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0. Notation

Iy interval [0, 1];
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Dy Dy ={Iy: 1€ D} sothat D=D,UD_U{ly};
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D(K) DK)={leD:I1CK} for K € D;
|| the Lebesgue measure of the set I C Iy;
D Dr={leD:|l|=2"}

D" D=, D ={IeD:|I|>2")

Cy for a collection C C D of dyadic intervals, C+ =C N Dy;
(Fn)n>o the dyadic filtration: F,, is the o-algebra generated by D";
(f)r  average of a scalar, vector or matrix function f over I: (f); := [I|~! [, f(z)dx;

f(I)  for I C Iy we denote by f(I) the integral of a scalar, vector or matrix function
fover It f(I)= [, f(x)dx;

(-, -)ra the standard inner product in R?;

| |ga  the norm induced by (:,-)ra with subscript omitted if d = 1;

|op  the operator norm of a matrix;

|| - [|x norm in the function space X;

B(X) unit ball in the normed space X;

1; the characteristic function of 1.

Generally, since we are dealing with vector- and matrix-valued functions we will use
the symbol || - || (usually with a subscript) for the norm in a functions space, while |- |
is used for the norm in the underlying vector (matrix) space. Thus, for a vector valued
function f, the symbol ||f||z2 denotes its L?-norm, but the symbol |f| stands for the
scalar valued function z — |f(z)].

Finally, we will use the linear algebra notation, identifying vector a in a Hilbert space
‘H with the operator a — «a acting from scalars to H. In this case the symbol a* denotes
the (bounded) linear functional  + (z,a). In our case H is the real Hilbert space R%,
vectors in R? are the column vectors, and a* is just the transpose of the column a.

1. Introduction

The simple dyadic maximal function

Mf(x) = sup [(f)1l

IeD:xel

and the dyadic Hardy-Littlewood maximal function

M f(z) = L Sup (1)1

€D:xcl

together with their scalar weighted analogues

My f(x) = sup L

1eD:zer W(I)

/ fy)w(y)dy

I

and
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M;f(x) - IED acEI w /'f \w

for positive w € L' are classical objects in harmonic analysis. (The reason for the super-
script ¢ will become clear in the next section.)
The inequality

Mullzz ®)—12 ®R) < 2

is a special case of Doob’s inequality and the same inequality for M, follows immediately
from the observations that M{, f = M., |f| and || [f] ]|z ®) = [ fllz2, ®)-

The boundedness of M,, or M¢, in L2 (R) can be rewritten as the boundedness of
the operators

1
Myf(z)= sup |w'/?(z —I/
IeD:xel T

and

1
Mif@) = s w@)— o [ 1)
I€Dwel w([)
T

from L2 (R) to the usual L?(R).

The natural counterpart (see the next section for details) of M,, f and MY f in the case
when f is a vector-valued function and W a matrix weight (a positive definite matrix
function) are

My f(@) = sup |[WY2(@)(W)7 (W f)s
IeD:xecl

and

Mg f(e) = sup_|W2(@) (W) oW )
IeD:xel
or:l—[—1,1]

When d = 1 use the signum of W f on I for ¢; to get the usual absolute value. This
definition will be shown in the next section to be equivalent to a Christ-Goldberg type
definition [1]. The boundedness of these operators from L%, (R?) to L?(R) when W = Id,
remains a simple consequence of Doob’s inequality, but is more complicated for general
matrix weights. The positive result for My, f was established in [4] by reducing it to the
weighted Carleson Embedding Theorem from [2].:

Theorem 1.1. (Culiuc, Treil) Let W be a matriz weight and (Ar)rep a sequence of pos-
itive definite matrices. Then the following are equivalent:
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(i) There exists c;y > 0 such that for all K € D,

" Z W) rAr(W)r < cy(W) k.

