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Abstract 5 

Dense 3D point clouds collected from rapidly evolving data acquisition techniques such as light detection 6 

and ranging (lidar) and structure from motion (SfM) multi-view stereo (MVS) photogrammetry contain 7 

detailed geometric information of a scene suitable for a wide variety of applications. Amongst the many 8 

processes within a typical point cloud processing workflow, segmentation is often a crucial step to group 9 

points with similar attributes to support more advanced modeling and analysis. Segmenting large point 10 

cloud datasets (i.e., hundreds of millions to billions of points) can be extremely time consuming and 11 

tedious to execute with current tools, which primarily rely on significant manual effort. While many 12 

automated methods have been proposed, the practicality, scalability, and versatility of these approaches 13 

remain a bottleneck stifling processing of large datasets. To overcome these challenges, this paper 14 

introduces a novel, generalized segmentation framework called Vo-Norvana, which incorporates a new 15 

voxelization technique, a normal variation analysis considering the positioning uncertainty of the point 16 

cloud, and a custom region growing process for clustering. The proposed framework was tested with 17 

several large-volume datasets collected in diverse scene types using several data acquisition platforms 18 

including terrestrial lidar, mobile lidar, airborne lidar, and drone-based SfM-MVS photogrammetry. In 19 

evaluating the accuracy of models generated from Vo-Norvana against manual segmentation, the average 20 

error of the position, orientation, and dimensions are 2.7 mm, 0.083°, and 0.9 mm, respectively. Over 0.2 21 
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million points per second and 36 thousand voxels per second can be achieved when segmenting an 22 

airborne lidar dataset containing over 639 million points to about 1 million segments. 23 

Keywords: point cloud, lidar, SfM, segmentation, voxelization, feature extraction 24 

 25 

Introduction 26 

Three-dimensional (3D) point clouds are a common form to digitally represent 3D objects or 27 

scenes. Techniques such as light detection and ranging (lidar) and structure from motion (SfM) multi-28 

view stereo (MVS) photogrammetry have been adopted to collect 3D point clouds for numerous 29 

applications (Olsen et al., 2013) supporting a wide range of disciplines. Lidar systems can be generally 30 

categorized based on the acquisition platform into terrestrial laser scanning (TLS), mobile laser scanning 31 

(MLS), and airborne laser scanning (ALS). Point clouds contain the precise 3D location of each data 32 

record and sometimes include other basic information such as color, intensity (strength of return signal 33 

from lidar sensors), and so on. Additional processes including feature extraction, classification, and 34 

modeling are often required to extract higher-level information for a variety of applications. Point cloud 35 

segmentation is the process of grouping points based on common attributes such that instead of handling 36 

each individual data record, subsequent process can operate with each segment as the basic unit rather. 37 

Increasing spatial resolution and area of coverage in mapping efforts can raise data volumes 38 

exponentially, which poses a substantial challenge for both manual and automated segmentation 39 

approaches.  40 

Herein, we propose a novel, generalized, and efficient point cloud segmentation framework to 41 

cope with a variety of scenes (e.g., urban, rural, industrial sites, etc.) and systems (e.g., TLS, MLS, ALS, 42 

SfM/MVS photogrammetry, etc.). This paper describes the three primary steps of this automated 43 

framework: data organization with a voxelization technique that can preserve geometric details, Normal 44 

Variation Analysis (Norvana), and point clustering. Vo-Norvana offers several advances over existing 45 

segmentation algorithms, including the ability to (1) cope with a variety of shapes in different sizes and 46 
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produce high quality modelling results, (2) consider of positional uncertainty of the data both locally and 47 

globally, reducing improper segmentation results from noise when combining scans or flightlines from 48 

different locations, (3) achieve a much higher computational performance on large datasets (both in terms 49 

of number of points and spatial extent), and (4) be versatile in processing data from a variety of systems 50 

and scenes with minimal fine-tuning of parameters. These contributions are explored and demonstrated 51 

through extensive testing of several representative datasets where the approached showed high accuracy 52 

modelling results (within a few mm of manual modelling procedures), computational efficiency (over 0.2 53 

million points per second and 36 thousand voxels per second for a large dataset of 639 million points). 54 

Related Work 55 

 This section summarizes related research in point cloud segmentation. It will commence with a 56 

brief background on segmentation followed by a description of common approaches to implement 57 

segmentation including planar feature detection techniques, scan-to-bim processes, voxelization, data 58 

structuring, and artificial intelligence. 59 

Segmentation background 60 

At its basic level, segmentation is a process to group points based on one or more common 61 

attributes (e.g., intensity, color, normal, etc.). This process can divide millions of discrete points into 62 

clusters such that instead of handling each individual point, subsequent processes can be efficiently 63 

performed with each segment as the basic operating element, significantly reducing the data volume. For 64 

example, generating thousands of geometric models directly from the original point cloud can be very 65 

challenging given the ambiguity and complexity within a scene. In contrast, with a segmented point 66 

cloud, the modeling or fitting technique only needs to fit one or a few primitives to the points within each 67 

segment, resulting in more robust and efficient processing. Segmentation results can also be used as input 68 

for object-based classification due to richer information provided within each segment compared with 69 

individual points (e.g., Poux et al., 2020, Che et al., 2021a). Because manual processing of point cloud 70 

data can be extremely tedious and time-consuming, much research has focused on different aspects of 71 

automating point cloud segmentation in addition to point cloud processing more broadly.  72 
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We recently conducted a thorough literature review on the subject of object recognition, feature 73 

extraction, segmentation, and classification for MLS data (Che et al., 2019). Considering prior work 74 

documented by other researchers and other detailed reviews of the state of the art (e.g., Grilli et al., 2017, 75 

