲ ⨏𝑄

||||𝑈 1
𝑝 (𝑥)𝒰′

𝑄𝑒
||||𝑝 ≈ [𝑈]A𝑝
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COMMUTATORS IN THE TWOWEIGHTED SETTING 13

and therefore

(𝐴) ⩽ ⨏𝑄

(
⨏𝑄

‖𝑈 1
𝑝 (𝑥)𝒰′

𝑄‖𝑝′‖(𝒰′
𝑄)

−1𝑈
− 1

𝑝 (𝑦)‖𝑝′ |𝑏(𝑥) − 𝑚𝑄𝑏|𝑝′
𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

≲ ⨏𝑄
‖𝑈 1

𝑝 (𝑥)𝒰′
𝑄‖𝑝|𝑏(𝑥) − 𝑚𝑄𝑏|𝑝 𝑑𝑥

≲

(
⨏𝑄

‖𝑈 1
𝑝 (𝑥)𝒰′

𝑄‖ 𝑝
1−𝜖 𝑑𝑥

)1−𝜖(
⨏𝑄

|𝑏(𝑥) − 𝑚𝑄𝑏| 𝑝𝜖 𝑑𝑥

)𝜖

≲ [𝑈]A𝑝
[𝑈]

𝑝
Asc

𝑝,∞
‖𝑏‖𝑝BMO

by the classical John-Nirenberg inequality. Here,𝒰′
𝑄
is a reducing matrix satisfying (3.5).

Similarly we can estimate

(𝐵) ≲ [𝑈]A𝑝

[
𝑈

−𝑝′

𝑝

]𝑝
Asc

𝑝′,∞

‖𝑏‖𝑝BMO

so by our assumption on 𝑇 we have

‖[𝑀𝑏, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑈) ⩽ 𝜙
⎛⎜⎜⎝𝐶[𝑈]A𝑝

+ 𝐶[𝑈]A𝑝

⎛⎜⎜⎝
[
𝑈

−𝑝′

𝑝

]𝑝
Asc

𝑝′,∞

+ [𝑈]
𝑝
Asc

𝑝,∞

⎞⎟⎟⎠‖𝑏‖𝑝BMO

⎞⎟⎟⎠.
Rescaling, setting 𝑏 ↦ 𝑏[([𝑈

−𝑝′

𝑝 ]Asc
𝑝′,∞

+ [𝑈]Asc
𝑝,∞

)‖𝑏‖BMO]
−1

gives

‖[𝑀𝑏, 𝑇 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑈) ⩽ 𝜙
(
𝐶[𝑈]A𝑝

)‖𝑏‖BMO

⎛⎜⎜⎝
[
𝑈

−𝑝′

𝑝

]
Asc

𝑝′,∞

+ [𝑈]Asc
𝑝,∞

⎞⎟⎟⎠.

3 LOWER BOUND FOR RIESZ TRANSFORMS

In this section, we prove Theorem 1.6. Clearly it is enough to prove Theorem 1.6 where ‖𝐵‖B̃MO𝑝
𝑉,𝑈

is redefined by taking the supremum over balls instead of cubes, which will be more convenient
for us. Recall that the Riesz transform 𝑅𝓁 is the Calderón–Zygmund operator with associated
kernel

𝐾𝓁(𝑥, 𝑦) =
𝑥𝓁 − 𝑦𝓁|𝑥 − 𝑦|𝑑+1

in the usual sense.
Let 𝑊 be an 𝑚 × 𝑚 matrix weight, and assume for the moment that 𝑅𝓁 ⊗ 𝐈𝑚 is bounded on

𝐿𝑝(𝑊), so that in particular if 𝑓 ∈ 𝐿2 ∩ 𝐿𝑝(𝑊) and g⃗ ∈ 𝐿2 ∩ 𝐿𝑝′
(𝑊

−𝑝′

𝑝 ) both have compact sup-
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14 ISRALOWITZ et al.

port with dist(supp𝑓, suppg⃗) > 0, and if 𝐸 is a measurable subset of ℝ𝑑, then

||||∫ℝ𝑑 ∫ℝ𝑑
1𝐸×𝐸(𝑥, 𝑦)𝐾𝓁(𝑥, 𝑦)

⟨
𝑓(𝑦), g⃗(𝑥)

⟩
ℂ𝑛

𝑑𝑦 𝑑𝑥
||||

⩽ ‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑚)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊)‖𝑓‖𝐿𝑝(𝑊)‖g⃗‖𝐿𝑝′ (𝑊1−𝑝′ ). (3.1)

As was stated in the introduction, we will need the Schur multiplier/Wiener algebra argu-
ments in [18], which we quickly discuss now. In particular, we trivially have that the kernel
𝑒−𝑖𝑎⋅𝑥𝐾𝓁(𝑥, 𝑦)𝑒

𝑖𝑎⋅𝑦 satisfies (3.1) for any 𝑎 ∈ ℝ𝑑. Thus, if 𝜌 ∈ 𝐿1(ℝ𝑑), then Fubini’s theorem says
that the kernel

𝜌̂(𝑥 − 𝑦)𝐾𝓁(𝑥, 𝑦) = ∫ℝ𝑑
𝜌(𝑎)𝐾𝓁(𝑥, 𝑦)𝑒

−𝑖𝑎⋅(𝑥−𝑦) 𝑑𝑎

satisfies (3.1) with ‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑛)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊) replaced with ‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑛)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊)‖𝜌‖𝐿1(ℝ𝑑) (where here 𝜌̂(𝑠) = ∫ℝ𝑑 𝜌(𝑎)𝑒−𝑖𝑠⋅𝑎 𝑑𝑎.)
Let𝑊0(ℝ

𝑑) denote theWiener algebra defined by𝑊0(ℝ
𝑑) = {𝜓 = 𝜌̂ ∶ 𝜌 ∈ 𝐿1(ℝ𝑑)}. Then since

𝜌̂(⋅∕𝜀) = 𝜀𝑑𝜌(𝜀⋅) and

∫ℝ𝑑
|𝜀𝑑𝜌(𝜖𝑥)|𝑑𝑥 = ‖𝜌‖𝐿1(ℝ𝑑)

we have the following result which is similar to [18, Lemma 2.1].