K] IeD(K)

(ii) There exists c(z) > 0 such that for all f € L%, (RY),

1/2 2 2
Z ’A, <Wf>1’Rd < capllflIzz, mey-
Iep

Moreover, the best possible constants ¢y and c(;y in (1) and (ii) satisfy cqy < capy < Ceg
with C > 0 only depending on the dimension d but not on W.

The bound for the norm |[Mw||z2 (ra)—r2R) follows by the so-called linearization
technique and the exact statement is as follows:

Theorem 1.2. (Petermichl, Pott, Requera) Let W be a matriz weight. Then

[Mw |2, ) L2®) < C,
where C' depends only on d.

These results raised hopes that the larger maximal function My, may be bounded
from L%, (R9) to L*(R) as well, so it came as a surprise to us that in general it actually
is not. The main purpose of this paper is to present and discuss the counter-example.
Again, to construct it, we show that the corresponding convex body Carleson Embedding
Theorem fails, which was also quite surprising for us and which may be of independent
interest. Here are the precise formulations of our negative results:

Theorem 1.3. For any fized dimension d > 2, there exist a matriz weight W and a
sequence (Ar)rep of positive definite matrices such that there exists ci >0 such that
forall K € D

1
— WYL AL (W < e (Wi, 1.1
Tq > (W) AW < ey (Wi (1.1)
IeD(K)
but there exist f € L%V(]Rd) and a sequence (pr)rep, —1 < 5 < 1, such that
1/2 2
3 ‘A, (erW |, = oo. (1.2)

I1eD

Theorem 1.4. For any fized dimension d > 2, there exists a matriz weight W such that
Mg, does not map L%, (R?) to L?(R).
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2. Discussion of definitions

Let f be a vector-valued function with values in R¢. A Hardy-Littlewood maximal
function of f at z is a quantity allowing one to control all averages of f over intervals
containing z. The most straightforward quantity of that type is just sup;ep.per(|flga)r-
However, this quantity is often too crude when f is large in some directions and small
in some other ones (all such information is completely lost here) and is too strongly tied
to the particular choice of the Euclidean norm in R to yield useful bounds in the case
when the size of f is measured in some other norm, especially in a norm depending on
a point, as it is the case in matrix-weighted spaces.

A more reasonable idea would be to use the convex-body average ((f)); of an L!
function f over an interval I, defined as

(hr=erf)r: wr:1—[=1,1]}

See [3]. (f))1 is always a symmetric compact convex set in R¢ (the compactness follows
from the weak-* compactness of the unit ball in L>(I,R) = L!'(I,R)*, where these
spaces consist of functions defined on the interval I) but, in general, it may contain
no inner points. However, contrary to the terminology of some convex body geometry
books, we will still call it a convex body.

This convex body average makes sense even if d = 1, in which case it is just the
interval [—(|f)1, (|f])1], so there it carries just as much information as (| f)s.

Let now p be any norm in R¢. For a set Q C R?, define its norm as

p() = sup p(x).
€N

If p(x) = |x|ga is the usual Euclidean norm, then we have

“Hflradr < o) < (Iflpads-

The right inequality is just the triangle inequality. To obtain the left one, just write
f=1(f1,--., fa) and note that for all k

d
(| flga)r <D (Il
k=1

so there exists k with (|fx|); = d~'(|f|ga)s. On the other hand, choosing ¢; = sign f,
we get

p({)1) = (erf)n)e = (I fel)1

and the left inequality follows.
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The advantage of the convex body approach is that this inequality is preserved if we
change the standard Euclidean norm in R? to any other Euclidean norm, i.e., if we take a
positive definite matrix A and consider p4(z) = |A1/ 2x|Rd. The corresponding estimates

A pa(f))1 < pa({fhr) < (pa(f))r (2.1)

immediately follow from the standard Euclidean ones by considering A2 f instead of f.
Inspired by the idea of the convex body average, we can now define a convex body
valued maximal function.
The simple maximal function M will be just

Mf((l?):{ Z (l[<f>]2 CL[ER, Z a1|<1}
IeD:xel IeD:xel

i.e., M f(z) is the absolute convex hull of averages of f over intervals containing x. The
generalization of the Hardy-Littlewood maximal function will now be

