1685

EMB IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 5, MAY 2022
—o——

A Feasibility Study on Tribological Origins of
Knee Acoustic Emissions
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Abstract—Objective: Considering the knee as a fluid-
lubricated system, articulating surfaces undergo different
lubrication modes and generate joint acoustic emissions
(JAEs). The goal of this study is to compare knee biome-
chanical signals against synchronously recorded joint
sounds and assess the hypothesis that JAEs are attributed
to tribological origins. Methods: JAE, electromyography,
ground reaction force signals, and motion capture markers
were synchronously recorded from ten healthy subjects
while performing two-leg and one-leg squat exercises. The
biomechanical signals were processed to calculate a tribo-
logical parameter, lubrication coefficient, and JAEs were di-
vided into short windows and processed to extract 64-time-
frequency features. The lubrication coefficients and JAE
features of two-leg squats were used to label the windows
and train a classifier that discriminates the knee lubrication
modes only based on JAE features. Results: The classifier
was used to predict the label of one-leg squat JAE windows
and it achieved a high test-accuracy of 84%. The Pearson
correlation coefficient between the estimated friction co-
efficient and predicted JAE scores was 0.83 + 0.08. Fur-
thermore, the lubrication coefficient threshold, separating
two lubrication modes, decreased by half from two-leg to
one-leg squats. This result was consistent with tribological
changes in the knee load as it was inversely doubled in
one-leg squats. Significance: This study supports the po-
tential use of JAEs as a quantitative biomarker to extract
tribological information. Since arthritis and similar disease
impact the roughness of the joint cartilage, the use of JAEs
could have broad implications for studying joint frictions
and monitoring joint structural changes with wearable de-
vices.

Index Terms—Joint acoustic emissions, vibroarthrog-
raphy, biotribology, unsupervised learning, wearable
technologies.
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[. INTRODUCTION

IBROARTHROGRAPHIC (VAG) signals or joint acoustic
V emissions (JAEs) are referred to vibrations or sounds
emitted during joint articulation [1]-[3]. These vibrations can
be generated from various inter-joint compartments and thus are
hypothesized to be associated with different roughness, soften-
ing, or lubrication state in articulating surfaces [4]-[6]. JAEs
can be measured non-invasively during routinely performed
exercises such as flexion/extension, squats, and sit-to-stand in
the standard clinic examination or with wearable smart braces
at home [7]-[11]. The knee is one of the most complex joints
in the human body and it is a hinge type joint lubricated with
synovial fluid, protected by articular cartilages [12]. Since knees
have an important role in bearing the whole body weight, they
are susceptible to injuries and early degeneration of articular
surfaces [13]. Recent studies have shown that structural changes
in the joint, such as meniscus and ligaments tears or cartilage de-
generation in arthritis disease, lead to changes in JAEs compared
to those of healthy joints [12], [14]-[17]. The impact of changes
in mechanical loading on joint sounds were also investigated
in [18], [19]. Particularly, a recent work demonstrated that JAEs
can be used to estimate joint load [20]. Moreover, the friction
forces and JAEs of human joints are qualitatively studied in [21].
Due to similarities between the synovial joints such as knee
and hip to engineering bearings, the lubrication mechanism
in these joints are often simplified and modeled as fluid-film
lubrication [22]. The articulating film formed between knee
compartments has a dynamic shape and thickness that changes
during articulation [23]. As a result, knees may experience
different lubrication modes at certain flexion phases and pressure
levels, namely boundary lubrication (BL) and hydrodynamic
lubrication (HL) [24]. During BL mode, there is almost a solid on
solid contact where lubrication is mostly governed by chemical
reactions and lubricant particles at the cartilage surfaces rather
than viscous properties of synovial fluid, resulting in a higher
friction coefficient. On the other hand, during HL mode, a
lubrication film is formed between the articulating surfaces and
a lower friction coefficient is achieved [22], [23]. Since the knee
has a complex structure, a mixed lubrication mode can also
exist at certain flexion phases where both HL and BL modes
are present at different knee interfaces.
From the tribological standpoint, the friction coefficient varia-
tions in the entire range of lubrication can be shown on a Stribeck
curve [25], [26]. For soft permeable surfaces (e.g., articular
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Fig. 1. Stribeck curve [25] and different lubrication modes. During

boundary lubrication mode, there is a solid on solid contact, whereas
during hydrodynamic lubrication, a lubrication film is formed between
the articulating surfaces.

cartilages), the Stribeck curve is shown in Fig. 1 [27], and the
x-axis represents Sommerfeld parameter, which is directly pro-
portional to the sliding velocity, lubricant viscosity, and inversely
proportional to the joint load. A low Sommerfeld parameter is
associated with a high friction coefficient (y-axis) and vice versa.

