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Abstract

Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a
lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can
provide more complete records to evaluate whether consistent changes across a broad geographic
region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of
contemporary lake color (2010-2020) in 940 lakes in the U.S. Rocky Mountains, a historically

understudied area for lake water quality. Intuitively, we found that most of the lakes in the region
are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively
deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were
found in relatively shallow sloped watersheds with MAAT >4.5°C. We extended the analysis of
contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with
the most complete time series (n = 527). We found limited evidence of lakes shifting from blue to
green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color
was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward
greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths
tended to be in urbanized, human population centers at relatively lower elevations. In contrast,
lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that

we evaluated, though declining winter precipitation and warming summer and fall temperatures
may play a role in some systems. Collectively, these results suggest that the interactions between
local landscape factors and broader climatic changes can result in heterogeneous, context-

dependent changes in lake color.

1. Introduction

High-elevation lakes and reservoirs form the basis of
a critical water supply network for arid and semi-
arid cities and communities downstream. However,
climate change threatens these ecosystems via altered
temperature and precipitation regimes (Christianson
et al 2020, Maberly et al 2020), lake ice phenology
(Benson et al 2012, Preston et al 2016), lake tem-
perature (Sadro et al 2018, Christianson et al 2019,
Smits et al 2020) and, in turn, ecosystem function

© 2022 The Author(s). Published by IOP Publishing Ltd

and biological composition. In addition to climate
change, increasing nutrient loading presents an addi-
tional steady change that can lead to increased algal
production (Moser et al 2019, Oleksy et al 2021).
Despite these potential threats to high-elevation
lakes, examining shifts in freshwater ecosystems at
large spatial scales is challenging because of sparse
coverage and a strong bias of analyses towards
a few well-monitored lakes (Stanley et al 2019).
Physiochemical studies (e.g. ice-cover duration, water
chemistry, surface temperature) in a number of
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pristine high-elevation lakes suggests that these shifts
are significant (Preston et al 2016, Moser et al 2019).
Summer warming in combination with nitrogen
deposition is leading to algal assemblage shifts and
increasing productivity in lakes along the Color-
ado Front Range (Oleksy et al 2020a). In addition,
snowpack and summer weather conditions are strong
controls on water chemistry and algal biomass for
mountain lakes (Preston et al 2016, Sadro et al 2018,
Oleksy et al 2020b), and these drivers are also chan-
ging. While there has been recent research examining
regional to continental scale changes in lake nutrients
(Stoddard et al 2016, Oliver et al 2017), water clar-
ity (Topp et al 2021), lake color (Kuhn and Butman
2021), and algal blooms (Wilkinson et al 2021) there
have been no regional studies, to our knowledge, on
high-elevation lake shifts likely due to a lack of in situ
water quality monitoring data (Read et al 2017).

While remote sensing can be used to directly
estimate water quality parameters (Topp et al 2020),
lake water color is relatively easy to infer from satellite
and is less prone to prediction errors (Giardino et al
2014). Color is also an intuitive and integrative metric
that can serve as an indicator of water quality para-
meters, including colored dissolved organic matter,
which can be used to infer estimates of total organic
carbon, dissolved organic carbon (Ouyang et al 2006),
chlorophyll-a (proxy for algal productivity; Cao et al
2020), and suspended sediment (Dekker et al 2001).

Here we used satellite-derived lake color to
address three core objectives to better understand
U.S. Rocky Mountains lakes:

(a) We evaluated the contemporary spatial distribu-
tion of average summer lake color.

(b) We quantified how lake color has changed in the
region since the beginning of the Landsat record
(1984).

(c) We examined which lake, landscape, and clima-
tological features of lakes relate to spatial pat-
terns and temporal trends in lake color.

Through these three objectives we aimed to
understand the current patterns of lake color across
the U.S. Rocky Mountain region and to assess how cli-
mate change and other disturbances might be chan-
ging lake ecology and related ecosystem properties.