MCf(g;)_{ > ar(fhr: areR, Y |a1|<1},
IeD:xel IeD:xel

where the sum of convex bodies is understood in the Minkowski sense: A+ B ={a+b:
a € A,b € B}. Plugging in the definition of ((f));, we can also rewrite this as

Mcf(x){ S arlerf)rs ar€R, Y ar <1, @1:1%[1,1]}

IeD:xel IeD:xel

For a matrix weight W, one can easily write the weighted analogues My, and My, of
M and M°:

My f(x) = { Z ar(W)r (W f)r: ar €R, Z lar| < 1}
IeD:xel IeD:xel
and
%Vf(x) = { Z a1<W>;1<901Wf>1 . ar € R, Z |a1| <1, ©r - I — [—1, 1]} .
IeD:xel IeD:xel

The values here are again convex bodies.
The weighted space L%,V (R9) is just the space of all measurable functions f with values
in R? for which

Hf”%%v(Rd) = / ‘Wl/zf ;d = /<Wfa fire < +o0.
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In other words, it is the L? space in which the size of f is measured not by the usual
Euclidean norm in R¢ but by the norm PW (z)- In line with our definition at the beginning
of this section, we can now write

M £, = [ o) (M £ (0)Pda

and similarly for My, where, as before, the norm of a subset of R¢ is understood as the
supremum of the norms of the vectors contained in it. Since My f(z) is the absolute
convex hull of (W), ' (W f); with I € D such that = € I, by the convexity property of
the norm,

pw i (M f(@) = s pwea (W)7 (WA = swp [WH2() ) (W)

I
IeD:xe IeD:xel Rd

and, by the same logic,

pwioy My f(2)) = sup  [W2(2) (W) oW f)
IeD:xzel
pr:l—[—1,1]

Rd
leading to the maximal functions My and Mj;, used in the introduction so that

Mw fllz2, ®e) = [[Mw fllL2®)

and similarly for My, and My, .
The reader familiar with Christ-Goldberg definitions of maximal functions in the
context of matrix weighted spaces may prefer to consider the quantity

R4 dy

7 [ W@ W
I

instead of our

sup WA @) W) er W )

pr:l—[—1,1]

Rd

However, our inequalities in (2.1) show that these quantities are the same up to a factor
of d.

The final aspect we want to discuss is the measurability of My, and My, and an-
other natural way to define the LZ,(R?) norm of set-valued functions. We shall do this
discussion for MyF;,. The case of My, is the same but simpler.

Let us introduce the truncated maximal functions My, ,, and My, in which we take
into consideration only the intervals I € DS", so
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wanlf(z) = { S arW);NerWf)r: ar €R,

IeD<n:zel
S el <1, T [1,1]}
IeDsn:xcl

and

Mﬁvnf(x) = sup Wl/z(:n)’u

veM, , f(x)

o= W@ e
gaI:I—>'[1—;1,1]

R

Notice that My, f (2) is a symmetric compact convex set. Moreover, this set depends
only on the n-th level dyadic interval I € D" the point x belongs to.

Let now K C R? be any convex compact set and let £ > 0. Then there exists a finite
set {v1,...,un} C K such that K C (1 + ¢)conv(vy,...,vy). In particular, it implies
that for every = € I,

1/2 | < 1/2 ‘ <(1 1/2 4
1I<I§_a<XN %% (x)vj‘Rd < Sg}}g W= (x)v R <(1+4¢) 1IgnjangN W= (z)v;

Rd

For each x € I, define j(x) as the least index j for which |W1/2(m)vj|Rd is maximal.
In other words, j(z) = J if and only if |W1/2(:r)vj‘Rd < |W1/2(x)vJ|Rd for j < J and
’Wl/z(x)vj‘Rd < ‘W1/2($)UJ|Rd for j > J. Then g(z) = vj(,) is a measurable function
on I such that g(z) € K and