Since the lubricant viscosity in the knee only experiences
small changes in healthy joints [23], [28], and the information
about rheological properties of the synovial fluid for each in-
dividual was not available for this study, we used a modified
version of the Sommerfeld parameter. This parameter is called
lubrication coefficient, and it is equal to the knee angular velocity
divided by the knee joint load. This joint load or joint contact
force (JCF) is the force experienced at knee articulating surfaces,
and it cannot be measured directly through non-invasive meth-
ods; The current standard method for JCF estimation is through
musculoskeletal modeling [20], [29].

The goal of this study is to explore the relationship between
JAEs and the tribology of knee joint at different knee angles
and two loading conditions. To the best of our knowledge, in
this work, we established a quantified correlation between knee
JAEs and lubrication coefficient for the first time, and that is
evaluated for a normal activity such as squats. Demonstrating
this quantified correlation shows that JAEs can include important
information on knee tribology, which may help to establish a
causal relationship between JAEs and degenerative diseases in
vibroarthrography. The results of this study can help to improve
the mechanistic understanding of the tribological origins of
JAEs.

Il. MATERIALS AND METHODS

A. Demographics, Setup Description, and Data
Collection

Ten healthy able-bodied subjects (10 male, age: 23 + 2.9
years, height: 174.6 + 4.9 cm, weight: 70.8 4+ 10.4 kg)
participated in this study under the approval from the Georgia
Institute of Technology Institutional Review Board. Subjects
with no history of major knee injury or surgery were able to
participate in the study.

Each subject was instrumented with 20 reflective body motion
capture markers to provide full 3D kinematics of the subject’s
lower limbs based on the Plug-In Gait lower body model [30].

Ant. Pos.
(] & Motion Capture Markers
(] # EMG Sensors
@ & JAE Mics/Accelerometers

Fig. 2. Location of sensors in the experience setup.

Motion capture system at a sampling rate of 200 Hz (Vicon
Motion Systems, Denver, CO, USA) was used to capture the
motion trajectory. The ground reaction forces (GRF) and center
of pressure on each leg was captured using a force plate (Bertec,
Columbus, OH, USA) with a sampling rate of 1 kHz. Seven elec-
tromyography (EMG) sensors (Trigno Wireless EMG, Delsys,
Natick, MA) were placed on key muscles targeted during squat
exercises on the non-dominant leg (often left leg). These include
rectus femoris, vastus lateralis, vastus medialis, biceps femoris,
semitendinosus, and medial and lateral gastrocnemius [31]. The
placement of these sensors is shown in Fig. 2.

Two miniature uniaxial accelerometers (series 3225, Dytran
Instruments Inc., Chatsworth, CA, USA) were used to capture
knee JAEs. They were attached to the medial and lateral sides
of the patellar tendon on the left knee as these locations have
been favored in previous studies for optimal contact area and
mitigating the effect of soft tissue, muscle, and fat [15], [32].
A data acquisition system (NI USB-4432, National Instruments
Corporation, Austin, TX) was used to capture these acoustic
signals with a sampling rate of 25 kHz, and those were processed
through MATLAB software (MathWorks, Natick, MA).

After being instrumented with these sensors, subjects were
asked to perform 10 cycles of squats for two different conditions.
The normal condition was defined as a two-leg squat with the
foot stance of shoulder width, and the loaded condition was
defined as a one-leg squat. The pace of the squat was controlled
to be 4 seconds per cycle with a metronome to reduce the effect
of speed on the acoustic emissions.

B. Inverse Dynamic Analysis

The motion capture trajectory data, GRF, and EMG signals
were filtered and processed with the MATLAB MotoNMS
toolbox [33]. OpenSim software was used to perform the stan-
dard inverse kinematics and inverse dynamics analyses and
calculate JCF [34], [35]. A custom musculoskeletal model
(MSKM) designed by Catelli et al. was used as this model
allowed larger lower-limb range of motion for deep flexion
exercises such as squats. [36]. The musculoskeletal model
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was scaled to each subject’s anthropometry based on the
static trial. Muscle forces were computed using the Cali-
brated EMG-Informed Nueromusculoskeletal Modelling Tool-
box (CEINMS) [37] which employs EMG-assisted algorithms
to adjust excitation from the experimental EMG signals and
synthesize rest that were not experimentally collected. JCF was
then estimated using the muscle forces along with joint moments
calculated from the joint reaction analysis. The resultant forces
were segmented for each squat cycle and normalized to each
subject’s body weight (BW). The axial knee JCF and knee
angular velocity were then used to compute the lubrication
coefficient.

