3618

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 9, SEPTEMBER 2021 EFAB CEEg, e
—O——— =

Processing

fons Society Societ

Acoustic Emissions From Loaded and Unloaded
Knees to Assess Joint Health in Patients With
Juvenile Idiopathic Arthritis

Sevda Gharehbaghi
Daniel C. Whittingslow
Omer T. Inan

Abstract—Objective: We studied and compared joint
acoustical emissions (JAEs) in loaded and unloaded knees
as digital biomarkers for evaluating knee health status dur-
ing the course of treatment in patients with juvenile idio-
pathic arthritis (JIA). Methods: JAEs were recorded from
38 participants, performing 10 repetitions of unloaded flex-
ion/extension (FE) and loaded squat exercises. A novel
algorithm was developed to detect and exclude rubbing
noise and loose microphone artifacts from the signals, and
then 72 features were extracted. These features were down-
selected based on different criteria to train three logis-
tic regression classifiers. The classifiers were trained with
healthy and pre-treatment data and were used to predict
the knee health scores of post-treatment data for the same
patients with JIA who had a follow-up recording. This knee
health score represents the probability of having JIA in a
subject (0 for healthy and 1 for arthritis). Results: Post-
treatment knee health scores were lower than pre-treatment
scores, agreeing with the clinical records of successful
treatment. Regarding loaded versus unloaded knee scores,
the squats achieved a higher score on average compared to
FEs. Conclusion: In healthy subjects with smooth cartilage,
the knee scores of squats and FEs were similar indicating
that vibrations from the friction of articulating surfaces do
not significantly change by the joint load. However, in sub-
jects with JIA, the scores of squats were higher than the
scores of FEs, revealing that these two exercises contain
different, possibly clinically relevant, information that could
be used to further improve this novel assessment modality
in JIA.
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|. INTRODUCTION

RTHRITIS is the inflammation of a joint often associated
A with symptoms of swelling, heat, pain, and stiffness [1].
The most common form of childhood arthritis is juvenile idio-
pathic arthritis (JIA), which refers to all forms of arthritis that
appear before 16 years of age and are of unknown origin [2].
The precise etiology of JIA is poorly understood; however,
research studies indicate that it is an auto-immune disease with
multiple genetic and environmental risk factors involved [1].
It has a prevalence of up to 150 cases per 100 000 children
in North America [3]. JIA becomes a chronic condition in
about half of the cases, and continues afflicting the patient for
several years or even a lifetime [2], [4]. This type of arthritis
has a heterogeneous presentation and few reliable biomarkers
which makes diagnosis, and quantifying treatment efficacy, dif-
ficult [3], [5]. Furthermore, there is a limited access to pediatric
rheumatologists, who are specially trained for diagnosing and
treating JIA, where only 1 in 4 children with JIA are able to
regularly see a pediatric rheumatologist in the U.S. [6], [7].

JIA is classified based on the number of affected joints,
clinical and laboratory features as well as family history [1].
The knee is the most commonly affected joint, which is a hinge
type synovial joint protected by articular cartilage and lubricated
with synovial fluid [8]. The cartilaginous surfaces of a normal
knee are smooth and slippery [9], whereas in an arthritic knee,
the synovial membrane surrounding the joint becomes inflamed,
the smooth cartilage degenerates, and—if left untreated—bony
erosions and density loss may occur [8]-[10]. Therefore, early
diagnosis with effective treatment is necessary to prevent long-
term effects [11].

During healthy joint movement, the inter-joint articular fric-
tion produces vibrations or sounds, which are referred to as
vibroarthrographic (VAG) signals or joint acoustic emissions
(JAEs) [9], [12]. Vibrations generated by the articulating sur-
faces of degenerated cartilage are expected to be different
from the JAEs of healthy cartilage [8]. JAEs carry important
information about the joint health, and these signals can be
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measured non-invasively and used in the classification of normal
versus abnormal joints [13]-[17]. Previous studies demonstrated
that JAEs could be used as a digital biomarker for JIA di-
agnosis through evaluating knee health during the course of
treatment [18]-[20]. However, in all prior studies, the analy-
sis was limited to JAEs generated strictly with unloaded flex-
ion/extension exercises (FE).

