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1 | INTRODUCTION AND MAIN RESULTS

Let w be a weight on RY and let LP(w) be the standard weighted Lebesgue space with respect to
the norm

1

1f o) = </|Rd [fOIPw(x) dx> "
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2 | ISRALOWITZ ET AL.

Furthermore, let A, be the Muckenhoupt class of weights w satisfying

1 -1
Qs;é)d (fQ w(x)dx) <fQ w_F(x)dx)p < o0

Qis acube

where fQ is the unweighted average over Q (which will also occasionally be denoted by m)).
Given a weight v, we say b € BMO, if

1
ol = sup —
BMO, (o)

Qisacube

/ |b(x) — mpb|dx < o0
Q

(where v(Q) = /Q v) so that clearly BMO = BMO,, when v = 1. Further, given a linear operator T,
define the commutator [M,,T] = M, T — TM, with M}, being multiplication by b. In the papers
[9, 10], the authors extended earlier work of Bloom [1] and proved that if u,v € A, and T is any
Calder6n-Zygmund operator (CZO), then

IMp, Tl Lpuy— Loy S IllBMO, (L1)

1
where v = (uv~1)? and it was proved in [10] that if R, is the sth Riesz transform, then
Ibllgmo, < max IIM, RyIll Lo (i) Lo (0)- 1.2)

The purpose of this paper is to give largely self contained proofs of (1.1) and (1.2) and to
extend both to the case of two matrix A, weights and a matrix symbol B by using arguments
inspired by the matrix weighted techniques developed in [6]. Furthermore, as byproducts of some
of our results, we will provide both a sufficient and a necessary condition for the two weight
boundedness of commutators with an arbitrary linear operator in terms of matrix weighted norm
inequalities for this operator. Furthermore, we will provide conditions that almost characterize
the two matrix weighted boundedness of commutators with CZOs and completely arbitrary matrix
weights, which is even new in the fully scalar one weighted setting.

In particular, let W : RY — M, be an n x n matrix weight (a positive definite almost every-
where M,,,.,, valued function on R%) and let LP(W) be the space of C" valued functions f such
that

1Pl = ( /R d |W%(x)f(x)|pdx>P < oo,

Furthermore, we will say that a matrix weight W' is a matrix A, weight (see [22]) if it satisfies

4]

1 1 ’
W], = sup f (f W W s ()IIP dy)p dx < co.
P ocrd  Jo \JoQ
Q is a cube

Before we state our results, let us rewrite Bloom’s BMO condition in a way that naturally extends
to the matrix weighted setting. First, by multiple uses of the A, property and Holder’s inequality,
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COMMUTATORS IN THE TWO WEIGHTED SETTING 3

it is easy to see that

/

1 _p
mov & (mou)? (mpu  ?)

L 1 -1 1 1

" & (mou)P (mou) 7 ~ (mour )(mgue) ™
(where again, m, denotes unweighted average) so that b € BMO,, when u and v are A, weights
if and only if

1 1
sup f(mQUF)(mQuF)_llb(x) — mgb| dx < co.
QCR Q

Qis acube

Now if U, V are matrix A, weights, then we define BMO€ y to be the space of n X n locally inte-
grable matrix functions B where

1 1 p
IBllgpor = sup <f II(mQVP)(B(X)—mQB)(mQUP)_llldx> < o0
v.u QCRrd Q
Qis acube

so that ||bllgyor  ~ lIbllgmoy if U,V are scalar weights and b is a scalar function. Note that the
V,Uu

BMOII;’U condition is much more naturally defined in terms of reducing matrices, which will be
discussed in the next section.

In this paper, we will prove the following two theorems, the first of which is a generalization of
a similar but much weaker result proved in [11].

Theorem 1.1. Let T be any linear operator defined on scalar valued function where its canonical
vector-valued extensionT @ 1, is bounded on LP(W) for alln X n matrix A, weights W and alln € N
with bound depending on T, n,d, p, and [W] A, (Which is known to be true for all CZOs, see [2] for a
very easy proof). If U,V are m X m matrix A, weights and B is an m X m locally integrable matrix
function for some m € N, then

Mg, T ® L]l Locy—rr(v) S ”B”BMof/U
with bounds depending on T, m, d, p, [U]Ap and [V]Ap.

In particular, let I,, denote the n X n identity matrix. In the case when u, v, and b are scalar valued
(that is, m = 1), we have that (1.1) holds for any linear operator T such that T ® I,, is bounded
on LP(W) for all n X n matrix A, weights W and all n € N (and in particular we have (1.1) for all
CZOs).

We will need one more definition before we state our second main result. Given a finite collec-
tion R = {RS}JS\’= , of linear operators defined on scalar valued functions, we say that R is a lower
bound collection if for any n € N and any n X n matrix weight W we have

o=

Wiy < max IRy ® Lylloewy—re(w) (1.3)

P
with the bound independent of W (but not necessarily independent of n), and each R, ® I, is
bounded on LP(W) if W is a matrix A, weight. It should be noted that, as one would expect, the
Hilbert transform itself and more generally the collection {RL{;}‘;=1 of Riesz transforms are lower
bound collections (which will be proved in Lemma 3.5.)
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4 | ISRALOWITZ ET AL.

Theorem 1.2. IfR = {RS}IS\’: is a lower bound collection, then for any m X m matrix A, weights
U,V and any m X m locally integrable matrix symbol B we have

||B||BMO€,U p [max M5, R ® LIl Lo(y—ro(v)-
Here, the bound depends possibly on m, R, p,d and R but is independent of U and V.

Let us briefly outline the strategy for proving Theorems 1.1 and 1.2. In the next section, we
will use matrix weighted arguments inspired by [6] to prove Theorems 1.1 and 1.2 in terms of a
weighted BMO quantity 1Bl g350? that is equivalent to ||B||zy,or When U and V are matrix A,

v,u V.U
weights (see Corollary 4.7) but is much more natural for more arbitrary matrix weights U and V.
More precisely, define
y:l
p/ p/
dy) dx.