W @)g(@)| > (1+2) 7 sup (W)
R veEK

Rd

for all z € I.
Applying this construction to every I € D" with K = My, f|r, we get a measurable
g : Iy — R% such that g(x) € My, f(x) and

W2 (@)g(x)| > (1+2) 7" My, f(2)

for all z € Ij. Letting ¢ — 0 (along some sequence), we obtain that My, f is the supre-
mum of a countable family of measurable functions and, thereby, measurable. Finally,
letting n — oo, we get that My, f is measurable and, moreover,

| My fll L2y = sup{HgHL%‘/(Rd) . g: Iy — R? gis measurable, g € My f1}.
3. Proofs

We first prove Theorem 1.3, which states that the convex body analogue of the
weighted Carleson Embedding Theorem (i.e., of Theorem 1.1) fails.
Using this result we then conclude the failure of the maximal function estimate.
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3.1. Failure of the convex body Carleson embedding theorem: proof of Theorem 1.3

8.1.1. QOverview of the construction

We consider a counterexample in R?, which trivially extends to an example in all
higher dimensions.

We will be constructing the weight W supported on the interval I, as a martingale,
from the top down. This means at the nth step (n =0, 1,2,...) we construct the averages
Wi, I € D", which will be the averages of the constructed weight W. The averages
Wi = (W) should satisfy the martingale dynamics,

Wr = (I/V[Jr + W]f) , (3.1)

DN | =

so the sequence of weights W,,,

Wn = Z W[]_[

1D

is a martingale with respect to the dyadic filtration. In our case the sequence W, will
be uniformly bounded, so we will have convergence® W,, — W (say, entry-wise in L),

Wp = <W>[ VI € D.
We will work with the spectral decompositions of the averages Wy
Wi = Oqa[a? + B[b[b;

where aj, B are the eigenvalues, and ay, by are the corresponding normalized eigenvec-
tors of W;. This means, in particular, that |ar|gr2 = |br|lgz = 1 and ay L by.

In our situation, the eigenvalues ay, 8y will depend only on |I|, i.e., for I € D™ we
will have oy = «,,, 87 = B,. Note that this condition means that trace W; = trace W
if I, J € D™; then the martingale property (3.1) and linearity of the trace imply that
trace Wi = trace Wy, for all I € D, which, in turn, implies the uniform boundedness of
Wh, |Wn(z)|op < ao + Bo-

In our construction, we will have the condition numbers (eccentricity) o, /B8, — oo
as n — 0o. The operators A; will be just appropriately renormalized projections onto
br, so the largest term ajara} of Wi disappears from the testing condition (1.1) in
Theorem 1.3. (See Fig. 1.)

However, an appropriate (and very simple) choice of the functions ¢y in the conclusion
(1.2) of Theorem 1.3 will bring this huge term ajyayaj into play, and that will give us
the desired blow-up

5 For the convergence a much weaker condition on uniform integrability is sufficient.
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b[ b[ ()[7

4

Wi,

Wy

Wri_

Fig. 1. In this picture we see the images of the unit ball under the weight W, sketched as arrows though
they are thin ellipses. Further, we see the directions of the vectors b.

3.1.2. Gory details
Now let us assume that for all I € D", we constructed Wy, and its spectral decompo-

sition is given by
Wr = ananﬁ + ﬂnb[b?

Recall that a; and by is an orthonormal pair of vectors. Let us define the averages Wy,
as

* *
Wi, = Qpy10r, ar, + Bn-‘rlbliblia

where ay, and by, are small rotations of the vectors a; and by, namely, for some small
6n+1 >0

1 1/2 1 1/2
ar, = (1—}—(52“) (CL] + 5n+1b[), bI:t (1 T 6n+1> (bl + 5n+1a1); (32)

note that ar,, by, and ay_, by_ are orthonormal pairs.
Let us now find the relations between a,, Bn, 0n+1, Qnt1, and S,11, so that the
martingale dynamics (3.1) holds. We have

W, :%(Wz + W)
_% 13“_7:( 1= Suabr) (@} — Gn1b])
% ﬁﬁ((snﬂa, +br) (O} + b))
_1_1 M(a; + 6pa1br)(a) + 6nt1b7)

2 1442,



F. Nazarov et al. / Advances in Mathematics 410 (2022) 108711 11

l . BnJrl

2 140

_ Qa1 Brt10n41 Lot
L4071 !

