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The convex body maximal operator is a natural generalization 
of the Hardy–Littlewood maximal operator. In this paper 
we are considering its dyadic version in the presence of a 
matrix weight. To our surprise it turns out that this operator 
is not bounded. This is in a sharp contrast to a Doob’s 
inequality in this context. At first, we show that the convex 
body Carleson Embedding Theorem with matrix weight fails. 
We then deduce the unboundedness of the matrix-weighted 
convex body maximal operator.

© 2022 Elsevier Inc. All rights reserved.

0. Notation

I0 interval [0, 1];
D the dyadic lattice, i.e., the collection of all dyadic intervals;
I+, I− left and right halves of the interval I ∈ D;
D± D± = {I± : I ∈ D} so that D = D+∪̇D−∪̇{I0};
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D(K) D(K) = {I ∈ D : I ⊂ K} for K ∈ D;
|I| the Lebesgue measure of the set I ⊂ I0;
Dn Dn := {I ∈ D : |I| = 2−n};
D�n D�n :=

⋃
k�n Dk = {I ∈ D : |I| � 2−n};

C± for a collection C ⊂ D of dyadic intervals, C± = C ∩ D±;
(Fn)n�0 the dyadic filtration: Fn is the σ-algebra generated by Dn;
〈f〉I average of a scalar, vector or matrix function f over I: 〈f〉I := |I|−1 ∫

I
f(x)dx;

f(I) for I ⊂ I0 we denote by f(I) the integral of a scalar, vector or matrix function 
f over I: f(I) =

∫
I

f(x)dx;
〈 · , · 〉Rd the standard inner product in Rd;
| · |Rd the norm induced by 〈·, ·〉Rd with subscript omitted if d = 1;
| · |op the operator norm of a matrix;
‖ · ‖X norm in the function space X;
B(X) unit ball in the normed space X;
1I the characteristic function of I.

Generally, since we are dealing with vector- and matrix-valued functions we will use 
the symbol ‖ · ‖ (usually with a subscript) for the norm in a functions space, while | · |
is used for the norm in the underlying vector (matrix) space. Thus, for a vector valued 
function f , the symbol ‖f‖L2 denotes its L2-norm, but the symbol |f | stands for the 
scalar valued function x 	→ |f(x)|.

Finally, we will use the linear algebra notation, identifying vector a in a Hilbert space 
H with the operator α 	→ αa acting from scalars to H. In this case the symbol a∗ denotes 
the (bounded) linear functional x 	→ 〈x, a〉. In our case H is the real Hilbert space Rd, 
vectors in Rd are the column vectors, and a∗ is just the transpose of the column a.

1. Introduction

The simple dyadic maximal function

Mf(x) = sup
I∈D:x∈I

|〈f〉I |

and the dyadic Hardy-Littlewood maximal function

Mcf(x) = sup
I∈D:x∈I

〈|f |〉I

together with their scalar weighted analogues

Mwf(x) = sup
I∈D:x∈I

1
w(I)

∣∣∣∣∣∣
∫
I

f(y)w(y)dy

∣∣∣∣∣∣
and
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Mc
wf(x) = sup

I∈D:x∈I

1
w(I)

∫
I

|f(y)| w(y)dy

for positive w ∈ L1 are classical objects in harmonic analysis. (The reason for the super-
script c will become clear in the next section.)

The inequality

‖Mw‖L2
w(R)→L2

w(R) � 2

is a special case of Doob’s inequality and the same inequality for Mc
w follows immediately 

from the observations that Mc
wf = Mw |f | and ‖ |f | ‖L2

w(R) = ‖f‖L2
w(R).

The boundedness of Mw or Mc
w in L2

w(R) can be rewritten as the boundedness of 
the operators

Mwf(x) = sup
I∈D:x∈I

∣∣∣∣∣∣w1/2(x) 1
w(I)

∫
I

f(y)w(y)dy

∣∣∣∣∣∣
and

M c
wf(x) = sup

I∈D:x∈I
w1/2(x) 1

w(I)

∫
I

|f(y)|w(y)dy

from L2
w(R) to the usual L2(R).

The natural counterpart (see the next section for details) of Mwf and M c
wf in the case 

when f is a vector-valued function and W a matrix weight (a positive definite matrix 
function) are

MW f(x) = sup
I∈D:x∈I

∣∣∣W 1/2(x)〈W 〉−1
I 〈Wf〉I

∣∣∣
Rd

and

M c
W f(x) = sup

I∈D : x∈I
ϕI :I→[−1,1]

∣∣∣W 1/2(x)〈W 〉−1
I 〈ϕIWf〉I

∣∣∣
Rd

.

When d = 1 use the signum of Wf on I for ϕI to get the usual absolute value. This 
definition will be shown in the next section to be equivalent to a Christ-Goldberg type 
definition [1]. The boundedness of these operators from L2

W (Rd) to L2(R) when W = Idd

remains a simple consequence of Doob’s inequality, but is more complicated for general 
matrix weights. The positive result for MW f was established in [4] by reducing it to the 
weighted Carleson Embedding Theorem from [2].:

Theorem 1.1. (Culiuc, Treil) Let W be a matrix weight and (AI)I∈D a sequence of pos-
itive definite matrices. Then the following are equivalent:
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(i) There exists c(i) > 0 such that for all K ∈ D,

1
|K|

∑
I∈D(K)

〈W 〉IAI〈W 〉I � c(i)〈W 〉K .