C. Preprocessing Joint Sounds and Feature Extraction

The recorded JAE signals from the contact microphones were
divided into movement cycles (~ 4 seconds each) based on
the kinematic markers. The high frequency noise was reduced
by wavelet denoising with four levels of decomposition. The
wavelet filter type was determined based on the minimum de-
scription length (MDL) criterion explained in [38]. Based on
MDL criterion, we found that biorthogonal 6.8 (bior 6.8) wavelet
filter requires the least number of coefficients to describe the
JAE signals, which means that it best matches with the signals
of this dataset. These JAEs carry high-energy and short-duration
vibrations with “spike-like” waveforms which have a broad
frequency spectrum mostly limited to 10 kHz [3], [39]. Thus, a
Kaiser-window bandpass filter (250 Hz - 10 kHz) was used to
further limit and reduce the unwanted noise and interference.
After filtering, the recorded signals of each movement was
divided into short-time, 50 ms, windows with an overlap of 80%
between the successive windows. These heuristically chosen
50 ms JAE frames can be assumed as stationary signals [1] with
only a few JAE signatures in them.

From these preprocessed windows, 64 audio features in-
cluding temporal, spectral, Gammatone cepstral coefficients
(GTCC) features were extracted. Temporal features consist of
zero crossing rate (ZCR), energy, RMS amplitude, energy en-
tropy, max-to-min, and five custom-designed distribution fea-
tures (f1 - f10). Distribution features were defined based on
the number of samples binned into the normalized ranges of
[0-0250],[0-050],[0-10],[10-20],and [2 0 -
3 o]. Finally, Spectral features include spectral centroid, spectral
crest, spectral decrease, spectral entropy, spectral flatness, spec-
tral kurtosis, spectral roll-off, spectral skewness, spectral slope,
spectral spread, harmonic ratios, fundamental frequency, mean
frequency, 15 band power features (log-scaled frequency range
between 250 Hz - 10 kHz), and 12 chroma features (f11 - f51).
The 13 GTCC features, modified from Mel-frequency cepstral
coefficients (MFCC) features, use Gammatone (GT) filters in
computing the spectral envelope shape which are adapted for
non-speech audio classification purposes (f52 - fe4) [40]. All of
these audio features except GTCCs and distribution have been
used in previous works describing JAE signals [3], [15], [18],
[19], [41].
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Fig. 3.  Signal processing and machine learning pipeline. Kinematics,
GRF, and EMG signals were processed with standard inverse dynamic
analysis and lubrication coefficient was calculated separately for two-leg
and one-leg squats. Besides, JAEs were preprocessed, windowed and
features were extracted. The lubrication coefficients and JAE features of
two-leg squats were used to assign BL/HL labels for both two-leg and
one-leg windows and then train a classifier that discriminates the knee
lubrication modes only based on JAE features. Then, the classifier was
used to predict the label of one-leg squat JAE windows. The classifier
performance was evaluated by comparing the true and predicted labels
(points B and C). Also, the lubrication coefficients of one-leg squats was
directly compared against the predicted joint sounds scores (points A
and C).

D. Machine Learning

The goal of this step was to train a classifier that predicts
the lubrication modes of knee frictions. Fig. 3 shows the signal
processing and machine learning pipeline implemented in this
study. After preprocessing and feature extraction of JAE sig-
nals, the feature matrix along with the synchronous lubrication
coefficients were used to determine ground-truth labels of all
joint sound events (1 for BL and O for HL). Then, a soft
classifier was trained on two-leg squat events to estimate the
probability of being attributed to the BL lubrication mode. A
leave-one-subject-out cross-validation (LOSO-CV) loop was
used for hyperparameter tuning and performance validation.
Then, this trained classifier was used to predict the lubrication
mode of one-leg squat events. The classifier performance can be
evaluated by comparing the true labels and predicted labels of
one-leg squat events (points B and C on the pipeline in Fig. 3).
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Fig. 4. Label assignment process. Over-clustering the JAE signatures based on the JAE features and determining the label of each group based

on the associated lubrication coefficient distribution.

Note that the biomechanics data of only two-leg squats were
used in the BL/HL label assignment, and the true labels of
one-leg squat events were determined based on its similarity to
two-leg squat events (i.e. the squared Euclidean distance in the
feature space). To evaluate whether JAE events are attributed to
the tribological origins, the lubrication coefficients of one-leg
squats can be directly compared against the predicted joint
sounds labels/scores (points A and C on the pipeline in Fig. 3).
Note that the lubrication coefficients of one-leg squats were
not used in the label assignment process and the classifier has
never seen them. The results of this comparison are presented
in Section III-D.

As a side note, we chose to use the two-leg squats data for
classifier training because the total knee load in this case was
determined based on body weight; whereas in one-leg squats,
the subjects were asked to lean on the non-dominant leg while
keeping the other leg on floor for balancing purposes. However,
in practice, subjects tend to partially lean on both legs, which
introduced uncertainties in the body weight distribution. For in-
stance, some subjects had doubled the JCF in one-leg (compared
to two-leg squat) by completely leaning on one leg, while others
had the JCF increased by only 20%.