2. Methods

2.1. Lake color

We used remote sensing data from the LimnoSat-
US database (Topp et al 2020), a robust collection of
Landsat surface reflectance data for 56 792 U.S. lakes.
The LimnoSat-US data extracts USGS Tier 1 sur-
face reflectance values over Landsat 5, Landsat 7, and
Landsat 8 sensors dating back to 1984 from the point
furthest from any shoreline (“deepest point”). All the
Landsat imagery has been atmospherically corrected,
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and then adjusted so each satellite had unbiased data
across time and between satellites (Topp et al 2020).
We limited the analysis to high elevation lakes in
the Rocky Mountain Region, which we define as the
parts of Idaho, Colorado, Montana, Wyoming, Utah,
and New Mexico above 1400 m. This captures many
mountain lakes in the region as well as high-elevation
plains lakes and reservoirs. We examined spatiotem-
poral patterns in the color of the lake, called the
dominant wavelength (DWL), which maps directly to
the Forel-Ule scale, a water transparency classifica-
tion scale (Wernand and Van der Woerd 2010). The
Forel-Ule system is part of a long-studied approach,
dating back to the 1890s, of analyzing color of bod-
ies of water; there is a standard scale of 21 col-
ors that classify gross biological activity and trans-
parency of the water based on how it maps onto a
human’s perception of lake’s color (Wernand and Van
der Woerd 2010). DWL is quantified by looking at
the human visible spectrum surface reflectance values
(red, green, blue) and then converted into chromati-
city coordinates (Wang et al 2015). For both color-
measuring approaches, blue lakes (DWL < 530 nm)
are generally considered oligotrophic, while change
in color from blue to green wavelengths generally
corresponds to shifts in trophic state from meso-
trophic to eutrophic (DWL > 530 nm). Color changes
from green toward brown wavelengths can indic-
ate either a dystrophic system or a eutrophic lake
with high suspended sediment in the water column
(DWL > 575 nm).

2.2. Classification of spatial patterns

To understand broad-scale spatial patterns, we
examined the median contemporary (2010-2020)
lake color across the U.S. Rocky Mountains. We
included data from the summer period (1 July-15
September) to minimize seasonal variation and
the impact of snow and ice cover, which can per-
sist into June for some of the highest elevation
lakes. We joined the LimnoSat-US lake color data
to the National Hydrography Dataset (U.S. Geologic
Survey 2021), the Global Lake Area, Climate, and
Population dataset (Smith et al 2021), watershed-
level metrics from the LakeCat database (Hill et al
2018), LAGOS-US NETWORKS (King et al 2021)
and LAGOS-US Reservoir (Polus et al 2021). We used
information about the lake, landscape, lake type (nat-
ural lake or reservoir), and connectivity features from
these datasets to explain lake color spatial patterns in
lakes that spanned a broad range of environmental
contexts (table 1).

We divided the population of lakes into two
categories: blue (DWL < 530 nm; n = 620) or
green/brown (DWL > 530 nm; n = 320; figure 2(A)).
To address our first research objective, we used a clas-
sification and regression tree (CART; Therneau and
Atkinson 1997) to determine which environmental
characteristics explained variation in lake color across



10P Publishing

Environ. Res. Lett. 17 (2022) 104041

1 Oleksy et al

Table 1. Covariates included in the spatial CART model (*) and the temporal random forest model (7).