We hypothesized that, while JAEs recorded during unloaded
FE tasks for patients with JIA post-treatment closely matched
healthy knees, JAEs recorded during loaded more complex
multi-joint weighted movements involving knee and hip flexion
/ extension (i.e., squats) would still be significantly different
from healthy controls. The rationale for this hypothesis was
that loaded movements would result in greater joint contact
forces [16], [21]-[24], and thus the frictional interaction of
articulating surfaces within the knee would be increased; any
roughness in surfaces would thus result in different acoustic
characteristics during the movement. Accordingly, in this paper,
we analyze for the first time JAEs extracted during squats
from patients with JIA compared to healthy controls, and for a
sub-set of the same patients with JIA following several months
of treatment. In addition to addressing our scientific hypoth-
esis, we believe that there is practical value in demonstrating
that JAEs measured during squats can differentiate JIA from
healthy, and pre-treatment JIA from post-treatment: squats are
commonly used in clinical settings to study movement since they
can be performed with minimal equipment, and they include a
sit-to-stand component with demonstrated clinical value [14],
[21], [25], [26]. If JAEs derived from squats hold merit for
assessing knee health in JIA, then JAEs could ultimately be
extracted during routinely performed sit-to-stand exercises from
patients at home and during everyday settings with a wearable
smart brace [27]. To further increase this potential for translating
the approaches described here to the home, we developed and
validated a novel method for identifying and removing the signal
artifacts to improve the robustness of this sensing technique.

[I. MATERIALS AND METHODS
A. Human Subject Protocol and Subject Demographics

This work builds upon our prior studies [20], [28], which
were approved by the Georgia Institute of Technology and the
Emory University Institutional Review Boards (#00081670). In
this work, knee JAEs were acquired from 38 study participants
including 20 subjects who were diagnosed with JIA by a pedi-
atric rheumatologist and 18 healthy controls with no history of
JIA or acute knee injuries. All subjects had BMI in the normal
range and were able to ambulate without assistance. The group
with JIA consists of 17 females (13.2 £ 2.1 years old, BMI
204 + 4.2 kg/mz) and 3 males (10.7 £ 3.8 years old, BMI
17.4 4 2.0 kg/m?), and the healthy control group consists of
15 females (12.4 =+ 3 years old, BMI 20.8 + 2.8 kg/m?) and 3
males (13 + 4.6 years old, BMI 17.5 £ 1.9 kg/mz). To measure
longitudinal changes in the knee JAEs during the course of
treatment, 10 subjects with JIA had a follow-up recording, 3—6
months after initial measurements. The demographics and phys-
ical characteristics of the participants are presented in Table I,
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TABLE |
DEMOGRAPHIC DATA FOR STUDY PARTICIPANTS

JIA Healthy
# Subjects 20 18
# Females (% of group) 17 (85%) 15(83%)
# Males (% of group) 3(15%) 3(17%)
Age (mean * o, in years) 129 + 2.5 12.5 + 3.2
Weight (mean + o, in kg) 49.0 4+ 12.6 51.1 £ 12.3
Height (mean + o, in cm) 155.9 + 10.7 158.5 + 16.9
BMI (mean * o, in k:g/m2) 20.0 + 4.0 20.6 + 2.7

B ‘)
wj;n{: I‘)))
] S/
Loaded Knee Unloaded Knee
(Squat) (Flexion/Extension)
Fig. 1. Loaded and unloaded exercises to excite the knee acoustic
emissions.

which shows a fairly balanced dataset among the two groups of
healthy controls and patients with JIA. Note that JIA is more
common in females [29] and the demographics of this study
correspond with this distribution.

In this protocol, subjects were asked to perform ten repe-
titions of two exercises shown in Fig. 1: loaded squats while
bearing the body weight, and unloaded FEs while seated on a
height-adjustable stool without foot contact with the ground.
Subjects performed each exercise by following an instructional
cartoon that encouraged a movement cycle to be completed every
four seconds through the full range of motion (RoM). The JAEs
from each knee were recorded by two uniaxial accelerometers
(Series 3225F7, Dytran Instruments Inc., CA, USA) which were
attached 2 cm medial and lateral to the distal patellar tendon
of each knee using double-sided adhesive pads (Rycote Mi-
crophone Windshields Ltd, Stroud, Gloucestershire, GL5-1RN,
U.K.). These accelerometers, acting as contact microphones,
have a wide bandwidth of 2 Hz—10 kHz and a high sensitivity
of 100 mV/g. An inertial measurement unit (IMU) (BNOOS5S5,
Adafruit Industries, NY, USA) was also attached around the
subjects’ ankles to record the joint motion while subjects were
performing the exercises. Knee joint vibrations were sampled
at 100 kHz via a data acquisition system (USB-4432, National
Instruments, TX, USA) and stored on a computer for further
signal processing in MATLAB (MATLAB, MathWorks, MA,
USA).

B. Signal Processing and Feature Extraction

The signal processing pipeline of knee sounds in this work
is depicted in Fig. 2, where, following pre-processing, the
recorded signals from the contact microphones were divided
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Fig. 2.