(=611 + br)(=S,s10] +b7)

an+15121+1 + Brt1
140744

brb;.
Thus, the martingale dynamics (3.1) holds if and only if

2 2
Opt1 + Bn+16n+1 an+1§n+1 + Bny1

n = and n = 3.3
1467, ’ 140744 (33)

Note that it follows from relations (3.3) that
o + Bn = ang1 + B, (3.4)

as it should be, according to the martingale dynamics (3.1) and the linearity of the trace.
Now, given ay,, fn, Qni1, Bny1 satisfying (3.4), we can easily find J,41 by solving
equations (3.3),

52 _ Qpy1 — Qp _ ﬂn - ﬂn—i—l; 3.5
e Qp — ﬂn+1 An+1 — ﬁn ( )

the two expressions for 62 here coincide because of (3.4).
We now want the condition numbers «,, /8, to increase exponentially, so let us take

&252%27 n=0,1,2,..., (3.6)
an
where a small € > 0 is to be chosen later. For the sake of convenience in the calculations,
we want all §,, to be small, and the extra 2 in (3.6) helps with that.
If we fix the sums in (3.4), o, + B, = 1, then we get from (3.6) that

1 €2n+2
Qpy = m7 and /Bn = m . (37)
Substituting these expressions into (3.5) (with n replaced by n — 1), we get
2n 2
o en(l—¢g?) _
5n—1_€—4n+2, 7’L—1,2,3,... (38)

So, as we discussed above in Section 3.1.1, there exists a weight W with its averages
given by (W); =Wy forall I € D.
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3.1.8. Ay and the testing condition (1.1)
We define A}/Q to be multiples of the projections onto by, i.e.,

AV = 1M 2 by,

where for I € D"

First, we will prove that the testing condition (1.1) holds, i.e., that for every dyadic

interval K € D and every vector e € R? we have

Z ‘Al/Q (We) ’ < CIK| (W) ke, e)p -

I€D(K)

(3.9)

Let K € D be such that |K| = 27" for some ng > 0. Let us denote the sum on the left

hand side of (3.9) by X;. Observe that
AP WY = 112 Brrbrby = Br Ay,
where we recall that §; = 3, for I € D™. So we get

= 3 ‘A“Q (We) ’ 3 ’AW

IeD(K) I1eD(K)

= > HI(Birr)? [brbjelg:

IeD(K)

= 3" 1B e br)e

IeD(K)

RQ

Decomposing
e = eiax + e2br, e1, e2 € R,
we see that

(e.br)k> < lelge = €} +€3.

Using the fact that for I € D" we have 8; = 8, < e2"*? and r; = 1, =

estimate

oo
— —n—1\2
Si<lelge Y HIBr)? <lefge Y- 27 (27277

IeD(K) n=ngo
52n0+2

2
— |6|R2 9- n082n0+2 ZEQn — 9—"no 1

n=0

7 (€1 +¢3).

1
onf1s W€
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The right-hand side of (3.9) can be estimated from below

|K| ((W) ke, e)ga =277 (anoel + 5n062)
270(1 — 2)(ef + 20t 2ed)
27

no(1 — g2)e?mot2(e2 4 e2).

VoWV

In the second inequality we used the fact that a,, > 1 —¢&2? and 8, > (1 — g2)gZo+2,
derived from the equations in (3.7).

Comparing this estimate with the above upper bound for X1, we see that for a constant
C such that C(1 —£2?)? > 1 we have

¥ S CIK|((W)ke, e)ge
so the testing condition (3.9) holds.