(ii) There exists c(ii) > 0 such that for all f ∈ L2
W (Rd),

∑
I∈D

∣∣∣A1/2
I 〈Wf〉I

∣∣∣2

Rd
� c(ii)‖f‖2

L2
W (Rd).

Moreover, the best possible constants c(i) and c(ii) in (i) and (ii) satisfy c(i) � c(ii) � Cc(i)
with C > 0 only depending on the dimension d but not on W .

The bound for the norm ‖MW ‖L2
W (Rd)→L2(R) follows by the so-called linearization 

technique and the exact statement is as follows:

Theorem 1.2. (Petermichl, Pott, Reguera) Let W be a matrix weight. Then

‖MW ‖L2
W (Rd)→L2(R) � C,

where C depends only on d.

These results raised hopes that the larger maximal function M c
W may be bounded 

from L2
W (Rd) to L2(R) as well, so it came as a surprise to us that in general it actually 

is not. The main purpose of this paper is to present and discuss the counter-example. 
Again, to construct it, we show that the corresponding convex body Carleson Embedding 
Theorem fails, which was also quite surprising for us and which may be of independent 
interest. Here are the precise formulations of our negative results:

Theorem 1.3. For any fixed dimension d � 2, there exist a matrix weight W and a 
sequence (AI)I∈D of positive definite matrices such that there exists c(i) > 0 such that 
for all K ∈ D

1
|K|

∑
I∈D(K)

〈W 〉IAI〈W 〉I � c(i)〈W 〉K , (1.1)

but there exist f ∈ L2
W (Rd) and a sequence (ϕI)I∈D, −1 � ϕI � 1, such that

∑
I∈D

∣∣∣A1/2
I 〈ϕIWf〉I

∣∣∣2

Rd
= ∞. (1.2)

Theorem 1.4. For any fixed dimension d � 2, there exists a matrix weight W such that 
M c

W does not map L2
W (Rd) to L2(R).
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2. Discussion of definitions

Let f be a vector-valued function with values in Rd. A Hardy-Littlewood maximal 
function of f at x is a quantity allowing one to control all averages of f over intervals 
containing x. The most straightforward quantity of that type is just supI∈D:x∈I〈|f |Rd〉I . 
However, this quantity is often too crude when f is large in some directions and small 
in some other ones (all such information is completely lost here) and is too strongly tied 
to the particular choice of the Euclidean norm in Rd to yield useful bounds in the case 
when the size of f is measured in some other norm, especially in a norm depending on 
a point, as it is the case in matrix-weighted spaces.

A more reasonable idea would be to use the convex-body average 〈 〈f〉 〉I of an L1

function f over an interval I, defined as

〈〈f〉〉I = {〈ϕIf〉I : ϕI : I → [−1, 1]}.

See [3]. 〈 〈f〉 〉I is always a symmetric compact convex set in Rd (the compactness follows 
from the weak-∗ compactness of the unit ball in L∞(I, R) = L1(I, R)∗, where these 
spaces consist of functions defined on the interval I) but, in general, it may contain 
no inner points. However, contrary to the terminology of some convex body geometry 
books, we will still call it a convex body.

This convex body average makes sense even if d = 1, in which case it is just the 
interval [−〈|f |〉I , 〈|f |〉I ], so there it carries just as much information as 〈|f |〉I .

Let now ρ be any norm in Rd. For a set Ω ⊂ Rd, define its norm as

ρ(Ω) = sup
x∈Ω

ρ(x).

If ρ(x) = |x|Rd is the usual Euclidean norm, then we have

d−1〈|f |Rd〉I � ρ(〈〈f〉〉I) � 〈|f |Rd〉I .

The right inequality is just the triangle inequality. To obtain the left one, just write 
f = (f1, . . . , fd) and note that for all k

〈|f |Rd〉I �
d∑

k=1

〈|fk|〉I ,

so there exists k with 〈|fk|〉I � d−1〈|f |Rd〉I . On the other hand, choosing ϕI = sign fk, 
we get

ρ(〈〈f〉〉I) � (〈ϕIf〉I)k = 〈|fk|〉I

and the left inequality follows.
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The advantage of the convex body approach is that this inequality is preserved if we 
change the standard Euclidean norm in Rd to any other Euclidean norm, i.e., if we take a 
positive definite matrix A and consider ρA(x) =

∣∣A1/2x
∣∣
Rd . The corresponding estimates

d−1〈ρA(f)〉I � ρA(〈〈f〉〉I) � 〈ρA(f)〉I (2.1)

immediately follow from the standard Euclidean ones by considering A1/2f instead of f .
Inspired by the idea of the convex body average, we can now define a convex body 

valued maximal function.
The simple maximal function M will be just

Mf(x) =
{ ∑

I∈D:x∈I

aI〈f〉I : aI ∈ R,
∑

I∈D:x∈I

|aI | � 1
}

i.e., Mf(x) is the absolute convex hull of averages of f over intervals containing x. The 
generalization of the Hardy-Littlewood maximal function will now be

Mcf(x) =
{ ∑

I∈D:x∈I

aI〈〈f〉〉I : aI ∈ R,
∑

I∈D:x∈I

|aI | � 1
}

,

where the sum of convex bodies is understood in the Minkowski sense: A + B = {a + b :
a ∈ A, b ∈ B}. Plugging in the definition of 〈 〈f〉 〉I , we can also rewrite this as

Mcf(x) =
{ ∑

I∈D:x∈I

aI〈ϕIf〉I : aI ∈ R,
∑

I∈D:x∈I

|aI | � 1, ϕI : I → [−1, 1]
}

.