Overall block diagram and system pipeline: The recorded JAEs were filtered, windowed, and features were extracted for all the cycle

frames. An artifact detection algorithm also processed each cycle to identify the affected frames by artifacts and later exclude those frames. Then
the mean, median, and standard deviation of each feature were stored in a larger feature matrix with all the cycles of a subject. After the feature
matrix was calculated for all the subjects, a soft classifier was trained and evaluated with a leave-one-subject-out cross-validation algorithm. A
forward feature selection block down-selected the features and modified the classifier. The output of the classifier is the predicted cycle scores,
which are then averaged over each subject to get a single subject health score. The score is the probability of having JIA (0 for healthy and 1 for

JIA).

into movement cycles (~4 seconds each) based on the IMU
data. The knee sounds contain high-energy and short-duration
acoustic signals with “spike-like” waveforms, having a broad
frequency spectrum that are mostly limited to 10 kHz [15],
[18]. Therefore, the pre-processing of these joint sounds com-
prised digital filtering with a Kaiser-window bandpass filter
(250 Hz—-10 kHz) to reduce the unwanted noise and interference.
Then, each cycle was divided into 200 ms frames with 50%
overlap, where each frame was long enough to contain multiple
JAE signatures. This window size was heuristically chosen to
provide several frames per movement cycle while maintaining
the low frequency content of the signal [20]. In addition, a novel
automated algorithm was developed to detect the artifacts and
rubbing noise associated with loose microphone contacts [17],
and exclude them from the analysis to increase the reliability
and accuracy of results.

Table II shows the list of 72 features that were extracted
from each frame. The first category is temporal features which
consists of the signal energy, zero crossing rate (ZCR), RMS
amplitude, and energy entropy (f1—f4). The second category is
spectral features, which includes the spectral centroid, spectral
spread, spectral entropy, spectral flux, spectral roll-off, spectral
crest, spectral decrease, spectral flatness, spectral kurtosis,
spectral slope, spectral skewness, harmonic ratio, fundamental
frequency, mean frequency, 12 chroma features, and 29

TABLE Il
A LIST OF ALL EXTRACTED FEATURES

Feature Sets Features Name

Temporal Energy, Zero-Crossing Rate, RMS Amplitude,

Entropy of Energy

Spectral Spectral Centroid, Spectral Spread, Spectral
-Entropy, Spectral Flux, Spectral Roll-Off,
Spectral Crest, Spectral Decrease, Spectral
-Flatness, Spectral Kurtosis, Spectral Slope,
Spectral Skewness, Fundamental Frequency,
Harmonic Ratio, Mean Frequency,

#12 Chromas, #29 Band powers

MFCC #13 Mel-Frequency Cepstrum Coefficients

bandpower features, which are the signal power in 29 distinct
log-scaled frequency range between 250 Hz—10 kHz (f5—f59).
The third category is Mel-frequency cepstral coefficients
(MFCCs) (feo—f72), which define the overall shape of the signal
spectral envelope and are widely used in speech recognition
and music information retrieval. A detailed description of these
features can be found in [15], [16], [20], [30].
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Fig. 3. a) waveforms of knee JAEs and detected windows with rubbing
artifacts, b) the spectrogram of the signal, in which the high power levels
of the artifacts saturated the color-bar rendering normal JAEs barely
visible, and c) the two features, bandpower and spectral roll-off, used to
detect the artifacts.

To summarize, each movement cycle (either FE or squat) was
about 4 seconds, containing approximately 40 frames, and each
frame was processed to extract 72 features. Then, the mean,
median, and standard deviation of each feature for all frames of a
movement cycle were calculated and stored in the feature matrix,
providing a total of 216 (72 x 3) features for each movement
cycle.

Later on, these features were down selected, and the classifier
was trained to predict the knee scores of healthy controls and
subjects with JIA. In this dataset, the number of available move-
ment cycles is ~2700 since there are 2 datasets x 38 subjects x
4 microphones x 8 to 10 movement cycles per recording. For
predicting the knee scores, the classifier was trained with the
cycles of all the held-in subjects (2 datasets x ~36 cycles x 37
subjects) and the trained classifier was tested on the cycles of
the held-out subject (2 datasets x ~ 36 cycles x 1 subject).

