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Abstract—Objective: We studied and compared joint
acoustical emissions (JAEs) in loaded and unloaded knees
as digital biomarkers for evaluating knee health status dur-
ing the course of treatment in patients with juvenile idio-
pathic arthritis (JIA). Methods: JAEs were recorded from
38 participants, performing 10 repetitions of unloaded flex-
ion/extension (FE) and loaded squat exercises. A novel
algorithm was developed to detect and exclude rubbing
noise and loose microphone artifacts from the signals, and
then 72 features were extracted. These features were down-
selected based on different criteria to train three logis-
tic regression classifiers. The classifiers were trained with
healthy and pre-treatment data and were used to predict
the knee health scores of post-treatment data for the same
patients with JIA who had a follow-up recording. This knee
health score represents the probability of having JIA in a
subject (0 for healthy and 1 for arthritis). Results: Post-
treatment knee health scores were lower than pre-treatment
scores, agreeing with the clinical records of successful
treatment. Regarding loaded versus unloaded knee scores,
the squats achieved a higher score on average compared to
FEs. Conclusion: In healthy subjects with smooth cartilage,
the knee scores of squats and FEs were similar indicating
that vibrations from the friction of articulating surfaces do
not significantly change by the joint load. However, in sub-
jects with JIA, the scores of squats were higher than the
scores of FEs, revealing that these two exercises contain
different, possibly clinically relevant, information that could
be used to further improve this novel assessment modality
in JIA.
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I. INTRODUCTION

A
RTHRITIS is the inflammation of a joint often associated

with symptoms of swelling, heat, pain, and stiffness [1].

The most common form of childhood arthritis is juvenile idio-

pathic arthritis (JIA), which refers to all forms of arthritis that

appear before 16 years of age and are of unknown origin [2].

The precise etiology of JIA is poorly understood; however,

research studies indicate that it is an auto-immune disease with

multiple genetic and environmental risk factors involved [1].

It has a prevalence of up to 150 cases per 100 000 children

in North America [3]. JIA becomes a chronic condition in

about half of the cases, and continues afflicting the patient for

several years or even a lifetime [2], [4]. This type of arthritis

has a heterogeneous presentation and few reliable biomarkers

which makes diagnosis, and quantifying treatment efficacy, dif-

ficult [3], [5]. Furthermore, there is a limited access to pediatric

rheumatologists, who are specially trained for diagnosing and

treating JIA, where only 1 in 4 children with JIA are able to

regularly see a pediatric rheumatologist in the U.S. [6], [7].

JIA is classified based on the number of affected joints,

clinical and laboratory features as well as family history [1].

The knee is the most commonly affected joint, which is a hinge

type synovial joint protected by articular cartilage and lubricated

with synovial fluid [8]. The cartilaginous surfaces of a normal

knee are smooth and slippery [9], whereas in an arthritic knee,

the synovial membrane surrounding the joint becomes inflamed,

the smooth cartilage degenerates, and—if left untreated—bony

erosions and density loss may occur [8]–[10]. Therefore, early

diagnosis with effective treatment is necessary to prevent long-

term effects [11].

During healthy joint movement, the inter-joint articular fric-

tion produces vibrations or sounds, which are referred to as

vibroarthrographic (VAG) signals or joint acoustic emissions

(JAEs) [9], [12]. Vibrations generated by the articulating sur-

faces of degenerated cartilage are expected to be different

from the JAEs of healthy cartilage [8]. JAEs carry important

information about the joint health, and these signals can be
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measured non-invasively and used in the classification of normal

versus abnormal joints [13]–[17]. Previous studies demonstrated

that JAEs could be used as a digital biomarker for JIA di-

agnosis through evaluating knee health during the course of

treatment [18]–[20]. However, in all prior studies, the analy-

sis was limited to JAEs generated strictly with unloaded flex-

ion/extension exercises (FE).