In particular, in the case of two scalar weights u, v and a scalar symbol b, note that

P , - 5
Bl g, = S0, f, (fQ [v# e - sonuro)
Q is acube

’U\I-U

_r

IblI?__, = sup f(f |b(x) — b u P(y)dy> v(x)dx

BMOu’U QQRd Q Q
Qisacube

which has a particulary simple and appealing appearance when p = 2, namely

IbI2_, = sup f fv(x>|b<x)—b(y>|2u—1<y>dydx
BMOu,U QQIRd QJQ
Qis acube

We will then give relatively short proofs of the following two results in Section 2.

Lemma 1.3. Let T be any linear operator defined on scalar valued functions where its canonical
vector-valued extension T @ I,, satisfies

IT ® LyllLogw)—roow) < $([Wla,)

for some positive increasing function ¢ (possibly depending on T,d,n and p.) If U,V are m X m
matrix A, weights and B is a locally integrable m X m matrix valued function for some m € N, then

3
Mg, T ® L, o)—ro(v) < llBll%ﬁ,vq&(Sﬂ ([U]AP + [V]Ap> + 1>-

Lemmal.4. IfR = {Rs}é\le is a lower bound collection of operators, then for any m X m matrix A,
weights U,V and an m X m matrix symbol B, we have

1Bl gyzss,, S max M. Ry ® Loy

where the bound depends possibly on n, p,d and R but is independent of U and V.
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COMMUTATORS IN THE TWO WEIGHTED SETTING 5

Recall that a scalar weight w on R is said to satisfy the A, condition if we have

1
[wly = sup —/M(wll ) < o0,
Ao ocrd  w(Q) Jo ?
Qisacube

where M is the ordinary Hardy-Littlewood maximal function on R?. Further, for a matrix weight
U we define the ‘scalar A characteristic’ as in [2, 21] by
p]
A

which forany 1 < p < oo obviously reduces to the ordinary A  characteristic in the scalar setting.
At the end of Section 2, we will estimate ||b]| for a scalar function b and a matrix A,

1
Ure

[Ulpse, = sup [

eecn .

VO3,
weight U to give us the following quantitative version of Theorem 1.1.

Proposition 1.5. Assume T satisfies the hypothesis of Lemma 1.3. Then there exists C independent
of U,V,b and T where

_
1M, T @ Loy oy < Wbllyiof [Tl + [U ] #(clula,).
’ ASC

p/ o0

It is interesting to remark that Lemma 1.3 and Proposition 1.5 would provide new quantitative
one and two weight commutator bounds in the scalar setting if the ‘matrix A, conjecture’

1
max{l,pTl}

IT & Ll Lowy—roow) S [W]Ap

were to hold for all CZOs T, even in the case p = 2. Also, we will prove that the collection of Riesz
transforms form a lower bound operator in Section 3 by utilizing the Schur multiplier/Wiener
algebra ideas from [18], and thus recovering (1.2). In fact, we will show much more and prove the
following surprising result.

Theorem 1.6. Let {R, }gzl be the collection of Riesz transforms, and let U and V be any (not neces-
sarily A ) matrix weights. If B is any locally integrable m X m matrix valued function, then

} S max, IIMg, R, ® Ll Ley—rLov)- (14)

NS

max B|| == B|| —
{u lgi7ct VBl

Moreover, we will show that an Orlicz ‘bumped’ version of these conditions are sufficient for
the general two matrix weighted boundedness of a CZO. In particular, we will prove the following
result in Section 2, which is similar in statement and proof of [14, Lemma 4].

Proposition 1.7. Let T be a CZO, U and V' be any m X m matrix weights, and B be any locally
integrable m X m matrixvalued function. Let C and D be Young functions with C € B, andD € B,
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6 | ISRALOWITZ ET AL.

where C and D are the conjugate Young functions to C and D, respectively. Then

Mg, T & L, ]Il Louy—ro(v) S minfxy, x5},
where

1 = up IVF (BCE) ~ BOU ¥ Dl o, 0

2 = Sup V5 (B~ BODU ¥ Ol gl o

We refer the reader to [14, Section 5.2] for the standard Orlicz space related definitions used in the
statement of the Proposition 1.7 (and in particular the definition of the classes B,, and B ).
It is important to emphasize that Theorem 1.6 and Proposition 1.7 are new, even in the scalar
p = 2 setting of a single weight. It is also interesting to note that formally ‘removing’ b from the
condition ”b”i;Mwo » < coin the case of two scalar weights u and v reduces to the classical two
v,u

weight A, condition (u,v) € A,,. From this perspective, ||b|| can be thought of as a first-

BMO,
order analogy of the ‘zero-order’ condition (u,v) € A, In particular, it is well known (see [19])
that (u,v) € A, isnecessary for the two weighted norm boundedness of the Hilbert transform, and
thatan Orlicz bumped version of (u, v) € A, issufficient for the two weighted boundedness of any
CZO T, see [15]. More precisely, either of the equivalent conditions in Proposition 1.7 when again
b is ‘removed’ is sufficient for the two weighted boundedness of any CZO T. Thus, Theorem 1.6
and Proposition 1.7 should be thought of as a first-order commutator version of the well-known
‘zero order’ scalar results above.

A key tool for the proof of Proposition 1.7 is a new convex body domination theorem, which
is interesting in its own right and therefore stated here. It was essentially proven in [14] (though
not explicitly stated) and is more suitable for us here than the sparse convex body domination of
commutators in [14, Theorem 4].

To state the result, we need some notation. Let D be a dyadic grid of cubes in R%. Recall that

S C Dis a sparse family if for every Q € S there exists a measurable subset E, C Q such that:

M) 1QI <2IEy;

(2) The sets E, are pairwise disjoint.

