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Abstract. The paper is devoted to the convex-set counterpart of the theory of weak™
derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the
following: For every nonreflexive Banach space X and every countable successor ordinal
«, there exists a convex subset A in X' such that « is the least ordinal for which the
weak” derived set of order « coincides with the weak® closure of A. This result extends
the previously known results on weak™ derived sets by Ostrovskii (2011) and Silber (2021).

1. Introduction. Let X be a Banach space. For a subset A of the dual
Banach space X*, we denote the weak* closure of A by A ". The weak* derived
set of A is defined as

o0
AV = | JAAnBx-",

n=1
where By« is the unit ball of X*. That is, A®) is the set of all limits of
weak* convergent bounded nets in A. If X is separable, A1) coincides with
the set of all limits of weak* convergent sequences from A, called the weak*
sequential closure. The strong closure of a set A in a Banach space is denoted
by A. We set A©) .= A,

It was noticed in the early days of Banach space theory by Mazurkiewicz
[23] that A does not have to coincide with A" even for a subspace A,
and (AM)M) can be different from A(M). In this connection, it is natural to
introduce derived sets for all ordinals: (1) if A(®) has already been defined,
then A+ .= (A@)MV); (2) if o is a limit ordinal and A has already been
defined for all 5 < «, then

(1.1) A= ] AV,
B<a
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The study of weak* derived sets was initiated by Banach and Mazur-
kiewicz (see [23, 3]). Its early developments are discussed at length in the
Appendix to the classical monograph by Banach [3]. Later, this study was
continued by many authors and found significant applications. Since the well-
known survey [34] of the fields of Banach space theory initiated by [3] does
not mention developments stemming from Banach’s “Appendix” 3, Annexe],
it seems beneficial to present here a short historical account.

Banach and Mazurkiewicz were primarily interested in the case of a sep-
arable Banach space X. Banach asked whether the weak* sequential closure
of a subspace may not be weak® sequentially closed, and Mazurkiewicz [23]
gave an affirmative answer to this question. This result was the reason for
Banach to introduce weak™® sequential closures of all transfinite orders.

In [3, Annexe| Banach proved that weak* sequential closures of finite
orders do not have to be weak® sequentially closed. Furthermore, Banach
stated that in his paper, which was going to appear in Studia Math., vol-
ume 4, he proved a similar result for X = ¢y and an arbitrary countable
ordinal. However, this paper has never been published. A possible explana-
tion can be that Banach found a mistake in his proof when it was too late to
delete the statement and the reference in [3]. It is regrettable that the story
was left uncommented in the reprint of [3] in [4] and the survey [34] because
the editors of [4] might have known the actual story.

In the late 20s and early 30s, Banach and his school focused on the
sequential approach to weak® topology and did not use the notion of weak*
topology. The subject of what is now called general topology already existed
[2], but was not yet well known. Using general topology a significant part
of the theory was made more elegant (see an account in [10]). However,
the sequential approach developed in [3, Annexe| has its advantages and
has led to significant applications. An early application of weak* sequential
closures to the study of sets of uniqueness for Fourier series was discovered
by Piatetski-Shapiro [36], and further developed in [19] and [22].

As for further development of theoretical aspects of weak* sequential clo-
sures, it is worth pointing out that Banach’s claim mentioned above (see [3,
Annexe, §1]) was proved in 1968 by McGehee [24], using results by Piatetski-
Shapiro [36]. At the same time, Sarason [42, 43| proved similar results for
some other spaces.

Davis and Johnson [6] developed an essential tool for investigation of non-
quasi-reflexive Banach spaces (that is, spaces for which the canonical image
of X in A** has infinite codimension). This tool was used by Godun [13] to
prove that for any finite ordinal the dual of any non-quasi-reflexive Banach
space contains a subspace whose weak* sequential closures of finite orders
form a strictly increasing sequence (this result was rediscovered later by
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Moscatelli [26]). Godun [12] also made an attempt to prove similar results
for infinite countable ordinals, but his argument contains gaps.

A result which completes the investigation for separable Banach spaces
was proved in [29] for general non-quasi-reflexive separable Banach spaces:
it was shown that, for every separable non-quasi-reflexive Banach space X
and every countable ordinal s, the space X'* contains a linear subspace I
for which I'®) £ [(5+1) — X* This result completes the investigation for
separable Banach spaces for the following reasons: (1) It is easy to see that
if X is a separable quasi-reflexive Banach space and I is a subspace of X'™,
then ') = T, (2) It is known (a proof is sketched in [3, p. 213]) that
for a separable Banach space X and any convex subset A C X, there is a
countable ordinal « such that A = 4"

This result of [29] is presented in [14]. Regrettably, the historical infor-
mation on weak* sequential closures in [14] is inaccurate.