Lemma 3.1. If 𝜓 ∈ 𝑊0(ℝ𝕕), 𝜀 > 0, and 𝐸 is a measurable subset of ℝ𝑑, then

||||∫ℝ𝑑 ∫ℝ𝑑
𝜓
(𝑥 − 𝑦

𝜀

)
1𝐸×𝐸(𝑥, 𝑦)𝐾𝓁(𝑥, 𝑦)

⟨
𝑓(𝑦), g⃗(𝑥)

⟩
ℂ𝑛

𝑑𝑦 𝑑𝑥
||||

⩽ ‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑚)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊)‖𝑓‖𝐿𝑝(𝑊)‖g⃗‖𝐿𝑝′ (𝑊1−𝑝′ ) (3.2)

for any 𝑓 ∈ 𝐿2 ∩ 𝐿𝑝(𝑊) and g⃗ ∈ 𝐿2 ∩ 𝐿𝑝′
(𝑊

−𝑝′

𝑝 ) of compact support with dist(supp 𝑓, supp g⃗) > 0.

We will need three more lemmas to show that the Riesz transforms satisfy (1.3), the first of
which is probably known (though we provide a proof for the sake of completion) and the second
being [18, Lemma 3.1].

Lemma 3.2. If 𝜙 ∈ 𝐶∞
𝑐 (ℝ𝑑), then |𝑥|𝜙(𝑥) ∈ 𝑊0(ℝ

𝑑).

Proof. The proof is similar the short proof of [4, Lemma 2]. Let 𝐹(𝑥) = |𝑥|𝜙(𝑥) and pick 1 < 𝛿 <
min{1 + 1

𝑑−1
, 2}. If 𝛼 ∈ {0, 1}𝑑 and

𝑃𝛼 = {𝑥 ∈ ℝ𝑑 ∶ (−1)𝛼𝑗 |𝑥𝛼𝑗
| ⩽ (−1)𝛼𝑗 },
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COMMUTATORS IN THE TWOWEIGHTED SETTING 15

then

‖𝐹̂‖𝐿1(ℝ𝑑) =
∑

𝛼∈{0,1}𝑑
∫𝑃𝛼

|𝑥𝛼|−1(|𝑥𝛼||𝐹̂(𝑥)|) 𝑑𝑥
⩽

∑
𝛼∈{0,1}𝑑

(
∫𝑃𝛼

|𝑥𝛼|−𝛿 𝑑𝑥

) 1
𝛿(

∫ℝ𝑑
|𝑥𝛼𝐹̂(𝑥)|𝛿′

𝑑𝑥

) 1
𝛿′

≲

(
∫ℝ𝑑

|𝐷𝛼𝐹(𝑥)|𝛿′
𝑑𝑥

) 1
𝛿′

≲

(
∫ℝ𝑑

|𝐷𝛼𝐹(𝑥)|𝛿 𝑑𝑥

) 1
𝛿

where in the last inequality we used the classical Hausdorff–Young inequality. However, an ele-
mentary estimate using the Leibniz formula tells us that

|𝐷𝛼𝐹(𝑥)| ≲ |𝑥|1−|𝛼|.
Thus, the fact that 1 < 𝛿 < 1 + 1

𝑑−1
gives us that ‖𝐹̂‖𝐿1(ℝ𝑑) < ∞, which by Fourier inversion com-

pletes the proof. □

Lemma 3.3. There exists Borel sets 𝐸1
𝑘
and 𝐸2

𝑘
such that:

(i) for all 𝑘 ∈ ℕ, we have dist(𝐸1
𝑘
, 𝐸2

𝑘
) > 0;

(ii) the operators defined by 𝑃𝓁
𝑘
𝑓 = 1𝐸𝓁

𝑘
𝑓 for 𝓁 = 1, 2 converge to 1

2
Id in the 𝐿2(ℝ𝑑) weak operator

topology;
(iii) for any 1 ⩽ 𝑝 < ∞ and 𝓁 = 1, 2, we have

lim
𝑘→∞

‖1𝐸𝓁
𝑘
𝑓‖𝐿𝑝(ℝ𝑑) = 2

− 1
𝑝 ‖𝑓‖𝐿𝑝(ℝ𝑑).

Wenowneed to introduce the concept of a reducingmatrix. Namely, for a set𝑄 of finite nonzero
measure, let 𝒰𝑄,𝒱𝑄,𝒰

′
𝑄
,𝒱′

𝑄
respectively, be positive definite matrices where for any 𝑒 ∈ ℂ𝑛 we

have

|𝒰𝑄𝑒|𝑝 ≈ ⨏𝑄
|𝑈 1

𝑝 (𝑥)𝑒|𝑝 𝑑𝑥, |𝒰′
𝑄𝑒|𝑝′

≈ ⨏𝑄
|𝑈− 1

𝑝 (𝑥)𝑒|𝑝′
𝑑𝑥 (3.3)

and a similar statement holds for𝒱𝑄 and𝒱′
𝑄
with respect to𝑉. Despite its perhaps abstract appear-

ance, the reader should think of𝒰𝑄 as ‘the 𝐿𝑝 average of 𝑈
1
𝑝 over 𝑄’ and should similarly of𝒰′

𝑄
as an average. In fact, if 𝑈 is a matrix A𝑝 weight, then it can be shown (see [13, Lemma 2.2]) that
for any 𝑒 ∈ ℂ𝑛

|𝒰𝑄𝑒| ≈ |𝑚𝑄(𝑈
1
𝑝 )𝑒|
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16 ISRALOWITZ et al.

and a similar result holds for𝒰′
𝑄
since𝑈 is a matrix A𝑝 weight if and only if𝑊

−𝑝′

𝑝 is a matrixA𝑝′

weight. Also note that we can in fact rewrite the matrix A𝑝 condition as

[𝑈]A𝑝
≈ sup

𝑄⊆ℝ𝑑

𝑄 is a cube

‖𝒰𝑄𝒰
′
𝑄‖𝑝

and thus since ‖𝒰𝑄𝒰
′
𝑄
‖ = ‖𝒰′

𝑄
𝒰𝑄‖, we can also write the matrix A𝑝 condition out as

[𝑊]
𝑝′

𝑝

A𝑝
= sup

𝑄⊂ℝ𝑑

𝑄 is a cube

⨏𝑄

(
⨏𝑄

‖𝑊 1
𝑝 (𝑥)𝑊

− 1
𝑝 (𝑦)‖𝑝 𝑑𝑥

) 𝑝′

𝑝

𝑑𝑦 < ∞.

Furthermore, note that we can rewrite the BMO𝑝
𝑉,𝑈 condition much more naturally as

‖𝐵‖BMO𝑝
𝑉,𝑈

= sup
𝑄⊆ℝ𝑑

𝑄is a cube

(
⨏𝑄

‖𝒱𝑄(𝐵(𝑥) − 𝑚𝑄𝐵)𝒰
−1
𝑄 ‖𝑑𝑥

) 1
𝑝

< ∞.

The next proposition is implicitly proved in [7] (among other papers) but is not explicitly stated
in the literature.