We hypothesized that, while JAEs recorded during unloaded

FE tasks for patients with JIA post-treatment closely matched

healthy knees, JAEs recorded during loaded more complex

multi-joint weighted movements involving knee and hip flexion

/ extension (i.e., squats) would still be significantly different

from healthy controls. The rationale for this hypothesis was

that loaded movements would result in greater joint contact

forces [16], [21]–[24], and thus the frictional interaction of

articulating surfaces within the knee would be increased; any

roughness in surfaces would thus result in different acoustic

characteristics during the movement. Accordingly, in this paper,

we analyze for the first time JAEs extracted during squats

from patients with JIA compared to healthy controls, and for a

sub-set of the same patients with JIA following several months

of treatment. In addition to addressing our scientific hypoth-

esis, we believe that there is practical value in demonstrating

that JAEs measured during squats can differentiate JIA from

healthy, and pre-treatment JIA from post-treatment: squats are

commonly used in clinical settings to study movement since they

can be performed with minimal equipment, and they include a

sit-to-stand component with demonstrated clinical value [14],

[21], [25], [26]. If JAEs derived from squats hold merit for

assessing knee health in JIA, then JAEs could ultimately be

extracted during routinely performed sit-to-stand exercises from

patients at home and during everyday settings with a wearable

smart brace [27]. To further increase this potential for translating

the approaches described here to the home, we developed and

validated a novel method for identifying and removing the signal

artifacts to improve the robustness of this sensing technique.

II. MATERIALS AND METHODS

A. Human Subject Protocol and Subject Demographics

This work builds upon our prior studies [20], [28], which

were approved by the Georgia Institute of Technology and the

Emory University Institutional Review Boards (#00081670). In

this work, knee JAEs were acquired from 38 study participants

including 20 subjects who were diagnosed with JIA by a pedi-

atric rheumatologist and 18 healthy controls with no history of

JIA or acute knee injuries. All subjects had BMI in the normal

range and were able to ambulate without assistance. The group

with JIA consists of 17 females (13.2 ± 2.1 years old, BMI

20.4 ± 4.2 kg/m2) and 3 males (10.7 ± 3.8 years old, BMI

17.4 ± 2.0 kg/m2), and the healthy control group consists of

15 females (12.4 ± 3 years old, BMI 20.8 ± 2.8 kg/m2) and 3

males (13 ± 4.6 years old, BMI 17.5 ± 1.9 kg/m2). To measure

longitudinal changes in the knee JAEs during the course of

treatment, 10 subjects with JIA had a follow-up recording, 3–6

months after initial measurements. The demographics and phys-

ical characteristics of the participants are presented in Table I,

TABLE I
DEMOGRAPHIC DATA FOR STUDY PARTICIPANTS

Fig. 1. Loaded and unloaded exercises to excite the knee acoustic
emissions.

which shows a fairly balanced dataset among the two groups of

healthy controls and patients with JIA. Note that JIA is more

common in females [29] and the demographics of this study

correspond with this distribution.

In this protocol, subjects were asked to perform ten repe-

titions of two exercises shown in Fig. 1: loaded squats while

bearing the body weight, and unloaded FEs while seated on a

height-adjustable stool without foot contact with the ground.

Subjects performed each exercise by following an instructional

cartoon that encouraged a movement cycle to be completed every

four seconds through the full range of motion (RoM). The JAEs

from each knee were recorded by two uniaxial accelerometers

(Series 3225F7, Dytran Instruments Inc., CA, USA) which were

attached 2 cm medial and lateral to the distal patellar tendon

of each knee using double-sided adhesive pads (Rycote Mi-

crophone Windshields Ltd, Stroud, Gloucestershire, GL5-1RN,

U.K.). These accelerometers, acting as contact microphones,

have a wide bandwidth of 2 Hz–10 kHz and a high sensitivity

of 100 mV/g. An inertial measurement unit (IMU) (BNO055,

Adafruit Industries, NY, USA) was also attached around the

subjects’ ankles to record the joint motion while subjects were

performing the exercises. Knee joint vibrations were sampled

at 100 kHz via a data acquisition system (USB-4432, National

Instruments, TX, USA) and stored on a computer for further

signal processing in MATLAB (MATLAB, MathWorks, MA,

USA).