Meanwhile, the theory of weak* sequential closures found applications in
many different fields:

the structure theory of Fréchet spaces [5, 8, 25, 27, 30];

the Borel and Baire classification of linear operators, including applications
to the theory of ill-posed problems [40, 35, 38, 39];

operator theory [44];

the theory of universal Markushevich bases 37, 14].

The survey [31] contains a more detailed historical account on weak*
sequential closures, which was up-to-date in 2000.

It is worth mentioning that the proof of nonexistence of universal Marku-
shevich bases in [37] uses the existence of subspaces satisfying I'(®) # [(x+1)
= X* in the same way as Szlenk [47] uses the existence of reflexive spaces
with an arbitrarily large Szlenk index in his proof of nonexistence of universal
reflexive Banach spaces.

Recently, sequential closures and derived sets became objects of interest
in some other areas, such as:

e extension problems for holomorphic functions on dual Banach spaces [11];
e valuations [1[;

e mathematical economics [7];

e the duality operators/spaces [41].

Several years after the work of Banach and Mazurkiewicz, Krein and
Smulian [20] started to develop a similar theory for convex sets. Since sub-
spaces are convex sets, and so there is no need to generalize examples of
subspaces with long chains of increasing weak* sequential closures, Krein
and Smulian focused on results characterizing weak™ closed convex sets.
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The fact that the existing theory of Krein-Smulian together with the
examples listed above for subspaces does not contain answers to all questions
which are natural to ask about convex sets was noticed by Garcia—Kalenda—
Maestre [11] in their study of extension problems for holomorphic functions
on dual Banach spaces. They initiated a further development of the theory
for convex sets by asking the following question [11, Question 6.3|: Let X
be a quasi-reflexive Banach space. Is A equal to A~ for each (absolutely)
convex set A C X? This question was answered by Ostrovskii [32], who
proved that (1) the answer is “yes” for absolutely convex sets, (2) for an
arbitrary nonreflexive Banach space X (quasi-reflexive or not), there is a
convex set A C X for which A # A This result showed that the theory
for convex sets is different from the theory for subspaces: for convex sets
quasi-reflexivity does not imply that A1) = A", Silber [45] developed this
result further by proving that, for an arbitrary nonreflexive space X and
each n € N the space X'* contains a convex subset A for which n is the least
ordinal satisfying A™ = A" and a convex subset D for which wy + 1 is the
least ordinal satisfying D(®) = D", where wy is the least infinite ordinal.

Our goal is to develop this theory further by proving the following result.

THEOREM 1.1. Let X be a nonreflerive Banach space and k be a countable
ordinal. Then there exists a conver subset A C X* such that AR £ A(k+1)
=A"

This theorem is proved in Section 5.

The following question asked in [45] remains unanswered.

QUESTION 1.2 (|45, Section 3, Question 1|). Does there ezist a convex
subset A in the dual to a separable Banach space for which the least ordinal
o satisfying A = A" is a limit ordinal?

It should be mentioned that it is an easy consequence of the Baire theo-
rem that this cannot happen if we additionally require that A is a subspace.
To the best of my knowledge, Godun [12| was the first to make this obser-
vation (later it was repeatedly rediscovered, see [19, 15]).

2. Trees. Our construction of sets is quite different from the one in
[32, 45]. For our construction of sets whose existence is stated in Theorem 1.1,
we shall use the notion of a tree defined as in set theory; see |16, p. 114] and
[21, p. 201]. Namely, a tree (F,<) is a partially ordered set such that for
each u € F the set {w : w < u} is well-ordered (each of its subsets has
a least element). We need only trees satisfying a much stronger condition:
each set {w : w < wu} is a finite linearly ordered set. Let F be such a
tree. We introduce on it a graph structure as follows: Two vertices u,v €
F are adjacent if and only if they are comparable and the set of vertices
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between them is empty. For a vertex u € F, its up-degree is defined as the
cardinality of the set of vertices v adjacent to v and satisfying u < v. Each
such v is called an up-neighbor of w, written v > wu. Likewise, the down-
degree of a vertex u € F' is defined as the cardinality of the set of vertices
v adjacent to u and satisfying v < u. Each such v is called a down-neighbor
of u, and we write v < w. It is clear that the down-degree of a vertex in
F' can be either 0 or 1, while the up-degree can be any cardinal. Vertices
with down-degree 0 are called wnitial. Vertices with up-degree 0 are called
terminal.