Proposition 3.4. If𝐸 ⊆ ℝ𝑑 is a set of finite positivemeasure, then for anymatrix weight𝑊 we have

‖𝐴𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊) ≈ ‖‖ ′
𝐸𝐸

‖‖,
where 𝐴𝐸 is the averaging operator

𝐴𝐸𝑓 = 1𝐸 ⨏𝐸
𝑓(𝑥) 𝑑𝑥

and𝐸 and ′
𝐸 are reducing matrices for𝑊.

Proof. Let 𝜌𝑝,𝐸 be the norm on ℂ𝑛 defined by

𝜌𝑝,𝐸(𝑒) =

(
⨏𝐸

||||𝑊 1
𝑝 (𝑥)𝑒

||||𝑝 𝑑𝑥

) 1
𝑝

≈ |𝐸𝑒|.
A standard duality argument immediately says that

𝜌𝑝,𝐸(𝑒) = sup
𝑣≠0

⟨
𝑒, 𝑣

⟩
ℂ𝑛

𝜌∗
𝑝,𝐸(𝑣)

where

𝜌∗
𝑝,𝐸(𝑒) = sup

𝑣≠0

⟨
𝑒, 𝑣

⟩
ℂ𝑛

𝜌𝑝,𝐸(𝑣)
≈ |||−1

𝐸 𝑒|||.
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COMMUTATORS IN THE TWOWEIGHTED SETTING 17

Using these facts in conjunction with the fact that (𝐿𝑝(𝑊))∗ = 𝐿𝑝′
(𝑊

−𝑝′

𝑝 ) under the unweighted
𝐿2 inner product, we get that

sup‖𝑓‖𝐿𝑝(𝑊)=1

‖‖‖‖1𝐸 ⨏𝐸
𝑓(𝑥) 𝑑𝑥

‖‖‖‖𝐿𝑝(𝑊)
= |𝐸|− 1

𝑝′ sup‖𝑓‖𝐿𝑝(𝑊)=1

sup
𝑒≠0

∫𝐸
⟨
𝑓(𝑥), 𝑒

⟩
ℂ𝑛

𝜌∗
𝑝,𝐸(𝑣)

= |𝐸|− 1
𝑝′ sup

𝑒≠0

‖‖1𝐸𝑒‖‖
𝐿𝑝′ (𝑊

−
𝑝′
𝑝 )

𝜌∗
𝑝,𝐸(𝑣)

≈ sup
𝑒≠0

‖‖‖ ′
𝐸𝑒
‖‖‖‖‖‖−1

𝐸 𝑒‖‖‖ .
Replacing 𝑒 by𝐸𝑒 completes the proof. □

Putting together everything in this section gives us the following crucial Lemma

Lemma 3.5. Letℬ be a ball and 𝐸 ⊆ ℬ have nonzero finite measure. Then

‖ ′
𝐸𝐸‖ ≲

|ℬ||𝐸| max
1⩽𝓁⩽𝑑

‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑚)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊).

Proof. Letℬ be a ball with radius 𝜀 > 0. We will only consider the case that 𝑑 is even, since the
case that 𝑑 is odd is much easier and does not require Lemma 3.2. Let 𝜙 ∈ 𝐶∞

𝑐 (ℝ𝑑) satisfy 𝜙(𝑥) =
1 if |𝑥| < 2, so by Lemma 3.2 and the fact that 𝑥𝓁|𝑥|𝑑−2𝜙(𝑥) ∈ 𝐶∞

𝑐 (ℝ𝑑) ⊆ 𝑊0(ℝ
𝑑) we get that

𝑥𝓁|𝑥|𝑑−1𝜙2(𝑥) ∈ 𝑊0(ℝ
𝑑). Using Lemma 3.1 and summing over 𝓁 then gives us that the kernel

𝜀−𝑑𝜙2
(𝑥 − 𝑦

𝜀

)
1ℬ×ℬ(𝑥, 𝑦) =

𝑐𝑑|ℬ|1ℬ×ℬ(𝑥, 𝑦)

replacing 𝜓(𝑥−𝑦
𝜖

)1𝐸×𝐸(𝑥, 𝑦)𝐾𝓁(𝑥, 𝑦) satisfies (3.2). Thus, if 𝑃𝓁
𝑘
are the projections from the previ-

ous lemma, then for any 𝑓 ∈ 𝐿2 ∩ 𝐿𝑝(𝑊) and g⃗ ∈ 𝐿2 ∩ 𝐿𝑝′
(𝑊1−𝑝′

), we have

||||⟨𝐴𝐸𝑓, g⃗
⟩
𝐿2

|||| = |ℬ||𝐸| lim
𝑘→∞

||||⟨1𝐸𝐴ℬ1𝐸𝑃
1
𝑘𝑓, 𝑃

2
𝑘 g⃗

⟩
𝐿2

||||
≲

|ℬ||𝐸| max
1⩽𝓁⩽𝑑

‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑚)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊) lim
𝑘→∞

‖𝑃1
𝑘𝑓‖𝐿𝑝(𝑊)‖𝑃2

𝑘 g⃗‖𝐿𝑝′ (𝑊1−𝑝′ )

=
|ℬ||𝐸| max

1⩽𝓁⩽𝑑
‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑚)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊)‖𝑓‖𝐿𝑝(𝑊)‖g⃗‖𝐿𝑝′ (𝑊1−𝑝′ ).

However, since bounded functions with compact support are dense in 𝐿𝑝(𝑊) and 𝐿𝑝′
(𝑊1−𝑝′

),
Proposition 3.4 then says that

‖ ′
𝐸𝐸‖ ≈ ‖‖𝐴𝐸

‖‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊) ≲
|ℬ||𝐸| max

1⩽𝓁⩽𝑑
‖1𝐸(𝑅𝓁 ⊗ 𝐈𝑚)1𝐸‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊). □

We now finish the proof of Theorem 1.6. Fix a ball ℬ and define 𝐸𝑀 = {𝑥 ∈ ℬ ∶
max{‖𝑈(𝑥)‖, ‖𝑈−1(𝑥)‖, ‖𝑉(𝑥)‖, ‖𝑉−1(𝑥)‖} < 𝑀}where𝑀 > 0 is large enough that 2|𝐸𝑀| > |ℬ|.
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18 ISRALOWITZ et al.