E. BL/HL Label Assignment

The synchronously recorded biomechanical data was used
to determine the lubrication modes (BL/HL) of knee frictions.
Based on Fig. 1, ideally, all events occurring at low lubrication
coefficients should be labeled as BL, and those occurring at high
values should be labeled as HL. In this ideal case, articulating
surfaces would completely rub against each other during BL
phase and glide easily with no direct surface contact at HL phase.
If knee had a simple structure, the BL and HL events would
have happened in distinct phases of the squat movement cycle.
Thus, a simple threshold on the lubrication coefficient could
potentially differentiate BL and HL events. However, the knee
has a complex structure, and parts of articulating surfaces can be
in close contact even at hydrodynamic lubrication phase [22].
In addition, the transition from one phase to the other one is
gradual and continuous; Thus, BL and HL events may happen

simultaneously at different parts of the knee in all the phases but
with various density distributions. As aresult, a simple threshold
may poorly classify the BL and HL events.

We hypothesize that events with very similar signatures are
likely to be generated from the same friction source, and the
label assignment algorithm can be improved by accounting for
the similarities between JAE events. So, instead of evaluating the
label of each JAE event individually, we group JAE events with
similar features and determine the label of each group separately.
Intuitively speaking, we would like to calculate the median
lubrication coefficient for each cluster and then label them based
on a threshold. Fig. 4 illustrated this label assignment process
where labels were determined based on both JAE features and
associated lubrication coefficients.

1) Unsupervised Clustering of JAE Events: The JAE fea-
tures of one-leg and two-leg squats were combined, having
a total of about 85,000 JAE windows and 64 features. This
combined dataset was divided into smaller groups of JAEs by
over-clustering, so that each cluster could be assigned with the
same BL/HL label. Since the recordings were windowed with a
high overlap ratio of 80%, it is not expected to observe distinct
clusters. Nevertheless, we would like to increase the number of
clusters to make sure the events of each cluster includes very
similar signatures. Therefore, the number of clusters was set
to be higher than the optimal number of clusters determined
by a density-based clustering algorithm. At the same time, if we
divide the dataset into an unreasonably large number of clusters,
the size of each cluster shrinks, and the output labels would
approach to those of the individual event labeling output. This
issue is further investigated in Appendix A.

2) Assigning Labels to Each Cluster: The label of each
cluster was determined by comparing the lubrication coefficient
distribution of JAE events in each cluster against a threshold.
For instance, if most of the events in a cluster were happening
at a low lubrication coefficient, the events of that cluster were
all labeled as BL. This threshold can be set on the median
(or a certain percentile) of the lubrication coefficients in each
cluster.

Note that the JAE events of both one-leg and two-leg squats
were divided into smaller clusters. However, only the lubrication
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Fig. 5. Biomechanical parameters for a sample movement cycle. (a)
Knee angle (Q) and (b) angular velocity (U) were collected based on
the motion capture system. (c) Joint contact force (JCF) was estimated
based on the inverse dynamic models. (d) Lubrication coefficient was
calculated as the absolute ratio of angular velocity over JCF. Note that
JCF maximized at full flexion (halfway in the cycle).

coefficients of two-leg squats were used to calculate the median
value and compare that against a threshold. The JAE events of
one-leg squats in each cluster were assigned with the same label
as two-leg squat events of that cluster, which had similar feature
sets.

[1l. RESULTS AND DISCUSSION
A. Inverse Dynamic Analysis and Estimated Kinetics

Knee angle (Q °) and velocity (U °/s) were calculated through
the synchronous knee kinematics captured from the motion
markers. The knee flexion angle for the squat exercise has some
inter-subject variability ranging from 0° in standing mode to up
to about 140° in deep squat and back to 0° after a full squat
cycle. Fig. 5(a) shows knee angle in a sample squat cycle. The
knee angular velocity is the first derivation of the knee angle,
increasing halfway in the eccentric contraction and decreasing
to 0 (°/s) at full flexion. After a natural pause at deep squat,
the angular velocity increases in the opposite direction and
then decreases in absolute value till reaching zero again at full
extension or standing mode. Although metronome was used to
control the speed of the squatting, some subjects performed
the exercise at slightly higher speeds. The angular velocity
for all subjects were in a similar range and it varied between

-200 °/s to +200 °/s. A sample knee angular velocity is shown
in Fig. 5(b). JCF was estimated based on the standard inverse
dynamic analysis and processing kinematics, GRF, and EMG
signals. An estimated sample axial JCF (in N) is shown on
Fig. 5(c). Note that although the average pace for each movement
cycle is 4 seconds, the associated velocities with each 50 ms JAE
is not the same (see Fig. 5(b)). As a result, two JAE windows
with a similar joint loading but different velocities may belong
to different lubrication modes (e.g., t = 2 sec and t= 3.2 sec
in Fig. 5(c)) and the classifier should differentiate them. If this
exercise is performed at a lower average speed, it will contribute
to a lower Sommerfeld parameter, and it is expected to result in
a wider BL phase.

