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Abstract. Identifying hidden dynamics from observed data is a significant and challenging task
in a wide range of applications. Recently, the combination of linear multistep methods (LMMs) and
deep learning has been successfully employed to discover dynamics, whereas a complete convergence
analysis of this approach is still under development. In this work, we consider the deep network-
based LMMs for the discovery of dynamics. We put forward error estimates for these methods using
the approximation property of deep networks. It indicates, for certain families of LMMs, that the ¢2
grid error is bounded by the sum of O(h?) and the network approximation error, where h is the time
step size and p is the local truncation error order. Numerical results of several physically relevant
examples are provided to demonstrate our theory.
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1. Introduction. Dynamical systems are widely applied to characterize scien-
tific principles and phenomena in various fields such as physics, biology, chemistry,
economics, etc. In many situations, the observational data are accessible, whereas
the underlying dynamics remain elusive. Data-driven discovery of dynamical systems
is, therefore, an important research direction. There has been extensive study on
data-driven discovery using Gaussian processes [29, 49, 50, 48], symbolic regression
[8, 56], S-systems formalism [15], sparse regression [10, 54, 68, 69], numerical PDE
analysis [25], statistical learning [33], etc. Recently, along with the rapid advance-
ments of deep learning, the discovery of dynamics using neural networks has also been
proposed [47, 52, 61, 55, 20, 22, 45, 60, 32, 65]. This paper studies high-order schemes
for the discovery of dynamics using deep learning.

In numerical analysis, developing high-order methods is an important topic in
many applications. Traditionally, in solving dynamical systems, high-order discretiza-
tion techniques such as linear multistep methods (LMMs) and Runge-Kutta methods
have been well-developed [5, 19, 38]. In recent years, LMMs have also been employed
for the discovery of dynamics. More precisely, one uses LMM schemes to discretize
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the dynamical system and take a certain class of functions to approximate the gov-
erning function. Typical candidate approximate functions include neural networks
[61, 61, 66]. The underlying parameters of the approximation are thereafter deter-
mined by solving the derived linear system or least squares optimization. Thanks
to the high orders of the local truncation error, LMMs can discover the system with
higher accuracy. Another advantage of LMMs with neural networks is the capabil-
ity of approximating complicated or high-dimensional governing functions, because
neural networks can overcome or lessen the curse of dimensionality for a variety of
functions [21, 41, 42, 17]. As a summary, we present an overview (Table 1.1) of popular
techniques for similar problems.

Although a wide range of methods have been put forward in the past few years,
theoretical analysis for those methods is less explored. In [26], a rigorous framework
based on refined notions of consistency and stability is established to yield the conver-
gence of LMM-based discovery for three popular LMM schemes (the Adams—Bashforth
(A-B), Adams—Moulton (A-M), and backward differentiation formula (BDF) schemes).
However, the theory in [26] is specialized for methods that cannot provide a closed-
form expression for the governing function, which is needed in many applications.

TABLE 1.1

Overview of popular techniques for the discovery of dynamical systems.

Techniques Procedures Main features Limitations
Gaussian place the Gaussian process prior on  suitable for have restrictions
processes the state function; then infer pa- resolving on the form of the
[29, 49, 50, 48]  rameters from data by maximizing high-dimensional systems and are
the marginal log-likelihood problems [49, 50] used to estimate
parameters of the
system [69]
Symbolic create and correct symbolic models  provide more computational
regression corresponding to the observed data  expressive expensive for
[8, 56] functional forms large systems;
for the governing may be prone to
function [55] overfitting [10, 55]
Sparse find a sparse combination of can-  provide explicit rely on a set of
regression didate basis functions to approxi- formulas of the appropriate
[10, 54, 68, 69]  mate the governing function, whose  system and do not candidate

coefficients are determined by least
squares or Bayesian regression

require too much
prior knowledge
[69]

functions; may be
inefficient for
complex dynamics
without a simple
or sparse
representation
[55, 51, 33, 32]

Statistical

learn the interaction kernel of the

avoid the curse of

only work for

learning system in some hypothesis space by  dimensionality dynamics with
[33, 70] minimizing the empirical error and can discover interaction kernel
systems in very functions [18]
high dimensions
[33]
LMMs with determine the neural network ap- have high error usually provide
neural proximation that minimizes the orders (revealed in  “black boxes,” in
networks residual of the dynamical system  this paper) and which the
[51, 61, 66] discretized by LMMs can discover more  mechanism of the

complicated or
high-dimensional
systems [55]

systems is not
very clearly
revealed [32, 69]
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Therefore, this paper studies the convergence theory of LMM schemes and deep learn-
ing, which can provide a closed-form description of the governing equation.

This paper concentrates on two types of discovery problems. The first type is to
do the discovery on a trajectory of the dynamical system as in [51, 61, 66]. In this
case, the observational data are collected from a specific trajectory, and the purpose
is to identify the governing function on this trajectory with a closed-form expression
in the form of a neural network, the parameters of which are trained by minimizing
the square residual of the corresponding LMM scheme. Through this work, we can
forecast the future behavior of the same dynamics or predict the dynamics on nearby
trajectories. The second type is the discovery on a compact region consisting of a
bunch of trajectories on which the observational data are collected such as in [64].
The purpose is to identify the governing function in a connected compact region of
the domain of the governing equation, which may not have been discussed in the
literature.

In this paper, we perform a convergence analysis of these methods based on the
LMM framework discussed in [26]. We first consider the LMMs using an abstract
approximation set 4. The main result indicates that when using a pth order LMM
with a step size h in time, the error estimate is formally given by

(L.1) 1f = fllzn < O (Ra(AR)(A” + ).

where || - |2, denotes the ¢? grid norm; f is the true governing function and fis
its approximation computed by the method; x2(Aj) is the 2-condition number of
the corresponding matrix Aj of the LMM; and e 4 is the approximation error bound
between A and f (Theorem 5.1). Next, based on Theorem 5.1, we develop the error
estimate of the network-based LMMs using the approximation theory of deep networks
[67, 58, 34, 59]. Note that Theorem 5.1 can also be used for the error estimate of LMMs
using other approximation structures. Moreover, in connection with the stability
theory developed in [26], we discuss the situations in which ko(Ap) is uniformly
bounded with respect to h. Therefore, the £? grid error decays to zero as h — 0 and
the network size approaches infinity.

So far, besides the mentioned work [26], some other analysis results for the dis-
covery of dynamics can be found in, e.g., [45, 64]. In [45], the authors propose to use
neural networks to approximate the flow function of the dynamical system instead of
the governing function. Thereafter, they derive an error bound for the prediction of
the learned model at equidistant time steps, which is conceptually given by

(1.2) |2(kh) — z(kh)| < O(||® — ®||~) with some integer k,

where Z is the predicted state of the learned dynamical system and x is the true state;
® is the true flow function and @ is its approximation obtained by their method. How-
ever, their analysis does not further investigate the error bound for || — ®| . In
[64], the authors use the linear combination of standard polynomial basis to approxi-
mate the governing function and also estimate prediction error of the learned model
at arbitrary time ¢ > 0, namely,

(1.3) |2(t) — ()] < O(|lf = Projy fll= + | f = Projy f]l2),

where V' is the approximate polynomial space. Similarly, the two projection errors
on the right-hand side are not estimated. Comparatively, we directly quantify the
error between the true governing function and its approximation, which is analogous
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to the error terms on the right-hand sides of (1.2) and (1.3). On one hand, our error
estimate contributes to an intuitive understanding of how good the discovery is, not
merely from the perspective of prediction. On the other hand, by typical ODE theory
or the approach adopted in [64], the corresponding prediction error can be quickly
derived based on our result.

In numerical experiments, we test the performance of the network-based LMMs
on both toy models and a few physically relevant benchmark problems. It is observed
that for stable LMM schemes, the numerical error orders are consistent with our
theory; for unstable schemes, even though the method still manages to find solutions
with similar ranges of errors as some of the stable counterparts, the orders are much
smaller. We also conduct experiments to simulate the optimization errors in practice
and the implicit regularization of deep learning. The results indicate that, thanks to
the implicit regularization, the network-based methods without initial conditions can
still find correct solutions numerically.

This paper is organized as follows. In section 2, background knowledge of dy-
namical systems and LMMs is introduced. In section 3, we will introduce the LMM
approach for the discovery of dynamics and discuss auxiliary conditions for unique
recovery. In section 4, the network-based LMM approach with rectified linear unit
(ReLU) neural networks is described. In section 5, we discuss the convergence rate
of the preceding approach with various LMM families. Numerical experiments are
provided in section 6 to validate the theoretical results. Finally, we conclude this
paper in section 7.

2. Dynamical systems. In this section, we introduce some basic notation and
definitions, as adopted by [26]. Most of the materials on LMMs can be found in
[13, 14, 23].

2.1. Initial value problem. Supposing d > 0 is the dimension of the dynamics,
let us consider the following dynamical system with an initial condition:

(2.1) %x(t) — f@t), 0<t<T,
(2.2) x(0) = Tinit,

where € C*[0,T]¢ is an unknown vector-valued state function; f : R? — R is a
given vector-valued governing function; and @, € R? is a given initial vector. To
seek a numerical solution, one usually discretizes the problem by setting equidistant
grid points in [0,T]. Letting N > 0 be an integer, we define h := T/N and t,, = nh
for n =0,1,...,N. The objective for solving the initial value problem in (2.1)—(2.2)
is to find an approximate value x,, = x(t,) for each n when f(x) is given.