B. Signal Processing and Feature Extraction

The signal processing pipeline of knee sounds in this work

is depicted in Fig. 2, where, following pre-processing, the

recorded signals from the contact microphones were divided
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Fig. 2. Overall block diagram and system pipeline: The recorded JAEs were filtered, windowed, and features were extracted for all the cycle
frames. An artifact detection algorithm also processed each cycle to identify the affected frames by artifacts and later exclude those frames. Then
the mean, median, and standard deviation of each feature were stored in a larger feature matrix with all the cycles of a subject. After the feature
matrix was calculated for all the subjects, a soft classifier was trained and evaluated with a leave-one-subject-out cross-validation algorithm. A
forward feature selection block down-selected the features and modified the classifier. The output of the classifier is the predicted cycle scores,
which are then averaged over each subject to get a single subject health score. The score is the probability of having JIA (0 for healthy and 1 for
JIA).

into movement cycles (∼4 seconds each) based on the IMU

data. The knee sounds contain high-energy and short-duration

acoustic signals with “spike-like” waveforms, having a broad

frequency spectrum that are mostly limited to 10 kHz [15],

[18]. Therefore, the pre-processing of these joint sounds com-

prised digital filtering with a Kaiser-window bandpass filter

(250 Hz–10 kHz) to reduce the unwanted noise and interference.

Then, each cycle was divided into 200 ms frames with 50%

overlap, where each frame was long enough to contain multiple

JAE signatures. This window size was heuristically chosen to

provide several frames per movement cycle while maintaining

the low frequency content of the signal [20]. In addition, a novel

automated algorithm was developed to detect the artifacts and

rubbing noise associated with loose microphone contacts [17],

and exclude them from the analysis to increase the reliability

and accuracy of results.

Table II shows the list of 72 features that were extracted

from each frame. The first category is temporal features which

consists of the signal energy, zero crossing rate (ZCR), RMS

amplitude, and energy entropy (f1–f4). The second category is

spectral features, which includes the spectral centroid, spectral

spread, spectral entropy, spectral flux, spectral roll-off, spectral

crest, spectral decrease, spectral flatness, spectral kurtosis,

spectral slope, spectral skewness, harmonic ratio, fundamental

frequency, mean frequency, 12 chroma features, and 29

TABLE II
A LIST OF ALL EXTRACTED FEATURES

bandpower features, which are the signal power in 29 distinct

log-scaled frequency range between 250 Hz–10 kHz (f5–f59).

The third category is Mel-frequency cepstral coefficients

(MFCCs) (f60–f72), which define the overall shape of the signal

spectral envelope and are widely used in speech recognition

and music information retrieval. A detailed description of these

features can be found in [15], [16], [20], [30].
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Fig. 3. a) waveforms of knee JAEs and detected windows with rubbing
artifacts, b) the spectrogram of the signal, in which the high power levels
of the artifacts saturated the color-bar rendering normal JAEs barely
visible, and c) the two features, bandpower and spectral roll-off, used to
detect the artifacts.

To summarize, each movement cycle (either FE or squat) was

about 4 seconds, containing approximately 40 frames, and each

frame was processed to extract 72 features. Then, the mean,

median, and standard deviation of each feature for all frames of a

movement cycle were calculated and stored in the feature matrix,

providing a total of 216 (72 × 3) features for each movement

cycle.

Later on, these features were down selected, and the classifier

was trained to predict the knee scores of healthy controls and

subjects with JIA. In this dataset, the number of available move-

ment cycles is ∼2700 since there are 2 datasets × 38 subjects ×

4 microphones × 8 to 10 movement cycles per recording. For

predicting the knee scores, the classifier was trained with the

cycles of all the held-in subjects (2 datasets ×∼36 cycles × 37

subjects) and the trained classifier was tested on the cycles of

the held-out subject (2 datasets × ∼ 36 cycles × 1 subject).

C. Artifact Detection

Removing noise and artifacts is an essential step towards

improving the accuracy and robustness of JAE recordings. A

previous study showed that loose microphone contact can intro-

duce additional noise and artifacts to the recorded signals [17]. In

some measurements, we noticed that microphone contacts were

loose for parts of the recording, and the recorded signal had

similar patterns to those of [17]. Therefore, we developed an

automated algorithm to identify and exclude these noisy regions

affected by the artifacts. Applying this algorithm on all knee

sounds increased the robustness of our analysis against such

artifacts that are likely to corrupt measurements taken in daily

life with wearable devices.