C. Artifact Detection

Removing noise and artifacts is an essential step towards
improving the accuracy and robustness of JAE recordings. A
previous study showed that loose microphone contact can intro-
duce additional noise and artifacts to the recorded signals [17]. In
some measurements, we noticed that microphone contacts were
loose for parts of the recording, and the recorded signal had
similar patterns to those of [17]. Therefore, we developed an
automated algorithm to identify and exclude these noisy regions
affected by the artifacts. Applying this algorithm on all knee
sounds increased the robustness of our analysis against such
artifacts that are likely to corrupt measurements taken in daily
life with wearable devices.

Fig. 3(a) shows the waveforms of knee JAEs with highlighted
rubbing artifacts, and Fig. 3(b) presents the spectrogram of
the signal which contains strong high-frequency components
during the occurrence of these artifacts. We analyzed the spectral
and bandpower features and found the following two features
were effective in artifact detection when considered together:
1) band power in the range of 0.3-10 kHz to measure the
signal power, and 2) spectral roll-off to find the frequency below
which 90% of the signal energy is concentrated. Fig. 3(c) shows
these two features for the same recording. The rubbing artifact
detection algorithm designates a signal frame as “artifact” when
both the bandpower and spectral roll-off values were above
certain thresholds. The threshold values were selected heuris-
tically based on the signal acquisition system. Of importance,
this method of artifact detection is not necessarily the only
applicable technique, but other audio features (e.g. MFCCs and
spectral entropy) were also able to detect these high-power and
high-frequency frames, as those also quantify the spectral power
distribution.

The artifact detection algorithm was used for the unfiltered
data, which was divided into 200 ms frames with 50% overlap
(similar to the windows from feature extraction). Then, the
features of the frames contaminated with artifacts were removed
from the feature matrix before calculating the mean, median, and
standard deviation of each feature for frames of a movement
cycle. This increased the reliability of our analysis by relying on
the features of denoised frames.

D. Forward Feature Selection

Down selecting the number of features is an important step
in reducing model complexity, the computational load, and
the possibility of overfitting [31]. Feature-selection is an iter-
ative process performed on a particular classifier and dataset
to improve one or several of the classifier parameters, such as
validation accuracy and area under the curve (AUC). Forward
feature selection (FFS) and backward feature selection (BFS) are
two of the most commonly used algorithms in practice, where
FFS begins with an empty set of features and in each iteration
adds the feature that best improves the desired metric [32]. On
the other hand, BFS begins with a model with all features,
and it removes the feature without which the model has the
highest performance [33]. In this work, FFS was used as it
is computationally less expensive and, during this process, the
classifier performance was evaluated with leave-one-subject-out
cross-validation (LOSO-CV). In the FES process, the validation
accuracy generally tends to increase until it reaches the optimum
set of features, and then, the performance starts to drop as more
features were added to the model which indicates overfitting.
Therefore, feature selection not only helps with reducing the
number of features in the model while maximizing the perfor-
mance, but also decreases the chance of overfitting which makes
the model more generalizable.

In this work, the knee sound features for squat and FE ex-
ercises could be combined or analyzed separately. The goal of
this analysis was to compare JAEs of the squat exercise with
those of the FE exercise. Thus, to be consistent with squat and
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Fig. 4. Feature selection criteria. a) conceptual diagram illustrating the
similarities and differences of JAEs of squat versus FE for healthy and
JIA groups. Feature selection based on only squat dataset (b), combined
squat and FE datasets (c), and only FE dataset (d).

(b)

FE knee scores, a single classifier had to predict the scores
for both exercise recordings, which means that the training and
testing datasets should include both squat and FE knee sounds
to make a fair comparison. However, the testing accuracy can be
calculated separately for each movement. Nevertheless, the goal
of feature down-selection was to find the features that maximized
the difference between healthy controls and subjects with JIA.

Fig. 4(a) shows a conceptual diagram indicating that squat
and FE knee sounds can have similar or different characteristics
and feature values. Thus, if the features were down-selected only
based on the squat dataset or the FE dataset, those two feature-
sets would not necessarily be the same. We studied this issue
more carefully, where the feature down-selection was performed
based on 1) only the squat dataset, 2) only the FE dataset, or 3) a
combined dataset of both squat and FE recordings. To elaborate
more on this, feature selection based on only squat or FE data
maximized the difference between the scores of healthy controls
and subjects with JIA of that specific dataset. Whereas, in a
combined dataset, the classifier tried to assign a score of O for
both healthy groups (FE and squat) and a score of 1 for both
groups with JIA, resulting in similar scores for both exercises.
Analyzing these three different feature-sets would pronounce the
important features for squat dataset, FE dataset, or the common
features between the two [see Figs. 4(b—d)].