For a matrix weight W , one can easily write the weighted analogues MW and Mc
W of 

M and Mc:

MW f(x) =
{ ∑

I∈D:x∈I

aI〈W 〉−1
I 〈Wf〉I : aI ∈ R,

∑
I∈D:x∈I

|aI | � 1
}

and

Mc
W f(x) =

{ ∑
I∈D:x∈I

aI〈W 〉−1
I 〈ϕIWf〉I : aI ∈ R,

∑
I∈D:x∈I

|aI | � 1, ϕI : I → [−1, 1]
}

.

The values here are again convex bodies.
The weighted space L2

W (Rd) is just the space of all measurable functions f with values 
in Rd for which

‖f‖2
L2 (Rd) =

∫ ∣∣∣W 1/2f
∣∣∣2

d
=

∫
〈Wf, f〉Rd < +∞.
W R
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In other words, it is the L2 space in which the size of f is measured not by the usual 
Euclidean norm in Rd but by the norm ρW (x). In line with our definition at the beginning 
of this section, we can now write

‖MW f‖2
L2

W (Rd) =
∫

ρW (x)(MW f(x))2dx

and similarly for Mc
W , where, as before, the norm of a subset of Rd is understood as the 

supremum of the norms of the vectors contained in it. Since MW f(x) is the absolute 
convex hull of 〈W 〉−1

I 〈Wf〉I with I ∈ D such that x ∈ I, by the convexity property of 
the norm,

ρW (x)(MW f(x)) = sup
I∈D:x∈I

ρW (x)(〈W 〉−1
I 〈Wf〉I) = sup

I∈D:x∈I

∣∣∣W 1/2(x)〈W 〉−1
I 〈Wf〉I

∣∣∣
Rd

and, by the same logic,

ρW (x)(Mc
W f(x)) = sup

I∈D : x∈I
ϕI :I→[−1,1]

∣∣∣W 1/2(x)〈W 〉−1
I 〈ϕIWf〉I

∣∣∣
Rd

leading to the maximal functions MW and M c
W used in the introduction so that

‖MW f‖L2
W (Rd) = ‖MW f‖L2(R)

and similarly for Mc
W and M c

W .
The reader familiar with Christ-Goldberg definitions of maximal functions in the 

context of matrix weighted spaces may prefer to consider the quantity

1
|I|

∫
I

∣∣∣W 1/2(x)〈W 〉−1
I W (y)f(y)

∣∣∣
Rd

dy

instead of our

sup
ϕI :I→[−1,1]

∣∣∣W 1/2(x)〈W 〉−1
I 〈ϕIWf〉I

∣∣∣
Rd

.

However, our inequalities in (2.1) show that these quantities are the same up to a factor 
of d.

The final aspect we want to discuss is the measurability of MW and Mc
W and an-

other natural way to define the L2
W (Rd) norm of set-valued functions. We shall do this 

discussion for Mc
W . The case of MW is the same but simpler.

Let us introduce the truncated maximal functions M c
W,n and Mc

W,n in which we take 
into consideration only the intervals I ∈ D�n, so
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Mc
W,nf(x) =

{ ∑
I∈D�n:x∈I

aI〈W 〉−1
I 〈ϕIWf〉I : aI ∈ R,

∑
I∈D�n:x∈I

|aI | � 1, ϕI : I → [−1, 1]
}

and

M c
W,nf(x) = sup

v∈Mc
W,nf(x)

∣∣∣W 1/2(x)v
∣∣∣
Rd

= sup
I∈D : x∈I

ϕI :I→[−1,1]

∣∣∣W 1/2(x)〈W 〉−1
I 〈ϕIWf〉I

∣∣∣
Rd

.

Notice that Mc
W,nf(x) is a symmetric compact convex set. Moreover, this set depends 

only on the n-th level dyadic interval I ∈ Dn the point x belongs to.
Let now K ⊂ Rd be any convex compact set and let ε > 0. Then there exists a finite 

set {v1, . . . , vN } ⊂ K such that K ⊂ (1 + ε) conv(v1, . . . , vN ). In particular, it implies 
that for every x ∈ I,

max
1�j�N

∣∣∣W 1/2(x)vj

∣∣∣
Rd

� sup
v∈K

∣∣∣W 1/2(x)v
∣∣∣
Rd

� (1 + ε) max
1�j�N

∣∣∣W 1/2(x)vj

∣∣∣
Rd

.

For each x ∈ I, define j(x) as the least index j for which 
∣∣W 1/2(x)vj

∣∣
Rd is maximal. 