Defining

[𝑊]A𝑝(𝐸) = ⨏𝐸

(
⨏𝐸

‖𝑊 1
𝑝 (𝑥)𝑊

− 1
𝑝 (𝑦)‖𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

and

‖𝐵‖𝑝
M̃O𝑝

𝑉,𝑈(𝐸)
= ⨏𝐸

(
⨏𝐸

‖‖‖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑥)

‖‖‖‖𝑝
′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

and also defining𝑊 andΦ as in the beginning of Section 2, we have using Lemma 3.5 with respect
to 𝐸 = 𝐸𝑀 that

(
[𝑈]A𝑝(𝐸𝑀) + [𝑉]A𝑝(𝐸𝑀) + ‖𝐵‖𝑝

M̃O𝑝
𝑉,𝑈(𝐸𝑀)

) 1
𝑝

≈ [𝑊]
1
𝑝

A𝑝(𝐸𝑀)

≈ ‖ ′
𝐸𝑀

𝐸𝑀
‖

= ‖𝐸𝑀
 ′

𝐸𝑀
‖

≲ max
1⩽𝓁⩽𝑑

‖1𝐸𝑀
(𝑅𝓁 ⊗ 𝐈2𝑚)1𝐸𝑀

‖𝐿𝑝(𝑊)→𝐿𝑝(𝑊)

≲ max
1⩽𝓁⩽𝑑

(‖[𝑀𝐵, 𝑅𝓁 ⊗ 𝐈2𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) +

+ ‖1𝐸𝑀
(𝑅𝓁 ⊗ 𝐈2𝑚)1𝐸𝑀

‖𝐿𝑝(𝑈)→𝐿𝑝(𝑈) + ‖1𝐸𝑀
(𝑅𝓁 ⊗ 𝐈2𝑚)1𝐸𝑀

‖𝐿𝑝(𝑉)→𝐿𝑝(𝑉).
)

Notice that all quantities above are bounded as all weights involved are pointwise bounded
in norm and we assume ‖[𝑀𝐵, 𝑅𝓁 ⊗ 𝐈2𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉) < ∞. Thus, as was done in the proof of
Theorem 1.4, we can rescale and set 𝐵 ↦ 𝑟𝐵, divide by 𝑟, and let 𝑟 → ∞ to get that

‖𝐵‖M̃O𝑝
𝑉,𝑈(𝐸𝑀)

≲ max
1⩽𝓁⩽𝑑

‖[𝑀𝐵, 𝑅𝓁 ⊗ 𝐈𝑚]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉).

First letting 𝑀 → ∞ and using Fatou’s lemma, and then taking the supremum over all balls ℬ
shows that

‖𝐵‖B̃MO𝑝
𝑉,𝑈

≲ max
1⩽𝓁⩽𝑑

‖[𝑀𝐵, 𝑅𝓁]‖𝐿𝑝(𝑈)→𝐿𝑝(𝑉)

as desired. To show the same estimate is true with ‖𝐵‖
B̃MO𝑝′

𝑈′,𝑉′

expand out [𝑊]
1
𝑝

A𝑝(𝐸𝑀)
≈‖ ′

𝐸𝑀
𝐸𝑀

‖ using the reducing matrix 𝐸𝑀
first and repeat the arguments above, which com-

pletes the proof of (1.4).
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COMMUTATORS IN THE TWOWEIGHTED SETTING 19

4 JOHN NIRENBERG THEOREMS

We will finish this paper by proving the equivalency between ‖𝐵‖B̃MO𝑝
𝑉,𝑈

and ‖𝐵‖BMO𝑝
𝑉,𝑈

when
𝑈 and 𝑉 are matrix A𝑝 weights. Note that we will not track the [𝑈]A𝑝

and [𝑉]A𝑝
dependence of

our constants because we will need to use the lower matrix weighted Triebel–Lizorkin bounds
from [20, 24] when 𝑑 = 1 and 𝑑 > 1 in [12], which are most likely far from sharp. We will need the
following simple result that is a special case of [11, Theorem 2.2] and proved using a simple idea
from [13]. Note that throughout this section will refer to some dyadic lattice of cubes in ℝ𝑑.

Proposition 4.1. Let 𝑈 be a matrix A𝑝 weight and let 𝐴 = {𝑎𝑄}𝑄∈ be a nonnegative Carleson
sequence of scalars, meaning that

‖𝐴‖2∗ = sup
𝐽∈

1|𝐽| ∑
𝑄∈(𝐽)

𝑎2
𝑄 < ∞.

Then for any 𝑓 ∈ 𝐿𝑝 we have

⎛⎜⎜⎜⎝∫ℝ𝑑

⎛⎜⎜⎝
∑
𝑄∈

[𝑎𝑄𝑚𝑄|𝒰𝑄𝑈
− 1

𝑝 𝑓|]2|𝑄| 1𝑄(𝑥)
⎞⎟⎟⎠

𝑝
2

𝑑𝑥

⎞⎟⎟⎟⎠
1
𝑝

≲ ‖𝐴‖∗‖𝑓‖𝐿𝑝

where as before,𝒰𝑄 is a reducing matrix satisfying (3.3).

Proof. Let

𝐴̃ =
∑

𝜀∈Sig𝑑

∑
𝑄∈

𝑎𝑄ℎ
𝜀
𝑄

where Sig𝑑 = {1, 2, … , 2𝑑 − 1} and {ℎ𝜀
𝑄
}{𝑄∈,𝜀∈Sig𝑑} is any Haar system on ℝ𝑑. Clearly for any  ∋

𝑄 ∋ 𝑥 we have that

𝑚𝑄|𝒰𝑄𝑈
− 1

𝑝 𝑓| ⩽ 𝑚𝑄𝑀
′
𝑈𝑓

where𝑀′
𝑈𝑓 is the ‘Goldberg intermediary maximal function’ defined by

𝑀′
𝑈𝑓(𝑥) = sup

∋𝑄∋𝑥
𝑚𝑄|𝒰𝑄𝑈

− 1
𝑝 𝑓|.

Thus, since𝑀′
𝑈 ∶ 𝐿𝑝 → 𝐿𝑝 for matrix A𝑝 weights 𝑈 (see [7, p.8]), we have that

∫ℝ𝑑

( ∑
𝜀∈Sig𝑑

∑
𝑄∈

[𝑎𝑄𝑚𝑄𝑀
′
𝑈𝑓]2|𝑄| 1𝑄(𝑥)

) 𝑝
2

𝑑𝑥

≲ ‖𝜋𝐴̃𝑀
′
𝑈𝑓‖𝑝

𝐿𝑝 ≲ ‖𝐴‖𝑝∗‖𝑀′
𝑈𝑓‖𝑝

𝐿𝑝 ≲ ‖𝐴‖𝑝∗‖𝑓‖𝑝𝐿𝑝
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20 ISRALOWITZ et al.

by unweighted dyadic Littlewood–Paley theory, where here 𝜋𝐴̃ is the paraproduct

𝜋𝐴̃g(𝑥) =
∑

𝜀∈Sig𝑑

∑
𝑄∈

𝑚𝑄g𝐴̃𝜀
𝑄ℎ

𝜀
𝑄(𝑥). □

The following is the key to proving the equivalence between ‖𝐵‖B̃MO𝑝
𝑉,𝑈

and ‖𝐵‖BMO𝑝
𝑉,𝑈
. Note

that the lemma below was implicitly proved in [12] though not explicitly stated, and therefore for
the sake of completion we will include the details.