3.1.4. The blow-up
Now we want to show that there exist a vector e € R? and scalar functions ¢;
supported on I with —1 < @7 < 1 such that for f =1j.e,

2
1/2
o= 3|4 W i = (3.10)
I€D
Let us chose e = a = ay,. Note that ||1Io€||2L 2 (R2) = = (Wra,a)r2 = 52 < 00.

We will choose ¢; = 1;, for all intervals I Therefore for f =1 Ioa we have

_ _ M4 1
(oW )1 |I|/¢I z)adr = I|/W i (Wi, af§<W>1+a.

Hence we can expand the sum in (3.10) as

S |42 (o) ‘ — 727'1|I| bib (W), afas
1€D IeD
== Zrlm (@, (W) 1, br)ge | - (3.12)
IED

For I € D™ denote

VI = Ynt1 = arctan 41,

so the relations (3.2) can be rewritten as

ar, = (cosvyr)ay £ (sinvyr)by, br. = (cosvr)br F (sinvyr)ay. (3.13)
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Then, since (W), = a1+a1+a7+ + ﬁubhbhv we can see from (3.13) that

+

(W) br = ay, sinyrar, + Br, cosyrbr, .

Then we can rewrite Yo from (3.12) as

1 . 2 1
I Zr%m (our, (sinyr){a,ar, )r2 + Br, (cosvr)(a, by, )r2)” = 1 Zr?m (Dy —|—FI)27

IeD IeD
(3.14)
where
Dr = ar, (sinvr)(a, ar, )r2, Fy = B, (cosvr)(a, b, )r2.
We will show that if ¢ is sufficiently small, then
Dy > 2|F| (3.15)
and
Dy > (8rp)~t. (3.16)

Then we can ignore terms Fy in (3.14), and estimate o (with some ¢ > 0)
EQ}CZT%|I‘T;2:CZ Z |I|=ch=oo, (3.17)
I1eD n=0I1eD" n=0

thus proving (3.11) modulo estimates (3.15) and (3.16).
So, let us prove estimates (3.15) and (3.16). Trivially [F7| < 1, , and since for I € D"
we have B7, = fBn41 < 2", it follows that

|Fr| < Br, <& (3.18)
Now let us look at Dj. Since

0 <7, =arctand, < J, <e

(the last inequality follows immediately from (3.8)), the angle v between a and a;, can
be bounded as

oo o0 €
0<y< n < "= . 3.19
¥ n;v ;e - (3.19)
Recalling that |a|g. = |a; g2 = 1, we therefore can see that (a,a; )gr2 > 1/2 for

sufficiently small €. Also, we have for sufficiently small &
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) ) 5 _1/2 5”4‘1
sinyr = sinypq1 = 1 (1 +6;,,1) > 5
ar, = opgp1 = 1/2.
Combining the above three estimates, we get that
Dy > et /8 = (8rp) 71, (3.20)

i.e., that the estimate (3.16) holds (for sufficiently small ¢). Comparing the above bound
(3.20) with (3.18), we can immediately see that (3.15) holds for 0 <e <1/2. O

Remark 3.1. Notice that the left-hand side of (3.10) blows up even if we do not sum
over all I € D but only over right half intervals, such as when ¢; = 17, if I € D} and
1 = 0 otherwise. In that case the estimates (3.15), (3.16) still hold, so in the same way
as before we get for f = 1,a

Z ‘Al/z oW >c Z r3|I|r;? —CZ Z |I|—ch/2— . (321

IeD, IeDy n=0IeD"

3.2. Failure of convex body weighted maximal theorem: proof of Theorem 1./

3.2.1. Construction
Let us take the sequence Ay and W from the above example. We set, using the constant
from inequality (3.9)

A = C T W) A (W), (3.22)

where due to the Carleson property in inequality (3.9) we have

Z Ay = Cm > (WA W), < (W), (3.23)

JED(I) JED(I)

Fix n. Consider the weight W,,,

W= Y (W)rly;

IeDn

so Wy, is just the martingale defining W at time n.