2.2. Linear multistep method. LMMs are widely utilized in solving dynam-
ical systems. Suppose xg,x1,...,Zp—1 are given states; then x, for n = M, M +
1,..., N can be computed by the following linear M-step scheme:

M M
(2.3) > mTnm=hY Buf(@n-m), n=MM+1,.. N,
m=0

m=0

where o, Bm € R for m = 0,1,..., M are specified coefficients and «aq is always
nonzero. By the scheme, all x,, are evaluated iteratively from n = M ton = N.
In each step, ,—pr, ..., T,—1 are all given or computed previously such that x,, can
be computed by solving algebraic equations. If By = 0, the scheme is called explicit
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since @,, does not appear on the right-hand side of (2.3) and «,, can be computed
directly by x, = ao_l Zn]\f:l(hﬁmf(wn_m) — Qm&p—m). Otherwise, the scheme is
called implicit and it requires solving nonlinear equations for «,,. The first value xg is
simply set as xg = xjni¢, while other initial values @1, ..., x);_1 need to be computed
by other approaches before performing the LMM if M > 1. Common types of LMMs
include A-B schemes, A-M schemes, and BDF schemes.

2.3. Consistency. An LMM is effective for a dynamical system only if it is
consistent, that is, the discrete scheme (2.3) approximates the original differential
equation (2.1) accurately as h is small enough. More specifically, we first define the
local truncation error 7y, ,, as

1 M M
(2.4) Thn = 7 > am@(tn-m) = Y B F(@(tn-m))
m=0 m=0

forn = M,M +1,...,N. Note that 7, € R? is a numeric vector. It is clear that
the local truncation error is defined by substituting the true function x(¢) into the
discrete scheme (2.3) and measures the extent to which the true solution satisfies the
discrete equation.

Now we can define the notion of consistency. The LMM (2.3) is said to be consis-
tent with the differential equation (2.1) if maxpr<p<n [|[Thnllcc = 0 as h — 0 for any
x € C*[0,T]%. Specifically, an LMM is said to have an order p if maxa/<n<n [|Th.nlco
= O(h?) as h — 0.

3. Discovery of dynamics. In this section, we introduce the discovery of dy-
namics on a single trajectory, on which a time series of the state is available. Con-
ventional LMMs with auxiliary conditions for this type of discovery are introduced.
Note that these methods can be simply generalized for the discovery on a compact
region, which will be discussed in section 4.5.

The discovery of dynamics is essentially an inverse process of solving a dynamical
system (2.1)—(2.2) with given observations on the state. That is, supposing that only
the information of the state = at the equidistant time steps {t, })_, is provided, we
would like to recover f, namely, the governing function of the state.

3.1. Linear multistep method. Let x(t) € C>([0,T])% and f(-) : R¢ — R4
be two vector-valued functions satisfying the dynamics (2.1), and we assume x(¢) and
f(+) are both unknown. Now given x,, = (t,) for n = 0,..., N, the objective is to
determine f(-), i.e., to find a closed-form expression for f(-) or to evaluate f(x,,) for

all n. One effective approach is to build a discrete relation between x,, and f,, =~ f(x,)
by LMMs [26], namely,

M M
(31) h‘Zﬁmfnfrn:Zamwnfma TL:M,M-l-l,...,N,
m=0 m=0

where f, € R? is an approximation of f(z,). Note that (3.1) directly follows the
LMM scheme (2.3). Different from (2.3) that evaluates x,, given f, (3.1) computes f,
from the data x,. It indicates the dynamics discovery is actually an inverse process
of solving the dynamical system [26]. Moreover, we note that the components of f(-)
can be discovered independently. Thus, in the remainder of this paper, without loss
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TABLE 3.1
The first involved index s, the last involved index e(N), the total number of involved indices
t(N), and the truncation error order p for common types of LMMs.

Method s e(N) t(N) D
M-step A-B 0 N-—-1 N M
M-step A-M 0 N N+1 M+1
M-step BDF | M N N-M+1 M

of generality, we work with a scalar-valued system to simplify (3.1) using notation in
a scalar form as the following general equation:

M M
(3.2) LY Bmfn-m =Y OmTp-m, n=MM+1,... N
m=0

m=0

It is worth noting that f,, may not be involved in (3.2) for some indices n between
0 and N. For example, in A-B schemes, fy does not appear in (3.2) since Sy = 0. In
general, given an LMM, we use s and e(N) to denote the first and last indices such
that fs and fen) are involved in (3.2) with nonzero coefficients (correspondingly,
Br—s and By_e(ny are both nonzero). We also write ¢(N) := e(N) — s + 1 as the
total number of f,, involved in (3.2). We briefly list s, e(N), t(IN), and the truncation
error orders p of A-B, A-M, and BDF schemes in Table 3.1.

3.2. Auxiliary conditions. For each linear M-step method, it is supposed to
compute all unknowns { fn}fl(zj\i) by the linear relation (3.2). In the following, we
will use the special notation ~and bold fonts to denote column vectors of size O(NV),
distinguishing them from other vectors or vector functions. We write

- T

(3.3) fo=1fs fer o fomw] eRMY

L[ M M T
‘ih ::E Zame—m Zame+1—m ZamfN—m ERN7M+17
m=0 m=0 m=0
Br-s Bm-s—1 BN —e(N)
Brm-s  Bum-s—1 N BN —e(N)
(35) Bh =

Brv-s  Bum-s—1 - BN_ev)

€ RIN=M+1)xt(N)

and then (3.2) leads to the following linear system:

(3.6) B, fn = qn.

However, the number of equations and unknowns may not be equal in (3.2). For A-
B and A-M schemes, it is insufficient to determine { f,, o) by (3.2) since equations are
fewer than unknowns. This implies that the linear system (3.6) is underdetermined.
For this issue, a natural solution is to provide N, := t(N) — (N — M + 1) auxiliary

linear conditions to make { fn}fl(ivs) unique. For example, we can compute N, certain

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/25/23 to 128.59.222.107 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

2020 QIANG DU, YIQI GU, HAIZHAO YANG, AND CHAO ZHOU

unknown f,, directly by first-order (derivative) finite difference method (FDM) using
related data. For consistency, the selected FDM should be of the same error order as
the LMM. Assuming the LMM has order p, one straightforward way is to compute
the initial IV, unknowns by one-sided FDM of order p, i.e.,

12
(3.7 fn:Enymngn, n=ss+1,...,8+N,—1,

m=0

where 7,, are the corresponding finite difference coefficients. Note that (3.7) has the
error estimate

(3.8) sgngi}}va—l‘fn — f(z(tn))] = O(hP), as h — 0.

If we write

(39) Cp ‘=

S

P P p T
RMe
YmTs+m YmTs+14+m YmLs+N,—1+m € 5
m=0

m=0 m=0

then combining (3.2) and (3.7) leads to the following augmented linear system:

3.10 Anfr=1 <1,

(3.10) i) [Qh ]

where

(3.11) Ay ::[Bch} and C:=| Iy, O ]

with Iy, being the N, x N, identity matrix and O being the zero matrix of size
N, x (t(N) — Ng). Clearly, (3.10) has a unique solution since the coefficient matrix
is lower triangular with nonzero diagonals. Moreover, if M < N, the linear system
(3.10) is sparse.

In general, as pointed out in [26], we can formulate the auxiliary conditions in
various ways, not just as discussed above. Different auxiliary conditions, such as initial
and terminal conditions, have different effects on the stability and the convergence
of the method; see further discussions in [26]. An interesting question is whether
the regularization effect provided by the neural network approximations could help
mitigate these effects.

4. Neural network approximation. In this section, we first introduce the con-
cept of fully connected neural networks (FNNs) and their approximation properties.
Next, the network-based LMMs for the discovery on a trajectory will be presented
together with a discussion on implicit regularization. Finally, we discuss the discovery
on a compact region.

4.1. Preliminaries. We introduce the FNN, which is widely used in deep learn-
ing. Mathematically speaking, given an activation function o, L € N* and W, € N*
for £ =1,...,L, an FNN is the composition of L simple nonlinear functions, called
hidden layer functions, in the following formulation:

(4.1) d(x:0) :=a’hpohy_10---ohy(z) forxeRY

where a € R, hy(xy) := o (Wyxy + by) with W, € RWVexWe-1: and b, € RW* for
¢ =1,...,L. With abuse of notation, o(x) means that o is applied entrywise to a
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vector x to obtain another vector of the same size. Wy is the width of the ¢th layer and
L is the depth of the FNN. 0 := {a, Wy, b, : 1 < ¢ < L} is the set of all parameters in
(;3 to determine the underlying neural network. Common types of activation functions
include the ReLU max(0,z) and the sigmoid function (1 + e~%)~1.

4.2. Approximation property. Now let us introduce existing results on the
approximation property of ReLU FNNs. Given a function g on a compact subset S
in R?, we can define the modulus of continuity by

(4.2) wg(A) =sup{lg(xz) —g(y)|: |z —yll2 < X\, z,y €S} forany A >0,

where ||z||2 := /22 + 22 + - - - + 22 is the Euclidean norm of a vector in R%. Suppos-
ing A is any subset in R?, we define the C" norm in A,

(4.3) gl

Besides, we define

creny = max {|0%g[| ()  lally <70 € N

(4.4) Ry :=inf{p>0:AC [—p,p|"}

as the “radius” of A.
Approximation properties of ReLU FNNs for continuous functions and smooth
functions are indicated as follows.