Note that our definition is in conflict with graph-theoretic terminology,
where trees are required to be connected, and disconnected trees are called
forests. Nevertheless, in this paper we shall use the term tree.

It has to be pointed out that although our terminology and constructions
are related to the ones in [9, p. 161], [17, Section 2|, [18], [19], [28, Section 2|,
and [48], they are different.

Throughout the paper, all ordinals (except the least uncountable ordi-
nal wy) are assumed to be countable. If {;}¥_, are partially ordered sets, we
denote by Lﬂle K;, where k € N of k = oo, the partially ordered set defined
as follows. As a set, it is a disjoint union of {Ki}le, with the partial order
which on each K; coincides with the original partial order, and elements of
different K; are incomparable. We shall also use the self-explanatory notation

k [e'e)
(Br)e( B )
i=1 i=k+1
An element w of a tree F' is called a root of F if w < u for every u € F.

To achieve our goal, we introduce a family of trees labelled by countable
ordinals «, including all finite ordinals. For each ordinal a@ < wy, we construct
a tree F, of the type described above. The tree F, will be called a tree of
order o. Our construction of F,, is inductive.

The tree Fy of order 0 is a one-element partially ordered set. So it contains
one vertex and no edges.

Suppose that we have already defined the tree F, of order a. When «
is a successor ordinal or a = 0, the tree Fi,11 of order o + 1 is defined in
two steps: first we consider ;2 K;, where each K is a copy of Fy. In the
second step, we add to this union a root, that is, an element smaller than
all elements of [#;°, K;. Observe that the root of F,; is adjacent to initial
vertices of each copy of F, and has no other adjacent vertices.

If B < w; is a limit ordinal, we consider a strictly increasing sequence
{Bn}22, of successor ordinals converging to 5 and define Fg as |4, Fj, .
Thus Fj is disconnected, with X (the least infinite cardinal) connected com-
ponents.



6 M. I. Ostrovskii

Finally, to define F,,11 when « is a limit ordinal, we add to the graph Fy,
a root, that is, one more vertex smaller than all vertices of F,,. The definition
of F, implies that this new vertex has up-degree Ng.

Observe that the up-degrees of vertices in the trees F, can only be 0
or Rg. This follows by observing that each new vertex (that is, not a copy of
one introduced before) which is used in the construction of F,, for a > 1 has
up-degree Ng. Only vertices obtained from the vertex forming Fy by repeated
copying have up-degree 0.

Note that F,, for n finite is what is called the (infinitely) countably branch-
ing tree of depth n.

For a tree F of the type described above, we define the derived tree F' as
the subgraph of F' obtained by deleting from F' all infinite sets of terminal
vertices having the same down-neighbor. To avoid confusion, we repeat the
same definition in more detail: we remove a terminal vertex v if it has a
down-neighbor vertex w and w has infinitely many up-neighbors that are
terminal vertices.

Having defined the derived tree F# of order 3, we define the derived tree
of order B4 1 as (FP)L. If B is a limit ordinal and we have already defined
derived trees for smaller ordinals, we set F/® = Ny<p F7.

Note that the derived tree (F,)7 (we write F, since it does not create
any confusion) of order  is not necessarily of the form Fj for any ordinal (3.
For example, F;° (where wp is the least infinite ordinal) is a collection of
isolated vertices of cardinality Ng.

The following two lemmas contain results on derived trees needed for our
construction.

LEMMA 2.1.

(1) Letn and k, 1 < k < n, be finite ordinals. Then (F,)* = F,_},.

(2) Let a be any ordinal. Then (Foy1)® = Fy and (Fop1)?™! = Fp.

(3) Let v be a limit ordinal and {5,}5°; be an increasing sequence of suc-
cessor ordinals converging to a, used to define F,. Then, for 5 < a,

(2.1) F)=( ¢ R)e( W #E)),
n, B> Bn n, B<Bn

and 00

(Fo)* = |H Fo.
i=1

Proof. (1) The case of finite ordinals follows easily from the definition
of F,,.

It is also easy to see from the definition of Fy, for a successor ordinal that
the conditions (F,.1)® = Fy and (Fay1)®t! = Fy imply (Fag2)®t! = B
and (Fa+2)a+2 = Fo.
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Before proving (2) for limit ordinals (assuming we have proved it for all
smaller ordinals), we need to prove the equality (2.1).
To get (2.1) we use the obvious equality F = Fy for every 7, its gener-

alization »
(W m)=(l n)
n, B>Pn n, B2pBn
and the definition of F,,. The equality (2.1) implies that Fg, ; = F| and
Fo‘fill = Fj for a limit ordinal «, provided statement (2) is known for all
ordinals 8 < a.