For an interval I € Df" denote by S; the leftmost interval of size 27 "~! contained in
I. That is, the interval of size 27"~ reached from I via sign tosses to the left. Denote by
S™ the collection of all such intervals, 8™ := {S; : I € Df"} (See Fig. 2.) Observe that
the intervals in 8™ are pairwise disjoint. Indeed, since they are all of equal length they
are either disjoint or identical. But any interval J in 8" cannot arise from both I, I’ in
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Df" with, say, J C I’ C I. By construction, the path from I to J consists only of sign
tosses to the left. Since I’ € Df”, the last sign toss from the path from I to I’ was to
the right, so it cannot lie on the path from I to J.

Now we define a family of weights W,, , 0 < s,

Wn,s =W, +s Z |S]|71131Aij,
IeDs"

where the matrices A; are defined above by (3.22). Note that the weights W,, 5 are
measurable in F, 1, meaning that they are constant on intervals I € D1,

. ’y

. = .
Dy
. f — . f —
S
. = . = . = . = .

Fig. 2. In this picture we present the construction of the intervals Sy for n = 3. The intervals I € 'Df" are
marked in blue, and the corresponding intervals S; are marked in red. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

To prove Theorem 1.4 we will show by contradiction that for the family of weights
Wh,s we do not have the uniform estimate

|, ]| L <CUflea, @y VF € L, (R?) (3.21)

L2(R)

with C not depending on n and s. An elementary reasoning then gives us a weight W
such that

|7

=00
L*(R)

for some function f € L%V (R?).
Indeed, let s, ny be such that for the weights W}, := W,,, 5, on Ij there exist non-zero
fr € L%/Vk (R?) supported on Iy such that

|8, £12e > 4515125, e (3.25)

Note, that this inequality is invariant under rescaling, meaning that it does not change
if we multiply Wy and fi by some non-zero constants. It is also easy to see that it does
not change under an affine change of variables (applied to all objects simultaneously).
To construct the weight W on Iy let us represent I as a union of disjoint intervals I}, €
D, k > 1 (for example, take I}, := [27%,27F+1)). Let Wk be the weight W), transplanted
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via an affine change of variables to the interval I} and normalized (by multiplying by a
non-zero constant) in such a way that (Wy);, < I (the identity matrix).

Let also fj, be the function fj transplanted by the same affine change as W}, to the
interval I, and normalized by ||fk”127vk =27k,

Defining

W)=Y 1n(@Wi(z),  flz):=) 1p(2)fi(2),
k=0 k=0
we immediately see that ||fH% = 1, and the estimates (3.25) imply that

12 _ 12 -
o, > s il > i, >2
which gives the desired blow-up.

3.2.2. An a priori estimate

Now, let us assume that we have the uniform estimate (3.24) just for one function
f =1;,a, where a € R? is the same as in inequality (3.21) in Remark 3.1.

Our goal is to arrive at a contradiction to (3.21). From our assumption we first deduce
some weaker estimate, from which using a trick from [2] we will get the desired conclusion.

To get to the final contradiction we need to estimate the weighted maximal function
from below. We start with the trivial observation that for a weight W and a function
[ € L%,(R?) and any collection of disjoint measurable sets S; C I and measurable
functions ¢y : I — [—1, 1] parametrized by I € D, the function F' = F[f, W, St, ¢1],

Fe)i= Y [1s, (@)W (@) V(W) (oW £
IeD

R2

is pointwise estimated as F(x) < My, f(z). Indeed, if © ¢ UjepSy, then F(z) = 0.
Otherwise the sum defining F'(x) consists of exactly one term

Fla) = [W @) /200)7 oW f)1

e (3.26)
where I = I(z) is the unique I € D such that z € Sy; uniqueness of I follows from the
disjointness of S;. To get the maximal function My, f(z), we need to take the supremum
of the right hand side of (3.26) over all I € D, I 5 x and over all ¢y, so no particular
choice of I and ¢ can give us more than the maximal function.