Variable Mean (sd) Description Data source

precip. 47.8 (14.2) Mean monthly precipitation (mm)* Labou et al 2020

air temp. 4(2.8) Mean annual air temperature (°C)* Labou et al 2020

population 14,182.4 (166,828.8) Total human population™t GLCP

LA (km?) 2.6 (12.9) Lake surface area (km?)*t NHD

WA:LA 231.8 (894.6) Watershed area:lake area

WSA 475.7 (2537) Watershed area (km?)*t NHD

elev. 2,291.9 (571.9) Lake elevation (m)* NHD

Zmean 4.8 (4.8) Mean lake depth (m)* NHD

Zmax 12.5(13.3) Maximum lake depth (m)*f NHD

NO3 dep. 3.3(1.4) Total nitrate deposition (2018)*} NADP

NH3 dep. 1.9 (0.9) Total ammonia deposition (2018)*} NADP

% ice 0.3 (1.4) % Watershed area classified as ice/snow land cover™ { NLCD

% urban 0.7 (4.8) % Watershed area classified as developed, low + med + NLCD
high-intensity land use*{

% forest 3.7 (9.8) % Watershed area classified as deciduous, coniferous, and NLCD
mixed forest land cover™t

% shrub 31.3 (23.7) % Watershed area classified as shrub/scrub land cover NLCD

% grassland  18.6 (21.3) % Watershed area classified as grassland/herbaceous land cover NLCD

% agriculture 2.1 (8.7) % Watershed area classified as crop and hay lake cover NLCD

% wetland 1.9 (4.7) % Watershed area classified as herbaceous + woody wetland NLCD
land cover

% barren 4.1 (8.6) % Watershed area classified as barren land cover NLCD

carb. 4 (14.6) Carbonate bedrock™t LakeCat

sil. 46.9 (44.2) Silicate bedrock™ LakeCat

slope 25.8 (16) Mean watershed slope angle LakeCat

CTI 734.7 (110) Mean Composite Topographic Index (CTI) within catchment LakeCat

the region using the rpart package (Therneau and
Atkinson, 2019). The training dataset included 80%
of the total population (n = 765). We calculated the
global model accuracy by predicting lake color group-
ings for the out-of-sample lakes and assessed model
performance with a confusion matrix. We visualized
the results with the cvms (Olsen and Zachariae 2021)
and ggparty (Borkovec and Madin 2019) R packages
for the confusion matrix and decision trees, respect-
ively. All analyses and data visualizations were done
in R version 4.0.5 (R Core Team 2021).

2.3. Trend analysis

For the trend analysis, we built a separate dataset
that included only lakes that had at least three cloud-
free summer images for a minimum of 30 consecut-
ive years between 1984 and 2020 for a total of 527
lakes in the analysis. This accounts for approximately
a quarter of all lakes in this region that are greater
than 10 ha in area and over 1400 m in elevation
(figure S1). We calculated the non-parametric Theil-
Sen’s slope for each lake time series of median sum-
mer color using the trend package (Pohlert 2020).
We used the Mann-Kendall z-score and compared the
p-value from that z-score to a = 0.05. We categorized
each lake into one of five possible trend categories:

(a) No trend when the p-value of the Sen’s slope
was greater than 0.05. All other categories had
p-values of <0.05;

(b) Blue->Greener, for lakes that started blue dur-
ing the first half of the record (median DWL
<530 nm; 1984-2005) and had a positive slope;

(c) Intensifying Green/brown for lakes that started
green prior to 2005 (median DWL >530 nm) and
had a positive slope;

(d) Green->Bluer for lakes that started green
(median DWL >530 nm between 1984 and 2005)
and had a negative slope; and

(e) Intensifying Blue for lakes that started blue prior
to 2005 (DWL <530 nm) and had a negative
slope.

For lakes in the Blue->Greener and Green->Bluer
categories, we assessed whether the median lake color
in the later part of the record indicated a modal shift
in color from predominantly blue to predominantly
green/brown, or vice versa, consistent with the spatial
color categorization.