Fig. 3(a) shows the waveforms of knee JAEs with highlighted

rubbing artifacts, and Fig. 3(b) presents the spectrogram of

the signal which contains strong high-frequency components

during the occurrence of these artifacts. We analyzed the spectral

and bandpower features and found the following two features

were effective in artifact detection when considered together:

1) band power in the range of 0.3–10 kHz to measure the

signal power, and 2) spectral roll-off to find the frequency below

which 90% of the signal energy is concentrated. Fig. 3(c) shows

these two features for the same recording. The rubbing artifact

detection algorithm designates a signal frame as “artifact” when

both the bandpower and spectral roll-off values were above

certain thresholds. The threshold values were selected heuris-

tically based on the signal acquisition system. Of importance,

this method of artifact detection is not necessarily the only

applicable technique, but other audio features (e.g. MFCCs and

spectral entropy) were also able to detect these high-power and

high-frequency frames, as those also quantify the spectral power

distribution.

The artifact detection algorithm was used for the unfiltered

data, which was divided into 200 ms frames with 50% overlap

(similar to the windows from feature extraction). Then, the

features of the frames contaminated with artifacts were removed

from the feature matrix before calculating the mean, median, and

standard deviation of each feature for frames of a movement

cycle. This increased the reliability of our analysis by relying on

the features of denoised frames.

D. Forward Feature Selection

Down selecting the number of features is an important step

in reducing model complexity, the computational load, and

the possibility of overfitting [31]. Feature-selection is an iter-

ative process performed on a particular classifier and dataset

to improve one or several of the classifier parameters, such as

validation accuracy and area under the curve (AUC). Forward

feature selection (FFS) and backward feature selection (BFS) are

two of the most commonly used algorithms in practice, where

FFS begins with an empty set of features and in each iteration

adds the feature that best improves the desired metric [32]. On

the other hand, BFS begins with a model with all features,

and it removes the feature without which the model has the

highest performance [33]. In this work, FFS was used as it

is computationally less expensive and, during this process, the

classifier performance was evaluated with leave-one-subject-out

cross-validation (LOSO-CV). In the FFS process, the validation

accuracy generally tends to increase until it reaches the optimum

set of features, and then, the performance starts to drop as more

features were added to the model which indicates overfitting.

Therefore, feature selection not only helps with reducing the

number of features in the model while maximizing the perfor-

mance, but also decreases the chance of overfitting which makes

the model more generalizable.

In this work, the knee sound features for squat and FE ex-

ercises could be combined or analyzed separately. The goal of

this analysis was to compare JAEs of the squat exercise with

those of the FE exercise. Thus, to be consistent with squat and
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Fig. 4. Feature selection criteria. a) conceptual diagram illustrating the
similarities and differences of JAEs of squat versus FE for healthy and
JIA groups. Feature selection based on only squat dataset (b), combined
squat and FE datasets (c), and only FE dataset (d).

FE knee scores, a single classifier had to predict the scores

for both exercise recordings, which means that the training and

testing datasets should include both squat and FE knee sounds

to make a fair comparison. However, the testing accuracy can be

calculated separately for each movement. Nevertheless, the goal

of feature down-selection was to find the features that maximized

the difference between healthy controls and subjects with JIA.

Fig. 4(a) shows a conceptual diagram indicating that squat

and FE knee sounds can have similar or different characteristics

and feature values. Thus, if the features were down-selected only

based on the squat dataset or the FE dataset, those two feature-

sets would not necessarily be the same. We studied this issue

more carefully, where the feature down-selection was performed

based on 1) only the squat dataset, 2) only the FE dataset, or 3) a

combined dataset of both squat and FE recordings. To elaborate

more on this, feature selection based on only squat or FE data

maximized the difference between the scores of healthy controls

and subjects with JIA of that specific dataset. Whereas, in a

combined dataset, the classifier tried to assign a score of 0 for

both healthy groups (FE and squat) and a score of 1 for both

groups with JIA, resulting in similar scores for both exercises.

Analyzing these three different feature-sets would pronounce the

important features for squat dataset, FE dataset, or the common

features between the two [see Figs. 4(b–d)].