This implies all formulas stated in Lemma 2.1. =

LEMMA 2.2. If a vertex in (Fy)? has infinitely many up-neighbors which
are terminal vertices of (Fa)ﬁ, then all of its up-neighbors in F, are terminal
vertices of (Fy)P.

Proof. We use induction on «. For finite «, the statement immediately
follows from the description of F? in Lemma 2.1(1).

If the statement is true for all ordinals which are strictly less than a limit
ordinal «, then it is true for F,. In fact, since F, consists of components
which are Fg for 3 < «, and derived trees of disconnected trees are taken
componentwise, the conclusion follows.

Now we assume that the statement is true for Fy, and derive it for Fy1.
There are two cases:

(a) « is a limit ordinal,
(b) « is a successor ordinal,

In both cases the induction hypothesis implies that the condition holds
for all vertices of all derived trees except possibly the initial vertex.

CASE (a): For the initial vertex the condition is also satisfied because
Lemma 2.1(3) implies that for § < «, the initial vertex has finitely many
terminal up-neighbors in the derived tree F f +1- On the other hand, all up-
neighbors of the initial vertex are terminal in the derived tree (Foy1)®.

CASE (b): In this case, each of the derived trees consists of Xy copies of
the same tree attached to the initial vertex, and the conclusion follows. =

3. Reduction to the separable case. The main part of the proof of
Theorem 1.1 is its proof for a separable Banach space with a basis satisfying
special conditions. In this section we show that this special case implies the
general case of Theorem 1.1.

We need the following notation. Let Z be a closed subspace in a Banach
space X and F : Z — X be the natural isometric embedding. Then E* :
X* — Z* is a quotient mapping which maps each functional in X* to its
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restriction to Z. Let A be a subset of Z*. It is clear that D = (E*)~!(A) is
the set of all extensions over X of functionals in A.

LEMMA 3.1 (cf. [29, 32|). For any ordinal o we have
(3.1) D) = (E*)7H(A®),
where the derived set DY) is taken in X*, and the derived set A®) in Z*,

Proof. The inclusion D@ ¢ (E*)~1(A®) follows from the weak* conti-
nuity of the operator E* using transfinite induction.

To prove the inverse inclusion by transfinite induction, it suffices to show
that for every bounded net {f,} C Z* with w*-lim, f, = f and every g in
(E*)~L({f}) there exist g, € (E*)1({f,}) such that some subnet of {g,} is
bounded and weak* convergent to g. Let h, be such that h, € (E*)~1({f,})
and ||hy|| = || fv|| (Hahn-Banach extensions). Then {h,}, is a bounded net
in X*. Hence it has a weak® convergent subnet; let A be its limit. Then
g —h € (E*)~Y({0}), and therefore g, = h, + g — h is as desired. =

Reduction of Theorem 1.1 to the special case. We are going to use the
following result [33, 46]: If a Banach space X is nonreflexive, then it contains
a bounded basic sequence {z;}32; such that ||z;|| > 1 for every i € N, but

(3.2) sup H izi
i=1

=C < .

1<k<oco

Let Z be the closed linear span of {z;}3°,. We show that Lemma 3.1 implies
that to prove Theorem 1.1 it suffices to find a convex subset A C Z* such
that A" = A+ # A®)_In fact, if we construct such an A4, we let D =
(E*)"1(A). By Lemma 3.1 we have, D®) = (E*)~1(A®) and DD =
(E*)~1 (A1), Since each functional has a continuous extension, A1) £
A®) implies D"+ £ D),

To show that A~ = AW+ implies D* = D"+ we observe that 4™ =
A+ implies that A+ = AK+2) By Lemma 3.1 the last equality implies
D+ — D(+2) By the Krein-Smulian theorem [10, p. 429], the condition
DY — DE+2) jmplies D™ = D+ | o

For this reason from now on our goal is to prove Theorem 1.1 for X = Z.

Later we shall need some more notation and observations related to the
space Z. Let {z7}32, C Z* be the biorthogonal functionals of {z;}3°;. Let
2** be a weak™ cluster point of the sequence {Zle Zi}52 in Z*,

We will need the following observations about these vectors:

(3.3) |z**(x)| < C||z|| for every x € Z*.

This is an immediate consequence of ||z**|| < C' which follows from (3.2).
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(3.4) If x is a linear combination of {z;}7°, with nonnegative coefficients,
then z**(z) > c||z|| for some ¢ > 0.
In fact, let z = Zle a;z’. Then 2**(z) = Zle a;. On the other hand,

k k
lall = || > @izt || < sup ll221) Y- a
i=1 ! i=1

Since {z;} is a basic sequence satisfying ||z;|| > 1, sup; ||27|| is finite, and the
conclusion follows.