We conducted a random forest analysis to explore
the drivers of color trends (Breiman 2001). Here,
we grouped together all lakes with positive trends
(Intensifying Green/Yellow and Blue->Greener) and
negative trends (Intensifying Blue and Green->Bluer)
into composite categories for a total of three trend
categories (Negative, No Trend, Positive). Predictors
included all those considered in the spatial CART
described above (table 1) as well as changes in sea-
sonal precipitation, temperature, and human popu-
lation size. We used the prism package (version 0.2.0)
to download the daily estimate of temperature and
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precipitation from the Oregon Parameter-elevation
Relationships on Independent Slopes Model (PRISM)
project (Hart and Bell 2015). For each lake-year, we
calculated the mean winter (December—February),
spring (March—May), summer (June—August), and
fall (September—November) temperature and precip-
itation. Then, we calculated the Theil-Sen’s slope of
temperature and precipitation for each lake and sea-
son from 1984 to 2020.

We built the random forest models using the
rand_forest function in the parsnip package using the
‘ranger’ engine (Wright and Ziegler 2017, Kuhn and
Vaughan 2021a). We randomly chose 60% of the data
as our training data set and 40% as our test dataset
which ensured that at least 25% of the observations
in each trend category were set aside for validation.
We tuned the two hyperparameters using ten-fold
cross-validation. The optimum number of predict-
ors at each node (mtry = 4) and the minimum # to
split at any node (min_n = 3) for the final model
was selected according to the best receiver operating
characteristic curve and overall classification accur-
acy using the yardstick package (Kuhn and Vaughan
2021b). The final random forest model consisted of
1000 trees and was evaluated on the validation data.
We present the top ten predictors based on variable
importance (VI), computed as the total decrease in
node impurity averaged over all trees.

3. Results

3.1. Spatial patterns

Our dataset included 940 lakes above 1400 m across
the six-state Rocky Mountain region (figure 1).
Between 2010 and 2020, 66% of the lakes were
predominantly blue (n = 620) while 34% of the
lakes were predominantly green/brown (n = 320;
figure S2). The CART analysis revealed that water-
shed slope, mean annual air temperature (MAAT),
and maximum lake depth were important determin-
ants of lake color (figure 2(C)). Most green/brown
lakes were found in relatively shallow sloped water-
sheds with MAAT >4.5°C. Lakes situated in water-
sheds with slope angles >22.5° were most likely to
be classified as blue lakes. Similarly, another set of
blue lakes were common in less steep watersheds with
MAAT <4.5°C with maximum depth >4.5 m while
shallower lakes in those areas were more likely to be
green/brown. Watershed slope is negatively correlated
with MAAT (r = —0.50) and other factors such as
lake elevation that likely influence spatial patterns of
lake color (figure S3). Overall, the CART model was
able to correctly classify 84% of blue lakes and 68% of
green/brown lakes in the test dataset (figure 2(B)).

3.2. Cross-lake color trends
In the US. Rocky Mountains, we detected no
trend in lake color between 1984 and 2020 in 55%
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of lakes (n = 290, figure 3). However, 32% of
lakes were trending bluer (n = 166) and reser-
voirs showed the largest improvements. Specifically,
71% of the lakes that trended bluer were reservoirs
(n = 30), and 75% of the lakes that were intensi-
fying blue were reservoirs (n = 30). Most of the
lakes trending from Green->Bluer were in Colorado
(71% or n = 72; figure 4), including many Color-
ado reservoirs that switched from Green/brown to
Blue (n = 14, table S1). Median lake color shif-
ted toward greener wavelengths in 13% of the pop-
ulation of lakes (n = 71), with 34 lakes in the
Intensifying Green/brown category and 37 lakes in
the Blue->Greener category. Of the Blue->Greener
lakes, six crossed the 530 nm threshold consistently
in recent years such that they were classified as
Green/brown in the spatial analysis.