Lemma 4.2. If𝑈 and 𝑉 are matrix A𝑝 weights, then there exists 𝜖 > 0 small enough where for any
0 < 𝜖′ < 𝜖 we have

sup
𝐼∈(𝐽)

(
⨏𝐼

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖𝑝 𝑑𝑥

) 1
𝑝

⩽ 𝐶 sup
𝐼∈(𝐽)

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖′ 𝑑𝑥

) 1
1+𝜖′

and

sup
𝐼∈(𝐽)

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖 𝑑𝑥

) 1
1+𝜖

⩽ 𝐶 sup
𝐼∈(𝐽) ⨏𝐼

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖𝑝 𝑑𝑥.

where 𝐶 is independent of 𝐵 and 𝐽 (but depends on 𝜖′.)

We prove Lemma 4.2 through a series of lemmas.

Lemma 4.3. If𝑈,𝑉 are matrix A𝑝 weights and 𝐵 is locally integrable, then

sup
𝐼∈(𝐽)⨏𝐼

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖𝑝 𝑑𝑥 ⩽ 𝐶 sup

𝐼∈(𝐽)

⎛⎜⎜⎜⎝
1|𝐼| ∑

𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵
𝜀
𝑄𝒰

−1
𝑄 ‖2⎞⎟⎟⎟⎠

1
2

where 𝐶 is independent of 𝐵 and 𝐽.

Proof. Let 𝐼 ∈ (𝐽). By the Triebel-Lizorkin embedding (see [20, 24] for 𝑑 = 1 and [12] for 𝑑 > 1)
we have that

⨏𝐼
‖𝑉 1

𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖𝑝 𝑑𝑥

≲ ⨏𝐼

⎛⎜⎜⎜⎝
∑

𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵𝑄𝒰
−1
𝐼 ‖2|𝑄| 1𝑄(𝑡)

⎞⎟⎟⎟⎠
𝑝
2

𝑑𝑡

⩽ ⨏𝐼

⎛⎜⎜⎜⎝
∑

𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵𝑄𝒰
−1
𝑄

‖2|𝑄| ‖𝑚𝑄[(𝒰𝑄𝑈
− 1

𝑝 )𝑈
1
𝑝𝒰−1

𝐼 1𝐼]‖21𝑄(𝑡)

⎞⎟⎟⎟⎠
𝑝
2

𝑑𝑡
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COMMUTATORS IN THE TWOWEIGHTED SETTING 21

≲

⎛⎜⎜⎜⎝ sup
𝐼∈(𝐽)

1|𝐼| ∑
𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵
𝜀
𝑄𝒰

−1
𝑄 ‖2⎞⎟⎟⎟⎠

𝑝
2

⨏𝐼
‖𝑈 1

𝑝𝒰−1
𝐼 ‖𝑝 𝑑𝑥

where in the last line we used Proposition 4.1. □

Lemma 4.4. For 𝜖 > 0 small enough (independent of 𝐵) we have

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖 𝑑𝑥

) 1
1+𝜖

⩽ 𝐶

(
⨏𝐼

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖𝑝 𝑑𝑥

) 1
𝑝

where 𝐶 is independent of 𝐼 and 𝐵.

Proof.

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖 𝑑𝑥

) 1
1+𝜖

⩽

(
⨏𝐼

‖𝒱𝐼𝑉
− 1

𝑝 (𝑥)‖1+𝜖‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖1+𝜖 𝑑𝑥

) 1
1+𝜖

⩽

(
⨏𝐼

‖𝒱𝐼𝑉
− 1

𝑝 (𝑥)‖ 𝑝(1+𝜖)
𝑝−1−𝜖 𝑑𝑥

) 1
1+𝜖

( 𝑝−1−𝜖
𝑝

)(
⨏𝐼

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖𝑝 𝑑𝑥

) 1
𝑝

⩽ [𝑉]
1
𝑝

A𝑝

(
⨏𝐼

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖𝑝 𝑑𝑥

) 1
𝑝

for 𝜖 > 0 small enough by the reverse Hölder inequality. □

We now recall the two matrix weighted stopping time from [12] which is a modification of the
one matrix weighted stopping time from [13]. Finally assume that 𝑈,𝑉 are a matrix A𝑝 weights
and that 𝜆 is large. For any cube 𝐼 ∈ , let 𝒥(𝐼) be the collection of maximal 𝐽 ∈ (𝐼) such that
either of the two conditions

‖𝒰𝐼𝒰
−1
𝐽 ‖ > 𝜆 or ‖𝒱−1

𝐼 𝒱𝐽‖ > 𝜆

are true. Also, let ℱ(𝐼) be the collection of dyadic subcubes of 𝐼 not contained in any cube 𝐽 ∈
𝒥(𝐼), so that clearly 𝐽 ∈ ℱ(𝐽) for any 𝐽 ∈ .
Let𝒥0(𝐼) ∶= {𝐼} and inductively define𝒥𝑗(𝐼) andℱ𝑗(𝐼) for 𝑗 ⩾ 1 by

𝒥𝑗(𝐼) ∶= {𝑅 ∈ 𝒥(𝑄) ∶ 𝑄 ∈ 𝒥𝑗−1(𝐼)}

andℱ𝑗(𝐼) = {𝐽′ ∈ ℱ(𝐽) ∶ 𝐽 ∈ 𝒥𝑗−1(𝐼)}. Clearly the cubes in𝒥𝑗(𝐼) for 𝑗 > 0 are pairwise disjoint.
Furthermore, since 𝐽 ∈ ℱ(𝐽) for any 𝐽 ∈ (𝐼), we have that(𝐼) =

⋃∞
𝑗=1 ℱ

𝑗(𝐼) and that the col-
lectionsℱ𝑗(𝐼) are disjoint. We will slightly abuse notation and write

⋃
𝒥(𝐼) for the set

⋃
𝐽∈𝒥(𝐼) 𝐽
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22 ISRALOWITZ et al.

and write |⋃𝒥(𝐼)| for |⋃𝐽∈𝒥(𝐼) 𝐽|. By easy arguments (see [12]), we can pick 𝜆 depending on 𝑈
and 𝑉 so that

|⋃𝒥𝑗(𝐼)| ⩽ 2−𝑗|𝐼| (8)

for every 𝐼 ∈ .
Lemma 4.5. If 𝑈,𝑉 are matrix 𝐴𝑝 weights and 0 < 𝜖′ ⩽ 1, then there exists 𝐶 > 0 independent of
𝐽 and 𝐵 where

sup
𝐼∈(𝐽)

⎛⎜⎜⎜⎝
1|𝐼| ∑

𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵
𝜀
𝑄𝒰

−1
𝑄 ‖2⎞⎟⎟⎟⎠

1
2

⩽ 𝐶 sup
𝐼∈(𝐽)

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖′ 𝑑𝑥

) 1
1+𝜖′

.