Note that analysis of the proof of [33, 46] leads to reasonably small ab-
solute bounds for sup; ||z}| and C' from above, but we do not need such
bounds.

4. Construction of a suitable convex set. Now we construct the set
A whose existence is claimed in Theorem 1.1. We fix a countable ordinal &
and let a =k + 1.

We introduce an injective map of F, into N and identify each vertex of
F,, with its image in N. We may and will assume that if u < v in F},, then
the images u and v of uw,v in N satisfy u < v. In fact, to establish such
identification we reserve for connected components of F, pairwise disjoint
infinite subsets in N (we reserve the whole N if F, is connected). Then we
assign to the initial vertex of each component of F, the least number of the
corresponding subset and delete the initial vertices from F},. Unless an initial
vertex in a component K of F,, was a terminal vertex, its deletion will split
K into countably many (incomparable) components. We reserve for these
components pairwise disjoint infinite subsets of the infinite subset reserved
for K, and continue in the obvious way.

For each terminal vertex v = nj € N (= means that we identify the vertex
v and the number ny) of F, we consider the path joining v to the initial
vertex of the component of F,, containing v. Let the path be ng,...,ni. In
the path we list vertices only and observe that (by the result of the previous
paragraph) nyg,...,n1 is a decreasing sequence in N.

For a terminal vertex v of F,, corresponding to {ng, ...,n;}, we introduce
a vector in Z* given by

k
(4.1) z*(v) = Zni_lz;,
i=1
where we set ng = n;.
Let
(4.2) X = X, = {2"(v) : v is a terminal vertex in Fy},
and let A = A, = conv(X).



10 M. I. Ostrovskii

Our next goal is to analyze the structure of the weak* derived sets of A.
In this connection, for each countable ordinal 5, we define a shorten-
ing X of the set X as

k
XP = { Z ni-12y, Zni_lzzi € X},
i=1

niGFg

where n; € Fg means that the vertex of F, corresponding to n; belongs to
the derived tree (F,)” of order 3 (defined in Section 2). We let X° = X.

REMARK 4.1. Observe that each vector y in any X? including X© is
supported on the vertex set of a finite path in F,, whose vertex set is linearly
ordered (recall that the vertex set of Fy, is partially ordered). We denote the
largest vertex in this path by v(y).

COROLLARY 4.2 (of Lemmas 2.1 and 2.2). The set Xﬁ+1\U0<7<B X7
is nonempty for every B < «. Furthermore, this difference contains a vec-
tor y whose support does not contain the support of any of the vectors in

UUS’YSB X7

Proof. Lemma 2.1 implies that the derived trees {FO)C‘} » stabilize only
starting from A = «. Therefore, for any 5 < «, we have £ #* F?. This
yields the existence in FP of an infinite set of terminal vertices which have
the same down-neighbor v. By Lemma 2.2, all up-neighbors of v in Fy, are
terminal vertices of Ff .

Let us consider any vector in X = X, having v in its support. Such a
vector can be easily obtained by extending the path joining v to the initial
vertex of the component of F,, containing v to a maximal monotone path
in F,. Let ng,...,n1 € N be the vertex set of this path listed in decreasing
order using the identification described above. (The finiteness of the path is
immediate from Lemma 2.1.)

The vertex v corresponds to one of the numbers ng_1,...,n;. The vector
Zle ni,lz:i belongs to X = X, and y = Zmngﬂ niflz;fbi is in X! but
not in X7 for v < .

It remains to show that supp y does not contain the support of any vector
re X7, 0<y<6.

Assume the contrary: let x be such that suppx C suppy, and the sup-
port of x is at least as large as the support of any & which is contained
in X7 for some 0 < v < 8 and satisfies suppZ C suppy. For such z, let
~ be the minimal ordinal for which x € X7. Clearly, v > 0, because no

vertex in suppy is terminal in Fy. Let > 7, mi—12,, € X be such that

T =) emy Mi12y,, = 2521 m;_1%y,,- Then my;y ¢ suppy because of
the maximality of suppz. The vertex m;;; belongs to an infinite family of
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vertices which are terminal in Fy} for some n < ~, as otherwise m;;1 would
belong to Fy.