E. Classifier Training and Cross-Validation

A supervised learning method was used to assign a health
score to knee JAEs based on the down-selected features. The
feature matrix has M rows of movement cycles and /N columns
of features. These features were standardized to have zero mean
and unity standard-deviation for each feature (column), and then
they were imported to a soft classifier with corresponding knee
sound labels (0 for healthy and 1 for arthritis). A binary logistic
regression classifier was trained with these features which has a

mathematical model formulated as

ebotBimit+BnN

ey

where x1, xo, ...,y are the selected features, g, 51, ..., ON
are the classifier coefficients, and y is the classifier output [34].
This logistic regression classifier converts the knee sound fea-
tures to a probability score between 0 and 1 using the logistic
sigmoid function in a way that it can best fit a relationship be-
tween the labels and the given features [34]-[36]. Accordingly,
the classifier assigned a knee health score for each movement
cycle, which was the estimated probability that a given knee
sound belonged to an involved knee with JIA. Thus, a score of
zero indicated a healthy subject and a score of one was a subject
with JIA.

As aresult, the calculated knee health score was expected to be
higher for subjects with JIA compared to healthy controls, and a
threshold was required to classify the predicted probabilities into
the two classes [35]. The threshold was set to a default score of
0.5 as a starting point and then adjusted through an optimization
process to find the optimum threshold for the best performance
(e.g., highest validation accuracy). Thus, any knee sound with
a score of less than the threshold was considered a healthy case
and a knee sound with a score of greater than the threshold was
considered as a case with JIA. In practice, the knee health scores
of all movement cycles (~ 36 cycles) for a subject were averaged
first, and then the subject was classified to minimize the effects
of noise.

To evaluate the classifier performance, accuracy is a reliable
metric when the dataset is fairly balanced, and the problem
requires binary classification. In this work, the accuracy was
measured by LOSO-CV, in which the classifier was trained
with the data of all subjects except one, and then the score for
the movement cycles of that held-out subject were predicted
and compared with its ground truth labels. This process was
repeated for all subjects, and the overall validation accuracy
was calculated for the classifier. The calculated labels of the
movement cycles were compared with the ground truth to
compute the cycle-wise validation accuracy. In addition, the
predicted scores of a subject’s movement cycles were averaged
and compared with the ground truth to calculate a subject-wise
validation accuracy, which usually has a higher value than
the associated cycle-wise accuracy and is more robust against
noise.

There were a few important details in the classifier cross-
validation process that were considered: 1) When standardizing
the features before each training step, the mean and standard-
deviation were calculated based on only the training dataset (data
from held-in subjects excluding the testing subject) to make sure
the testing data has no effect on the classifier training, then the
testing data was standardized with the calculated training mean
and standard-deviation values. 2) The follow-up recordings of
the subjects with JIA were excluded in the training process to
ensure that these follow-up data were solely used for testing
the algorithm. Our hypothesis was that the predicted scores
of the follow-up recordings should decrease with a successful
treatment.

v= 1 + ePotPrizit+Bnan’
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Before Artifact Removal After Artifact Removal TABLE IlI
60 THE PERFORMANCE OF CLASSIFIERS
HLT [__JHLT
240 JIA EJA
g - FFS Based FFS Based FFS Based
on Squat on Squat + FE on FE
0
0 0.02 0.04 006 008 01 0 0.02 0.04 0.06 0.08 0.1 Sbj. AUC (Squat) 0.91 0.92 0.93
BandPowsroMedn Sbj. AUC (FE) 0.93 0.89 0.93
2 AT Cyc. AUC (Squat) 0.87 0.89 0.86
% Euia Cyc. AUC (FE) 0.83 0.84 0.83
[
a “ Sbj. Val. Acc. (Squat) 88.2% 92.2% 88.2%
Sbj. Val. Acc. (FE) 89.5% 92.1% 89.5%
0 0.5 1 1.5 2 0 0.5 1 1.5 2 Cyc. Val. Acc. (Squat) 80.1% 84.3% 80.0%
SpectralFiatnessMedian Cyc. Val. Acc. (FE) 76.5% 82.3% 78.0%
0.3
[ IHLT [ JHLT Cyec. Train Acc. 83.5% 86.7% 83.6%
£0.2 EJA A
go Opt. Threshold (Squat) 0.57 0.75 0.65
a 04 . Opt. Threshold (FE) 0.45 0.61 0.46

0
-10 0 10 20 30 40 -10 0 10 20 30 40
SpectralKurtosisMean

Fig. 5. Kernel density distributions of three sample features before
and after artifact removal: bandpower 9 mean (0.69-0.78 kHz), spec-
tral flatness median, and spectral kurtosis mean. The distinction be-
tween healthy and JIA group is improved after artifact removal.