PROPOSITION 4.1. Given any J, K € Nt and a function g on a compact subset
S of R?,
1. if g € C(S), there exists a ReLU FNN ¢ with width 373 max{d|J"/?|, J+1}
and depth 12K + 2d + 14 such that

(4.5) |p(x) — g(z)| < 19Vdw,(2Rs T 24K~/ for any x € S;

2. if g € C™(S) with r € N*t, there exists a ReLU FNN ¢ with width 17r4+134
d(J + 2)log,(8J) and depth 18r%(K + 2)log,(4K) + 2d such that
(4.6)
|9(x) — g(@)| < 1T0Rs(r + 1)78"||gllor(s) ] /UK for any x € S,

The estimate (4.5) directly follows Theorem 4.3 in [57], and the estimate (4.6)
can be derived from Theorem 1.1 in [34] by generalizing the regular domain [0, 1]¢ to
a compact subset S.

Note that the error bounds in (4.5) and (4.6) suffer from the curse of dimension-
ality; namely, they exponentially depend on the dimension of the whole space R¢.
However, if we are only interested in the approximation on a low-dimensional sub-
manifold rather than a general compact subset in R?, stronger results can be adopted.
Specifically, we consider a submanifold having a certain volume, condition number,
and geodesic covering regularity. Note that for manifolds, the definition of volume
can be found in [37, 9], and the condition number and geodesic covering regularity
are formally defined by Definitions 2.1-2.3 in [6]. The approximation properties on
submanifolds are given as follows.

PROPOSITION 4.2. Given J,K € N, ¢ € (0,1), § € (0,1), let M C R? be
a compact daq-dimensional Riemannian submanifold having condition number TX/},
volume Vq, and geodesic covering regularity G aq, and define the e-neighborhood as
M, :={xcR?: lélj{/(”x —y|l2 < e}. Supposing g is a function defined in M,
]
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1. ifg € C(M.), there exists a ReLU FNN ¢ with width 3%+3 max{ds|J/% |, J+
1} and depth 12K + 2ds + 14 such that

47) |d(z) — g(z)| < 2wy (4RM5 (1 —6)~1\/djds + 1) )
+19\/gwg (4RM (1—6)"*/d/dsJ~ 2/d‘5K_2/d5) for any x € M,;

2. ifg € C"(M.) withr € NT, there exists a ReLU FNN ¢ with width 17r%+13ds
ds(J + 2)logy(8J) and depth 18r%(K + 2)logy(4K) + 2ds such that

(4.8) |o(x) — g(2)| < 8llgllormo Bae((1 = 8) " /d/ds + 1)
+170RM(r+1)%8" (1= 68) Mgl crmoy I~ QT/déK—ZT/dé for any x € M.,

where ds := O (dpIn (dVimG g /6) /62) = O (daIn(d/8)/6%) is an integer with
dpm < ds < d.

Equation (4.7) in Proposition 4.2 is an immediate result of Theorem 1.2 in [57]
and (4.8) can be derived from Theorem 1.1 in [34] and Theorem 4.4 in [57] similarly.
In Proposition 4.2, both the error bounds and the ReLU FNN sizes depend on ds
instead of d so that the curse of dimensionality is lessened. Note that when ¢ is closer
to 1, ds is closer to daq, and then the approximation actually occurs in a reduced
space with dimension close to da instead of the whole space R<.

The approximation properties of other FNNs are also studied. For example, the
properties of the Floor-ReLU FNN and a special three-hidden-layer FNN can be found
in [58] and [59], respectively. Also, dimension-independent error bounds of FNNs for
the target functions in Barron space are investigated in [7]. It is also interesting to
apply these approximation theories to develop error estimates of dynamics discovery
as future work.

4.3. Network-based methods for discovery. Let us review the discovery of
dynamics on a single trajectory introduced in section 3. Indeed, the discovery by
conventional LMMs is simple to implement, and the solution can be found by merely
solving a linear system. However, the governing function f is only computed at
prescribed equidistant time steps, and the relation between f and the state x is still
unknown. One strategy to overcome this limitation is to approximate each component
of f by functions of specific structures such as neural networks, polynomials, splines,
etc. The approximate functions can be determined through optimization and will
serve as closed-form expressions for f. In real applications, once f has been recovered
with an explicit expression, the future behavior of the & on the same trajectory can be
forecast via solving (2.1)—(2.2) with the given initial condition. On the other hand, the
behavior of the & on nearby trajectories can also be predicted via solving (2.1)—(2.2)
with perturbed initial conditions.

Among all structures of approximations, it is popular to employ neural networks
in the discovery problems. Especially, when d is moderately large, it is convenient
to use neural networks to approximate the governing functions with high-dimensional
inputs, which is usually intractable for other structures. Therefore we focus on the
network-based methods in this paper. Note that the proposed methods can be easily
generalized for other structures of approximations.

We consider the neural network approximation based on the LMM scheme (3.2).
Generally, we use NV to denote the set of all neural networks with a specified archi-

tecture of a size set M. For example, NM can be the set of all FNNs with the fixed
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size M = {L,W}, where L is the depth and W is the width. The notation M = 0
means that some of the numbers in M go to infinity.

Now we introduce a network f w(2) € Ny, to approximate f(z), an arbitrary
component of f(-). The neural network method can be developed by replacing f,
with fM (z,) in (3.2), namely,

M M

(49) h25m.}gj\}((wn—m): Zamxn—ma n:M7M+17""N»
m=0 m=0

where x,, for n =0,..., N are given sample locations.

Unfortunately, if M is too small, the degree of freedom of N’ v Will be less than
the number of equations in (4.9) and, hence, there is no f v € Ny such that (4.9)

is satisfied precisely. Even if M is large enough, it is usually intractable to solve
(4.9) for f, directly because of the nonlinear parametrization of neural networks.

Consequently, in practice, we seek f ¢ by minimizing the residual of (4.9) under a
machine learning framework. Namely, we aim to find f,; € N, such that

(4.10) In(Fr) = Iin Ja(uw),
where
1 N | M M 2
4.11 = _ _ -1 -~
( ) Jh(u) N_M T 1n:ZIVI m:oﬁmu(wn m) WLZ:Oh AmTpn—m

However, similar to the underdetermined linear system (3.6) that has infinitely

many solutions, there exist infinitely many sets of real numbers {y,L}fL(:]VS) such that
Jn(u) = 0 providing

(4.12) w(xy) =yn Vn.

For each set {yn}fl(:]\?, if the degree of freedom of N, is large enough, there is always
some u € Ny such that (4.12) is satisfied due to overfitting. In this situation, u is a
global minimizer of Jp,. Consequently, J, admits infinitely many global minimizers,
all of which lead to J;, = 0 but take distinct values at {wn}ig,«) It implies a mini-
mizer of J, might be totally different from the target governing function we aim to
approximate.

To ensure the uniqueness of the minimizer in the function space at grid points, we
introduce auxiliary conditions and build an augmented loss function based on (4.11).
For example, the initial condition (3.7) on the solution network f v is enforced by
solving

(4.13) Jan(fr0) = urenjivr; Jan(w),
where
1 s+N,—1 1 p 2
Jan(u) == ) Z u(ey) — 5 Z()’mewrm
n=s m=

2

M M
> Bnu(@n-m) = > h Oy m
m=0 m=0

N
(4.14) +>
n=M
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The augmented optimization above guarantees that fM(:cn) = gy(®yn) for n =
S, .. .,e(N) providing Ja,h(f/\}[) = Ja,h(g/\}l) =0 for any fM,gM S NM

Indeed, two networks that are equal at grids {a:n}f}:]\Q are not necessarily equal on
the whole trajectory {x(¢) : 0 < ¢ < T'}. Fortunately, it is shown that for regression
problems and partial differential equation problems, deep learning can generalize well
[27, 40, 39, 36]. This means the closeness of two networks at a dense set of training
inputs can lead to their closeness at other nearby inputs. It can be inferred that
Fao(@(t) = g (x(t)) for 0 < t < T providing f o (2,) = G (@s) for n=s,...,e(N)
for any vagM € Ny, as long as N is moderately large.

4.4. Implicit regularization. We discuss the implicit regularization [43, 30] of
gradient descent in deep learning. For regression problems, if we use overparameter-
ized FNNs with the standard random initialization, gradient descent can lead to global
convergence with a linear convergence rate under certain conditions [24, 12, 16, 2].
Similar results also exist in the problems of solving partial differential equations [36].
Even though the global convergence could be established with overparametrization,
global minimizers are typically not unique. It is interesting to investigate what global
minimizers would be identified by gradient descent and how the training process would
reduce fitting errors. To answer these questions, it has been shown that, in regression
problems, the training of FNN first captures low-frequency components of the target
function and then starts to eliminate the high-frequency fitting error [67, 35]. Similar
work about this spectral bias of deep learning is discussed in [11, 46]. In sum, all the
above discussions show that neural networks trained by gradient descent in regression
problems have an implicit bias toward smooth functions with low frequencies among
all possible neural networks that perfectly fit training data.

Now let us consider the preceding network-based LMM optimization. Note that
the loss function (4.11) without auxiliary conditions and the loss function (4.14) with
auxiliary conditions are formally close to the 2 loss in regression problems. Espe-
cially, for BDF schemes, fyp = 1 and 83 = 83 = -+ = 0, so the loss functions (4.11)
and (4.14) are exactly the £ loss. Hence, it is conjectured that the implicit regular-
ization discussed above can also be applied to the LMM optimization. Namely, the
gradient descent tends to find a very smooth function among all global minimizers.
Consequently, if the target governing function is also smooth enough, the gradient
descent is expected to find good approximations either through (4.10) without aux-
iliary conditions or through (4.13) with auxiliary conditions. Numerical experiments
in section 6 will validate this.