In other words, j(x) = J if and only if 
∣∣W 1/2(x)vj

∣∣
Rd <

∣∣W 1/2(x)vJ

∣∣
Rd for j < J and ∣∣W 1/2(x)vj

∣∣
Rd �

∣∣W 1/2(x)vJ

∣∣
Rd for j > J . Then g(x) = vj(x) is a measurable function 

on I such that g(x) ∈ K and∣∣∣W 1/2(x)g(x)
∣∣∣
Rd

� (1 + ε)−1 sup
v∈K

∣∣∣W 1/2(x)v
∣∣∣
Rd

for all x ∈ I.
Applying this construction to every I ∈ Dn with K = Mc

W,nf |I , we get a measurable 
g : I0 → Rd such that g(x) ∈ Mc

W,nf(x) and∣∣∣W 1/2(x)g(x)
∣∣∣
Rd

> (1 + ε)−1M c
W,nf(x)

for all x ∈ I0. Letting ε → 0 (along some sequence), we obtain that M c
W,nf is the supre-

mum of a countable family of measurable functions and, thereby, measurable. Finally, 
letting n → ∞, we get that M c

W f is measurable and, moreover,

‖M c
W f‖L2(R) = sup{‖g‖L2

W (Rd) : g : I0 → Rd, g is measurable, g ∈ Mc
W f}.

3. Proofs

We first prove Theorem 1.3, which states that the convex body analogue of the 
weighted Carleson Embedding Theorem (i.e., of Theorem 1.1) fails.

Using this result we then conclude the failure of the maximal function estimate.
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3.1. Failure of the convex body Carleson embedding theorem: proof of Theorem 1.3

3.1.1. Overview of the construction
We consider a counterexample in R2, which trivially extends to an example in all 

higher dimensions.
We will be constructing the weight W supported on the interval I0 as a martingale, 

from the top down. This means at the nth step (n = 0, 1, 2, . . .) we construct the averages 
WI , I ∈ Dn, which will be the averages of the constructed weight W . The averages 
WI = 〈W 〉I should satisfy the martingale dynamics,

WI = 1
2

(
WI+ + WI−

)
, (3.1)

so the sequence of weights Wn,

Wn :=
∑

I∈Dn

WI1I

is a martingale with respect to the dyadic filtration. In our case the sequence Wn will 
be uniformly bounded, so we will have convergence5 Wn → W (say, entry-wise in L1),

WI = 〈W 〉I ∀I ∈ D.

We will work with the spectral decompositions of the averages WI

WI = αIaIa∗
I + βIbIb∗

I

where αI , βI are the eigenvalues, and aI , bI are the corresponding normalized eigenvec-
tors of WI . This means, in particular, that |aI |R2 = |bI |R2 = 1 and aI ⊥ bI .

In our situation, the eigenvalues αI , βI will depend only on |I|, i.e., for I ∈ Dn we 
will have αI = αn, βI = βn. Note that this condition means that trace WI = trace WJ

if I, J ∈ Dn; then the martingale property (3.1) and linearity of the trace imply that 
trace WI = trace WI0 for all I ∈ D, which, in turn, implies the uniform boundedness of 
Wn, |Wn(x)|op � α0 + β0.

In our construction, we will have the condition numbers (eccentricity) αn/βn → ∞
as n → ∞. The operators AI will be just appropriately renormalized projections onto 
bI , so the largest term αIaIa∗

I of WI disappears from the testing condition (1.1) in 
Theorem 1.3. (See Fig. 1.)

However, an appropriate (and very simple) choice of the functions ϕI in the conclusion 
(1.2) of Theorem 1.3 will bring this huge term αIaIa∗

I into play, and that will give us 
the desired blow-up

5 For the convergence a much weaker condition on uniform integrability is sufficient.
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Fig. 1. In this picture we see the images of the unit ball under the weight W , sketched as arrows though 
they are thin ellipses. Further, we see the directions of the vectors b.

3.1.2. Gory details
Now let us assume that for all I ∈ Dn, we constructed WI , and its spectral decompo-

sition is given by

WI = αnaIa∗
I + βnbIb∗

I .

Recall that aI and bI is an orthonormal pair of vectors. Let us define the averages WI±

as

WI± = αn+1aI±a∗
I± + βn+1bI±b∗

I± ,

where aI± and bI± are small rotations of the vectors aI and bI , namely, for some small 
δn+1 > 0

aI± =
(

1
1 + δ2

n+1

)1/2

(aI ± δn+1bI), bI± =
(

1
1 + δ2

n+1

)1/2

(bI ∓ δn+1aI); (3.2)

note that aI+ , bI+ and aI− , bI− are orthonormal pairs.
Let us now find the relations between αn, βn, δn+1, αn+1, and βn+1, so that the 

martingale dynamics (3.1) holds. We have

WI = 1
2

(
WI− + WI+

)
= 1

2 · αn+1

1 + δ2
n+1

(aI − δn+1bI)(a∗
I − δn+1b∗

I)

+1
2 · βn+1

1 + δ2
n+1

(δn+1aI + bI)(δn+1a∗
I + b∗

I)

+1 · αn+1
2 (aI + δn+1bI)(a∗

I + δn+1b∗
I)
2 1 + δn+1
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+1
2 · βn+1

1 + δ2
n+1

(−δn+1aI + bI)(−δn+1a∗
I + b∗

I)

=
αn+1 + βn+1δ2

n+1
1 + δ2

n+1
aIa∗

I

+
αn+1δ2

n+1 + βn+1

1 + δ2
n+1

bIb∗
I .