By Lemma 2.2, all up-neighbors of m; are terminal vertices of Fy. We
get a contradiction because at least one of them belongs to F! w

5. Proof of Theorem 1.1. The main steps in our proof of Theorem
1.1 are the following:

(A) For every 5 < a,

(5.1) conv( U X”) c AB®),
0<y<B
(B) For every g < «,

(5.2) AB) ¢ conv( U Xv).
0<y<p
(C) If B < a, then XPH\ conv(Uge,<p X7) # 0.
(D) The weak™ sequential closure of B:=conv(|Jy<, <, X7) coincides with B.
Therefore B is weak® closed.

(E) The inclusion in (5.2) becomes an equality if a is a successor ordinal
and 8 = a.

5.1. Deduction of Theorem 1.1 from (A)—(E). Recall that we use
a=+k+ 1. By (E), we get

(53) A("i-i-l) = CODV( U X'y) .

0<y<r+1
By (D), A"tD is weak* closed and thus coincides with A”. On the other
hand, combining (A), (B), and (C) we get A £ A1) 0O

5.2. Proof of item (A). Since convexity is preserved under weak™ se-
quential closure, to prove (A) by induction it suffices to show that X?# c A
for every 8 < a.

The inclusion X' ¢ AM can be derived from the definitions as follows.
The definitions imply that y € X'\ X if and only if there is an infinite
sequence {v;} C F, of terminal vertices having the same down-neighbor u,
such that y = 2*(u) (for nonterminal vertices we use the same notation as in
(4.1)). Let o, = 2*(vg). Then, as is easy to see, z € X. On the other hand,
the definition (4.1) implies that x3 = 2*(v) = 2*(u) +ni—12,, = y+ni12;,,
where n; 1 is the same for all k£ and {z;; }; is some subsequence of {z;}2°,.
Therefore, y = w*-lim,_ o0 T,
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In a similar way, if we know that X# ¢ AP we derive X! ¢ AB+D)
from the fact that each element of X%\ X% is the limit of a weak® con-
vergent sequence of elements of X7,

The definition (F,)? = (,<5(Fa)? for the derived tree of order 8 with a
limit ordinal 8 implies that
(5.4) xPc|Jx

Y<p
for a limit ordinal 5. Combining (5.4) with the definition of the weak* derived
set AP for a limit ordinal 8 (see (1.1)), we find that the validity of the

inclusion X C A for all ordinals 7 < 8 implies its validity for a limit
ordinal f.

5.3. Proof of item (B). We prove (5.2) by induction. Of course, we
have the inclusion for g = 0.
The next step is to suppose that

AP Cconv( U XV),
0<v<B

and use it to derive

A(’B+1)CCOHV< U XW).
0<y<B+1

To achieve this it is clearly enough to show that

1
(5.5) (conv( U X7>) Cconv( U X‘Y).
0<y<p 0<y<B+1
The proof of the step 5 — 5+ 1 will complete the proof of (5.2), because
for a limit ordinal 5 the inclusion (5.2) follows immediately from the defini-
tion of A®) for a limit ordinal 3, provided (5.2) has already been proved for
all 7 < .

So we prove the step 8 — 3 + 1.

Since conv(Up<, <5 X7) is a subset of the dual of a separable Banach
space, any element of its weak® derived set is a weak™ limit of a bounded
sequence of the form

o

(5.6) { Z amﬂ-x} _ where az; >0, Z agi =1,

)

zeW zeW
where W = (Jy< <5 X7 and the set {ag;}sew is finitely nonzero for any
1€ N.
For each © € W we consider the vertex v(x) in F, (see the definition in
Remark 4.1). It can happen that for some x € W the vertex v(z) is an initial
vertex. We denote the set of all such z € W by [.
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For x € W\ I denote by v(y) the down-neighbor of v(z) in F, and denote
by y = y(z) the vector in Z* obtained if we replace by 0 the component of
corresponding to v(x), so that v(y) agrees with the definition in Remark 4.1.

We group the summands of ) a, ;@ for x € W\ I according to vectors
y = y(z) defined in the previous paragraph. We denote the set of all such
vectors y obtained for different z € W \ I by P. We can write

E Ay i T = E Qg ;T + E E Qg i T,

zeW zel YEP {xeW:v(z)>v(y)}

where v(x) = v(y) means that v(y) is a down-neighbor of v(x).

We may assume that lim; oo Z{xew:v(x)>v(y)} az; exists for every y € P
and denote this limit by s,. We may also assume that lim; ,. a,; exists for
every x € W and denote this limit by p,.

LEMMA 5.1. We have 3 c;pe+ > ycpsy = 1.