However, the implicit regularization may not succeed in the discovery problems
with noisy measurement. In a recent work [66], a typical example is presented to show
the discovery of the Navier—Stokes equation using an A-M scheme with M = 1, where
the data is perturbed with Gaussian noise. Similar to the approach discussed in this
work, the network is trained through the optimization with implicit regularization.
The results show that the discovery is fairly accurate (with errors O(1072)) for small
noise magnitude (1%), but becomes completely incorrect (with errors O(10')) if the
noise is enlarged to 5%. This implies that the network approximation with implicit
regularization is sometimes sensitive to the perturbation of the raw data such as noise,
especially when the problem is ill-conditioned. Future investigations should be carried
out to make further potential improvement for this issue.

4.5. Discovery on a compact region. The network-based formulation (4.13)—
(4.14) is specific for the discovery on a single trajectory from which the data are
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collected. More generally, we can build similar formulations for the discovery on a
connected compact region, from which a set of trajectories can be sampled, to recover
the whole vector field in this region.

Suppose x(t; &g) is the solution of (2.1) with initial value &y. Let I" be a compact
subset in R%; then Q := {x(t;&) : 0 <t < T,% € I'} C R? is a compact region filled
with all trajectories starting from I' with time period 0 <t < T'. In practice, suppose
we are given a dataset {mn,n/ = m(trﬂ CEn/)}n:O,...,N;n’:l,...,N’7 where {in’}n/zl,...,N/ is
a set of points densely distributed in I', and suppose €2 is densely covered by {x,, /}.
We aim to use neural networks to approximate the governing function in the whole
subset 2.

Note that (4.14) is a loss function with respect to one trajectory. For multiple
trajectories, we can build a similar loss function by summing up all individual loss
functions with respect to each trajectory. Specifically, let f x be a network that
approximates a certain component of the governing function; then we can determine
Jaq by

(4.15) Ja bt (o) = uglj\i};‘]avhvmulti(u)a
where
1 X
(4.16)  Ja,h,muiti(u) := NT(N)H,Zl
s+Ny—1 L 2 N | M wo ,
nz::s U(Tpn) — ET;J’meEier,n/ +n:ZM mzzoﬂmu(mn,myn/)_mz::oh CmTr—mm

Similar to the discovery on a single trajectory, the optimization (4.15)—(4.16)
for multiple trajectories will be also effective without auxiliary conditions due to the
implicit regularization.

5. Convergence analysis. In this section, we consider the convergence of the
preceding network-based dynamics discovery using LMMs, namely, the convergence
from the global minimizer of the optimization to the exact governing function f as
M — oo and h — 0. The optimization with auxiliary initial conditions is taken as
a special case for analysis. For the optimization with other auxiliary conditions, a
similar argument can be applied.

5.1. Error estimates on a trajectory. We consider the error estimation of
the discovery on the specific trajectory T := {x(t) : 0 < t < T'}. For least-square
optimization, people are usually interested in the ¢?-type error estimation. Therefore,
let us introduce the £2 seminorm |glas == (N + 1)1 3N |g(@,)[2)1/2 for all g €
C(T) with a given h > 0. Note that |- [z is not a norm in C(T) since |g|2,n = 0
does not imply g = 0 in C(7). However, |- |3 acts as a norm in the space of all grid
functions merely defined on {z, }2_, (see [26]).

As discussed above, for a specific LMM, some states in {z,}Y_, may not be in-
volved in the scheme. For fairness, we study the convergence at all involved states

{wn}:gz) Therefore, we rewrite | - |2, as the LMM-related seminorm |g|z =
(V)1 20 (g () [2)1/2 for all g € C(T).

Without ambiguity, we use the notation | - |2 for all LMMs afterward. If we
write {g(:cn)}i(:]\fs) as avector g := [g(zs) g(Tsr1) - g(:ce(N))]T, then it follows
|glo.n = (t(N))~'/2||G||2, where || - || is the Euclidean norm of a column vector.
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First, let us reformulate the optimization (4.13)—(4.14) with an abstract admissi-
ble set, say, Ja,h(fAh) = minye Jo n(u), where J, 5 (u) is defined in (4.14) and A is
a general nonempty set of functions. We aim to estimate the distance between f AR
and f.

For a given LMM, recall that B, defined in (3.5) is constructed by lining up the
LMM coefficients into rows and Ay, is defined in (3.10). We denote the 2-condition
number of Ay, by #a(Ay) = || Anl2||A; |2 The estimation is described as follows.

THEOREM 5.1. In the dynamical system (2.1), suppose x € C°°([0,T])¢ and f
is defined in T', a small neighborhood of T. Let f be an arbitrary component of f.
Also, let N > 0 be an integer and h := T/N; then we have

(5.1 fan—F|, < CralAn) (0" + ).

where fA,h € A is a global minimizer of J,p defined by (4.14) corresponding to an
LMM with orderp; e 4 satisfies e 4 > infy,c 4 supycq |u(x)—f(x)|; and C is a constant
independent of h and A.

Proof. Given h > 0, similar to (2.4), we can define the componentwise local
truncation error by 75, , := h7! Z%:o O T — Z%:o B f(x(tn—m)). Then by
denoting
(5.2)

Th 1= [Th,,M Th,M+1 " Th,N]Ta f:: [f(ms) f@oqr) - f(me(N))]Ta

we have 7, = @), — Bhf By the hypothesis that the LMM has order p, there exists
some C7 > 0 independent of h such that

(5.3) [Falla < (N = M +1)2||Fy]loe < C1(N — M + 1) hP.

On the other hand, since e 4 > inf,c 4 sup,es |u(x) — f(x)|, there exists a func-
tion v € A such that

(5.4) lv(z) — f(x)| <ea VaeT.

Also, write e, = ¢, — [In, O] f, where ¢, is defined in (3.9). Then by (3.8),
there exists some constant Cs independent of A such that

1 1
(5.5) llenllz < N&|lenlloo < CaNEZhP.

Moreover, we introduce the notation fan=[fan(®s) fan(®ss1)-- fA,h(a:e(N))]T

and U := [v(@,) v(@ey1) - v(me(N))]T. Then by (3.10), we immediately have
(5.6)
nuntan = o [ andan = [ & || = e Jaw Gan - A - [ 2|
a,h(fAn) = Wy || Ak @ ||, ~ 1 nfan 7,

Since fA,h € Ny is a global minimizer of .J, 5, it satisfies Ja,h(fAh) < Jan(v),
namely,

o0 g | (e[ 3

2 2

NN REY
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which implies

68 a4 (a7, - H[ £ ]

Th

S G 1=

J
Therefore,
(5.9)

H}A,h - f”2 < 1A, [l

An (Fan= 7)< 14 (Jan (5= 1), +2| [ & |

As a consequence, by (5.3), (5.4), (5.5), and (5.9), it follows that

J

;A’h - fHQ

1 1y = F 1 2 N
<t(N) "‘[\|Ah||2\|Ah 2115 — fll2 + 214, [l2 (llenllz + [ 7n]l2) ]

fan— f‘Q L= HN)®

M

<HN)E [N FAn )47 2 - eat2] A7 ]2 (CF Nat CEH(N=M+1))
< Crz(Ap) (' +en)

W]

with C independent of h and A, which completes the proof. 0

The error estimate given in Theorem 5.1 is general for any types of the admissible
set A. Specifically, we propose the error estimate of the discovery using neural net-
works. Noting that T is a one-dimensional (1-D) Riemannian submanifold, combining
Theorem 5.1 and Proposition 4.2 directly leads to the following result.

THEOREM 5.2. Under the notation and hypothesis of Theorem 5.1, for any J, K €
NT and 6 € (0,1), it satisfies the following:
1L If f € C(T') and Ny, consists of all ReLU FNNs with width 3%7%3
max{ds|J% |, J +1} and depth 12K + 2ds + 14,

(5.10) ‘fM,h - f‘2 < Cra(A) (7 + exn(J, K)

with exn(J, K) = v/dwy (4RT(1 - 5)*1«/d/d5J*2/d5K*2/d6).
2. If f € C"(T") with r € N* and N consists of all ReLU FNNs with width
17rds+1395ds(J + 2)logy(8J) and depth 18r2(K + 2)logy(4K) + 2ds, then
(5.10) still holds with exn(J, K) = Ry (r + 1)%87(1 — 6) Y| f|lcr(7ryJ ~ 2/
K—Z'I"/d(;
where ds = O (In(d/d)/6?) is an integer such that 1 < ds < d; Ry is defined by (4.4);
wy(-) is defined by (4.2); fM,h € Ny, is a global minimizer of J, defined by (4.14)
corresponding to an LMM with order p; and C is a constant independent of h, J, K,
d and ds. In particular, if ka(Ap) is uniformly bounded for all h > 0, then

5.11 li ’ _ ‘ _o.
(5.11) T K 30 Txon =1 2,h

Remark 5.1. If J and K are large enough, the error bound exn(J, K) will be
overwhelmed by h”. This means the LMM truncation error will dominate the network
approximation error if the network size is large enough. In this situation, |f , — flz,n

will decay to zero with the rate O(hP). Namely, the convergence rate has the same
order as the LMM scheme.
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Similarly, we can develop the ¢2 error estimate for the discovery on multiple
trajectories (4.15)—(4.16). It suffices to use the preceding results to get an error

inequality for each trajectory and take the mean square of them. Specifically, we
define [gla pmui = (EN)N)ESN_ SN g(,, )22 for all g € C(S), and

then under the hypothesis of Theorem 5.1, it satisfies

(5.12)

Fon—1],, < CralAn) (¥ +ea),
’ 2,h,multi

where f A € Alis a global minimizer of J,; defined by (4.16) corresponding to an
LMM with order p, and e4 is any real number such that e 4 > inf,c 4 supg,eq |u(x) —
f(@)|.