The lubrication coefficient is computed by dividing the syn-
chronous knee angular velocity to the estimated JCF, and the
result is shown in Fig. 5(d). Since the JCF has a higher value
around full flexion, the lubrication coefficient has a lower value
in this phase. Similarly, the velocity was around zero at the
starting and ending of the movement cycle as well as full
flexion. Therefore, the lubrication coefficient is also very small
at these phases. A threshold of ~ 0.03 is set on the lubrication
coefficient in Fig. 5, and in an ideal case with distinct BL and HL
lubrication phases, this threshold can separate the lubrication
modes, presented with orange (BL) and blue (HL) shades. In
reality, the density distributions of BL and HL. modes overlap,
but we expect to observe a similar trend with higher density of
BL events around the full flexion and a higher density of HL
events around the full extension.

To the best of our knowledge, the results from the CEINMS
can be validated by comparing between experimental muscle
excitations from EMG and muscle excitations calculated using
the CEINMS and static optimization modes, and they indicate
that output from CEINMS had both higher R2 and lower RMSE
for each muscle.

B. Distribution of BL/HL Events Across Biomechanics

JAE events of two-leg and one-leg squats were over-clustered
into 100 clusters with a k-means algorithm and based on the
squared Euclidean distance in the feature space. The number
of clusters was set to be greater than the optimal number (42
clusters) determined by DBSCAN clustering algorithm; this is
further explained in Appendix A. The distribution of lubrication
coefficients in each cluster was compared against a threshold to
determine the label of that cluster. In this case, we labeled a clus-
ter as BL mode when the median of the lubrication coefficients
associated with two-leg squats were lower than a threshold of
0.03. This threshold value was set to maximize the separation
of BL and HL lubrication coefficients, and it is investigated in
more detail in Appendix B.

In this label assignment algorithm, we hypothesized that
events with very similar JAE features are likely to be generated
from the same source of friction. Thus, in the label assignment
process, the similarity of JAE events were considered in addition
to the biomechanical data. Now, it would be interesting to
investigate how the BL/HL event distributions deviate from an
ideal case with distinct lubrication phases. Fig. 6 (a, b) shows
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Fig. 6. Histograms of BL and HL events across biomechanical param-
eters: Knee flexion angle (a), (b); knee angular velocity (c), (d); axial
Joint contact force (e), (f); and lubrication coefficient (g), (h) in two-leg
squat and one-leg squat respectively.

the distribution of all the BL (in orange) and HL (in blue)
events across the knee angle for two-leg and one-leg squats. The
BL events were more frequent at full flexion, about 110° and
100° for two-leg and one-leg squats, respectively. This result
was expected since in one-leg squats the non-dominant leg was
bearing a higher body weight and thus the compressed articulat-
ing surfaces, under this extra loading condition, would reach to
boundary lubrication at lower flexion angles. Density distribu-
tions of BL/HL events across angular velocity are demonstrates
in Fig. 6 (c, d) for two-leg and one-leg squats. The BL events
were dominantly occurring around the zero angular velocity,
whereas the HL events have a bimodal distributions. Having
two peaks for HL events was expected because of the symmetric
motion in the eccentric and concentric contractions. The peak
in positive velocities is associated with eccentric contraction
and the negative peak represents the concentric contraction (also
shown in Fig. 5). It’s noteworthy that both BL and HL events
have higher densities (higher peak) at eccentric contraction. This
might be because the subjects tend to perform eccentric con-
traction slower than concentric contraction [42], and therefore
in eccentric contraction joint sound events had a higher density.

The BL and HL event distributions were significantly distinct
(p < 0.001) in both two-leg squats and in one-leg squats. BL
events have two peaks around + 50° /s, and HL events had peaks
around + 100°/s, which also supports the distinct lubrication
modes shown in Fig. 5.

Density distributions across JCF in two-leg and one-leg squats
were shown in Fig. 6 (e, f). In two-leg squats, BL events occur
more frequently at higher joint contact forces, while HL events
occur at lower forces. However, in one-leg squat, those events
are distributed over a wider range. This can be due to the
high variability in one-leg loading conditions. The lubrication
coefficient was calculated by dividing the angular velocity to the
JCF, and it is demonstrated in Fig. 6 (g, h). It can be seen that
as JCF was increased in one-leg compared to two-leg squats,
and consequently the distribution of lubrication coefficients
was shifted toward lower values. The lubrication coefficient
threshold (the crossover point of BL and HL distributions) of
one-leg squats was half of this parameter for two-leg squats.
This change in lubrication coefficient threshold is consistent
with our expectation since the median of JCF in one-leg squats
is approximately twice that of two-leg squats.