E. Classifier Training and Cross-Validation

A supervised learning method was used to assign a health

score to knee JAEs based on the down-selected features. The

feature matrix has M rows of movement cycles and N columns

of features. These features were standardized to have zero mean

and unity standard-deviation for each feature (column), and then

they were imported to a soft classifier with corresponding knee

sound labels (0 for healthy and 1 for arthritis). A binary logistic

regression classifier was trained with these features which has a

mathematical model formulated as

y =
eβ0+β1x1+···+βNxN

1 + eβ0+β1x1+···+βNxN

, (1)

where x1, x2, . . ., xN are the selected features, β0, β1, . . ., βN

are the classifier coefficients, and y is the classifier output [34].

This logistic regression classifier converts the knee sound fea-

tures to a probability score between 0 and 1 using the logistic

sigmoid function in a way that it can best fit a relationship be-

tween the labels and the given features [34]–[36]. Accordingly,

the classifier assigned a knee health score for each movement

cycle, which was the estimated probability that a given knee

sound belonged to an involved knee with JIA. Thus, a score of

zero indicated a healthy subject and a score of one was a subject

with JIA.

As a result, the calculated knee health score was expected to be

higher for subjects with JIA compared to healthy controls, and a

threshold was required to classify the predicted probabilities into

the two classes [35]. The threshold was set to a default score of

0.5 as a starting point and then adjusted through an optimization

process to find the optimum threshold for the best performance

(e.g., highest validation accuracy). Thus, any knee sound with

a score of less than the threshold was considered a healthy case

and a knee sound with a score of greater than the threshold was

considered as a case with JIA. In practice, the knee health scores

of all movement cycles (∼ 36 cycles) for a subject were averaged

first, and then the subject was classified to minimize the effects

of noise.

To evaluate the classifier performance, accuracy is a reliable

metric when the dataset is fairly balanced, and the problem

requires binary classification. In this work, the accuracy was

measured by LOSO-CV, in which the classifier was trained

with the data of all subjects except one, and then the score for

the movement cycles of that held-out subject were predicted

and compared with its ground truth labels. This process was

repeated for all subjects, and the overall validation accuracy

was calculated for the classifier. The calculated labels of the

movement cycles were compared with the ground truth to

compute the cycle-wise validation accuracy. In addition, the

predicted scores of a subject’s movement cycles were averaged

and compared with the ground truth to calculate a subject-wise

validation accuracy, which usually has a higher value than

the associated cycle-wise accuracy and is more robust against

noise.

There were a few important details in the classifier cross-

validation process that were considered: 1) When standardizing

the features before each training step, the mean and standard-

deviation were calculated based on only the training dataset (data

from held-in subjects excluding the testing subject) to make sure

the testing data has no effect on the classifier training, then the

testing data was standardized with the calculated training mean

and standard-deviation values. 2) The follow-up recordings of

the subjects with JIA were excluded in the training process to

ensure that these follow-up data were solely used for testing

the algorithm. Our hypothesis was that the predicted scores

of the follow-up recordings should decrease with a successful

treatment.
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Fig. 5. Kernel density distributions of three sample features before
and after artifact removal: bandpower 9 mean (0.69–0.78 kHz), spec-
tral flatness median, and spectral kurtosis mean. The distinction be-
tween healthy and JIA group is improved after artifact removal.

F. Feature Importance Ranking

A logistic regression classifier was trained based on the knee

sound features to predict the probability of JIA, where the classi-

fier was modeled by a logistic sigmoid function. The coefficients

of this classifier, denoted asβ0, β1, . . ., βN in (1), were estimated

using the Maximum Likelihood Method [34], [36], and the

coefficients explain the size and direction of the relationship

between each feature variable and the predicted score. Since

the feature variables were standardized to have zero mean and

unity standard deviation, the most important features were the

ones with the largest coefficient magnitudes. Thus, importance

of the features can be found by sorting the absolute value of

the coefficients in a descending order, and the most important

features were the ones with the highest absolute values. Note

that formal model validation with testing data was not needed

in this case, as our goal was not to generalize the model, and

the relative importance of features is subject to change with the

subset of feature variables included in the classifier.