Proof. Fix 𝐼 ∈ (𝐽). By the classical unweighted John–Nirenberg theorem and by unweighted
dyadic Littlewood–Paley theory, it is enough to prove that

⨏𝐼

⎛⎜⎜⎜⎝
∑

𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵
𝜀
𝑄
𝒰−1

𝑄
‖2|𝑄| 1𝑄(𝑥)

⎞⎟⎟⎟⎠
1+𝜖′

2

𝑑𝑥 ⩽ 𝐶 sup
𝐼′∈(𝐽)⨏𝐼′

‖𝒱𝐼′ (𝐵(𝑥) − 𝑚𝐼′𝐵)𝒰
−1
𝐼′

‖1+𝜖′ 𝑑𝑥.

for 𝐼 ∈ (𝐽) where 𝐶 is independent of 𝐼, 𝐽 and 𝐵. To that end

⨏𝐼

⎛⎜⎜⎜⎝
∑

𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵
𝜀
𝑄
𝒰−1

𝑄
‖2|𝑄| 1𝑄(𝑥)

⎞⎟⎟⎟⎠
1+𝜖′

2

𝑑𝑥

⩽ ⨏𝐼

⎛⎜⎜⎜⎝
∞∑
𝑗=1

∑
𝐾∈𝒥𝑗−1(𝐼)

∑
𝑄∈ℱ(𝐾)
𝜀∈Sig𝑑

(‖𝒱𝑄𝒱
−1
𝐾 ‖‖𝒱𝐾𝐵

𝜀
𝑄
𝒰−1

𝐾 ‖𝒰𝐾𝒰
−1
𝑄

‖)2|𝑄| 1𝑄(𝑥)

⎞⎟⎟⎟⎠
1+𝜖′

2

𝑑𝑥

⩽ 𝐶 ⨏𝐼

⎛⎜⎜⎜⎝
∞∑
𝑗=1

∑
𝐾∈𝒥𝑗−1(𝐼)

∑
𝑄∈ℱ(𝐾)
𝜀∈Sig𝑑

‖𝒱𝐾𝐵
𝜀
𝑄
𝒰−1

𝐾 ‖2|𝑄| 1𝑄(𝑥)

⎞⎟⎟⎟⎠
1+𝜖′

2

𝑑𝑥

⩽
𝐶|𝐼| ∞∑

𝑗=1

∑
𝐾∈𝒥𝑗−1(𝐼)

∫𝐾

⎛⎜⎜⎜⎝
∑

𝑄∈(𝐾)
𝜀∈Sig𝑑

‖𝒱𝐾𝐵
𝜀
𝑄
𝒰−1

𝐾 ‖2|𝑄| 1𝑄(𝑥)

⎞⎟⎟⎟⎠
1+𝜖′

2

𝑑𝑥

⩽
𝐶|𝐼| ∞∑

𝑗=1

∑
𝐾∈𝒥𝑗−1(𝐼)

|𝐾|(⨏𝐾
‖𝒱𝐾(𝐵(𝑥) − 𝑚𝐾𝐵)𝒰

−1
𝐾 ‖1+𝜖′ 𝑑𝑥

)
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COMMUTATORS IN THE TWOWEIGHTED SETTING 23

⩽ 𝐶 sup
𝐼′∈(𝐽)

(
⨏𝐼′

‖𝒱𝐼′ (𝐵(𝑥) − 𝑚𝐼′𝐵)𝒰
−1
𝐼′

‖1+𝜖′ 𝑑𝑥

)|𝐼|−1
∞∑
𝑗=1

∑
𝐾∈𝒥𝑗−1(𝐼)

|𝐾|
⩽ 𝐶 sup

𝐼′∈(𝐽)⨏𝐼′
‖𝒱𝐼′ (𝐵(𝑥) − 𝑚𝐼′𝐵)𝒰

−1
𝐼′

‖1+𝜖′ 𝑑𝑥. □

The proof of Lemma 4.2 now follows immediately by combining Lemmas 4.3, 4.4, and 4.5. In
particular, let 𝜖 > 0 be from Lemma 4.4. Then for any 0 < 𝜖′ < 𝜖 we have

sup
𝐼∈(𝐽)

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖 𝑑𝑥

) 1
1+𝜖

⩽ 𝐶 sup
𝐼∈(𝐽)

(
⨏𝐼

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ‖𝑝 𝑑𝑥

) 1
𝑝

⩽ 𝐶 sup
𝐼∈(𝐽)

⎛⎜⎜⎜⎝
1|𝐼| ∑

𝑄∈(𝐼)
𝜀∈Sig𝑑

‖𝒱𝑄𝐵
𝜀
𝑄𝒰

−1
𝑄 ‖2⎞⎟⎟⎟⎠

1
2

⩽ 𝐶 sup
𝐼∈(𝐽)

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖′ 𝑑𝑥

) 1
1+𝜖′

.

We now prove the following, □

Lemma 4.6. If𝑈,𝑉 are matrix A𝑝 weights and 𝜖′ > 0 is small enough, then

sup
𝐼∈

(
⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖1+𝜖′ 𝑑𝑥

) 1
1+𝜖′

≲ sup
𝐼∈ ⨏𝐼

‖𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰
−1
𝐼 ‖𝑑𝑥.