Although our random forest model poorly pre-
dicted lake greening (figure S4), a combination of
static variables and climatic trends partially explained
some trends in lake color (figure 5). The variables
with highest importance included total human pop-
ulation in the lake-watershed (VI = 6.07), lake elev-
ation (VI = 5.91), changes in winter precipitation
(VI=5.58), urban landcover (VI =4.4), and changes
of spring temperature (VI = 4.25). The majority
of the lakes that were Intensifying Blue or trend-
ing Green->Bluer were located in relatively urbanized
watersheds with some of the highest human popula-
tion densities in the region (figures 5(A) and (D)).
These lakes also tended to be located at lower elev-
ations relative to lakes not experiencing color shifts
or lakes that were greening (figure 5(B)). Both green-
ing and blueing lakes were associated with decreases
in winter precipitation between 1984 and 2020 com-
pared to lakes with no trend (figure 5(C)). Fur-
thermore, blueing lakes tended to be in areas where
spring air temperatures were cooling slightly relat-
ive to greening lakes or lakes without color changes
(figure 5(E)), though notably for both the climatic
variables only a small subset of the trends were stat-
istically significant (figure S5, table S2).

Overall, the most widespread climatic trends in
the region were increasing summer and fall temperat-
ures (table S2). Although increasing fall temperatures
were widespread in this region, there were no differ-
ences among color trend groups analysis of variance
(ANOVA) F, 35 = 2.55, p = 0.08). However, abso-
lute rates of summer warming varied among color
groups (Kruskal-Wallis H-test, p < 0.001). Specific-
ally, since 1984 summer temperatures increased on
average 0.23°C more in lakes with no change in
color compared to lakes that were trending blue (95%
CI: 0.06°C—0.4°C). Further, rates of summer warm-
ing were 0.34°C higher in the greening lakes com-
pared to the blueing lakes (95% CI: 0.11°C-0.57°C;
figure S5). For lakes that shifted from Blue->Greener,
nearly every lake experienced statistically significant
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lvation (m)

0
1,000
2,000

Figure 1. Spatial distribution of median lake color for the study lakes from the modern (2010-2020) period. Lakes are shaded by
the 2010-2020 median dominant wavelength (DWL) and its corresponding color on the Forel-Ule scale. Note that individual
points are jittered so that points with similar values do not overlap, therefore lake locations are approximate.

Forel-Ule
color (dwl)

increases in summer air temperature (table S2).
Precipitation shifts were highly variable, and most
lakes did not experience substantial shifts in PRISM-
estimated monthly precipitation (table S2).

4. Discussion

Our analysis showed that most lakes (55%) included
in this study showed no substantial change in lake
color between 1984 and 2020. This is consistent with
both remote sensing and field studies of regional lake
water quality trends in arctic (Kuhn and Butman
2021) and temperate regions (Oliver et al 2017,
Paltsev and Creed 2022) that showed a minority of
study lakes to be exhibiting changes in lake color.
For lakes in the Rocky Mountain region that changed
over the past 36 years, most trended bluer (70%),

suggesting an overall improvement in summer water
quality. While there is a growing concern of wide-
spread declines in water quality, our results build on
recent studies that show regional improvements in
water quality and a more nuanced understanding of
changes in lakes occurring across large spatial scales
(Topp et al 2021, Wilkinson et al 2021).

4.1. Spatial patterns

Our study revealed several putative controls on spa-
tial patterns in lake color in the U.S. Rocky Moun-
tains. Many blue lakes were in steep, high-elevation
watersheds, with little vegetative cover and had colder
MAAT than green/brown lakes (figure S6). Together,
these factors likely result in limited terrestrial nutri-
ent subsidies and thus lower productivity and clearer
waters (Likens and Bormann 1974, Leavitt et al 2009).
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Figure 2. (A) Density plot showing the distribution of a median dominant wavelength (2010-2020) where the background color
corresponds directly to the Forel-Ule index color. Vertical dashed line represents our threshold for classifying lakes as blue vs
green. (B) Confusion matrix for the testing data of the spatial CART where true positives for blue classifications are shaded in blue
and true positives for green/brown lakes are shaded in green; depicts the accuracy when assigning blue or green lake grouping to a
set of lakes that were not used in the training algorithm. (C) CART model results are visualized in tree form, where the terminal

node shows the proportion of blue or green/brown lakes.