III. RESULTS AND DISCUSSION

A. Artifact Detection

In Section II-C, We discussed a novel algorithm to detect and

exclude the high-power and high-frequency artifact frames using

the two features of bandpower in the range of 0.3–10 kHz and

spectral roll-off. Removing the artifacts reduced the corruption

due to rubbing noise and improved signal quality. A median

of 6–8% of the cycle duration was removed by the artifact

detection algorithm and that was similar between the FE and

Squat datasets. On a small portion of the recorded cycles (4% of

the datasets), more than 50% of the cycle duration was detected

to be affected by the artifacts and in those extreme contaminated

cases, we removed the whole cycle.

TABLE III
THE PERFORMANCE OF CLASSIFIERS

Sbj. stands for subject-wise, Cyc. stands for cycle-wise, Acc. stands for accuracy, Val.

stands for validation, and Opt. stands for optimum.

Fig. 5 illustrates the kernel density distributions before and

after artifact removal for features such as bandpower 9 mean

(0.69–0.78 kHz), spectral flatness median, and spectral kurtosis

mean. In these plots, the light and dark density plots correspond

to healthy controls and subjects with JIA, respectively, where

the differences between the joint sounds of the two groups

were heightened after artifact removal. Other features, such as

MFCC1 and spectral entropy, were also able to detect the con-

taminated frames by the artifacts, as those were also quantifying

the spectral power distribution and signal energy. Excluding

these contaminated frames from data before calculating the

mean, median, and standard deviation of frame features for each

movement cycle, increased the robustness to the measurement

condition and environmental factors. Thus, the classifier was

trained based on the features of uncorrupted frames, which

led to 8% validation accuracy improvement in the classifier

performance.

B. Forward Feature Selection

FFS algorithm was run on all the three mentioned cases

with the goal of maximizing classifier AUC, which provides

an aggregate measure of performance across all possible clas-

sification thresholds. By comparing the classifier parameters as

a function of number of features, these trends were observed:

When the classifier was trained with only a few features (5–

10), the AUC and validation accuracy were still low, but both

tended to increase as the number of features increased. With a

moderate number of features (20–50), the AUC and validation

accuracy improved and saturated, and both eventually dropped

with introducing more features, which was an indication of the

model overfitting. After comparing these results, the number of

features was reduced from 216 to 44 for all three cases, where

the classifiers had a relatively high performance.

Table III summarizes the performance of classifiers, where the

subject-wise AUC values were between 0.89–0.93, and subject-

wise validation accuracy values were in 88–92% range. As

mentioned earlier, the subject-wise performance was expected
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Fig. 6. Cycle-wise ROC curves with marked optimum thresholds of all
the models, when features were selected based on a) only the Squat
dataset (AUCSquat = 0.87 and AUCFE = 0.83), b) the Squat + FE
datasets (AUCSquat = 0.89 and AUCFE = 0.84), and c) only the FE
dataset (AUCSquat = 0.86 and AUCFE = 0.83).

TABLE IV
SUMMARY OF KNEE HEALTH SCORES

to be better than cycle-wise accuracy as it was averaged across

all movement cycles of each subject. The cycle-wise AUC was

in 0.83–0.89 range, and the cycle-wise validation accuracy was

between 76–84%. The optimum thresholds of the classifiers

were determined based on the optimal point of the receiver

operating characteristics (ROC) as described in [37]. Fig. 6

illustrates the ROC curves and the optimum thresholds of all

three models for FE and Squat groups. Of importance, several

features were common across these three cases and the classifier

accuracy was not very sensitive to the exact number of features.

Thus, adjusting the number of features changed the accuracy by

a few percent as long as the number of features was in a close

range. Note that with this FFS algorithm, the selected features

are not totally uncorrelated, and the Pearson’s cross-correlation

coefficients between the features in the same model were

0.37 ± 0.29, 0.33 ± 0.23, 0.31 ± 0.24 for the feature selection

based on Squat, FE, and combined datasets, respectively.