C. Classification Performance

JAE events with similar features fell into the same clusters
and got the same labels. To verify this, a classifier was trained
with two-leg squat events and tested on one-leg squat events.
With a basic classifier, logistic regression, a high CV accuracy
of 86% and a test accuracy of 84% were achieved. Similarly, with
a more advanced ensemble learning method, random forest, a
CV accuracy of 89% and a test accuracy of 84% were achieved.
The high test accuracy of both models confirms that a machine
learning model could learn and distinguish BL vs. HL events
properly. In other words, a classifier is also able to distinguish the
JAEs based on their similarities and differences (the same way
that clustering does). The kernel density distributions of some
of the top features — namely GTCC, band power, MFCC, ZCR,
harmonic ratio, and spectral centroid — are illustrated in Fig. 7.
The distinct distribution of BL and HL events across the spectral
centroid shows that most of the BL events have higher frequency
content compared to HL events. This result is consistent with the
studies conducted on friction induced vibrations in lubricating
mechanical components [43], reporting that the frequency of
vibrations generated during boundary friction is higher than the
frequency of vibrations generated in hydrodynamic mode.

D. Correlation Between Joint Sounds and Tribology

To investigate the relationship between joint sounds and knee
tribology, the distribution of BL and HL lubrication coefficients
at two loading conditions were compared. For two-leg squats,
the BL and HL labels were predicted during the cross-validation
process, and for one-leg squats, the BL and HL labels were
predicted by the trained classifier.

The density of lubrication coefficient for BL and HL events
were plotted in Fig. 8(a) and (b) for two-leg and one-leg squat
exercises, respectively. It can be seen that, at low lubrication
coefficients (<0.01), the density of BL events was almost three
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Fig. 7. Distinction of density distributions for BL and HL events in some
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Fig. 8. Lubrication coefficient threshold shift from two-leg to one-leg:
(a) kernel density distribution of two-leg squat events, (b) kernel density
of one-leg squat events, (c) boxplots of lubrication coefficients median
for each subject.

times higher than those of HL events, and at high lubrication
coefficients (>0.04 in this study), the density of HL events was
significantly higher than those of BL events. A study in [44] re-
ports that articulating surfaces with velocities higher than 1 mm/s
are operating in mixed lubrication mode. This means that the
kernel density distributions of BL and HL events would overlap
and this is consistent with our observation. The vertical lines in
Figs. 8(a-b) show the median of the lubrication coefficients for
BL and HL events, and Fig. 8(c) summarizes the statistics of
these distributions for both datasets. Comparing the boxplots of
one-leg and two-leg squats, the median of lubrication coefficient
for BL events shifts down from 0.021 to about 0.011 which is
consistent with our expectation, because the body load on the
knee is almost doubled in one-leg squat exercise. To reiterate
the similarity between joint sounds and biomechanical data,
note that Figs. 8 (a, b) are similar to Figs. 6 (g, h), with a
difference that in Fig. 6, BL and HL labels are assigned directly
from biomechanical data, whereas in Fig. 8(b), the BL and HL
groups were labeled via predictions from the classifier which
distinguished them based on audio features.

Density

0 . . L .
0 0.2 0.4 0.6 0.8 1
Normalized Cycle Duration
Fig. 9. Density distribution of BL and HL events calculated from the

predicted labels of test dataset across normalized cycle duration.

The location of BL and HL phases calculated from lubrication
coefficients of two-leg squats were compared against the distri-
butions of BL and HL. modes calculated from the predicted JAE
labels of one-leg squats to provide more information about the
relationship between joint sounds and knee tribology. Fig. 5(d)
demonstrated the BL and HL phases for two-leg squats, and
Fig. 9 illustrates the probabilities of occurring BL and HL JAE
events in one-leg squats. Both figures present similar results
where the probabilities of occurring BL events at the beginning,
at the center, and at the end of the cycle, were higher than HL
events, showing the potential use of joint sounds in determining
the tribological phases.

In the next step, the JAEs and biomechanics data of one-
leg squats were compared in a quantitative manner. The first
row of Fig. 10 shows the estimated friction coefficient as a
function of cycle duration for each subject. In these plots, the
friction coefficients were estimated based on the lubrication
coefficient, and the Stribeck curve was approximated with a
sigmoid function (see Fig. 1). The second row of Fig. 10 shows
the probability of BL phase, estimated by the logistic regression
classifier, after applying a moving median filter. The dark blue
trace shows the average value and the shaded area shows the stan-
dard deviation of the desired parameters across squat movement
cycles.