In particular, we can derive the error estimates for the discovery using ReL.U
FNNs if the governing function is either continuous or C” smooth from Proposition
4.1. Similar arguments apply to other types of neural networks or other structures of
approximations.

5.2. Uniform boundedness of k2(Ap). Next, we discuss the estimation of
k2(Ap). This is a special case, corresponding to the | - |2 5 norm, of the discussion on
the stability of LMM for dynamics discovery made in [26]. Here, for completeness, we
provide an alternative approach to derive a conclusion that is the same as that shown
in [26]. First, we introduce the following lemma [4].

LEMMA 5.3. Given the triangular Toeplitz band matriz

Co

c RNXN

(5.13) Ty .

CM e CO

with ¢g # 0, we define the associated polynomial by p(z) = Zi]\io cizM=t. If all
roots of p(z) have modulus smaller than 1, then ko(Tn) is uniformly bounded, i.e.,
ko(Tn) < C for some C independent of N.

Then we have the following theorem to determine the uniform boundedness of
r2(An),

THEOREM 5.4. Let Ay, be the matriz defined by (3.11) and pn(z) be the following
polynomial:

M—s )
(5.14) pn(z) = pizM o
i=N—e(N)

If all roots of pr(z) have modulus smaller than 1, then ko(Ap) is uniformly bounded
with respect to N .

Proof. Rewrite Ay as 2 x 2 blocks
(5.15)

Brm-s 0 BN_e(N)+1

Ay = I, O , where By 1 = : e RW—M+1)xNa
Bp1 B ’ Bar—s
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and

[ Bn—e(v)

(5.16) Bpa = Bues . € RIV-M+1)x(N=M+1)

Byv—s 0 Bn—en) |

Clearly, || Bp,1]|2 only depends on the LMM scheme and is independent of N. By
Lemma 5.3, both || By 2|2 and HB,:;HQ are uniformly bounded with respect to N.

Therefore, the proof directly follows
INa (0 1
B B2 T2

(||:c1H2 +[|Bha®1 + Bp2x2|l5 )

(5.17) lAzll2 = max || n|2 = max
[lzll2= [lell2=1

2

2
< max (HanIIS + (IBnlloll@illz + |1 Buzllzll22)*)

llllo=

[N

1

< (14 (IBrallz + 1 Buzll2)*)”

and

(5.18) |4, 1||2—Hnﬁax |4, a:ng—unﬁa

Iy, o x
—B}j’;Bh,l B,;é T

1

ax (213 + 1| - By 3Bz + By sas3)”

2

1
2

< max (||:c1\|2+||Bh2||2<||:c2u2+u3h1|| @1 l2)%)

1
_ 2
< (1+1BRAIB (1 + IBaall2)*) 0

Remark 5.2. For BDF schemes, ;1 = --- = 8y = 0, and the corresponding By, o
is a diagonal matrix with diagonals By. So Ay, is always uniformly bounded for each
M € N. This means the network-based dynamics discovery with BDF schemes for all
M € N is convergent in the sense of (5.11).

Remark 5.3. For A-B schemes, By, o is diagonal if M = 1. Also, it is verified for
2 < M < 6 that all the roots of the associated polynomial p,(z) have modulus smaller
than 1 [26]. Hence, by Theorem 5.4, Ay is uniformly bounded for 1 < m < 6. This
means the network-based dynamics discovery with A-B schemes for 1 < M < 6 is
convergent in the sense of (5.11).

Remark 5.4. For A-M schemes with M > 2, it was proven in [26] that all the
roots of the associated polynomial p,(z) have a modulus greater than 1. In these
cases, ka(Ayp,) increases exponentially with respect to N, and hence the error bounds
in Theorem 5.2 also increase exponentially. This means we have no guarantee of their
convergence in theory. In spite of this, it is still possible to obtain convergent solutions
as h — 0 in practice (see section 6.1.4 and Appendix A)
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Remark 5.5. Note that [26] considered stability under norms other than |- |2 5 as
well, which also allowed the discussion of convergence for an A-B family for which
there are roots on the unit disc. In particular, it was shown that an A-M scheme
is marginally stable for M = 1 (see the definition in [26]) but remains convergent.
Actually, in this case, k2(Ay) increases linearly with respect to N = T/h. If the
network size is large enough such that the network approximation error is dominated
by O(h?), the error bounds in Theorem 5.2 will be C- T - h? = O(h) since p = 2. This
means an A-M scheme with M = 1 is convergent with order 1. Moreover, Theorem
5.2 can be modified for norms other than |- |25 and condition number other than kg,
resulting in various error bounds with special orders.

6. Numerical experiments. In this section, several examples are provided to
show the performance of dynamics discovery via deep learning in practical computa-
tion. We aim to compute the errors of various LMMs, estimate the orders of accuracy,
and compare them with the theoretical ones.

In the first, second, and third examples, we conduct the discovery on a single
trajectory 7 described in section 4.3, in which we define the following relative ¢2
error:

4 /e ( N) 1/2
6.1) ;= 12 \f] (@) — fi(@n) Z 1y ()] ,
where f, forn =1,...,d are components of the original governing function f, and fn

is the network approximating f,. Noting that {wn}i(:]\i) are exactly the grid points
involved in the loss function, the error defined by (6.1) is actually an empirical error.
For the deep learning, we name (6.1) as the training error or grid error. On the
other hand, we are also interested in the generalization performance of the network
approximation. So we also define the relative ¢? error at testing points as

(6.2)

1/2
R fjds) _( & ST @) - fi(@ (t))2~|f(w(t))|2dt>
! ( Z J7 1552 Z I \fj D)2 - £ (@(t)l|2dt ’

where the integral over 7 is evaluated by Gauss quadrature. For the deep learning,
we name (6.2) as the testing error. Both (6.1) and (6.2) are taken as metrics for
evaluation.

In the fourth example, we conduct the discovery on a compact region §2 described
in section 4.5. Similarly, we define the training error

2\ 1/2

n'= Ze(N) fJ (mn n’ ) - fj (mn,n’)
Z e

SN e i (@) 2

(6.3)

*m

and testing error é; = (d -t Z] 1(Jo |f;—f;12dx)/ )/(Jq 1f;?dx)) /2, where the integral
over 2 is evaluated by a Monte Carlo method.
The overall setting in all experiments is summarized as follows:
e Environment. The experiments are performed in the Python 3.8 environment.
We utilize the PyTorch library for neural network implementation and CUDA
11.0 toolkit for GPU-based parallel computing. All examples are implemented
on a desktop.
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e Optimizer and hyper-parameters. The network-based optimization is solved
by the Adam subroutine from the PyTorch library. This subroutine imple-
ments the Adam algorithm in [28]. For all examples, the number of epochs
Ni is set as 3 x 10%, and batch gradient descent is used. The learning rate
in the nth epoch, denoted as §,, is set to decay exponentially with linearly
decreasing powers from 1072 to 10~*, namely, §,, = 1072-27/MN

e Network setting. The FNN with ReLU activation is taken for approximation,
whose weights and biases are initialized via uniform distributions W;, b; ~
U(=v/Wi—1,V/Wiz).

e Generation of data. In the first example, the state data are generated directly
by the explicit expression. In the second and third examples, no expression
for the state is available. Hence we generate the state data by solving the
dynamical system via the solver ode45 in MATLAB with tiny tolerances
(RelTol= 10"13, AbsTol= 10"13).

In the numerical implementation, the overall error is not only affected by the LMM
discretization error and the network approximation error, but also by the optimization
performance. In neural network optimization, it is usually difficult to find global
minimizers numerically due to nonconvexity. There is no existing optimizer that
can guarantee to identify a global minimizer to the best of our knowledge. The
optimization error is the difference between the actually identified neural network
and the neural network associated with an arbitrary global minimizer. Consequently,
for LMMs with uniformly bounded k2(A), the overall error between the numerical
solution and the target governing function consists of the LMM discretization error
O(hP), the network approximation error determined by the network size, and the
optimization error. We will validate and quantify the optimization error in our tests
later.

6.1. Problem with accurate data. Let us consider the model problem
(64) T1 = X9, Ty = —27, .1:3:1/33‘%, tE[O,l],
[x1, %2, 23], = [0,1,0],

whose state can be explicitly given by 1 = sin(¢), z2 = cos(t), 3 = tan(t). Thanks to
the explicit expressions, we can directly take the accurate time-series {x1(¢,), z2(tn),
x3(tn)}2_, for the test, and no error is brought to the data. Under this setting, the
error on numerical solutions is only caused by the method. In this experiment, we
focus on the deep learning discovery with auxiliary initial conditions (4.13)—(4.14).