Proof. For fixed 𝑅 ∈ ℕ, let 𝑃𝑅 be the canonical projection operator

𝑃𝑅𝐵(𝑥) =
∑
𝐼∈|𝐼|>2−𝑅

∑
𝜀∈Sig𝑑

𝐵𝜀
𝐼ℎ

𝜀
𝐼 =

∑
𝐼∈|𝐼|=2−𝑅

1𝐼𝑚𝐼𝐵

which is trivially bounded on 𝐿𝑝(ℝ𝑑) for 1 ⩽ 𝑝 < ∞. For 𝐼 ∈ , let
𝐹𝐼(𝑥) = 1𝐼(𝑥)𝒱𝐼(𝐵(𝑥) − 𝑚𝐼𝐵)𝒰

−1
𝐼 ,

let

𝐹𝑅
𝐼 (𝑥) = 1𝐼(𝑥)𝒱𝐼(𝑃𝑅𝐵(𝑥) − 𝑚𝐼(𝑃𝑅𝐵))𝒰

−1
𝐼 = 𝑃𝑅[1𝐼𝒱𝐼(𝐵 − 𝑚𝐼𝐵)𝒰

−1
𝐼 ],

and let 𝑑𝜇𝐼(𝑥) = |𝐼|−11𝐼(𝑥) 𝑑𝑥. Fix 𝐽 ∈  so trivially

sup
𝑄∈(𝐽)

‖𝐹𝑅
𝑄‖𝐿1+𝜖′ (𝑑𝜇𝑄) 𝑑𝑥 ⩽ sup

𝑄∈(𝐽)
‖𝐹𝑅

𝑄‖𝐿∞ = 𝐶 < ∞
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24 ISRALOWITZ et al.

where 𝐶 possibly depends on 𝐽, 𝑅, 𝐵,𝑈, and 𝑉. Also, clearly

sup
𝑄∈

‖𝐹𝑅
𝑄‖𝐿1(𝑑𝜇𝑄) ≲ ‖𝐵‖BMO𝑝

𝑉,𝑈

independent of 𝑅 > 0 since 𝑃𝑅 is bounded on 𝐿1(ℝ𝑑) independent of 𝑅.
Let 𝜖 > 0 be from Lemma 4.2 (applied to 𝑃𝑅𝐵) and let 0 < 𝜖′ < 𝜖. Let 𝑝1 = 1 + 𝜖′, 𝑝2 = 1 +

𝜖, 𝛼 =
𝑝2−𝑝1

𝑝2−1
, 𝛽 =

𝑝1−𝛼

𝛼
, and let𝐶 be the constant in Lemma 4.2. Then by a use ofHölder’s inequal-

ity with respect to the conjugate exponents 𝛼−1 and (1 − 𝛼)−1 we have

sup
𝑄∈(𝐽)

‖𝐹𝑅
𝑄‖𝑝1

𝐿𝑝1 (𝑑𝜇𝑄)
⩽ sup

𝑄∈(𝐽)
‖𝐹𝑅

𝑄‖𝛼𝐿1(𝑑𝜇𝑄)
sup

𝑄∈(𝐽)
‖𝐹𝑅

𝑄‖𝑝1−𝛼

𝐿𝑝2 (𝑑𝜇𝑄)

⩽ ‖𝐵‖𝛼
BMO𝑝

𝑉,𝑈

𝐶𝑝1−𝛼 sup
𝑄∈(𝐽)

‖𝐹𝑅
𝑄‖𝑝1−𝛼

𝐿𝑝1 (𝑑𝜇𝑄)

which says that

sup
𝑄∈(𝐽)

‖𝐹𝑅
𝑄‖𝐿𝑝1 (𝑑𝜇𝑄) ⩽ ‖𝐵‖BMO𝑝

𝑉,𝑈
𝐶𝛽.

Letting 𝑅 → ∞ first (using Fatou’s lemma) and then taking the supremum over all 𝑄 ∈ (𝐽) and
then all 𝐽 ∈  completes the proof. □

Combining everything we have the following corollary, which finishes the proof that the quan-
tities ‖𝐵‖B̃MO𝑝

𝑉,𝑈
and ‖𝐵‖BMO𝑝

𝑉,𝑈
are equivalent.

Corollary 4.7. If𝑈,𝑉 are matrix weights A𝑝 weights, then there exists 𝜖 > 0 such that the following
quantities are equivalent.

(a) sup 𝑄⊆ℝ𝑑

𝑄 is a cube
⨏𝑄 ‖𝒱𝑄(𝐵(𝑥) − 𝑚𝑄𝐵)𝒰

−1
𝑄

‖𝑑𝑥

(b) sup 𝑄⊆ℝ𝑑

𝑄 is a cube
(⨏𝑄 ‖𝑉 1

𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝑄𝐵)𝒰
−1
𝑄

‖𝑝 𝑑𝑥)
1
𝑝

(c) sup 𝑄⊆ℝ𝑑

𝑄 is a cube
(⨏𝑄 ‖𝑈− 1

𝑝 (𝑥)(𝐵∗(𝑥) − 𝑚𝑄𝐵
∗)(𝒱′

𝑄
)−1‖𝑝′

𝑑𝑥)
1
𝑝′

(d) sup 𝑄⊆ℝ𝑑

𝑄 is a cube
(⨏𝑄 (⨏𝑄 ‖𝑉 1

𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈
− 1

𝑝 (𝑦)‖𝑝′
𝑑𝑦)

𝑝
𝑝′

𝑑𝑥)

1
𝑝

(e) sup 𝑄⊆ℝ𝑑

𝑄 is a cube
(⨏𝑄 (⨏𝑄 ‖𝑉 1

𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈
− 1

𝑝 (𝑦)‖𝑝 𝑑𝑥)

𝑝′

𝑝
𝑑𝑦)

1
𝑝′

.

Proof. If 𝑡 ∈ {0, 1
3
}𝑑 and 𝑡 = {2−𝑘([0, 1)𝑑 + 𝑚 + (−1)𝑘𝑡) ∶ 𝑘 ∈ ℤ,𝑚 ∈ ℤ𝑑}, then given any cube

𝑄, there exists 𝑡 ∈ {0, 1
3
}𝑑 and 𝑄𝑡 ∈ 𝑡 such that 𝑄 ⊂ 𝑄𝑡 and 𝓁(𝑄𝑡) ⩽ 6𝓁(𝑄). Thus, by stan-

dard arguments, it is enough to prove the equivalence of (𝑎) − (𝑒) for any fixed dyadic
grid.
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COMMUTATORS IN THE TWOWEIGHTED SETTING 25

With this in mind, the equivalence between the supremums in (𝑎) and (𝑏) follows immediately
from Lemmas 4.2 and 4.6. As for (𝑐), since 𝑈 and 𝑉 are matrix A𝑝 weights,