Heterogeneity in additional factors among these high
elevation lakes such as lake morphometry and water-
shed area may also modify this relationship. For
example, some green/brown lakes occurred in cold
areas (MAAT < 4.5 °C) if they were shallow (<2.5 m
average depth), particularly if they had larger water-
sheds (>12.5 km?). This is expected since small, shal-
low lakes tend to be more productive than deep lakes
(Duarte and Kalff 1989, Genkai-Kato and Carpenter
2005, Richardson et al 2022). Conversely, in some
shallow lakes, the color that satellites detect may be

capturing benthic algal growth, which can make up
a majority of the lake productivity in systems where
photic zone extends to the benthos (Lougas et al
2020). Overall, these spatial patterns are consistent
with studies describing continental scale patterns of
lake trophic status and water quality, which indic-
ate that high-elevation western mountain ecoregions
are generally oligotrophic, with higher prevalence of
green, turbid, or eutrophic lakes in the high plains and
agricultural ecoregions (Hollister et al 2016, Hill et al
2018, Peck et al 2020).
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4.2. Controls on cross-lake color trends

Lakes and reservoirs shifting toward bluer
wavelengths represented 32% of all sites and fre-
quently occurred in developed, relatively lower elev-
ation areas. Reservoir management in the West-
ern U.S. typically employs a variety of approaches
(e.g. hypolimnetic oxygenation, diversifying water
supplies) to maintain water resources under

increasing climate variability (Beutel and Horne
1999, Ray 2003, Page and Dilling 2020) and these
practices may be a driver of the water quality improve-
ments we observed. However, these apparent changes
in water color that may be attributed to local man-
agement actions were difficult to capture in our stat-
istical analyses because we lacked broad-scale data-
bases that summarize management efforts for this
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Figure 4. (A) Regional map on the left shows where lakes fall into trend categories. (B) Panels show distributions of dominant
wavelength through time in each of the changing trend categories.
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region. For instance, increases in reservoir storage,
resulting in greater volume of water, may result in an
apparent blueing of waters, but our study lacks data
on changing lake surface area or volume. In addition,
managed movement of water across the landscape
could further obscure relationships between water-
shed characteristics and local water quality trends.
For example, we observed clusters of reservoirs with
blueing trends in the heavily populated Colorado
Front Range, but trans-basin water diversions are
common in that area (Wiener et al 2008) making it
even more difficult to link management practices to
changing water color. Our results suggest that man-
agement practices over the same period may have
led to improving water quality in ecosystems that are
often used for drinking water and irrigation.

A relatively small proportion of lakes (13%)
exhibited characteristics indicative of decreasing
water quality, either shifting from states of blue
to greener or intensifying green/brown. Similarly,

recent studies of chlorophyll-a trends in U.S. lakes
have shown algal intensification to be occurring in a
relatively small proportion of lakes with long-term
field data (Wilkinson et al 2021). Lakes that did
exhibit trends toward greener waters were diverse
in their size, shape, watershed area, land cover, and
climatic changes. This level of spatial heterogen-
eity has also been shown in regard to cyanobac-
teria bloom frequency, where the Rocky Mountain
region represented a region where blooms were
isolated rather than spatially clustered (Coffer et al
2021). This result reinforces that interactions between
local landscape factors and broader climatic changes
can results in heterogeneous, context-dependent
responses on freshwater systems (Jackson et al 2016,
Birk et al 2020).