F. Feature Importance Ranking

A logistic regression classifier was trained based on the knee
sound features to predict the probability of JIA, where the classi-
fier was modeled by a logistic sigmoid function. The coefficients
of this classifier, denoted as 3y, (1, . . ., By in (1), were estimated
using the Maximum Likelihood Method [34], [36], and the
coefficients explain the size and direction of the relationship
between each feature variable and the predicted score. Since
the feature variables were standardized to have zero mean and
unity standard deviation, the most important features were the
ones with the largest coefficient magnitudes. Thus, importance
of the features can be found by sorting the absolute value of
the coefficients in a descending order, and the most important
features were the ones with the highest absolute values. Note
that formal model validation with testing data was not needed
in this case, as our goal was not to generalize the model, and
the relative importance of features is subject to change with the
subset of feature variables included in the classifier.

I1l. RESULTS AND DISCUSSION
A. Artifact Detection

In Section II-C, We discussed a novel algorithm to detect and
exclude the high-power and high-frequency artifact frames using
the two features of bandpower in the range of 0.3—10 kHz and
spectral roll-off. Removing the artifacts reduced the corruption
due to rubbing noise and improved signal quality. A median
of 6-8% of the cycle duration was removed by the artifact
detection algorithm and that was similar between the FE and
Squat datasets. On a small portion of the recorded cycles (4% of
the datasets), more than 50% of the cycle duration was detected
to be affected by the artifacts and in those extreme contaminated
cases, we removed the whole cycle.

Sbj. stands for subject-wise, Cyc. stands for cycle-wise, Acc. stands for accuracy, Val.
stands for validation, and Opt. stands for optimum.

Fig. 5 illustrates the kernel density distributions before and
after artifact removal for features such as bandpower 9 mean
(0.69-0.78 kHz), spectral flatness median, and spectral kurtosis
mean. In these plots, the light and dark density plots correspond
to healthy controls and subjects with JIA, respectively, where
the differences between the joint sounds of the two groups
were heightened after artifact removal. Other features, such as
MEFECCI and spectral entropy, were also able to detect the con-
taminated frames by the artifacts, as those were also quantifying
the spectral power distribution and signal energy. Excluding
these contaminated frames from data before calculating the
mean, median, and standard deviation of frame features for each
movement cycle, increased the robustness to the measurement
condition and environmental factors. Thus, the classifier was
trained based on the features of uncorrupted frames, which
led to 8% validation accuracy improvement in the classifier
performance.

B. Forward Feature Selection

FFS algorithm was run on all the three mentioned cases
with the goal of maximizing classifier AUC, which provides
an aggregate measure of performance across all possible clas-
sification thresholds. By comparing the classifier parameters as
a function of number of features, these trends were observed:
When the classifier was trained with only a few features (5—
10), the AUC and validation accuracy were still low, but both
tended to increase as the number of features increased. With a
moderate number of features (20-50), the AUC and validation
accuracy improved and saturated, and both eventually dropped
with introducing more features, which was an indication of the
model overfitting. After comparing these results, the number of
features was reduced from 216 to 44 for all three cases, where
the classifiers had a relatively high performance.

Table IIT summarizes the performance of classifiers, where the
subject-wise AUC values were between 0.89-0.93, and subject-
wise validation accuracy values were in 88-92% range. As
mentioned earlier, the subject-wise performance was expected
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Fig. 6. Cycle-wise ROC curves with marked optimum thresholds of all
the models, when features were selected based on a) only the Squat
dataset (AUCgquat = 0.87 and AUCgg = 0.83), b) the Squat + FE
datasets (AUCgquat = 0.89 and AUCFe = 0.84), and c) only the FE
dataset (AUCgquat = 0.86 and AUCFe = 0.83).

TABLE IV
SUMMARY OF KNEE HEALTH SCORES

FFS Based FFS Based FFS Based
on Squat on Squat + FE on FE

JIA-Pre (Squat) 0.86 +0.09 0.91+0.07 0.81+0.16
JIA-Pre (FE) 0.80+0.12 0.87+0.11 0.77+0.14
JIA-Post (Squat)  0.50 £0.09 0.4040.12 0.51+£0.11
JIA-Post (FE) 0.37+0.11 0.354+0.08 0.40+0.09
Healhty (Squat) 0.244+0.15 0.244+0.19 0.234+0.17
Healthy (FE) 0.214+0.15 0.18 £0.15 0.17+0.15