6.1.1. Network size test. Note that Theorem 5.2 implies e; ~ O(h”) as h — 0,
as long as the network is sufficiently deep and wide. However, in practice, the desired
depth and width are usually unknown. So we first perform the discovery with networks
of various sizes to find a decent network that is both effective in approximation and
cheap in computation. Specifically, we use depth L = 2, 3, ..., 6, width W = 10,
20, ..., 2560, and h = 10~3. The BDF-6 scheme is employed in this test. Therefore,
the local truncation error is up to O(h%) = O(10718), which is smaller than machine
precision. Consequently, numerical errors in this case are mainly caused by network
approximation (i.e., the difference of the network associated with a global minimizer
of (4.10) and (4.13) and the target function) and network optimization (i.e., the
difference of the networks associated with a local minimizer and a global minimizer of
(4.10) and (4.13)). In Figure 6.1, e; and é; versus W for various L are presented. It
is observed that both errors decrease quickly as W increases. On the other hand, the
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FIG. 6.1. Training errore; andtesting FiG. 6.2. Training errore ; and testing

error €; versus W of the model problem
(6.4).

error €; versus h via network-based A-M
schemes of the model problem (6.4).

network with L = 5 and W = 2560 obtains the minimal error. We can also observe
that for L = 5, the error decay becomes very slow after W = 640. Consequently,
we choose the network with L = 5 and W = 640 for all tests afterward, since the
computation when W = 640 is not expensive and the overall error cannot be improved
significantly furthermore.

6.1.2. Quantification of optimization errors. A special test is conducted to
estimate the optimization errors. First, we set up three ReLU FNNs with L =5 and
W = 640, denoted as fl, f27 f3, and use them to fit the three components of the
governing functions in (6.4), respectively. We use a standard least-square regression
in this fitting. Next, we consider the dynamical system with the governing function
being these FNNs, namely,

(6.5) {fl = fi, #=f3, s =f3, te[0,1],

[1‘1, Zo, ‘T?’]t:O = [0, 1, 0]

We still use ReLU FNNs with L = 5 and W = 640 to do discovery on (6.5). In this
setting, the approximate networks have the same architecture as the target governing
function, which implies the approximation error is automatically zero. Moreover, the
same as in the preceding test, we take a BDF-6 scheme with h = 1072, whose LMM
discretization error is negligible. Therefore the obtained error should be dominated
by the optimization error.

Finally, we obtain the training error e § = 3451 % 10~* and testing error é F=
3.443x 104, which reflects that the optimization error caused by the current optimizer
is around O(10~*). This quantification indicates that there exists an error bottleneck
around O(10~%) preventing the overall error from being reduced below it.

6.1.3. Convergence rate with respect to h. Next, we test the convergence
rate of the deep learning discovery by varying h and using various LMM schemes.
Recall the overall error consists of the LMM discretization error, the network ap-
proximation error, and the optimization error. To conduct appropriate tests on the
convergence order in h, the network approximation error and the optimization error
should be well controlled such that the LMM discretization error is the dominant
error. For this purpose, we will conduct a series of tests to empirically identify a
threshold h* > 0 such that the LMM discretization error is dominating the overall
error when h > h*. When h < h*, although decreasing h would still reduce the overall
error, it is difficult to observe the order of O(h?) since, for example, the optimization
error may be dominant.
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Specifically, we assign h = 273,...,277, fix the network width W = 640, and test
A-B and BDF (M = 1,...,4) schemes, both of which are proved to have uniformly
bounded matrices Aj. The log-log error decay versus h for each scheme is presented
in Figure 6.3. Recall the theoretical results in section 5 imply that the training error
of the M-step scheme should converge to zero with order M. According to Figure 6.3,
there indeed exists some empirical threshold A* > 0 for each scheme. It is shown in
Figure 6.3(a) that when h > h*, deep learning-based LMM:s can effectively discover the
governing function on training sample points with error orders close to the theoretical
ones. And it is shown in Figure 6.3(b) that deep learning-based LMMs also have good
generalization performance similar to the training error on sample points.

We would like to double-check that W = 640 is an appropriate size and the
approximation error is small enough for the convergence rate test with respect to h;
that is, the training errors are indeed dominated by O(h”) when h > h*, in which case
the log-log error curves appear as straight line segments. For different M and h*, we
repeat the preceding test using width W = 1280 and present the new training errors
in Table 6.1. Table 6.1 shows that using W = 1280 cannot even get smaller errors
in most cases, which excludes the possibility that the network approximation error is
dominant. Note that decreasing h can reduce errors with an expected order as long
as h > h*, which excludes the possibility that the optimization error is dominant.
Therefore, these numerical results show that the training errors are dominated by the
LMM discretization when h > h*, which is a suitable range of h for a convergence
test.

6.1.4. Convergence of A-M schemes. Moreover, we perform a test using
A-M schemes with 1 < M < 4. Although no theoretical analysis is made on the con-
vergence of A-M schemes with M > 2 (see Remark 5.4), it is intriguing to investigate
how the A-M schemes perform in practice. First, we conduct the network-based dis-
covery with A-M schemes under the same framework as in section 6.1.3. The training
and testing errors versus h are shown in Figure 6.2. It is observed that both errors
decrease as h decreases, though the errors decrease more slowly when h is smaller due
to the optimization errors.

This result indicates that the network-based LMM with unstable schemes can
still work effectively, obtaining solutions with small errors if /& is small enough. How-
ever, comparative tests in Appendix A show that with unstable LMM schemes, other
approximations (e.g., grid functions and polynomials) are less robust, and their re-
sults are highly sensitive to the used solvers and their settings. This comparison
implies that the network approximation is advantageous over other approximations
in overcoming the ill-conditioning of the unstable schemes.

Despite obtaining errors up to O(1073) in this test, A-M schemes are not rec-
ommended to users in practical problems. Indeed, the observed convergence rates
are clearly lower than the theoretical ones, and it shows no improvement when using
larger M. Instead, stable schemes such as A-B or BDF are more manageable in the
convergence rates and not more expensive in the computational cost.

6.1.5. Variability test. Finally, we conduct a variability test by repeating the
experiments with randomness. Note that the randomness of our algorithm only comes
from the initialization of neural networks. In this test, the A-B, BDF, and A-M
schemes for various M and h are implemented repeatedly on the model problem (6.4)
using 10 different random seeds, and we compute the average errors and their standard
deviations (SDs) of these trials. Selected results for the training errors are presented
in Table 6.2. It is clear that most of the average errors dominate their SDs, and in
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(a) epvs. h (b) €pvs. h

FiG. 6.3. Training error e ; and testing error éf. versus h via network-based A-B/BDF schemes
of the model problem (6.4).

TABLE 6.1
Training errors ey with W = 640 and 1280 for various h’s using A-B and BDF schemes of the

model problem (6.4). h* denotes the step size threshold above which the error decreases as O(hP)

approximately. “Diff” denotes €f Ww—640 — €f,W=1280"

Schemes A-B BDF
M, h* h €f w=640 | ¢ f . Ww=1280 Diff €f w=640 | €f . w=1280 Diff
1/8 1.019e-01 | 1.019e-01 | 6.755e-10 | 9.330e-02 | 9.987e-02 | -6.576e-03
M=1 1/32 | 2.485e-02 | 2.485e-02 | -8.722e-07 | 2.431e-02 | 2.471e-02 | -3.971e-04
h* = 1/512 1/128 6.173e-03 | 6.179e-03 | -5.386e-06 | 6.139e-03 | 6.142e-03 | -3.145e-06
1/512 | 1.561e-03 | 1.595e-03 | -3.420e-05 | 1.582e-03 | 1.598e-03 | -1.544e-05
1/8 2.234e-02 | 2.234e-02 | -1.937e-12 | 2.222e-02 | 2.222e-02 1.128e-10
M =2 1/16 6.928e-03 | 6.930e-03 | -1.946e-06 | 6.405e-03 | 1.433e-02 | -7.928e-03
h* =1/64 1/32 | 1.987e-03 | 2.045e-03 | -5.865e-05 | 1.746e-03 | 1.877e-03 | -1.304e-04
1/64 | 6.110e-04 | 8.278e-04 | -2.167e-04 | 5.380e-04 | 1.298e-03 | -7.602e-04
1/8 8.117e-03 | 8.117e-03 | -1.388e-17 | 8.354e-03 | 8.354e-03 1.105e-08
M=3 1/11 | 4.035e-03 | 4.036e-03 | -1.016e-06 | 3.836e-03 | 3.840e-03 | -4.602¢-06
h* =1/23 1/16 | 1.665e-03 | 1.744e-03 | -7.959e-05 | 1.471e-03 | 1.950e-03 | -4.786e-04
1/23 | 6.735e-04 | 7.855e-04 | -1.120e-04 | 6.531e-04 | 8.099¢-03 | -7.446e-03
1/8 3.852e-03 | 3.949e-03 | -9.610e-05 | 3.920e-03 | 3.920e-03 | 1.996e-14
1/11 | 1.577e-03 | 1.577e-03 | -4.042e-09 | 1.472e-03 | 1.470e-03 | 2.552e-06
1/16 5.179e-04 | 6.443e-04 | -1.263e-04 | 5.413e-04 | 1.375e-03 | -8.338e-04

M=4
h* =1/16

TABLE 6.2
Average training errors eg and SDs of 10 trials with different random seeds. (Used network

size: L =15, W = 640).