Notably, the random forest model had a lim-
ited capacity to classify lakes trending toward greener
wavelengths (positive trends; figure S2). These green-
ing lakes tended to be at some of the highest elevations
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and were sparsely populated by humans relative to the
lakes that were blueing (figure 5). Many of these sites
experienced slight increases in winter precipitation
and decreases in spring temperature. The six lakes
that showed the most substantial changes in lake color
(table S1) had very little in common except that they
all have experienced increases in mean summer air
temperature (1.0 °C-1.95 °C since 1984) and were all
shallow (less than 3 m mean depth), suggesting that
lake color in these systems includes bottom reflect-
ance and possible benthic blooms (Vadeboncoeur
et al 2021). Tt is possible that shallow lakes are par-
ticularly sensitive to changes in water volume via
increased evaporation rates due to summer warming,
and these reduced water volumes result in an appar-
ent greening. While the slope of the greening trends in
color in these 39 lakes were statistically significant, we
emphasize that most of the color values were within
the range of wavelengths that classify these lakes as
‘blue’ following the approach we used in our spatial
analysis. Nonetheless, these lakes appear to be on a
‘greening’ trajectory and the underlying cause of that
shift warrants further investigation.

Winter precipitation and spring temperatures
partially explained temporal trends in summer
lake color, but they do not fully capture variab-
ility in snowpack regimes (Trujillo and Molotch
2014). In many mountainous areas, winter and
spring snowpacks control the length of ice duration
(Caldwell e al 2021), thus changes in these climatic
variables can have cascading effects on lake chem-
istry and ecology (e.g. algal phenology), and thus
color (Cavaliere et al 2021, Hébert et al 2021). Less
snow in combination with warmer summers may
interactively stimulate lake production in some lakes
(Preston et al 2016, Oleksy et al 2020b), but these
same climatic changes can have the opposite effect
on lakes in other regions (i.e. lower phytoplankton
biomass; Hrycik et al 2021), highlighting the need
to understand how multiple stressors can have either
synergistic or antagonistic effects across lakes.

Finally, there are a few possible explanations for
why we did not detect widespread changes in lake
color in the region. First, our dataset only included
relatively large lakes that were >10 ha, but most
lakes in the Rocky Mountains are <10 ha (85.3%,
n = 15568) and the smallest lakes are more abund-
ant at high elevations (figure S6). This may par-
tially explain why rates of nitrogen deposition did
not appear to have an effect of water color trends,
even though excess nitrogen is implicated as a driver
of ecological change in high-elevation lakes across
the region (Moser et al 2019, Oleksy et al 2020a,
Burpee et al 2022). Second, we limited our analysis
to median summer color, but it is possible that there
are dynamics that have helped create the percep-
tion of lake greening, such as episodic algal blooms,
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which are increasing in some systems (Ho et al 2019,
Vadeboncoeur et al 2021, Wilkinson et al 2021).
This could create issues where algal blooms really
are present but are short and intense and thus not
captured by Landsat’s 8- or 16-day return sampling
interval. As such, algal blooms that are increasing in
severity, duration, or magnitude may not be detec-
ted by our approach. Conversely, by limiting our ana-
lysis to summer months, we may be missing shifts
in the phenology of lake color, such as early green-
ing in the spring or a second peak of productivity in
the fall (Sommer et al 2012). Future studies related
to lake changes may consider changes and variabil-
ity in the entirety of the ice-free season. Furthermore,
our understanding of regional changes in water qual-
ity will be greatly enhanced by advances in the remote
sensing of small lakes.

5. Conclusions

Climate change impacts are likely to influence high-
elevation systems faster than others, making high-
elevation lakes sentinels of climate change (Adrian
et al 2009, Moser et al 2019). While eutrophication
could pose a major threat to the ability for these sys-
tems to continue to provide their vital services to
downstream communities, we found that lake color
in most large lakes (>10 ha) in this region were stable
over the last 35 years. Where we did observe lake color
changing, it was consistently towards bluer waters.
However, some of the mechanisms for the observed
changes, particularly in greening lakes, remain elu-
sive. Future work in this region should investigate
the impact of changing water quantity on lake color
and how the slow, press changes from climate change
interact with short, intense pulse disturbances like
floods and fire to alter the ecology of Rocky Moun-
tain lakes and reservoirs.
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