It is easy to compute the norm of F and rewrite the trivial inequality ||F|%. ®) S

1AM fl172 Ry a8

2
S ASH[WEZ W W | < I f 1 ay- (3.27)
1eD
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The above inequality (3.27) holds for any collection of disjoint measurable sets S; C I
and functions ¢y : I — [—1,1].

We remark that if we take in the left hand side of (3.27) the supremum over all
such collections, we will get exactly || Mg, f||3- (r)- This is well known to the experts as
the linearization for the maximal function, that reduces without loss of generality the
estimates of a nonlinear operator (the maximal function) to the estimates of the (linear)
embedding operator. Since for the current paper we only need the trivial estimate (3.27),
we will leave the proof of the details of this linearization as an exercise for a curious
reader.

We specify the estimate (3.27) to the case of W = W, s constructed above and
f = 1p,a, with St defined in Section 3.2.1 and @7 = 17, for all I € Df_" and oy =0
else, similarly as in Section 3.1.4. By noticing that for I € Df" we have

Wo,s(S1) = W(Sy) + sA; > sAy,

we get from the estimate (3.27) that

~1/9 . 2 . 2
5 el <L,
IeD}"
But for f = 1j,a, a € R?, we have
1F3s, = (Wna.ape+s Y. (Araa) | <(1+5) (W)paa)p
" 1eD,
so we get from (3.28) that
~ 2
s 3 AW e Was |, < 490 W) aa)ge, (329)
IeDS"
which is our a priori estimate.
3.2.3. From estimate (3.29) to a contradiction
For I € Df_” define
~ 2
Rn,l(3> = ‘A}/2<Wn,s>;1<§01Wn,sf>I R2’
0 (3.29) can be rewritten as
s Z Ry 1(s) < (1+5)C((W)r,a,a)ge - (3.30)

IeDs™
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By the cofactor inversion formula, the entries of the matrix <Wn’s>;1 are rational
functions of s of the form py, 1(s)/Qn 1(s) where p, 1(s) is affine in s and Q, 1(s) =
det ((W,,s);) has degree 2.

The components of the vector (W, ) 7, @ are polynomials of degree 1, so we can write

R, 1(s) = PZ’I (s), Qui(s)=det ((Wys);)

n,l

and P, s is a polynomial of degree at most 4.
Recall that for I € Df_n

Wsdy = (Whrtse S Ay < (145 (W)
JEDS™(I)

and thus for all s > 0,

Qn.1(s) < (1+5)*det (W)1) = (1+ 5)*Qn.1(0).

Therefore, the estimate (3.30) implies that

s) s)°
Z Qm (H ) C{(W)1,a,a)ge (3.31)

0)2 s
I1eDS"
We need the following Lemma, see [2, Lemma 2.2]:
Lemma 3.2. If p is a polynomial such that

(1+s)N

Ip(s)| < Vs >0,
then |p(0)] < e2N2.

We apply this lemma to the polynomial p,

p(s) = (C<<W>Ioa a R2 Z Q (;9

IeDS"

Note that P, r(s) are non-negative for s > 0. Estimate (3.31) means that p satisfies the
assumption of Lemma 3.2 with NV = 5, therefore

D Rua(0) < Ce*5 (W) g0, a)g: - (3.32)
IeDs"
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Recall that for I € Df"

— | AL/2 -1 2
R (0) = 47207 (e W |,

where f = 1;,a and ¢; = 17, . Noticing that for I € Df"_l

W) = W), (Wi f)r = {p1W f)r,

we can deduce from (3.32) that

~ 2
S AP W |, < 0t (W), a)gs
Iepsnt

Letting n — oo we get that

~ 2
S AP e |, < 0t (W0, a)gs (3.33)
IeDy

Recall that by (3.22) we have g} =C Y W) A (W)}, so we rewrite the above estimate
(3.33) as

2
S [A el < ces? ()0, a)p < oo,

I1eDy

which contradicts the blow-up estimate (3.21) obtained before. O
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