C. Predicted Knee Health Scores and Feature
Importance

Fig. 7 (a–c) shows the resulting scores for three sets of features

explained in Section III-B, where the box plots and violin plots

of squats (in blue) and FEs (in purple) were shown separately for

pre- and post-treatment subjects with JIA, as well as healthy sub-

jects. In these plots, a score of 0 corresponds to a healthy subject,

a score of 1 corresponds to a subject with JIA; the score of each

subject was calculated through averaging all the movement cycle

scores of that subject, and a summary is reported in Table IV.

With features selected based on squat dataset, the pre-treatment

JIA knee scores reduced from 0.86 ± 0.09 and 0.80 ± 0.12 to

0.50 ± 0.09 and 0.37 ± 0.11 after 3–6 months of treatment,

for squat and FE exercises respectively. The knee scores of the

healthy group were 0.24±0.15 and 0.21±0.15, for squat and FE

exercises respectively. Similarly, with FFS based on FE dataset,

the pre-treatment JIA knee scores reduced from 0.81 ± 0.16

and 0.77 ± 0.14 to 0.51 ± 0.11 and 0.40 ± 0.09 after treatment,

respectively. The healthy knee scores for squat and FE exercises

were 0.23 ± 0.17 and 0.17 ± 0.15, respectively. Finally, when

the FFS was performed based on the combined dataset, the

pre-treatment JIA knee scores decreased from 0.91 ± 0.07 and

0.87 ± 0.11 to 0.40 ± 0.12 and 0.35 ± 0.08 after treatment, for

squat and FE exercises respectively. Furthermore, the healthy

knee scores were 0.24 ± 0.19 and 0.18 ± 0.15, for squat and FE

exercises respectively.

Based on the results presented in Fig. 7, the followings are

concluded: 1) The post-treatment scores were always lower

than the pre-treatment scores, confirming the clinical records

of successful treatment; 2) The squat knee scores were higher

on average compared to FE knee scores for all groups in all

three feature settings. Similarly, the optimum threshold levels

of the classifiers for squat recordings were higher than those

of the FE recordings. This implies that the effects of load-

ing on the joint sounds is more pronounced in patients with

JIA; 3) The difference between post-treatment squat and FE

scores was statistically significant (p < 0.05 using two sample

Kolmogorov–Smirnov test) when the FFS was performed on

either the squat or the FE dataset (Fig. 7(a) and Fig. 7(c)),

as the features were selected to maximize the separability of

healthy and patient groups; and 4) The difference between post-

treatment squat and FE scores was not statistically significant

(p>0.05 using two sample Kolmogorov–Smirnov test) when the

FFS was performed on the combined dataset (Fig. 7(b)), as the

features were selected in a way to assign similar knee scores to

both squat and FE exercises.

Feature importance was analyzed based on the feature co-

efficients of trained classifiers, β0, β1, . . ., βN in (1). The top

15 features in each case were shown on Fig. 7 (d–f), and it is

interesting to see that these features consist of several types

of temporal, spectral, and MFCC features, which represents

the necessity of a diverse feature set for a JIA versus healthy

classification task. Some of these top features were common

among the three cases; for instance, spectral crest and MFCC 10

were among the top four features and the top seven features in all

the three settings, respectively. Note that these time-frequency

features are to some extent correlated with each other and the

feature rankings are highly dependent to the dataset, trained

models, and the selected features in each model. In addition,

it was interesting to see that our most important features were

consistent with some of the previously reported features: ZCR,

spectral spread, MFCC10, MFCC13, energy, spectral crest, and

spectral entropy was common with [18] and [20].

The knee health scores evaluated based on the features se-

lected from a combined dataset shows that machine-learning

algorithms are capable of processing the knee JAEs regardless

of the movement type and still providing a similar knee score.

The optimum thresholds reported in Table III were chosen based

on the classifiers’ ROC to improve their performance. However,
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Fig. 7. Box plots, violin plots, and feature importance rankings, when the feature selection was performed based on the squat dataset (a and d),
the combined dataset (b and e), and the FE dataset (c and f). The asterisk (∗) represents statistical significance (p <0.05) based on a two-sample
Kolmogorov-Smirnov test.

performance of the classifiers was also calculated with a default

threshold of 0.5, and the subject-wise validation accuracies only

degraded by less than 5%, which shows that the classifiers were

robust and not sensitive to the small changes of threshold levels.