Schemes A-B BDF A-M

(M, h) ey SD ey SD ey SD

(1,1/8) 1.019e-01 2.789%e-09 9.330e-02 5.626e-09 9.007e-03 3.433e-04
(1,1/16) 5.032e-02 2.381e-04 | 4.801e-02 2.707e-07 2.258e-03 7.404e-05
(1,1/32) 2.489e-02 5.792e-05 2.432e-02 6.625e-07 1.262e-03 8.316e-04
(1,1/64) 1.237e-02 | 3.607e-06 | 1.224e-02 | 1.376e-05 | 3.968e-04 | 3.892e-05
(1,1/128) | 6.175e-03 | 3.502e-06 | 6.145e-03 | 4.452e-06 | 4.099e-04 | 9.328e-05

(4,1/8) 3.852¢-03 | 2.084e-09 | 3.920e-03 | 3.610e-12 | 1.059e-02 | 1.919e-03
(4,1/16) 5.183e-04 | 1.146e-06 | 4.742e-04 | 1.757e-05 | 3.492e-03 | 1.472e-03
(4,1/32) 1.923e-03 | 1.691e-03 | 6.707e-04 | 5.927e-04 | 9.407e-04 | 5.669e-04
(4,1/64) 9.154e-04 | 5.227e-04 | 3.283e-04 | 5.869e-05 | 6.474e-04 | 4.152e-04
(4,1/128) | 4.678e-04 | 9.506e-05 | 2.736e-04 | 4.330e-05 | 3.945e-04 | 1.279e-04

some cases they have the same magnitude (e.g., (M, h) = (4,1/32)). The same results
apply to the testing errors. Therefore the computed errors with any random seeds
are kept in the same magnitude with high probability. Consequently, our algorithm
is numerically stable under the random initialization, and hence all experiments and
conclusions are reliable.
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FiG. 6.4. Training error ef and testing error € ; versus h via network-based A-B/BDF schemes
with or without auziliary conditions of Lorenz system (6.6).

1st component
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Fic. 6.5. The true governing function FIG. 6.6. The states x° of the ezact dy-
(solid black curves) and the approzimate neural namics (6.6) (solid black curves) and the states
network (red circles) of Lorenz system (6.6). &% of the discovered dynamics (dashed red

curves for € = 0, dashed green curves for

e = 0.2, and dashed blue curves for € = 0.5)
with various initial values [—8,7,27]+4§, 6 =0,
0.2, 0.5, in Lorenz system (6.6).

6.2. Lorenz system. Let us consider the 3-D Lorenz system which characterizes
the chaotic dynamics for certain initial conditions and has a number of important
applications including weather forecasting. The system is formulated as

(66) Tr = 10(332 — 33‘1), Xy = .’131(28 — l‘3) — X9, Ty = T1Tg — 83;‘3/3, te [O,T}7

6.2.1. Convergence rate with respect to h. We continue testing the con-
vergence rate with respect to h of the dynamics discovery via deep learning. As in
the previous convergence test, the test is only valid when h is larger than a threshold
h* when the LMM discretization error is dominating the overall error. For simplicity,
we only empirically choose W = 640 since this width is large enough for the previous
test. Specifically, we consider the long time behavior of the system (6.6) by setting
T = 25 and taking initial values [x1, x2, x3],_, = [—8,7,27]. We assign h = 0.04, 0.02,
..., 0.0025 and take A-B (M = 1,...,4) and BDF (M = 1,...,4) schemes. First,
we conduct the optimization with initial conditions (4.13)—(4.14). The error decay
versus h is demonstrated in Figure 6.4. The dynamics of the true governing function
and the approximate neural network obtained by A-B (M = 4, h = 0.0025) are also
presented in Figure 6.5, from which we observe that deep learning can identify the
chaotic dynamics on training samples effectively.
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(c) loss function vs. iterations

FiG. 6.7. The training error e testing error éf, and loss function versus training iterations
via network-based A-B schemes with or without auziliary conditions of Lorenz system (6.6).

As discussed in section 4.4, it is conjectured that auxiliary conditions may not
be necessary to guarantee a correct solution because the implicit regularization has a
bias toward the smoothest solution. To validate this fact, we conduct a comparative
test by solving the optimization (4.10)—(4.11) with or without auxiliary conditions
in the loss function of the problem in (6.6). We take the same parameters as in the
preceding test and visualize the error decay versus h for A-B schemes in Figure 6.4.
We visualize the training error and loss versus training iterations in Figure 6.7. It is
clear that when h = 0.02, the error of the A-B (M = 2) scheme without auxiliary
conditions is larger than the one with initial auxiliary conditions. The difference is also
significant for A-B scheme (M = 4) with h < 0.01. The comparison shows that the
approach with auxiliary conditions is more accurate, although both approaches work
effectively overall. Due to the nonuniqueness of networks approximately minimizing
the loss function, networks with and without the auxiliary conditions can both reduce
the loss functions well as shown by Figure 6.7(c). However, reducing the loss function
well does not imply the corresponding network converges to the right target function.
When h is large, though the implicit regularization of deep learning can provide a
smooth solution without auxiliary conditions, this solution may not be our target
function and, hence, the error e 7 on the training grid points and the error éf on
random grid points would be large as shown in Figure 6.7(a) and (b) (left). When h
is small, a larger number of training samples makes the loss function better restrict
its local minimizers closer to the desired solution and, hence, both e 7 and € i become
reasonable. The auxiliary conditions can better eliminate spurious local minimizers of
the loss function and, hence, both e ; and € ; are reasonably small no matter whether
h is large or small as shown in Figure 6.7(a) and (b) (right).

6.2.2. Prediction. In real applications, we are interested in how well the discov-
ered dynamics perform in making predictions. For this purpose, we first discover the
system (6.6) with initial values [—8,7,27] + ¢ for e = 0, 0.2, and 0.5 by A-B scheme
(M = 4, h = 0.0025), obtaining networks FO, 92 and f95, respectively. Next,
we solve the discovered system & = f¢ with initial values [—8,7,27] + ¢ for § = 0,
0.2, and 0.5 by the MATLAB solver ode45 with tiny tolerances (RelTol= 10713,
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AbsTol= 10~'3), obtaining states ©:5°(¢). Moreover, we compute the states of the ex-
act system (6.6) with initial values [—8,7,27] + , denoting as x’(t), for comparison.
The first components of these states are presented in Figure 6.6.

It can be observed that the predicted states #°°(t) become less accurate over time
and ultimately fail to match the true states after a particular time. The inaccuracy
of the long time prediction for the Lorenz system is imputed to its positive Lyapunov
exponent, which results in exponential growth of any tiny initial error over time
[63, 62]. Furthermore, the prediction performance also depends on the discrepancy
between the initial value in prediction and the one for learning. Smaller discrepancy
leads to better prediction. For example, in the case of § = 0, it is shown that £%°(¢)
moves consistently with x%(¢) until ¢ = 5.1, while £°°2(¢) and £95() can only keep
the consistency before t = 4.5 and t = 1.5, respectively. Similarly, for § = 0.2 and 0.5,
the states £%°(¢) have a longer accurately predicted period than £ (¢) with ¢ # §.
These numerical observations are due to the fact that only training samples of one
trajectory are provided in deep learning and, hence, the recovered force term may not
be accurate far away from the sampled trajectory.

6.3. Glycolytic oscillator. We consider the model of oscillations in yeast gly-
colysis, which is a nonlinear biological system [15]. The model concentrates on seven
biochemical species:

Sl =Jy— k15156
. 1+(Se/K1)?”
Sy = 2% — k3 So(N — S5) — k6S2Ss,
S = kaSo(N — S5) — k3S3(A — Se),
(6.7) Sy = k3S3(A — Sg) — kaS1S5 — k(Ss — S7), t € 0,1,

S5 = kySy(N — S5) — k4S4S5 — ke S2.Ss,
S = 2 ey + 2k3S3(A — S6) — k56,
S7 = r(Sy — S7) — kSr,

where the model parameters are taken from Table 1 in [15].

6.3.1. Convergence rate test with respect to h. We continue testing the
convergence rate with respect to h on the long time behavior of the system (6.7)
with T = 10 and the initial value [Sy,S2,S3,S4, S5, 56, S7]t=0 = So, where Sy =
[1.125,0.95,0.075,0.16, 0.265, 0.7, 0.092].

Similar to the preceding case, we assign h = 0.04, 0.02, ..., 0.04/25 and conduct
the optimization (4.13)-(4.14) with A-B (M = 1,...,4) and BDF (M = 1,...,4)
schemes. The error decay versus h is demonstrated in Figure 6.8. The dynamics of
the true governing function and the neural network approximation obtained by A-B
(M = 4, h = 0.04/2°) are presented in Figure 6.9. It is observed that when h is
relatively large, the numerical convergence rates of all schemes are much lower than
the theoretical ones. One explanation is that the low regularity of this system worsens
the accuracy of LMMs. In Figure 6.9, it is clear that the governing function appears
highly oscillatory with only C° regularity. Even in this challenging case, high-order
LMM schemes can still recover the governing function up to O(1073) accuracy as h
decreases.

6.3.2. Prediction. Similar to the preceding example, a prediction test is con-
ducted for the glycolytic oscillator system. We compare the states of the exact system
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FiG. 6.8. Training error ef and testing error éf. versus h via network-based A-B/BDF schemes
of glycolytic oscillator (6.7).

1st component 2nd component 3rd component
0 40
1
_10 204
~20 01 01
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
t t t
4th component 5th component 6th component
2
0 oA
0 1 —20
T v T T T T T —40

F1G. 6.9. The true governing function (solid black curves) and the approzimate neural network
(red circles) of glycolytic oscillator (6.7).