Proof. In fact, suppose ) ;pz + ZyEP sy = 0 < 1. We will show that
this contradicts the boundedness of {} @z iz},

For any finite subsets G C I and H C P, and every € > 0, there is j € N
such that

Z(ax,i —Pz) + Z (( Z am) — sy> <eg fori>j.

z€G yeH  {zeW:v(z)-v(y)}
Therefore
Z%,H— Z ( Z am->>1—(a+€) for i > j.
zeI\G yeP\H {zeW:v(z)>v(y)}

For any M € N, we can pick H such that for all y € P\ H the natural
number corresponding to v(y) in the identification described in Section 4 is
at least M. (For this and the next statement we need to recall that ng = ny
in (4.1).)

Similarly, we can pick G in such a way that for all z € I'\ G, the natural
number corresponding to v(x) (recall that ng = ny, see the line after (4.1))
is at least M. Then, by (3.3),

|3 ot 2 5= ( 3 0esr)
zeW zeW
> éz**( Z g% + Z ( Z a%im))

zeI\G yeP\H {zeW:v(z)>v(y)}
MO (0+e)
- C
Since this can be done for every M € N and every € > 0, we conclude that
{D sew @ziw}52, is unbounded. This contradiction proves the lemma. m
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LEMMA 5.2. The vectors {3 cw. y(z)su(y)} Gasi byep converge to {sy}yep
strongly in £1(P) and the vectors {ay ;}zer converge to {pg}tzer in €1(1).

Lemma 5.2 is an immediate consequence of the fact that a sequence {v; }
of normalized vectors in ¢; which converges pointwise to a normalized vector
v, converges to v strongly.

LEMMA 5.3. The series Yy Do and Y, .1 pex are absolutely conver-
gent.

Proof. In fact, otherwise by (3.4), > cyy Po2™ () diverges to infinity. By
(3.3), this divergence implies that Yy az:2* () <C|| Y- e Gai|| — 00
as 1— 00, contradicting the boundedness of {} 4z iz}2,. =
‘ LeEMMA 5.4. The series 3, cp
(& ZyEP(sy - Z{xEW:v(x)>v(y)}pm)y'

syy 1s absolutely convergent, and thus so

Proof. Assume the (first) absolute convergence does not hold. Since the
vectors y are nonnegative and s, > 0, by (3.4) the sum > s,z (y) diverges
to 0o. On the other hand, for each y € P and sufficiently large i = i(y) we
have

z**( Z amx) > %syz**(y).
{zeW:v(z)-v(y)}
Since the sets {x € W : v(z) > v(y)} with different y are disjoint, by (3.3),
we conclude that the sums erw az ;x cannot be uniformly bounded.
The second statement is an immediate consequence of the first statement
and the inequality s, > {eeW:v(z)=v(y)} Pa- This inequality is a consequence
of Fatou’s lemma for sequences:

Z Pz = Z zliglo Qg

{zeW:rv()-v(y)} {zeW:v(z)-v(y)}
< li =
< zliglo Z Az = Sy. m

{zeW:v(z)=v(y)}
LEMMA 5.5. The sequence of vectors
(5.7) Z Ag i = Z Ag T + Z Z agir, 1€N,
xeW xel yeP {zeW:v(z)>v(y)}
converges to the vector
(5~8) Zpa:x + Z ( Z P + (53/ - Z px)?/)
xzel yeP  {zeW:v(z)>v(y)} {zeW:v(z)>v(y)}
in the weak™ topology.

Proof. We know that the vectors (5.7) are uniformly bounded. Hence it
is enough to prove they converge to the vector (5.8) componentwise.
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Let us consider their mth components. Assume that m is in the image
of F, and that the path to m from the initial vertex of the component
containing m is ni,...,nE = m. There are two slightly different cases: k = 1
and k > 2. We consider the case k > 2; for k = 1 just replace ng_q by ni in
the formulas below and add the corresponding term for x € I.

For k > 2 the mth component of the vector (5.8) is

DNg—1 + § SyTk—1,

yeP
mesupp y

where in the first term, z is such that m = v(z). On the other hand, the mth
component of the vector (5.7) is

Az ifk—1+ § Z Qg iMk—1,

yeP {zeW:v(z)>v(y)}
mesupp y

where in the first term, z is such that m = v(z).

We have
E E Qg ,iNk—1 — § SyNk—1
yEP ew: - yeEP
mesupp y {z v(x) v(y)} mesupp y

by Lemma 5.2. u

To complete the proof of item (B), it suffices to show that the vector
(5.8) is contained in the right-hand side of (5.5). To achieve this, we do the
following;:

(1) Recall that (see Lemma 5.1)

pr-i-z Z pa;-l-Z(sy— Z px>:1.

xel yeP {xeW:v(z)>v(y)} yeP {zeW:v(z)~v(y)}

(2) Deduce from the previous item and Lemmas 5.3 and 5.4 that the vector
in (5.8) is an infinite convergent convex combination of z € W and
y e P.