The scores of healthy subjects between squat and FE were

expected to be similar as shown in Fig. 7 (a–c), since healthy

joints for kids have intact cartilage and minimal damage /

wear-and-tear, and thus the loading of the joint, effecting how

“hard” the internal surfaces were rubbed, does not substantially

impact the JAEs produced. In subjects with JIA, treatment

reduces synovitis quickly, but if the synovial thickness was still

greater than a healthy joint, and / or if there is any damage

to cartilage—even if minimal—then there could still be some

residual “roughness” of the articulating surfaces. This roughness

may be too small to make any change in the JAEs in the unloaded

FE state, but when the knees were under pressure of the body

load, that small amount of increased roughness can introduce

more friction into the movement and concomitant changes in

JAEs. This explanation supports the higher squat scores than

the FE scores in all three feature selection cases. Although

a detailed analysis on the joint force can further reveal the

loading effect, due to limitations of collecting the data in a

clinical environment and especially on children, this analysis

only relied on the loading change from an unloaded suspended

knee while doing the FE to the loaded knee of squats, and the

anatomical information and kinematics data of the subjects were

not collected due to the large number of sensors needed.

The clinical diagnosis of JIA is typically a diagnosis of

exclusion, meaning that to reach the diagnosis doctors must first

rule out a variety of other inflammatory and infectious etiolo-

gies, most notably septic/reactive arthritis and musculoskeletal

injuries. There are no lab tests that are specific for JIA and instead

a diagnosis is formed based on a constellation of non-specific

inflammatory markers, patient history and physical exam. The

gold standard of diagnosis is a trained physician’s exam, which

is what our algorithm has been compared against. Furthermore,

imaging (X-rays or MRI) is not the standard method for diagno-

sis and if it shows pathology like generic inflammatory changes,

they are still not specific for JIA. No technique exists currently

for non-invasively diagnosing JIA - accordingly, the authors

believe that the methodology presented here may have impact

in the management and care of persons with suspected JIA.

IV. CONCLUSION AND FUTURE WORK

In this study, we investigated knee JAEs from both unloaded

and loaded exercises in a pediatric population with JIA. JAEs

from both load-states can differentiate between healthy and

arthritic joints and could thus be used as part of a diagnostic

plan. However, diagnosis is only a small part of the potential

application of this sensing modality. As discussed, there is a

gap in the care of JIA management at least partially related to

the shortage of pediatric rheumatologists. JAE sensing provides

a novel type of non-invasive monitoring of joint health which

could help bridge that gap. If JAEs are capable of elucidating

longitudinal changes of JIA in relation to exacerbations or thera-

pies, then treatment could be better personalized and titrated for

each child. To that end, changes in JAEs following successful

therapy were analyzed in this paper.

It had previously been shown that unloaded JAEs after suc-

cessful treatment were similar to healthy JAEs. In this study,

we found that in the loaded case JAEs similarly trended toward
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healthy JAEs, but they did not reach the high level of correlation

seen in the unloaded state. This suggests that by loading the

joint, the JAEs were more sensitive to persistent changes in

the micro-architecture of the articulating joint. These joints

following treatment were qualitatively healthy but may have had

latent changes related to the preceding period of inflammation

and degradation. To further understand this difference in trend

between unloaded and loaded JAEs following treatment, in the

future more timepoints as well as a larger population with a more

comprehensive joint work-up should be recorded and recruited.

We believe that with a larger population recorded longitudinally,

the full capabilities of JAE analysis will be better understood.

Furthermore, there were patients from all major categories

of JIA among the participants of this study. Thus, the classifier

appears to detect JIA compared to healthy controls regardless of

the disease subtype. Although the dataset has a high variation

in the disease severity, for this initial study the ground truth

disease severity information was not available from the clinical

collaborators since they only performed the standard physical

examination as part of their assessment. Future work will ex-

amine further analyzing differences in joint acoustic emissions

across subtypes of JIA and across disease severity. It is possible

that this type of sensing could one day be used not only for

diagnosis, but also for adverse event or prediction of acute

flare-ups, subtypes, and optimization of therapy.
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