(6.7) and the system discovered by the A-B scheme (M = 4, h = 0.00125) with
training data generated with the initial value Sy. The states are computed with
initial values Sy + § for § = 0, 0.05, and 0.2. In Figure 6.10, we present the first
component of states. The overall prediction performance in this example is better
than that of the chaotic Lorenz system. The forecast time-series when 6 = 0 is very
accurate. The forecast time-series when § = 0.05 and 0.2 are also reasonably accurate,
though the prediction error is obvious when the prediction time is large.

6.4. Discovery on a compact region. In this example, we consider the fol-
lowing model system:

(6.8)

T = 2x12T9, o =21 + X2, tE [0, 1],
[l’l,xg]tzo = (i?

The initial value point & is chosen from the line segment I' = {(=0.5,23) : 0.5 <
xg < 1}. All the trajectories starting from I' within ¢ € [0, 1] will form a compact
region in R?, denoted as Q. Note that Q is enclosed with T', {(x1(1; &), 72(1;2)) :
Z € I')} and two outside trajectories. We collect the data of discrete states in €.
Specifically, we choose N’ points &1,...,ZyNs by equidistantly partitioning I' as the
initial values. Next, we compute the trajectories x(t; &, ) for n’ = 1,..., N" and take
{z(tn; @n/) }n=0.... Nn/=1... N as the dataset. To display the data sampling clearly, we
show the state points, trajectories, and I' for N = N’ = 10 in Figure 6.11, where the
shaded region enclosed by I' and outside trajectories is exactly 2.
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FIG. 6.10. The states S® of exact dy-
namics (6.7) (solid black curves) and the
states 809 of discovered dynamics (dashed red
curves) for initial values So + & with 6 = 0,
0.05, 0.2, in glycolytic oscillator (6.7).
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Fic. 6.11. State points (red points) col-
lected from a sequence of trajectories (blue
curves), which are computed from the model
system (6.8) with nitial points equidistantly
distributed on the line segment T' (black) in the

model system (6.8).

(a) ep vs. h (b) €p vs. h

Fic. 6.12. Training error ep and testing error éf versus h via network-based A-B/BDF schemes
of the model system (6.8).

6.4.1. Convergence rate with respect to h. Since the loss function of the
discovery on a compact region is merely the sum of loss functions of the discovery
on every involved trajectory (see (4.16)), the implementation for the discovery on a
compact region should share the same properties as the implementation on a trajec-
tory, including the optimization errors and implicit regularization. The tests with
respect to these properties will not be repeated in this example. Instead, we perform
the test of the convergence rate with respect to h to validate the error estimate that
e; = O(hP) if the network size is large enough. We take A-B (M = 1,...,4) and
BDF (M =1,...,4) schemes for h = 0.1,0.05,...,0.1/2% then compute the training
and testing errors (shown in Figure 6.12). The theoretical orders of error decay are
observed when h is relatively large, while the overall error stops decreasing when h
is too small due to the dominance of the optimization error. Specifically, the 2-D
profiles of the obtained approximate networks fj and the errors fj — fjforj=1,2
are presented in Figure 6.13. The errors are observed to be below O(10~%) everywhere
in .

7. Conclusion. This paper presents a rigorous convergence analysis of the
network-based LMMs that discover unknown dynamical systems. The main result
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FI1G. 6.13. The profiles of obtained networks and errors of the model system (6.8).

shows that the £2 grid error of the approximate function is bounded by O (k2 (Ap)(hP+
ea)), where ko(Ay) is the 2-condition number of the corresponding matrix derived
from the LMM scheme and e 4 is the approximation error of the admissible set. This
result is combined with approximation properties of deep neural networks to develop
the error estimates for network-based LMMs. We also characterize the root condi-
tion to determine the uniform boundedness of ko(Ap). Besides, several numerical
experiments are conducted to validate our theory. We observe that the error decaying
orders of various LMMs are close to the theoretical ones.

In the experiments, we also test the network-based method either using formula-
tions without auxiliary conditions or using unstable LMM schemes. In theory, we can
not guarantee the uniqueness of the solution at grid points in the former case, and
we do not have upper bounds for the discovery error in the latter case. However, in
practice, deep learning with gradient descent can still find solutions with errors in the
similar ranges of their stable counterparts. More traditional approximations, such as
grid functions and polynomials, are less robust and sensitive to the choice of solvers
in comparison (see Appendix A).

One limitation of our work is that the error estimation only quantifies the grid
error, which is evaluated at the given sample locations. The generalization error
out of sample locations is still theoretically unknown, though we observe excellent
generalization performance in numerical experiments. Inspired by the works on gen-
eralization performance of deep learning for regression problems [27, 40, 39], decision
problems [53], and PDEs [36], it is interesting to improve the error estimation from
sample grid points to the whole trajectory. For example, the overlearning perfor-
mance is studied in [53] using Rademacher complexity. Moreover, recurrent neural
networks (RNNs) have been widely employed to build machine learning models of
temporal data. The research on RNN generalization [1, 3, 44, 31] may shed light on
the convergence analysis of the dynamics discovery.

Furthermore, our error analysis concentrates on the formulation with auxiliary
conditions, while numerical tests show that the deep learning approach without aux-
iliary conditions can still perform well when the time step size is small enough. This
might be due to the implicit regularization of the gradient descent and neural net-
works. Consequently, further investigation of the implicit regularization without aux-
iliary conditions is very interesting.

Appendix A. Supplementary results on unstable LMMs. Recall that
ko(Ap) denotes the 2-condition number of the matrix Aj corresponding to certain
LMM schemes. It has been shown in Theorem 5.4 and [26] that as N — oo, ka(Ayp,) is
uniformly bounded for stable schemes. Similar arguments also show that x2(Ay) in-
creases linearly for marginally stable schemes and increases exponentially for unstable
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FIG. A.1. Discovery error versus h using forward substitution, GMRES (r = 10~%), or GMRES
(r =1078) in the discovery of the model problem (6.4).

schemes. Although there has been no convergence theory for unstable schemes, it is
intriguing to investigate how they perform in practice.

We first consider the discovery via linear system (3.10), in which the target func-
tion is approximated by grid functions. Note that Aj is a Toeplitz-type band ma-
trix, and hence (3.10) are linear difference equations. For unstable schemes, the
characteristic polynomial has roots of modulus greater than 1, which causes small
perturbations of the system to grow exponentially in the solution. Specifically, let
cnL+ 6 ]

us consider the perturbed system of (3.10), Au(f, + &) = | , where § is a

small perturbation of the initial value ¢j, and € is the error between the perturbed
and original solutions. Then each component of & = [e,..., e N)]T is given by
En = A + Ay + -+ en, Ay, forn = s,s+1,...,e(N), where A1,..., Ay, are
the roots of the polynomial (5.14), and ¢y, ..., cy, are completely determined by 4.
For unstable schemes, at least one root A has modulus greater than 1, and hence the
error component €, grows exponentially as n increases.

In practice, since Ay, is lower-triangular, it is natural to solve (3.10) by forward
substitution directly. However, the error accumulation discussed above occurs in the
process of forward substitution. To demonstrate this, we solve the linear system (3.10)
concerning the unstable A-M scheme (M = 2) to discover the dynamical system
(6.4). We first use forward substitution and compute the relative discovery error
| 1 = Fll2/1l fll2, where f] is the computed solution of the linear system and f defined
by (5.2) is the true governing function evaluated at grid points. It shows in Figure
A.1 that the discovery error increases rapidly as h decreases, implying the failure of
forward substitution.

We then repeat the test by employing iterative solvers such as the generalized
minimal residual method (GMRES) with stopping residual 7 = 10~%. As shown
in Figure A.1, GMRES with this setting succeeds in obtaining decaying errors as
h decreases; its orders are close to the theoretical ones [26]. However, if we set
a smaller stopping residual 7 = 1078, GMRES also fails like the forward substi-
tution. Similar results are observed when using a biconjugate gradient method to
solve the linear system. These comparative tests imply that the difficulty bought
by unstable schemes can be lessened by using iterative solvers, but these solvers are
still sensitive to the implementation parameters because of the ill-conditioning of the
method.

Next, we consider the discovery using linear approximation forms. Suppose the
approximation set A is a linear space with basis {11,...,9¥a}; then the governing
function can be approximated by the form f ‘A =11 + -+ cgvg with coefficients
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€1, .., cq tobe determined. Note that A can be spaces of polynomials, finite elements,
splines, etc. Under the LMM framework, we aim to compute cy, ..., cq such that

(A.1) Ap¥pc = [ ;—»: } ;

where ¥, := Wi(wn)]i::l;f:fil(N) and € := [c1,...,cqe]T. Note that (A.1) is a linear
system similar to (3.10) but might be square if d’ = ¢(N), overdetermined if d' < t(N),
or underdetermined if d’ > ¢(N). It is natural to solve (A.1) by first solving

(A2) Apy = { g'z ]

for ¢, then solve W, & = ¥ for €. However, solving (A.2) faces the same issue as the
linear system (3.10) discussed above.

Therefore, it implies that with unstable LMM schemes, both grid function ap-
proximation and linear form approximation are less robust due to the ill-conditioning.
One might attempt to overcome such difficulties by developing effective precondition-
ers for the linear system (3.10) or (A.1), at least when there is no high demand on
the numerical precision.

In comparison, the network approximation shows more robustness in practice
to get solutions within the ranges of optimization errors (section 6.1.4), which is
conjectured to be a consequence of the implicit regularization. All these attempts
and conjectures may be further studied in future work.
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