Theorem 1.8. Let T be a CZO. For every Cm valued function f with compact support and every
m X m valued matrix function B such that B f € L, there exists 3¢ sparse collections S; of dyadlc
cubes, a constant c; ,, 7, and for each Q € S; a function kg @ Q X Q — R with ”kQ”Loo(QXQ)
such that

3d

(Mg, T @1, 1f(0) = gy 3, Y, Lo) f ko, y)(B() — BONfMdy (xeRr?). (15)

Jj= IQES

Note that this result is even new in the scalar case. It is important to remark that even in the
scalar setting, it seems unclear whether the by now standard ideas from the proof of [16, Theorem
1.1] can be used to prove our sparse domination. A version of our sparse domination for iterated
commutators will be the subject of a future paper.
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COMMUTATORS IN THE TWO WEIGHTED SETTING | 7

In the last section, we will prove the equivalence of the quantities ||B|| and ||Bllgpop
V.U

VO,
when U and V are matrix A, weights, completing a line of work initiated in [11, 13]. Additionally,

we will prove that the quantities || B|| and ”B”1§1\716P, are equivalent again when U and
u’v’!
V are matrix Ap weights. In particular, we will make use of the ideas and results from [11, 13] in

conjunction with an ‘extrapolation of inverse Holder inequality’ argument from [23]. For the sake
of completion, however, we will reprove all relevant results from [11, 13], the proofs of which are
more technical than those in Sections 2 and 3.

We will end this introduction with three remarks and an outline of the organization of the rest
of the paper. First, it is an obvious question as to whether the techniques and results of this paper
can be extended to the iterated commutator setting, and whether we can recover the more recent
iterated commutator Bloom type results from [17] or the very recent unweighted two symbolled
iterated commutator results of [8]. This will be pursued in a forthcoming paper. Second, for the
reader who is either unfamiliar with matrix weighted norm inequalities or is primarily interested
in the implications of our results in the scalar setting, we have attempted to make this paper almost
entirely self-contained.

Third, if
o]
Q Q

o= sup < fQ v o = meBy 7)™

Ve 4
BMOy,

V;T(x)(B(x) - mQB)U'Q_1

p 1
dx)p
4 p
dx

-1
where U}, is an LP reducing matrix for U on Q and vé is an L?' reducing matrix for V' » on Q
(again, see Section 2), then an easy use of Holder’s inequality (see the proof of Corollary 4.7) says

that 4, < ||B|| and 4, S ||B||§W)p/ for arbitrary matrix weights U and V (and as previ-
v’ v’
ously mentioned, all four quantities are equivalent for matrix A, weights U and V, see Corol-

lary 4.7). Additionally, in the purely scalar two weighted setting, we have that

3=

BMOYy,

A = sgp <$ /Q |b(x) - me|pv(x) dx> ’

o

1 p -2
A, = sup f/’b(x)—mob| u p(x)dx
Q.5 Q

v *(Q)

which proves very natural arbitrary two scalar weighted necessary conditions for the boundedness
of commutators with all of the Riesz transforms.

Also, we can prove a version of Proposition 1.7 involving subtracted averages. Namely, arguing
in a manner very similar to the proof of [14, Lemma 4] and the proof of Proposition 1.7 we have
that if C, D, E, F are Young function with C,E € B, and D,Fe B,, then

Mg, T @ L, oy—rrr)SAL + Ay
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8 | ISRALOWITZ ET AL.

where A; = min{u,, u,} with

1 _1
P = Sgp V> G)(Bx) = moBU »WIg, ollF,.0

1 _1
#z = sup IV» CBX) =moB)U > W, ollg,0
and A, = min{u,, 1} with

1 _1
Ma = Sgp MV )BE) =meB)U »Mllc, ollp, 0

1 -1
Ha = SUP V> CXBY) =moB)U »Wlip, ollc,.0

which in the unbumped (that is, when C(x) = E(x) = xP/p and D(x) = F(x) = xP’ /p’) scalar
two weighted setting gives us

A~ (mQu_p?> : <f |b(x) — mgb|Pu(x) dx) ’
Q

/

|~

A, (va)% <.fo |b(x) — melp,u_%(x) dx> ’

which are natural joint BMO/A , conditions. Further, by adding and subtracting m,B, it is trivial
that in general x; < u; + 4, and x, < u;3 + 1, when C = E and D = F. Despite all this, it seems
unclear what the precise connection between all of these weighted (unbumped) BMO conditions
are when dealing with not necessarily matrix A, weights (even in the one weighted fully scalar
setting.)

Finally, the paper is organized as follows. In Section 2, we will prove Lemma 1.3, Lemma 1.4,
Proposition 1.5, Proposition 1.7, and Theorem 1.8. In Section 3, we will prove Theorem 1.6, and in
the last section we will prove the equivalence of the quantities ||B||1§W3€,U and ||B||BMO€]U when
U and V are matrix A, weights, which will complete the proofs of Theorems 1.1 and 1.2.

2 | INTERMEDIATE UPPER AND LOWER BOUNDS

In this section, we will give a short proofs of Theorem 1.8, Lemma 1.3, Lemma 1.4, and Proposi-
tion 1.7, starting with Lemma 1.3.

2.1 | Proofoflemmal.3

We first assume that || B|| = 1. Define the 2 X 2 block matrix function ® by

BMO}, ,,

d ‘1 TTOT “0SLLEOYT
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COMMUTATORS IN THE TWO WEIGHTED SETTING 9

so that

1
V' P —BU »r

1

0 U »r.

and
1

1 1 1
T®IL, 0 )(D_l— VIT QL) ? Vr[MgTQ®IL,|U ?