Based on these plots, the friction coefficient (first row) and
the BL scores (second row) were more or less consistent for
each subject. We clearly see a peak in the friction coefficient/BL
score around the center and sometimes at the beginning and
ending of the movement cycle. The cross-correlation between
these two parameters was calculated for each subject, and a high
Pearson correlation coefficient of 0.83 £ 0.08 was achieved. It
is expected to observe some differences in the first row and the
second row, because the shape of the BL scores significantly
depends on the subject’s knee structure, which is not captured
in the simplified estimation of the friction coefficient. Overall,
Figs. 8-10 show various comparisons between the information
extracted from joint sounds and those from biomechanical data.
All of these comparisons represent that JAEs contain salient
information on knee tribology.
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Fig. 10. Comparing the friction coefficient from one-leg squats biomechanical data (estimated from lubrication coefficients) for all the subjects in

the first row, and the predicted probability of BL events for the same subjects in the second row. The cross-correlation between these two parameters
was calculated for each subject, and a high Pearson correlation coefficient of 0.83 + 0.08 was achieved.

[V. SIGNIFICANCE AND LIMITATIONS

The immediate goal of this preliminary study is to quantify the
relationship between the tribological properties of the synovial
joint and JAEs, which may help to establish a causal relationship
between JAEs and degenerative diseases in vibroarthrography.
In previous studies, JAEs were used as a digital biomarker in
clinical applications to differentiate between healthy controls
and subjects with degenerative diseases [1], [15], [19], [39].
Demonstrating a quantified correlation between JAEs and knee
biomechanical parameters shows that JAEs can provide valu-
able physiological and pathological information about the joint
which was previously only possible through measurements with
multiple biomechanical sensors and estimations based on mus-
culoskeletal models. In contrast with complex biomechanical
measurement setups, this modality (i.e., JAEs) can be measured
with wearable technologies for ambulatory applications and
used as an assistive device to monitor patients’ health in the
clinic or at home.

No prior or independent information is available on the dif-
ferences in knee joint structures that lead to vibrations [45].
Because of the lack of mechanistic understanding of JAEs,
empirical techniques have been used to derive information from
these signals. To understand the origins and characteristics of
JAEs, the present work lays the groundwork that JAEs con-
tain salient information on knee tribology in healthy subjects,
while further studies on subjects with musculoskeletal injuries
or arthritis are required. In such a study, the variations of the
viscosity of the synovial fluid in affected knees should be
considered [46], and MRI images could also provide valuable
information about the knee structure. Investigating the effects
of different injuries/diseases on knee structures and how that
affects JAEs can help us develop algorithms to use JAEs as a
biomarker to titrate care in patients.

The trained machine learning model in this work relies on the
simulated JCF as a “ground truth” to calculate the lubrication
coefficient, while this JCF is not directly measured in lab.
Therefore, the accuracy of the ML model is limited to the
accuracy of musculoskeletal simulations. Nonetheless, these
simulations are one of the best methods for estimating in-vivo
joint loads in healthy, able-bodied subjects [20] and current
models are able to track joint load variations with R* of 0.91

and 0.7 for medial and lateral forces, respectively [47], which
is promising when the relative changes in the joint forces are
studied at different joint movement stages. Furthermore, there
is an ongoing research to improve the musculoskeletal models
and better estimate JCF.

In practice, JAEs are prone to be contaminated by artifacts
such as loose microphone contacts, motion artifacts, hitting
around microphone/wires, and setup issues. Some of these
artifacts were identified in our previous works, and hardware
modifications as well as signal processing steps were proposed
to detect and improve the robustness of these algorithms [9],
[16], [17], [19].

V. CONCLUSION AND FUTURE WORK

In this work, we studied the acoustic emissions generated
at different knee angles and loading conditions, and demon-
strated for the first time that joint sounds are strongly correlated
with knee tribology. These acoustic emissions contain salient
information on knee tribology and they are able to predict
the joint lubrication modes. One area of future work could be
investigating the relationship between JAEs and biomechanics
of both healthy and unhealthy knees with degraded cartilage
surfaces and imbalanced force distribution happening in some
disease or injuries. Because distinguishing the impact of struc-
tural changes in the JAEs depends on the richness of the input
dataset that is fed into the ML model. It is expected to observe
a higher rate of boundary lubrication induced acoustic events in
degraded knees compared to healthy ones. This concept can
also be investigated in a larger population and during other
activities to improve our understanding and to achieve a more
accurate quantified threshold for BL/HL classification. Lastly,
finite element analysis can be coupled with inverse dynamic
study to incorporate pressure distribution rather than JCF as a
more precise representation of loading within the joint since
contact movement patterns during articulation can change the
force distribution on the joint interfaces.

APPENDIX A

NUMBER OF CLUSTERS

In the label assignment algorithm, JAE events with similar
features were grouped together, and a label was assigned to each
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Fig. 11. Classifier performance and correlation coefficient between
BL score and estimated friction coefficient as a function of number of
clusters.

group based on the associated lubrication coefficient distribu-
tion. Choosing the right number of clusters for label assignment
affects the performance of the machine learning classifier and
of course the labels of JAE events.