to be better than cycle-wise accuracy as it was averaged across
all movement cycles of each subject. The cycle-wise AUC was
in 0.83-0.89 range, and the cycle-wise validation accuracy was
between 76—84%. The optimum thresholds of the classifiers
were determined based on the optimal point of the receiver
operating characteristics (ROC) as described in [37]. Fig. 6
illustrates the ROC curves and the optimum thresholds of all
three models for FE and Squat groups. Of importance, several
features were common across these three cases and the classifier
accuracy was not very sensitive to the exact number of features.
Thus, adjusting the number of features changed the accuracy by
a few percent as long as the number of features was in a close
range. Note that with this FFS algorithm, the selected features
are not totally uncorrelated, and the Pearson’s cross-correlation
coefficients between the features in the same model were
0.37 +0.29, 0.33 £ 0.23, 0.31 = 0.24 for the feature selection
based on Squat, FE, and combined datasets, respectively.

C. Predicted Knee Health Scores and Feature
Importance

Fig. 7 (a—c) shows the resulting scores for three sets of features
explained in Section III-B, where the box plots and violin plots
of squats (in blue) and FEs (in purple) were shown separately for
pre- and post-treatment subjects with JIA, as well as healthy sub-
jects. In these plots, a score of 0 corresponds to a healthy subject,
a score of 1 corresponds to a subject with JIA; the score of each
subject was calculated through averaging all the movement cycle
scores of that subject, and a summary is reported in Table IV.
With features selected based on squat dataset, the pre-treatment
JIA knee scores reduced from 0.86 = 0.09 and 0.80 & 0.12 to

0.50 = 0.09 and 0.37 £ 0.11 after 3—-6 months of treatment,
for squat and FE exercises respectively. The knee scores of the
healthy group were 0.24 £0.15and 0.21 £ 0.15, for squat and FE
exercises respectively. Similarly, with FES based on FE dataset,
the pre-treatment JIA knee scores reduced from 0.81 £ 0.16
and 0.77 £0.14 t0 0.51 == 0.11 and 0.40 £ 0.09 after treatment,
respectively. The healthy knee scores for squat and FE exercises
were 0.23 + 0.17 and 0.17 £ 0.15, respectively. Finally, when
the FFS was performed based on the combined dataset, the
pre-treatment JIA knee scores decreased from 0.91 &+ 0.07 and
0.87 £0.11 t0 0.40 £ 0.12 and 0.35 4 0.08 after treatment, for
squat and FE exercises respectively. Furthermore, the healthy
knee scores were 0.24 4= 0.19 and 0.18 4 0.15, for squat and FE
exercises respectively.

Based on the results presented in Fig. 7, the followings are
concluded: 1) The post-treatment scores were always lower
than the pre-treatment scores, confirming the clinical records
of successful treatment; 2) The squat knee scores were higher
on average compared to FE knee scores for all groups in all
three feature settings. Similarly, the optimum threshold levels
of the classifiers for squat recordings were higher than those
of the FE recordings. This implies that the effects of load-
ing on the joint sounds is more pronounced in patients with
JIA; 3) The difference between post-treatment squat and FE
scores was statistically significant (p < 0.05 using two sample
Kolmogorov—Smirnov test) when the FFS was performed on
either the squat or the FE dataset (Fig. 7(a) and Fig. 7(c)),
as the features were selected to maximize the separability of
healthy and patient groups; and 4) The difference between post-
treatment squat and FE scores was not statistically significant
(p>0.05 using two sample Kolmogorov—Smirnov test) when the
FFS was performed on the combined dataset (Fig. 7(b)), as the
features were selected in a way to assign similar knee scores to
both squat and FE exercises.

Feature importance was analyzed based on the feature co-
efficients of trained classifiers, Sy, 1, ..., Bn in (1). The top
15 features in each case were shown on Fig. 7 (d—f), and it is
interesting to see that these features consist of several types
of temporal, spectral, and MFCC features, which represents
the necessity of a diverse feature set for a JIA versus healthy
classification task. Some of these top features were common
among the three cases; for instance, spectral crest and MFCC 10
were among the top four features and the top seven features in all
the three settings, respectively. Note that these time-frequency
features are to some extent correlated with each other and the
feature rankings are highly dependent to the dataset, trained
models, and the selected features in each model. In addition,
it was interesting to see that our most important features were
consistent with some of the previously reported features: ZCR,
spectral spread, MFCC10, MFCC13, energy, spectral crest, and
spectral entropy was common with [18] and [20].