PTRL, )P =0
(®2m) ( 0 T®Im

1 _1
0 Ur(T®IL,)U »
LetW = (CD*<I>)§. Then using the polar decomposition, we can write
1
O=UWr

where U is unitary valued almost everywhere (a.e.). Supposing that W is a 2m X 2m matrix A,
weight, we have by assumption that

1 1
Mg, T @ L, llow)—roqvy = VP [Mp, T ®L,JU ?llp_pp
< NIS(T @ Ly )@ I oo
1 _1
=[[Wr(T &Ly )W 2llpp_pr
=T ® Ly lloew)—reow)

<$W):

To finish the proof of Lemma 1.3, note that

O(x)0(y)! = V;?(x)v‘%(y) V%(x)(B(x)_ B(y))U‘%(y)
0 Ur(x)U »(y)

so that

b
7

f ( f IWrCOw s ())1” dy) " dx
Q Q
_ -1 P, p
fg (fQ 1)) dy) dx

L

<37 <[U1Ap FV]y, + f{g < f/Q IVF ) (BG) ~ BONU r I dy)

S|

3 |

! dx>

and thus

3 |

I[Mg, T ® Im]||LP(U)_>Lp(V) < ¢<3P <[U]Ap + [V]Ap + 1>>

d ‘1 TTOT “0SLLEOYT
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Finally, if || B|| # 1, then we may assume that 0 < ||B]|
U

i,
B||B||=L then completes the proof.
I II%p p p

v,U

2.2 | Proof of Theorem 1.8 and Proposition 1.7

We now prove Theorem 1.8.
Define the C*” valued function f by

sy o (T
eo=(f9)

and define the 2 X 2 block matrix ®(x) by

®(x) = (I(r)" Bl(x)>

so that

oo-(5 )

Direct computation shows

)T ® L)™' )(x) = (

and

BV, < 00. Rescaling with B —

(T ®1,)f(x) + M, T ®1,17(x)
(T ®1,)f (x)

cb—l(y)f(y):(Im —B(y)> o\ _ f(y)—eB(y)f(y) .
f»

0 I, f()’)

Since ! f Lg , Theorem 3.4 in [21] applied to @~ f then says that there exists 3¢ sparse collec-
tions S]- of dyadic cubes, a constant CamT> and foreachQ € S i a function kQ : QX Q — R with

lko Il L ox0) < 1 such that

(T ®L,)f () + [My, T ® L, 1)
(T®L,)f(x)

z koG () — BOIFo) d
e YT 0) (fQ o) = BOF ) y) 100

j=1Q€S; fQ kQ(x’y)f(Y) dy

3d 2 > -
- <fQ koo IFO) = BOIFO) + B3 dy) 140

j=1Qes; fQ kQ(x,Y)f(y)dy

d ‘1 TTOT “0SLLEOYT
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COMMUTATORS IN THE TWO WEIGHTED SETTING 11

Subtracting

3d
TRL) W =capr Y Y fQ koCt, ) ) dy

Jj=1QEsS;

from the first column then completes the proof.
‘We now prove Proposition 1.7. The easy proof is similar to the proof of [14, Lemma 4]. We only
prove that

1 _1
Mg, T ® L1l Low)—ro(v) S Sgp Ve (x)B(x)—BEHU » (y)”Cx,Q”Dy,Q

as the other estimate is virtually the same.

By the density of bounded functions with compact support in LP(W) for any matrix weight W
(see [3, Proposition 3.6]), we can pick f , ¢ bounded with compact support and use (1.5) to get that
(where for notational ease we suppress the summation over j = 1 to 3¢)

(17 @1,17.3),.

dydx

Qes/f‘ (B(x) B(y))f(y) g(x)>

Q s/f ‘Vp(x)(B(x) B(y)U P(y)'HUp(y)f(y)HV (x)3(x)| dx dy
il ol Z el

1 b —l_)
< 21 [[IM5U» Pl IMc(V 2 DIl

Sulflpwlal  p
L'V P)

1
where M=(V »3) is the Orlicz maximal function defined by

_1, _1,
Mz(V rg)x)= sup |V rg
RIDQ>x
Q is a cube

cQ

1, —
(with MB(UE f) defined similarly) and where last line follows from the fact that C € B, and
De B,,. This completes the proof.
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12 | ISRALOWITZ ET AL.

2.3 | Proofoflemmal.4

We now give a short proof of Lemma 1.4. Defining W and ® as before, we have by the previous
computations and by assumption that

1
p
U 14 B||®
(1wh, + 00, + 10, )

< max IRy & Loy Il Lo wy—Lr(w)

VX

< max (|[[Mp, Ry @ L1l zowy—rev) + IR @ Lyllrowy—rew) + IRy @ Lyllov)— 1oy )-

1<s<N

Rescaling, and in particular letting B — rB for r > 0 gives
W1, + Vs, + 0812, )
Ap Ap BT/I_(/)€!U
S max (rl[Mp, Ry ® L1l oy roevy + IRy ® Lyllony—row) + IRy ® Lylloqy—roqr))-

Finally dividing both sides by r and letting r — oo gives us that

IIBIIM);U S max, Mg, Ry ® L, ]Il Locw)—Lo(v)-

2.4 | Proof of proposition 1.5

We finally give a very short proof of Proposition 1.5 by estimating ||b||
Q. Then

B0, Namely, fix a cube

s

p

f ( f U7 U™ T I 1) = bO)IP dy) dx
Q Q

< fQ (fo 1UZGOU s I [bGx) = mobl” dy)P dx

P
I

+ fg ( fQ U COU™F I [b(y) — mgbl?’ dy) dx
= (A) + (B).