Thus, the martingale dynamics (3.1) holds if and only if

αn =
αn+1 + βn+1δ2

n+1
1 + δ2

n+1
and βn =

αn+1δ2
n+1 + βn+1

1 + δ2
n+1

. (3.3)

Note that it follows from relations (3.3) that

αn + βn = αn+1 + βn+1, (3.4)

as it should be, according to the martingale dynamics (3.1) and the linearity of the trace.
Now, given αn, βn, αn+1, βn+1 satisfying (3.4), we can easily find δn+1 by solving 

equations (3.3),

δ2
n+1 = αn+1 − αn

αn − βn+1
= βn − βn+1

αn+1 − βn
; (3.5)

the two expressions for δ2
n+1 here coincide because of (3.4).

We now want the condition numbers αn/βn to increase exponentially, so let us take

βn

αn
= ε2n+2, n = 0, 1, 2, . . . , (3.6)

where a small ε > 0 is to be chosen later. For the sake of convenience in the calculations, 
we want all δn to be small, and the extra ε2 in (3.6) helps with that.

If we fix the sums in (3.4), αn + βn = 1, then we get from (3.6) that

αn = 1
1 + ε2n+2 , and βn = ε2n+2

1 + ε2n+2 . (3.7)

Substituting these expressions into (3.5) (with n replaced by n − 1), we get

δ2
n = ε2n(1 − ε2)

1 − ε4n+2 , n = 1, 2, 3, . . . (3.8)

So, as we discussed above in Section 3.1.1, there exists a weight W with its averages 
given by 〈W 〉I = WI for all I ∈ D.
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3.1.3. AI and the testing condition (1.1)
We define A1/2

I to be multiples of the projections onto bI , i.e.,

A
1/2
I = |I|1/2rIbIb∗

I ,

where for I ∈ Dn

rI = rn = 1
εn+1 .

First, we will prove that the testing condition (1.1) holds, i.e., that for every dyadic 
interval K ∈ D and every vector e ∈ R2 we have∑

I∈D(K)

∣∣∣A1/2
I 〈We〉I

∣∣∣2

R2
� C|K| 〈〈W 〉Ke, e〉R2 . (3.9)

Let K ∈ D be such that |K| = 2−n0 for some n0 � 0. Let us denote the sum on the left 
hand side of (3.9) by Σ1. Observe that

A
1/2
I 〈W 〉I = |I|1/2βIrIbIb∗

I = βIA
1/2
I ,

where we recall that βI = βn for I ∈ Dn. So we get

Σ1 =
∑

I∈D(K)

∣∣∣A1/2
I 〈We〉I

∣∣∣2

R2
=

∑
I∈D(K)

∣∣∣A1/2
I 〈W 〉Ie

∣∣∣2

R2

=
∑

I∈D(K)

|I|(βIrI)2 |bIb∗
Ie|2R2

=
∑

I∈D(K)

|I|(βIrI)2〈e, bI〉2
R2 .

Decomposing

e = e1aK + e2bK , e1, e2 ∈ R,

we see that

〈e, bI〉2
R2 � |e|2R2 = e2

1 + e2
2.

Using the fact that for I ∈ Dn we have βI = βn � ε2n+2 and rI = rn = 1
εn+1 , we 

estimate

Σ1 � |e|2R2

∑
I∈D(K)

|I|(βIrI)2 � |e|2R2

∞∑
n=n0

2−n0
(
ε2n+2 · ε−n−1)2

= |e|2R2 2−n0ε2n0+2
∞∑

ε2n = 2−n0
ε2n0+2

1 − ε2

(
e2

1 + e2
2
)

.

n=0
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The right-hand side of (3.9) can be estimated from below

|K| 〈〈W 〉Ke, e〉R2 = 2−n0(αn0e2
1 + βn0e2

2)

� 2−n0(1 − ε2)(e2
1 + ε2n0+2e2

2)

� 2−n0(1 − ε2)ε2n0+2(e2
1 + e2

2).

In the second inequality we used the fact that αn0 � 1 − ε2 and βn0 � (1 − ε2)ε2n0+2, 
derived from the equations in (3.7).

Comparing this estimate with the above upper bound for Σ1, we see that for a constant 
C such that C(1 − ε2)2 � 1 we have

Σ1 � C|K| 〈〈W 〉Ke, e〉R2 ,

so the testing condition (3.9) holds.

3.1.4. The blow-up
Now we want to show that there exist a vector e ∈ R2 and scalar functions ϕI

supported on I with −1 � ϕI � 1 such that for f = 1I0e,

Σ2 :=
∑
I∈D

∣∣∣A1/2
I 〈ϕIWf〉I

∣∣∣2

R2
= ∞. (3.10)

Let us chose e = a = aI0 . Note that ‖1I0e‖2
L2

W (R2) = 〈WI0a, a〉R2 = 1
1+ε2 < ∞.