The knee health scores evaluated based on the features se-
lected from a combined dataset shows that machine-learning
algorithms are capable of processing the knee JAEs regardless
of the movement type and still providing a similar knee score.
The optimum thresholds reported in Table III were chosen based
on the classifiers’ ROC to improve their performance. However,
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Box plots, violin plots, and feature importance rankings, when the feature selection was performed based on the squat dataset (a and d),

the combined dataset (b and e), and the FE dataset (c and f). The asterisk (x) represents statistical significance (p <0.05) based on a two-sample

Kolmogorov-Smirnov test.

performance of the classifiers was also calculated with a default
threshold of 0.5, and the subject-wise validation accuracies only
degraded by less than 5%, which shows that the classifiers were
robust and not sensitive to the small changes of threshold levels.

The scores of healthy subjects between squat and FE were
expected to be similar as shown in Fig. 7 (a—c), since healthy
joints for kids have intact cartilage and minimal damage /
wear-and-tear, and thus the loading of the joint, effecting how
“hard” the internal surfaces were rubbed, does not substantially
impact the JAEs produced. In subjects with JIA, treatment
reduces synovitis quickly, but if the synovial thickness was still
greater than a healthy joint, and / or if there is any damage
to cartilage—even if minimal—then there could still be some
residual “roughness” of the articulating surfaces. This roughness
may be too small to make any change in the JAESs in the unloaded
FE state, but when the knees were under pressure of the body
load, that small amount of increased roughness can introduce
more friction into the movement and concomitant changes in
JAEs. This explanation supports the higher squat scores than
the FE scores in all three feature selection cases. Although
a detailed analysis on the joint force can further reveal the
loading effect, due to limitations of collecting the data in a
clinical environment and especially on children, this analysis
only relied on the loading change from an unloaded suspended
knee while doing the FE to the loaded knee of squats, and the
anatomical information and kinematics data of the subjects were
not collected due to the large number of sensors needed.

The clinical diagnosis of JIA is typically a diagnosis of
exclusion, meaning that to reach the diagnosis doctors must first
rule out a variety of other inflammatory and infectious etiolo-
gies, most notably septic/reactive arthritis and musculoskeletal

injuries. There are no lab tests that are specific for JIA and instead
a diagnosis is formed based on a constellation of non-specific
inflammatory markers, patient history and physical exam. The
gold standard of diagnosis is a trained physician’s exam, which
is what our algorithm has been compared against. Furthermore,
imaging (X-rays or MRI) is not the standard method for diagno-
sis and if it shows pathology like generic inflammatory changes,
they are still not specific for JIA. No technique exists currently
for non-invasively diagnosing JIA - accordingly, the authors
believe that the methodology presented here may have impact
in the management and care of persons with suspected JIA.

[V. CONCLUSION AND FUTURE WORK

In this study, we investigated knee JAEs from both unloaded
and loaded exercises in a pediatric population with JIA. JAEs
from both load-states can differentiate between healthy and
arthritic joints and could thus be used as part of a diagnostic
plan. However, diagnosis is only a small part of the potential
application of this sensing modality. As discussed, there is a
gap in the care of JIA management at least partially related to
the shortage of pediatric rheumatologists. JAE sensing provides
a novel type of non-invasive monitoring of joint health which
could help bridge that gap. If JAEs are capable of elucidating
longitudinal changes of JIA in relation to exacerbations or thera-
pies, then treatment could be better personalized and titrated for
each child. To that end, changes in JAEs following successful
therapy were analyzed in this paper.

It had previously been shown that unloaded JAEs after suc-
cessful treatment were similar to healthy JAEs. In this study,
we found that in the loaded case JAEs similarly trended toward
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healthy JAEs, but they did not reach the high level of correlation
seen in the unloaded state. This suggests that by loading the
joint, the JAEs were more sensitive to persistent changes in
the micro-architecture of the articulating joint. These joints
following treatment were qualitatively healthy but may have had
latent changes related to the preceding period of inflammation
and degradation. To further understand this difference in trend
between unloaded and loaded JAEs following treatment, in the
future more timepoints as well as a larger population with a more
comprehensive joint work-up should be recorded and recruited.
We believe that with a larger population recorded longitudinally,
the full capabilities of JAE analysis will be better understood.

Furthermore, there were patients from all major categories
of JIA among the participants of this study. Thus, the classifier
appears to detect JIA compared to healthy controls regardless of
the disease subtype. Although the dataset has a high variation
in the disease severity, for this initial study the ground truth
disease severity information was not available from the clinical
collaborators since they only performed the standard physical
examination as part of their assessment. Future work will ex-
amine further analyzing differences in joint acoustic emissions
across subtypes of JIA and across disease severity. It is possible
that this type of sensing could one day be used not only for
diagnosis, but also for adverse event or prediction of acute
flare-ups, subtypes, and optimization of therapy.
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