We only estimate (A) as (B) can be similarly estimated. By the classical scalar sharp reverse
Holder inequality, we can pick € = [U];slC where for any € € C, we have
P,

P 1—¢ 1
f ) s f i
Q Q

1 R P
Ur(x)%,e ~ [Ula,
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COMMUTATORS IN THE TWO WEIGHTED SETTING 13

and therefore

L]

p

(4) < fg (f@ 107 GOy 17 1) U™ I 1bGe) — mabl?” dy) dx

1
S f 10O bCe) — mobl? dx
Q

1 , b 1—¢ p €
s (f wreomgitac) (£ b —mo‘ ax)

by the classical John-Nirenberg inequality. Here, %é is a reducing matrix satisfying (3.5).
Similarly we can estimate

A B
(B)S[U]AP[U P]  Ibllgyo

/!

p’ .o

so by our assumption on T we have

11D
_p
My, T @ Ll oquy—rowy < $| CIUA, +CIUTA, [U ] U (L
ASC ,00

Pl
3 o -1
Rescaling, setting b = b[([U 7 Jasc  + [U] A Ibllgmo]  gives
p,,OO ,00

_r
1My, T ® L, 1l Loy Lo(u) < ¢<C[U]Ap>”b”BMO [U p] + [U]AZCm .
ASC ’

p/ 00

3 | LOWER BOUND FOR RIESZ TRANSFORMS

In this section, we prove Theorem 1.6. Clearly it is enough to prove Theorem 1.6 where ||B | 55767

V.U
is redefined by taking the supremum over balls instead of cubes, which will be more convenient
for us. Recall that the Riesz transform R, is the Calderén-Zygmund operator with associated

kernel

Xe — Ve
K, (x,y) = ————
#(x,y) P
in the usual sense.

Let W be an m X m matrix weight, and assume for the moment that R, ® I,,, is bounded on
/

N _pb
, so that in particularif f € L“ N and g€ L“ N ' P ) both have compact sup-
LP(W) hat i icular if L>’NLP(W)and g € L>NLP (W ) bothh
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14 | ISRALOWITZ ET AL.

port with dist(supp f ,suppg) > 0, and if E is a measurable subset of R¢, then

L, [ stk e (fonice),, dy dx

<1pR, ® Im)]lE”LP(W)—>LP(W)”f”LP(W)”§”Lp’(W1—p’)- (€AY

As was stated in the introduction, we will need the Schur multiplier/Wiener algebra argu-
ments in [18], which we quickly discuss now. In particular, we trivially have that the kernel
e XK ,(x,y)e!%Y satisfies (3.1) for any a € RY. Thus, if p € L'(R?), then Fubini’s theorem says
that the kernel

ﬁ(x - y)Kf(x,y) = /d P(G)Kg(x,y)e_ia'(x_«") da
R

satisfies (3.1) with ||15(R, ®In)]1E||LP(_W)_,Lp(W) replaced with [|15(R, ® L)1l Lo(w)—rew)
llollp1(ray (Where here 5(s) = fpq p(@)e ¢ da.)
Let W, (R?) denote the Wiener algebra defined by W(R%) = {¢ = p : p € L'(R?)}. Then since
p(-/¢) = edp(e-) and
[, Ieteenidx = ol
RrRd

we have the following result which is similar to [18, Lemma 2.1].

Lemma 3.1. Ify) € Wy(Rd), ¢ > 0, and E is a measurable subset of RY, then

A

< LRy ® L) LgllLow)— Lo I Lo 191 Lo qyrpy (3.2)

W(F).50) _, dy dx

/

> ’ _b = -
forany f e L>nLP(W)and g € L> nLP (W » ) of compact support with dist(supp f, supp g) > 0.
We will need three more lemmas to show that the Riesz transforms satisfy (1.3), the first of
which is probably known (though we provide a proof for the sake of completion) and the second
being [18, Lemma 3.1].

Lemma 3.2. If¢ € CX(RY), then |x|¢(x) € Wy(RY).

Proof. The proof is similar the short proof of [4, Lemma 2]. Let F(x) = |x|¢(x) and pick 1 < § <
min{l + ——,2}. If a € {0, 1} and

={xer? 1 (=D)%|xy | < (D)W},
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COMMUTATORS IN THE TWO WEIGHTED SETTING 15

then

1Ellpgay = Y, [ X7 (1xIF@]) dx
aef0,1}4 Pq

2 (/P |x°‘|—5dx)

aef0,1}4

</ |D/‘ﬁ7(x)|5, dx>5
Rd
< </@ |D°‘F(x)|5dx>g

where in the last inequality we used the classical Hausdorff-Young inequality. However, an ele-
mentary estimate using the Leibniz formula tells us that

=

1
57

</ Ix“E ()| dx>5
RrRd

VA

%]

A

ID*F(x)| < |x|*4l.

Thus, the factthat1 < § <1 + ﬁ gives us that || F|| Li(rd) < 00, Which by Fourier inversion com-
pletes the proof. O
Lemma 3.3. There exists Borel sets E, and E} such that:

(1) forallk € N, we have dist(El,Ei) > 0;
(ii) the operators defined by P]f f =1 B¢ f for ¢ = 1,2 converge to %Id in the L>(R%) weak operator

topology;
(iii) foranyl < p < o and ¢ = 1,2, we have

S 1,
kll—{l;lo ”]lElff”LP(Rd) =2r ||f||Lp(Rd)-

‘We now need to introduce the concept of a reducing matrix. Namely, for a set Q of finite nonzero
measure, let %Q, WQ, ?lé, %Q’ respectively, be positive definite matrices where for any eeC"we
have

1 , -1 N
|%,€|P zf |U?(x)elP dx, |%el? zf U ?(x)elP dx (3.3)
Q Q

and a similar statement holds for 7, and ‘Wé with respect to V. Despite its perhaps abstract appear-

1
ance, the reader should think of %Q as ‘the LP average of U over Q’ and should similarly of %é
as an average. In fact, if U is a matrix A, weight, then it can be shown (see [13, Lemma 2.2]) that
forany € € C"

1
|%ge| ~ [mo(UP)e|
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16 | ISRALOWITZ ET AL.