(3) Observe that y € P can appear in this combination with nonzero coeffi-
cient only if {x € W : v(z) > v(y)} is an infinite set. In fact, if this set
is finite, then

>

{zeW:v(z)-v(y)}
- Z zliglo Goi = zliglo Z i = By»
{zeW:v(z)=v(y)} {zeW:v(z)=v(y)}

and so the coefficient of y is 0.
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(4) Prove that the infinite cardinality of {z € W : v(z) > v(y)} implies
Yy € U0<7<6+1 X7. In fact, induction on ordinal n, 0 < n < f, implies
that finiteness of all {x € X7 : v(z) > v(y)}, 0 <~ <7, implies

{z e X":v(x)=v(y)}= U {r e X7 :v(z) = v(y)}.
0<v<n
This leads to a contradiction for n = 8. Hence, there is v < 3 such that
{z € X7 :v(x) > v(y)} is infinite. So all these vertices are removed in
the derived tree F7*! and y € X7+ by definition.

5.4. Proof of item (C). Let 8 < «; by Corollary 4.2, there is y €
XPHN Ugey<p X7 such that the support of no vector in Joc,<z X7 is in
supp y. Let m € N be the largest element of suppy.

To complete the proof of (C) it suffices to show y ¢ conv(Uy< <5 X7).

Combining the choice of y with the definition of X7, we find that the set
UUS’YS 5 X7 contains vectors of two types:

(1) Extensions of y, that is, vectors coinciding with y on its support, but also
having at least one more positive coordinate. According to the definitions
in Section 4, the coordinate has to be > m. We denote the set of all such
vectors in (Jy<, <5 X7 by E.

(2) Vectors whose mth coordinate is 0 and some coordinates not in suppy
are positive. We denote the set of all such vectors in UOSWS g X7 by R.

Clearly,

conv( U X7) = conv(E UR).
0<y<B

So we need to find a continuous linear functional on Z* which separates
y from conv(E U R). In this connection, we consider the following two con-
tinuous linear functionals on Z*.

The first is the sum of all coordinates of a vector with respect to the basis
{z7}22,, except the coordinates which are nonzero for y. This functional is
continuous because it is a linear combination of z** (introduced in Section 3)
and finitely many elements of {z;}7°, considered as elements of Z**. We
denote this functional by Z. By definition, y € ker(Z2).

The second functional is z,, (that is, the mth coordinate functional).

We claim that z,, — Z separates y from conv(E U R). To see this observe
that (2, — 2)(y) = a > 0, where a is the value of the mth coordinate of y.

On the other hand, (2, — Z)|r < 0 because z,, is zero on R and Z is
nonnegative for all vectors in R.

Also (zm — Z)|E < 0 because for each vector in the extension, further
coordinates cannot be smaller than the previous ones.
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5.5. Proof of item (D). To prove this statement, we repeat the ar-
gument used to prove (B) and observe that we get into the closure of the
same set because, in this case, P is a subset of W. This is so for the follow-
ing reason. By Lemma 2.1, derived trees of Fi, stabilize at F, which is a
set of isolated vertices. In terms of vectors of the set X = X, this means
that shortenings X# of X stabilize when 8 = «, and the resulting set X
consists of vectors with 1-element support. Thus all vectors which can play
the role of y € P are in (Jy<,<, X7, which is the set W for the case under
consideration, so in this case P C W.

The argument used in the proof of item (B) shows that conv(Uy<,<, X7)

is weak* sequentially closed. By the Krein-Smulian theorem [10, p. 429], this
completes the proof.

5.6. Proof of item (E). Let a = k + 1. By item (A), we have
A Dconv( U XW).
1<y<k

Since the weak* derived set (of any set A) contains the strong closure of
the set, we get

(5.9) Al 5 conv( U X7>.
1<7<k

Let k € N correspond to the initial vertex of the tree Fj.; according
to the injective map constructed at the beginning of Section 4. Combining
Lemma 2.1(2), the definition of X**! and the definition (4.1), we see that
X+ = {k2;}. Let r = kzj. Ttem (A) implies 7 € A+ It remains to
prove

Al 5 Conv(( U X'Y> U {r})

1<y<k

Consider a strongly convergent sequence

o0
{ Z Az ;T + ar,ir}i_la
zeW
where W = U1<W<H X7, az; >0, a,; >0, and )y @z + ar; = 1. Since
0 < ar; < 1, we may assume that the sequence {a,;r}°, is convergent.
Since AHD is convex, by (5.9), the conclusion follows.
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