We will choose ϕI = 1I+ for all intervals I. Therefore for f = 1I0a we have

〈ϕIWf〉I = 1
|I|

∫
I

ϕI(x)W (x)a dx = 1
|I|

∫
I+

W (x)a dx = |I+|
|I| 〈W 〉I+a = 1

2 〈W 〉I+a.

(3.11)
Hence we can expand the sum in (3.10) as

∑
I∈D

∣∣∣A1/2
I 〈ϕIWa〉I

∣∣∣2

R2
= 1

4
∑
I∈D

r2
I |I|

∣∣bIb∗
I〈W 〉I+a

∣∣2
R2

= 1
4

∑
I∈D

r2
I |I|

∣∣〈a, 〈W 〉I+bI〉R2
∣∣2

. (3.12)

For I ∈ Dn denote

γI = γn+1 = arctan δn+1,

so the relations (3.2) can be rewritten as

aI± = (cos γI)aI ± (sin γI)bI , bI± = (cos γI)bI ∓ (sin γI)aI . (3.13)
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Then, since 〈W 〉I+ = αI+aI+a∗
I+

+ βI+bI+b∗
I+

, we can see from (3.13) that

〈W 〉I+bI = αI+ sin γIaI+ + βI+ cos γIbI+ .

Then we can rewrite Σ2 from (3.12) as

1
4

∑
I∈D

r2
I |I|

(
αI+(sin γI)〈a, aI+〉R2 + βI+(cos γI)〈a, bI+〉R2

)2 = 1
4

∑
I∈D

r2
I |I| (DI + FI)2

,

(3.14)
where

DI := αI+(sin γI)〈a, aI+〉R2 , FI := βI+(cos γI)〈a, bI+〉R2 .

We will show that if ε is sufficiently small, then

DI � 2|FI | (3.15)

and

DI � (8rI)−1. (3.16)

Then we can ignore terms FI in (3.14), and estimate Σ2 (with some c > 0)

Σ2 � c
∑
I∈D

r2
I |I|r−2

I = c

∞∑
n=0

∑
I∈Dn

|I| = c

∞∑
n=0

1 = ∞, (3.17)

thus proving (3.11) modulo estimates (3.15) and (3.16).
So, let us prove estimates (3.15) and (3.16). Trivially |FI | � βI+ , and since for I ∈ Dn

we have βI+ = βn+1 � ε2n+4, it follows that

|FI | � βI+ � ε2n+4. (3.18)

Now let us look at DI . Since

0 < γn = arctan δn � δn � εn

(the last inequality follows immediately from (3.8)), the angle γ between a and aI+ can 
be bounded as

0 � γ �
∞∑

n=1
γn �

∞∑
n=1

εn = ε

1 − ε
. (3.19)

Recalling that |a|R2 = |aI+ |R2 = 1, we therefore can see that 〈a, aI+〉R2 � 1/2 for 
sufficiently small ε. Also, we have for sufficiently small ε
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sin γI = sin γn+1 = δn+1(1 + δ2
n+1)−1/2 � εn+1

2 ,

αI+ = αn+1 � 1/2.

Combining the above three estimates, we get that

DI � εn+1/8 = (8rI)−1, (3.20)

i.e., that the estimate (3.16) holds (for sufficiently small ε). Comparing the above bound 
(3.20) with (3.18), we can immediately see that (3.15) holds for 0 < ε � 1/2. �
Remark 3.1. Notice that the left-hand side of (3.10) blows up even if we do not sum 
over all I ∈ D but only over right half intervals, such as when ϕI = 1I+ if I ∈ D+ and 
ϕI = 0 otherwise. In that case the estimates (3.15), (3.16) still hold, so in the same way 
as before we get for f = 1I0a

∑
I∈D+

∣∣∣A1/2
I 〈ϕIWf〉I

∣∣∣2

R2
� c

∑
I∈D+

r2
I |I|r−2

I = c

∞∑
n=0

∑
I∈Dn

+

|I| = c

∞∑
n=0

1/2 = ∞. (3.21)

3.2. Failure of convex body weighted maximal theorem: proof of Theorem 1.4

3.2.1. Construction
Let us take the sequence AI and W from the above example. We set, using the constant 

from inequality (3.9)

ÃI = C−1〈W 〉IAI〈W 〉I , (3.22)

where due to the Carleson property in inequality (3.9) we have

1
|I|

∑
J∈D(I)

ÃJ = 1
C|I|

∑
J∈D(I)

〈W 〉JAJ〈W 〉J � 〈W 〉I . (3.23)

Fix n. Consider the weight Wn,

Wn :=
∑

I∈Dn

〈W 〉I1I ;

so Wn is just the martingale defining W at time n.
For an interval I ∈ D�n

+ denote by SI the leftmost interval of size 2−n−1 contained in 
I. That is, the interval of size 2−n−1 reached from I via sign tosses to the left. Denote by 
Sn the collection of all such intervals, Sn := {SI : I ∈ D�n

+ }. (See Fig. 2.) Observe that 
the intervals in Sn are pairwise disjoint. Indeed, since they are all of equal length they 
are either disjoint or identical. But any interval J in Sn cannot arise from both I, I ′ in 
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D�n
+ with, say, J � I ′ � I. By construction, the path from I to J consists only of sign 

tosses to the left. Since I ′ ∈ D�n
+ , the last sign toss from the path from I to I ′ was to 

the right, so it cannot lie on the path from I to J .
Now we define a family of weights Wn,s, 0 � s,

Wn,s := Wn + s
∑

I∈D�n
+

|SI |−11SI ÃI ,

where the matrices ÃI are defined above by (3.22). Note that the weights Wn,s are 
measurable in Fn+1, meaning that they are constant on intervals I ∈ Dn+1.