_
and a similar result holds for é since U is a matrix A, weightifand only if W isa matrix A,
weight. Also note that we can in fact rewrite the matrix A, condition as

Ula, ~  sup  I1%2)l"
QCR
Qis a cube

and thus since ||CZJQCZJ(’2 [l II%éCZZQ ll, we can also write the matrix A, condition out as

/

! P
P 1 1 )28
Wl = sup f (f IWe )W PP dX> " dy < co.
P ocrd JQ \JQ
Qisacube

Furthermore, note that we can rewrite the BMOf; U condition much more naturally as

1
_ p
||B||BM05U = sup <f |75 (B(x) — mQB)%Qlll dx) < o0.
’ QcRrd Q
Qis a cube

The next proposition is implicitly proved in [ 7] (among other papers) but is not explicitly stated
in the literature.

Proposition 3.4. IfE C R is a set of finite positive measure, then for any matrix weight W we have
VAE Lo ew)—Loowy = |WEWE|»
where Ay, is the averaging operator
Apf =1g f fx)dx
E
and Wr and W]’E are reducing matrices for W.

Proof. Let p, i be the norm on C" defined by

pp (€)= < fE

A standard duality argument immediately says that

(2.9)..
(@ = sup 2"
U#0 PP,E(E))

1P \F )
Wr(x)e dx> ~ |[Wgel.

where

(&0)cn
’ = —— ~|W;le|.
Pp,E(é)) Sﬁl:r’:g pp,E(J) ' E e’
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COMMUTATORS IN THE TWO WEIGHTED SETTING | 17

4
Using these facts in conjunction with the fact that (LP(W))* = LP (W » ) under the unweighted
L? inner product, we get that

Je <f(x), g>a:"

_1
sup 1g f flx)dx =|E| P sup sup -
1/ lLpwy=1 L) I lpow)=1 €70 Pp50)
1re ’ , 2
-5 ” ”LP’(W’Z ) [7ie]
= |E| ¥ Sup ————=—— ~/sup -—.
40 PP,E(U) 340 ”wE—le“
Replacing € by Wy¢ completes the proof. O

Putting together everything in this section gives us the following crucial Lemma

Lemma 3.5. Let & be a ball and E C & have nongzero finite measure. Then

A

|
IWEWgll S ==
EL~E

maX ||]LE(R,£ ® Im)]LE||Lp(W)_>Lp(W)

Proof. Let & be a ball with radius € > 0. We will only consider the case that d is even, since the
case that d is odd is much easier and does not require Lemma 3.2. Let ¢ € CC°°(IR{d) satisfy ¢(x) =
1if |x| < 2, so by Lemma 3.2 and the fact that x,|x|97?¢(x) € C®(RY) C W(R?) we get that
x,|x|971¢%(x) € Wy (R?). Using Lemma 3.1 and summing over # then gives us that the kernel

s_d¢2<x

_y)lﬁx%(x’y) ﬂﬁxj(x y)

||

replacing ¢( I pyp(x, y)Kf(x y) satisfies (3.2). Thus, if Pf are the projections from the previ-
ous lemma, then for any f eL’NLP(W)and g € L2N LY (W1 P"), we have

25 L%l 17 p2=
KAEf’9>Lz E] i n [(1eAusPif P),
El
S = g [max, ||]lE(Rf Q1 )]lE”LP(W)—»LP(W) 111'11 ”Pkf”LP(W)”P gl wi-p'y
=—"%' max 1R, & L)Lyl oo oo o I3l gt
|E| i<r<d m LE(wi=r')

However, since bounded functions with compact support are dense in LP(W) and LP/(Wl_P/),
Proposition 3.4 then says that

| 5|
IWE Wl ~ 1AE | Loewy—Loowy S B max 1R, @ L) LEllLoow)—Low)- 0

We now finish the proof of Theorem 1.6. Fix a ball &% and define E, ={x € % :
max{[|[U)|[, [ULCOI, IV, IV L(x)]1} < M}where M > 0is large enough that 2|E,, | > |B|.
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18 | ISRALOWITZ ET AL.

Defining

4]

Wl = £ (é W oW )P dy)p dx

p P, P
BIL, = f f dy ) dx
Moy ;B Jp\JE

and also defining W and @ as in the beginning of Section 2, we have using Lemma 3.5 with respect
to E = E,, that

and

4]

V' ()BG) — BO)U F (x)

» b
<[U]AP(EM) WV a, @ + "B”%QU(EM)
1
~ p
~ WL
~ Wy, W, |
= W, W, |

S max, I1g, (R, ® Ly)1g, o )—rew)

S max (”[MB’RK ® Izm]||Lp(U)—>Lp(V)+

1</<d
+ I1g, (R, @ L)1, lipw)—rew) + I11g, (Ry @ Ly)1g,, ||LP(V)—>LP(V)~>

Notice that all quantities above are bounded as all weights involved are pointwise bounded
in norm and we assume |[[Mg,R, ® L, ]Il o) 1r() < 0. Thus, as was done in the proof of
Theorem 1.4, we can rescale and set B — rB, divide by r, and let r — oo to get that

||B”1\755,U(EM) S lrélfaé% I[Mg,R, ® Im]||LP(U)—>LP(V)'
First letting M — oo and using Fatou’s lemma, and then taking the supremum over all balls %
shows that

||B||B’W)5U < 112% Mg, R Lo uy—Lov)

1

as desired. To show the same estimate is true with ||B|| —_, expand out [W]E R~
BMO,,/ s Ap(Epy)

IIWéM WEM || using the reducing matrix WEM first and repeat the arguments above, which com-
pletes the proof of (1.4).
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COMMUTATORS IN THE TWO WEIGHTED SETTING 19

4 | JOHN NIRENBERG THEOREMS

We will finish this paper by proving the equivalency between ||B||==r and ||B||BMOp when

BMO},
U and V are matrix A, weights. Note that we will not track the [U] A, and [V] A, dependence of
our constants because we will need to use the lower matrix welghted Triebel-Lizorkin bounds
from [20, 24] when d = 1and d > 1in [12], which are most likely far from sharp. We will need the
following simple result that is a special case of [11, Theorem 2.2] and proved using a simple idea
from [13]. Note that throughout this section D will refer to some dyadic lattice of cubes in R<.