Assume a feature space representing these JAE events. If the
dataset is divided into a small number of clusters, and each
cluster was assigned to the same label, there would be a simpler
decision boundary in the feature space that the classifier can learn
and achieve a high accuracy. However, in this case, a diverse
set of JAE events would be assigned to the same label, which
would not be accurate. On the other hand, dividing the dataset
into a large number of clusters ensures that JAE events in each
cluster are more homogeneous, and the BL/HL label assignment
based on the lubrication coefficient distribution would be more
accurate. But the decision boundaries could be more complex
and the classifier performance may degrade.

A density-based clustering algorithm was used to determine
the optimal number of clusters. DBSCAN algorithm divided the
dataset into 42 clusters, and we used 100 clusters to make the
JAE signatures in each cluster more homogeneous. Fig. 1 1 shows
the classifier validation and test accuracies and the Pearson cor-
relation coefficient between BL scores and friction coefficients
as a function of number of clusters. As the number of clusters
increase and the decision boundary gets more complicated, the
classifier encounters a more difficult learning task, and the accu-
racies decrease. In contrast, the correlation coefficient between
BL score and friction coefficient increases with larger number
of cluster, which may represent a better labeling performance,
and then it plateaus for more than 42 clusters.

The two-leg squats dataset contains about 42000 JAE events.
If each event was labeled individually, based on a lubrication
coefficient threshold, that is the same as dividing the dataset
into 42000 clusters. In this case, the cross-validation accuracy
was 65%, and it follows the decreasing classifier accuracy
trend.

In summary, the number of clusters should be higher than
the optimal number of clusters determined by a hierarchical or

20 40 60 80 20 40 60 80

Percentile Level Percentile Level

(a)

Fig. 12. (a) Dataset imbalance ratio and (b) distance between the
median of lubrication coefficients of BL and HL groups in two-leg squats
as a function of the two labeling hyperparameters.

density-based clustering algorithm to make sure the JAE events
in each cluster are of the same type.

APPENDIX B
LABEL ASSIGNMENT HYPERPARAMETERS

The label of each cluster was determined by comparing the
lubrication coefficient distribution of JAE events in each cluster
against a threshold. This threshold could be set on the median
(or a certain percentile) of the lubrication coefficients of each
cluster (see Fig. 4). The main criteria for selecting this threshold
and percentile level is to improve the distinction between the
density distributions of BL and HL groups. To be more specific,
the difference between the median of BL and HL lubrication
coefficients in Fig. 6(g) should be maximized. In addition, the
size of one group should not be much bigger than the other group
to facilitate the classifier learning.

Fig. 12(a) presents the dataset imbalance ratio, defined as the
ratio of the minority class sample size to majority class sample
size, across a 2D sweep of lubrication coefficient threshold
and percentile level. The yellow diagonal curve indicates the
trajectory that the dataset is balanced with equal number of
samples in both classes. The two dashed lines also highlight
the trajectories that one class is five times larger than the other
class. Ideally, these two hyperparameters should be chosen from
the area specified between the two dashed lines. Fig. 12(b)
presents the distance between the median of BL and HL Iu-
brication coefficient distributions across the 2D hyperparameter
sweep. This distance does not change substantially as long as
the hyperparameters are chosen inside the two dashed lines of
Fig. 12(a). But for the hyperparameters outside this region, the
size of one dataset is much larger than the other one (20:1 or
more). In this case the distance between BL and HL groups may
further increase. However, that is because the algorithm assigns
all JAE events to one group except a few rare types of JAEs to
the other group, which might not be insightful for this analysis.

The yellow diagonal trajectory on Fig. 12(a) shows hyperpa-
rameter combinations for having a balanced dataset. In addition,
the distance between BL and HL groups on this trajectory does
not change substantially. The classifier performance and the
correlation coefficient between BL scores and the estimated
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Fig. 13.  Classifier performance and correlation coefficient between BL
scores and estimated friction coefficients as a function of hyperparame-
ter values.

friction coefficients are investigated for different choices of
hyperparemeters on this trajectory, and the results are presented
in Fig. 13. The lubrication coefficient thresholds and associated
percentile levels are presented on the bottom and top x-axes.
The classifier validation and test accuracies are almost con-
stant. Also, the correlation coefficient does not change with
the choice of hyperparameters. To give a numerical example,
a label assignment criteria of “having 30% of the events with
lubrication coefficients of higher than 0.02” is similar to the
criteria of “having 50% of the events with lubrication coefficients
of higher than 0.03”. Fig. 13 confirms the strong correlation
between JAE and knee tribology, independent from the exact
choice of hyperparameters.

It is worth mentioning that choosing other combinations of
hyperparameters might result in a degraded classifier perfor-
mance or a smaller correlation coefficient; however, it does not
undermine the earlier results shown in this study. Because the
main goal was to show JAEs contain salient information on knee
tribology, and that was demonstrated through the comparisons
presented in the paper.
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