Fig. 2. In this picture we present the construction of the intervals SI for n = 3. The intervals I ∈ D�n
+ are 

marked in blue, and the corresponding intervals SI are marked in red. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

To prove Theorem 1.4 we will show by contradiction that for the family of weights 
Wn,s we do not have the uniform estimate∥∥∥M c

Wn,s
f

∥∥∥
L2(R)

� C‖f‖L2
Wn,s

(R2) ∀f ∈ L2
Wn,s

(R2) (3.24)

with C not depending on n and s. An elementary reasoning then gives us a weight W̃
such that ∥∥∥M c

W̃
f̃

∥∥∥
L2(R)

= ∞

for some function f̃ ∈ L2
W̃

(R2).
Indeed, let sk, nk be such that for the weights Wk := Wnk,sk

on I0 there exist non-zero 
fk ∈ L2

Wk
(R2) supported on I0 such that

∥∥M c
Wk

f
∥∥2

L2 > 4k‖f‖2
L2

Wk
(R2). (3.25)

Note, that this inequality is invariant under rescaling, meaning that it does not change 
if we multiply Wk and fk by some non-zero constants. It is also easy to see that it does 
not change under an affine change of variables (applied to all objects simultaneously).

To construct the weight W̃ on I0 let us represent I0 as a union of disjoint intervals Ik ∈
D, k � 1 (for example, take Ik := [2−k, 2−k+1)). Let W̃k be the weight Wk transplanted 
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via an affine change of variables to the interval Ik and normalized (by multiplying by a 
non-zero constant) in such a way that 〈Wk〉Ik

� I (the identity matrix).
Let also f̃k be the function fk transplanted by the same affine change as Wk to the 

interval Ik and normalized by ‖f̃k‖2
W̃k

= 2−k.
Defining

W̃ (x) :=
∞∑

k=0

1Ik
(x)W̃k(x), f̃(x) :=

∞∑
k=0

1Ik
(x)f̃k(x),

we immediately see that ‖f̃‖2
W̃

= 1, and the estimates (3.25) imply that

∥∥∥1Ik
M c

W̃
f̃

∥∥∥2

L2
�

∥∥∥1Ik
M c

W̃k
f̃k

∥∥∥2

L2
> 4k‖f̃k‖2

W̃k
� 2k,

which gives the desired blow-up.

3.2.2. An a priori estimate
Now, let us assume that we have the uniform estimate (3.24) just for one function 

f = 1I0a, where a ∈ R2 is the same as in inequality (3.21) in Remark 3.1.
Our goal is to arrive at a contradiction to (3.21). From our assumption we first deduce 

some weaker estimate, from which using a trick from [2] we will get the desired conclusion.
To get to the final contradiction we need to estimate the weighted maximal function 

from below. We start with the trivial observation that for a weight W and a function 
f ∈ L2

W (R2) and any collection of disjoint measurable sets SI ⊂ I and measurable 
functions ϕI : I → [−1, 1] parametrized by I ∈ D, the function F = F [f, W, SI , ϕI ],

F (x) :=
∑
I∈D

∣∣∣1SI
(x)W (x)1/2〈W 〉−1

I 〈ϕIWf〉I

∣∣∣
R2

is pointwise estimated as F (x) � M c
W f(x). Indeed, if x /∈ ∪I∈DSI , then F (x) = 0. 

Otherwise the sum defining F (x) consists of exactly one term

F (x) =
∣∣∣W (x)1/2〈W 〉−1

I 〈ϕIWf〉I

∣∣∣
R2

(3.26)

where I = I(x) is the unique I ∈ D such that x ∈ SI ; uniqueness of I follows from the 
disjointness of SI . To get the maximal function M c

W f(x), we need to take the supremum 
of the right hand side of (3.26) over all I ∈ D, I � x and over all ϕI , so no particular 
choice of I and ϕI can give us more than the maximal function.

It is easy to compute the norm of F and rewrite the trivial inequality ‖F‖2
L2(R) �

‖M c
W f‖2

L2(R) as

∑
I∈D

|SI |
∣∣∣〈W 〉1/2

S
I

〈W 〉−1
I 〈ϕIWf〉I

∣∣∣2

R2
� ‖M c

W f‖2
L2(R). (3.27)
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The above inequality (3.27) holds for any collection of disjoint measurable sets SI ⊂ I

and functions ϕI : I → [−1, 1].
We remark that if we take in the left hand side of (3.27) the supremum over all 

such collections, we will get exactly ‖M c
W f‖2

L2(R). This is well known to the experts as 
the linearization for the maximal function, that reduces without loss of generality the 
estimates of a nonlinear operator (the maximal function) to the estimates of the (linear) 
embedding operator. Since for the current paper we only need the trivial estimate (3.27), 
we will leave the proof of the details of this linearization as an exercise for a curious 
reader.