Proposition 4.1. Let U be a matrix A, weight and let A = {ay}ocp be a nonnegative Carleson
sequence of scalars, meaning that

||A||2 =sup — Z a? < .
eDl | Q
QeD()

Then for any f € LP we have

_1, 2
lagmol%oU » f11? f
/d 3 Qe |(§I Lo | dx| SHAILIS e
R\ QeD

where as before, U, is a reducing matrix satisfying (3.3).

Proof. Let

A= apht
2 2 e

eeSig; QeD

where Sig; = {1,2,...,2¢ — 1} and {hEQ}{er’Ees,ig ) is any Haar system on R?. Clearly for any D >
Q > x we have that

mQ|°ZlQU Pf| mQM f
where M/ f is the ‘Goldberg intermediary maximal function’ defined by
, - _l -
My, f(x) = sup mg|%,U »fl.
D>Q>x

Thus, since M {, : LP — LP for matrix A, weights U (see [7, p.8]), we have that

/' F12 3
/ ( Z Z %%@)) dx
R? \ ¢&Sig, QED

S laMy FID, S IANZIMLFIE, S HAICIAIE,
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20 | ISRALOWITZ ET AL.

by unweighted dyadic Littlewood-Paley theory, where here 7 ; is the paraproduct

magx) = Y, Y mogALhS(x).

e€Sigy QED

([l

The following is the key to proving the equivalence between || B|| and ||Bl|gpor - Note
V,Uu

BMOy, :
that the lemma below was implicitly proved in [12] though not explicitly stated, and therefore for
the sake of completion we will include the details.

Lemma 4.2. IfU and V are matrix A, weights, then there exists € > 0 small enough where for any
0 <€’ < ewehave

1

1
1 > , fwws
sup ( f V7 o) (B(x) - m,Bm,—lude)" <C sup ( f 171(BCx) — myBYo; 1+ dx) "
1 1

1eD{) 1eD()

and

1
T+e 1
sup (f ||%(B(x)—mIB)%I_lll“edx)H <C sup f VP (x)(B(x) — mB)%; " ||P dx.
1eD(J) I I1eD(y) J1I

where C is independent of B and J (but depends on €’.)
We prove Lemma 4.2 through a series of lemmas.

Lemma 4.3. IfU,V are matrix A, weights and B is locally integrable, then

D=

1
= _ 1 _
sup fIIVP(x)(B(x)—me)%lllpdeC sup |- Z II’WQB‘EQ%QIII2
IeD() J1I IeD()) | IQeD(I)

ceSigy

where C is independent of B and J.

Proof. LetI € D(J). By the Triebel-Lizorkin embedding (see [20, 24] for d = 1 and [12] for d > 1)
we have that

FIVE 60 - mBy 1P d

1]

Y Bo% 12
<f Z MHQO) dt

1| o&Dm QI
e€Sigy
P
2
170Bo I T
<H T e mloU DU P | e
QeD()

e€Sigy
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COMMUTATORS IN THE TWO WEIGHTED SETTING 21

p

2

1 _ L
S|osup = X 1B I fnUp%,lude
IED(])' IQED(I) 1
e€Sigy

where in the last line we used Proposition 4.1. O

Lemma 4.4. For ¢ > 0 small enough (independent of B) we have

(f 17, (B(x) — my By 1||“€dx> " (f IVF GB) — B 1||de)

where C is independent of I and B.

Proof.
1
—1j1+¢ "
(£ 1736800 - mpy v+
I
1 1 =
—= = 1+
< (fII%V PNV P COBx) — myBY%; e dx>
I
1 ,p—l—¢
pa+e) (=) 1 [
< <fII%V ()| P dx) (fIIVP(X)(B(x) —m B P dx)
I I
l 1
W12, (£ 1V Geeo - mipya e ax )
for € > 0 small enough by the reverse Holder inequality. O

We now recall the two matrix weighted stopping time from [12] which is a modification of the
one matrix weighted stopping time from [13]. Finally assume that U, V" are a matrix A, weights
and that 4 is large. For any cube I € D, let j#(I) be the collection of maximal J € D(I) such that
either of the two conditions

1%, %5 > 4 or |77 751 > 2

are true. Also, let #(I) be the collection of dyadic subcubes of I not contained in any cube J €
F (), so that clearlyJ € #(J) for anyJ € D.
Let #°(I) := {I} and inductively define #/(I) and %/(I) for j > 1 by

FID) :={Re F(Q) : Qe g )}

and F/(I) = {J' € F(J) : J € gI71(I)}. Clearly the cubes in #/(I) for j > 0 are pairwise disjoint.
Furthermore, since J € % (J) for anyJ € D(I), we have that D(I) = U°° FJ(I) and that the col-
lections /(I are disjoint. We will slightly abuse notation and write U F () for the set U, ) J
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22 | ISRALOWITZ ET AL.

and write | J #Z(I)| for | U, 7 J |- By easy arguments (see [12]), we can pick 4 depending on U
and V so that

J7 <271 ®)
forevery I € D.