‖𝒱𝑄(𝐵(𝑥) − 𝑚𝑄𝐵)𝒰
−1
𝑄 ‖ = ‖𝒰−1

𝑄 (𝐵∗(𝑥) − 𝑚𝑄𝐵
∗)𝒱𝑄‖

≈ ‖𝒰′
𝑄(𝐵

∗(𝑥) − 𝑚𝐼𝐵
∗)(𝒱′

𝑄)
−1‖

and since clearly 𝒰′
𝑄
is an 𝐿𝑝′ reducing matrix for 𝑈−𝑝′

𝑝 and a similarly 𝒱′
𝑄
is an 𝐿𝑝′ reducing

operator for 𝑉−𝑝′

𝑝 , we get that the supremum in (𝑎) is equivalent to the supremum in (𝑐) by using

the equivalence to (𝑏) with respect to the pair 𝑉−𝑝′

𝑝 , 𝑈
−𝑝′

𝑝 , and the exponent 𝑝′.
Also,

⨏𝑄
‖𝑉 1

𝑝 (𝑥)(𝐵(𝑥) − 𝑚𝑄𝐵)𝒰
−1
𝑄 ‖𝑝 𝑑𝑥

⩽ ⨏𝑄

(
⨏𝑄

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝒰−1

𝑄 ‖𝑑𝑦

)𝑝

𝑑𝑥

⩽ ⨏𝑄

(
⨏𝑄

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)‖‖𝑈 1

𝑝 (𝑦)𝒰−1
𝑄 ‖𝑑𝑦

)𝑝

𝑑𝑥

≲ ⨏𝑄

(
⨏𝑄

‖𝑉 1
𝑝 (𝑥)(𝐵(𝑥) − 𝐵(𝑦))𝑈

− 1
𝑝 (𝑦)‖𝑝′

𝑑𝑦

) 𝑝
𝑝′

𝑑𝑥

which proves that d) implies b), and similarly (e) implies (c). Finally, adding and subtracting𝑚𝑄𝐵
in both (d) and (e), respectively, shows that (b) and (c) together implies both (d) and (e), which
completes the proof. □

ACKNOWLEDGEMENT
The authors would like to thank the referees for spotting several typos and making several use-
ful suggestions.

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), 103–122.
2. D. Cruz-Uribe OFS, J. Isralowitz, and K. Moen, Two weight bump conditions for matrix weights, Integral Equa-

tions Operator Theory 90 (2018), no. 3, 36.
3. D. Cruz-Uribe OFS, K. Moen, and S. Rodney, Matrix Ap weights, degenerate Sobolev spaces, and mappings of

finite distortion, J. Geom. Anal. 26 (2016), no. 4, 2797–2830.

 14697750, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12560 by B

row
n U

niversity Library, W
iley O

nline Library on [25/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



26 ISRALOWITZ et al.

4. H.Dappa, andW.Trebel,OnL1 - criteria for quasiradial Fouriermultiplierswith applications to someanisotropic
function spaces, Anal. Math. 9 (1983), no. 4, 275–289.

5. T. Gillespie, S. Pott, and J. Wilson,Matrix BMO and matrix A2 weights: a substitute for the classical exp− rela-
tionship, Unpublished manuscript.

6. T. Gillespie, S. Pott, S. Treil, and A. Volberg, Logarithmic growth for matrix martingale transforms, J. Lond.
Math. Soc. (2) 64 (2001), no. 3, 624–636.

7. M. Goldberg,Matrix Ap weights via maximal functions, Pacific J. Math. 211 (2003), no. 2, 201–220.
8. T. Hytönen, K. Li, and T. Oikari, Iterated commutators under a joint conidition on the tuple of multiplying

functions, http://arxiv.org/abs/1910.00364.
9. I. Holmes, M. Lacey, and B.Wick, Bloom’s inequality: commutators in a two-weight setting, Arch. Math. (Basel)

106 (2016), no. 1, 53–63.
10. I. Holmes, M. Lacey, and B.Wick,Commutators in the two-weight setting, Math. Ann. 367 (2017), no. 1-2, 51–80.
11. J. Isralowitz, Boundedness of commutators and H1-BMO duality in the two matrix weighted setting, Integral

Equations Operator Theory 89 (2017), no. 2, 257–287.
12. J. Isralowitz,Matrix weighted Triebel-Lizorkin bounds: A simple stopping time proof, http://arxiv.org/abs/1507.

06700.
13. J. Isralowitz, H. K. Kwon, and S. Pott, Matrix weighted norm inequalities for commutators and paraproducts

with matrix symbols, J. Lond. Math. Soc. (2) 96 (2017), no. 1, 243–270.
14. J. Isralowitz, I. P. Rivera-Ríos, and S. Pott, Sharp A1 weighted estimates for vector valued operators, J. Geom.

Anal. 31 (2021), no. 3, 3085–3116.
15. A. Lerner,Onan estimate of Calderón-Zygmundoperators by dyadic positive operators, J. Anal.Math. 121 (2013),

no. 1, 141–161.
16. A. Lerner, S. Ombrosi, and I. P. Rivera-Ríos,On pointwise and weighted estimates for commutators of Calderón-

Zygmund operators, Adv. Math. 319 (2017), 153–181.
17. A. Lerner, S. Ombrosi, and I. P. Rivera-Ríos,Commutators of singular integrals revisited, Bull. Lond.Math. Soc.

51 (2019) 107–119.
18. C. Liaw, and S. Treil, Regularization of general singular integral operators, Rev. Mat. Iberoam. 29 (2013), no. 1,

53–74.
19. B. Muckenhoupt, and R. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal

function and the Hilbert transform, Studia Math. 55 (1976), no. 3, 279–294.
20. F. Nazarov, and S. Treil,The hunt for a Bellman function: applications to estimates for singular integral operators

and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32–162.
21. F. Nazarov, S. Petermichl, S. Treil, and A. Volberg,Convex body domination andweighted estimates withmatrix

weights, Adv. Math. 318 (2017), 279–306.
22. S. Roudenko,Matrix-weighted Besov spaces, Trans. Amer. Math. Soc. 355 (2003), 273–314.
23. S. Treil, Commutators, paraproducts and BMO in non-homogeneous martingale settings, Rev. Mat. Iberoam. 29

(2013), no. 4, 1325–1372.
24. A. Volberg,Matrix A𝑝 weights via S-functions, J. Amer. Math. Soc. 10 (1997), no. 2, 445–466.

 14697750, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12560 by B

row
n U

niversity Library, W
iley O

nline Library on [25/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://arxiv.org/abs/1910.00364
http://arxiv.org/abs/1507.06700
http://arxiv.org/abs/1507.06700

	Commutators in the two scalar and matrix weighted setting
	Abstract
	1 | INTRODUCTION AND MAIN RESULTS
	2 | INTERMEDIATE UPPER AND LOWER BOUNDS
	2.1 | Proof of lemma 1.3
	2.2 | Proof of Theorem 1.8 and Proposition 1.7
	2.3 | Proof of lemma 1.4
	2.4 | Proof of proposition 1.5

	3 | LOWER BOUND FOR RIESZ TRANSFORMS
	4 | JOHN NIRENBERG THEOREMS
	ACKNOWLEDGEMENT
	JOURNAL INFORMATION
	REFERENCES