We specify the estimate (3.27) to the case of W = Wn,s constructed above and 
f = 1I0a, with SI defined in Section 3.2.1 and ϕI = 1I+ for all I ∈ D�n

+ and ϕI = 0
else, similarly as in Section 3.1.4. By noticing that for I ∈ D�n

+ we have

Wn,s(SI) = W (SI) + sÃI � sÃI ,

we get from the estimate (3.27) that

∑
I∈D�n

+

s
∣∣∣Ã1/2

I 〈Wn,s〉−1
I 〈ϕIWn,sf〉I

∣∣∣2

R2
�

∥∥∥M c
Wn,s

f
∥∥∥2

L2(R)
. (3.28)

But for f = 1I0a, a ∈ R2, we have

‖f‖2
L2

Wn,s
= 〈〈W 〉I0a, a〉R2 + s

∑
I∈D+

〈
ÃIa, a

〉
R2

� (1 + s) 〈〈W 〉I0a, a〉R2 ,

so we get from (3.28) that

s
∑

I∈D�n
+

∣∣∣Ã1/2
I 〈Wn,s〉−1

I 〈ϕIWn,sf〉I

∣∣∣2

R2
� (1 + s)C 〈〈W 〉I0a, a〉R2 , (3.29)

which is our a priori estimate.

3.2.3. From estimate (3.29) to a contradiction
For I ∈ D�n

+ define

Rn,I(s) :=
∣∣∣Ã1/2

I 〈Wn,s〉−1
I 〈ϕIWn,sf〉I

∣∣∣2

R2
,

so (3.29) can be rewritten as

s
∑

I∈D�n
+

Rn,I(s) � (1 + s)C 〈〈W 〉I0a, a〉R2 . (3.30)
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By the cofactor inversion formula, the entries of the matrix 〈Wn,s〉−1
I are rational 

functions of s of the form pn,I(s)/Qn,I(s) where pn,I(s) is affine in s and Qn,I(s) =
det

(
〈Wn,s〉I

)
has degree 2.

The components of the vector 〈Wn,s〉I+
a are polynomials of degree 1, so we can write

Rn,I(s) = Pn,I

Q2
n,I

(s), Qn,I(s) = det
(
〈Wn,s〉I

)
and Pn,I is a polynomial of degree at most 4.

Recall that for I ∈ D�n
+

〈Wn,s〉I = 〈W 〉I + s
1

|I|
∑

J∈D�n
+ (I)

ÃJ � (1 + s)〈W 〉I

and thus for all s � 0,

Qn,I(s) � (1 + s)2 det (〈W 〉I) = (1 + s)2Qn,I(0).

Therefore, the estimate (3.30) implies that

∑
I∈D�n

+

Pn,I(s)
Qn,I(0)2 � (1 + s)5

s
C 〈〈W 〉I0a, a〉R2 (3.31)

We need the following Lemma, see [2, Lemma 2.2]:

Lemma 3.2. If p is a polynomial such that

|p(s)| � (1 + s)N

s
∀s > 0,

then |p(0)| � e2N2.

We apply this lemma to the polynomial p,

p(s) := (C 〈〈W 〉I0a, a〉R2)−1 ∑
I∈D�n

+

Pn,I(s)
Qn,I(0)2 .

Note that Pn,I(s) are non-negative for s � 0. Estimate (3.31) means that p satisfies the 
assumption of Lemma 3.2 with N = 5, therefore∑

I∈D�n
+

Rn,I(0) � Ce252 〈〈W 〉I0a, a〉R2 . (3.32)
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Recall that for I ∈ D�n
+

Rn,I(0) =
∣∣∣Ã1/2

I 〈Wn〉−1
I 〈ϕIWnf〉I

∣∣∣2

R2
,

where f = 1I0a and ϕI = 1I+ . Noticing that for I ∈ D�n−1
+

〈Wn〉I = 〈W 〉I , 〈ϕIWnf〉I = 〈ϕIWf〉I ,

we can deduce from (3.32) that

∑
I∈D�n−1

+

∣∣∣Ã1/2
I 〈W 〉−1

I 〈ϕIWf〉I

∣∣∣2

R2
� Ce252 〈〈W 〉I0a, a〉R2 .

Letting n → ∞ we get that

∑
I∈D+

∣∣∣Ã1/2
I 〈W 〉−1

I 〈ϕIWf〉I

∣∣∣2

R2
� Ce252 〈〈W 〉I0a, a〉R2 . (3.33)

Recall that by (3.22) we have ÃI = C−1〈W 〉IAI〈W 〉I , so we rewrite the above estimate 
(3.33) as

∑
I∈D+

∣∣∣A1/2
I 〈ϕIWf〉I

∣∣∣2

R2
� Ce252 〈〈W 〉I0a, a〉R2 < ∞,

which contradicts the blow-up estimate (3.21) obtained before. �
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