Lemma 4.5. IfU,V are matrix A, weights and 0 < €/ < 1, then there exists C > 0 independent of
J and B where

[T

1
T+’

1 _
sup | o D 170837 IP| <€ sup <f 17;,(BG) — my By 1+ dx)
eeSigy

Proof. Fix I € D(J). By the classical unweighted John-Nirenberg theorem and by unweighted
dyadic Littlewood—-Paley theory, it is enough to prove that

14+¢/

1708, 01”2 11
f 2 ————1(x) dx < C sup ||%,(B(x) mpyB)% ;|| +e dx.
0eD) 1Ql r'en()
e€Sigy

for I € D(J) where C is independent of I,J and B. To that end

ﬂ
| 7B5 %5 17
&y Il
eeSigy
1+¢"
f i 7,7 1I|II"7KB IEIIICZZK?JEII)Z]l ) 4
< X X
= Q
Il j=1kezi-1(1)QeF (k) Q|
e€Sigy
1+’
00 5%—1”2 ’
7B
QK
Cfl 2 Z —|Q| 1o(x) dx
Jj=1Kezi-1(I) QeZ (K)
e€Sigy
1+’
oo —1”2 :
C ”%KBQ K
< & L2~ tw| e
J=lKegi—1(I) K QeD(K)
e€Sigy

<X 3w f e -mauy i)

J=1Kegi-1(I)
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<C sup <f 1730 (Bx) — my BYZ |+ dx)m—lz 2 Kl

r'eb) J=lKegi1(1)

< C sup ||%,(B(x) myB)%, Lt dx. N
I'eD()

The proof of Lemma 4.2 now follows immediately by combining Lemmas 4.3, 4.4, and 4.5. In
particular, let € > 0 be from Lemma 4.4. Then for any 0 < ¢/ < € we have

sup ( f 171(BCx) — myBYZ |1+ dx) e sup ( f IVFGBG) — myBY 1P dx) '
I I

IeD() IeD()

1 -1)2
<C sup | = 17BL %, |
repn | 1 Q;D(I) Qre
e€Sigy

1
<C su 7, - 2 dx )
I P ” I(B(x) mIB) I ” X .

I

1eD()
We now prove the following, Ol

Lemma 4.6. IfU,V are matrix A, weights and ¢/ > 0is small enough, then

1
Txe!

sup ( f 17;(B(x) — m; BY%; ||+ dx) < sup f I17;(B(x) — m;BY%; || dx.

Proof. For fixed R € N, let Py be the canonical projection operator

PB(x)= Y Y Bihi= Y 1,mB

IeD ceeSigy IeD
[I|>27R |[I[|=2"R

which is trivially bounded on LP(R%) for 1 < p < c0. For I € D, let
Fi(x) = 1;,(xX)7;(B(x) — mB)%; ",
let
F{(x) = 1,()7(PB(x) — my(PgB); " = Py[1,7,(B — mB)% '],
and let du;(x) = |I|7'1;(x) dx. FixJ € D so trivially

sup ”F ||L1+€’(d;,{ )d < sup ”FR”LDO =C< o0
QeDU) QeDW)
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24 | ISRALOWITZ ET AL.

where C possibly depends on J, R, B, U, and V. Also, clearly

sup [IFG Il (aug) S IBllgyor
0eD QLY (dug) BMOY,

independent of R > 0 since Py is bounded on L'(R%) independent of R.
Let € > 0 be from Lemma 4.2 (applied to PyB) and let 0 < ¢’ <e. Let py =1+¢/, p, =1+
€,a= %, B = p P21i=% ‘andlet C be the constant in Lemma 4.2. Then by a use of Holder’s inequal-
-

ity with respect to the conjugate exponents &~ and (1 — a)~! we have

sup [IFSIIT; < Sup IFSIS SUP IFSIT,
QeDW) QULP1(dug) Q'L (dp, ) LPZ(dM)
< |IBIIY CP1™* sup IIFRIIpl_“
BMOY, QeD() LP1(dpg)
which says that
sup (1P Il auq) < IBllgyor | C7-
QeD()

Letting R — oo first (using Fatou’s lemma) and then taking the supremum over all Q € D(J) and
then all J € D completes the proof. O

Combining everything we have the following corollary, which finishes the proof that the quan-

tities ||B||s==r and ||B are equivalent.
1Bllgyzs,, and I1Bllgyop | are eq

Corollary 4.7. IfU,V are matrix weights A , weights, then there exists € > 0 such that the following
quantities are equivalent.

(@) sup geat o 17oBX) —moB)%S || dx

Q is a cube
1 1
(b) sup ocpa (£ IV COBX) — mB)%g |IP dx)P
Q is a cube
1
(©) sup epa (fIU- P(X)(B (xX) = moB* )7 ()~ Y|P dox) ¥’
Qis a cube

1
P =

@ sup ocpe (£ (fg IVEGOBG) — BoOU T OIP dy)” dx)
Qis a cube

© Sup et (Fy (f, IV (IBOD) — BOU TP dx)” dy)

Q is a cube

Proof. If t € {0, }d and D' = {27%([0,1)? + m + (=1)¥t) : k € Z,m € 7%}, then given any cube

Q, there exists te {0, 3}‘1 and Q, € D' such that Q C Q, and #(Q,) < 6£(Q). Thus, by stan-
dard arguments, it is enough to prove the equivalence of (a) —(e) for any fixed dyadic
grid.
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With this in mind, the equivalence between the supremums in (a) and (b) follows immediately
from Lemmas 4.2 and 4.6. As for (c), since U and V are matrix Ap weights,

175 (Bx) — B, | = 1%y (B*(x) — moB )7,
~ 2B (x) = mBYZ )|

/

and since clearly %é is an L¥’ reducing matrix for U » and a similarly ‘WQ’ is an LY’ reducing
/

operator for V' ¢ , we get that the supremum in (a) is equivalent to the supremum in (c) by using
/ /

o
the equivalence to (b) with respect to the pair V' » ,U r, and the exponent p’.
Also,

fQ IIV%(x)(B(x) —moB) || dx

1 p
> _ -1
< fQ (/Q IVE B - BN dy) dx

; -1 1 . P
< fQ <fQ V> (x)(B(x) = BONHU »WIIIU» )%, ”dy> dic

0@ — BT I dy)”
sz (fQ IVF ()BG) - BO)U P )] dy) dx

which proves that d) implies b), and similarly (e) implies (¢). Finally, adding and subtracting m,B
in both (d) and (e), respectively, shows that (b) and (c) together implies both (d) and (e), which
completes the proof. O
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