Xia et al., 2020), there has been a reasonably comprehensive coverage of existing segmentation methods 76 

for both TLS and MLS. Thus, for the remainder of this section, we will focus on segmentation approaches 77 

that apply to ALS and SfM/MVS point clouds, as well as provide a summary of more recent or highly 78 

relevant research associated with TLS and MLS to this work.  79 

Compared with TLS and MLS, ALS data usually covers a much larger area and has a relatively 80 

more consistent point density but generally suffers from limited coverage on vertical faces of objects 81 

(e.g., buildings, trees, etc.) as well as lower resolution overall. Some of these issues can be reduced 82 

through optimized flight planning such as lower flight altitude, higher overlap, and orientation of the 83 

flight path (Vo et al., 2021). Given the large data volume and covered area, most ALS algorithms focus 84 

on specific applications such as land cover classification, 3D reconstruction, or 3D urban modeling 85 

(Wang, 2013; Wang et al., 2018).  86 

Planar features 87 

Within an urban environment, the vast majority of anthropogenic objects captured by ALS (e.g., 88 

roofs) consist of planar surfaces. Xia et al. (2020) thoroughly reviewed the state-of-the-art in extracting 89 

geometric primitives such as planes from 3D point clouds. Since that review was published, several new 90 

algorithms have been proposed (e.g., Poz et al., 2020, Wang et al., 2020, Zhu et al., 2021, Zhang et al., 91 

2021). Towards the objective of fitting a plane, one or multiple techniques are employed for segmentation 92 

including the Hough transform, principal component analysis (PCA), random sample consensus 93 

(RANSAC), and/or region growing. In application to ALS data, most of these approaches have been 94 

focused on extracting roofs. Zhao et al. (2021) compared these techniques for roof segmentation and 95 

found that most approaches proved effective for their test datasets. Nevertheless, these approaches 96 

focused on only extracting planar surfaces such as rooftops, which can result in many artefacts of under- 97 

and over-segmentation for other geometric shapes (e.g., spheres).  98 
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A generalized segmentation algorithm capable of working with many different types of surfaces 99 

is necessary for reliable execution of subsequent processes such as classification (Vosselman, 2013). 100 

Other methods eliminate small planar segments by classifying point clouds into smooth and rough surface 101 

segments (e.g., Ni et al., 2017) in an effort to improve the segmentation. Point cloud segmentation 102 

algorithms for forest scenes are focused on individual tree segmentation (e.g., Wang et al., 2019, Yang et 103 

al., 2020).  104 

In principle, most of the aforementioned methods should also be adaptable to point clouds 105 

generated with lidar or SfM/MVS data obtained from an uncrewed aerial system (UAS) platform because 106 

it has a similar scan acquisition geometry. However, to-date very few methods have been rigorously 107 

tested and demonstrated on UAS-lidar or SfM/MVS data likely due to differences in applications and 108 

variant noise levels from these systems.  109 

Scan-to-BIM segmentation 110 

Some approaches have been developed specifically for ground-based lidar point clouds, primarily 111 

for handling planar surfaces to extract features from building façades, indoor environments, bridges, and 112 

other anthropogenic objects. These features are then used in applications such as 3D model 113 

reconstruction, building information modeling (BIM), quality control inspection, progress tracking, 114 

cultural heritage, and so forth (Wang & Kim, 2019). As an example, Maalek et al. (2018) proposed a 115 

technique utilizing PCA that segments the point cloud into planar and linear features for the purpose of 116 

tracking progress on a construction site. Bassier et al. (2017) proposed an approach based on region 117 

growing and conditional random fields for the reconstruction of BIM models.  118 

Voxelization 119 

The voxelization process often organizes the point cloud into 3D grids or cubes containing a 120 

number of points whereas supervoxels can be derived by refining the boundary considering the 121 

homogeneity in terms of predefined attributes. The majority of generic segmentation approaches have 122 

been developed based on voxelization (e.g., Vo et al., 2015) and super-voxelization (e.g., Mahmoudabadi 123 

et al. 2013, Lin et al., 2017, Dong et al., 2018, Huang et al., 2019). For example, Xu et al., (2021) 124 
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performed a comprehensive review on voxelization and super-voxelization methods and applications. 125 

These voxels or supervoxels themselves inherently provide an over-segmented result, requiring an 126 

additional step to cluster the supervoxels. It is worth noting that the supervoxelization is particularly 127 

effective for buildings and scenes containing large planar surfaces. Unfortunately, investigation of its 128 

performance for other curved surfaces has been limited.  129 

Scan Pattern Grid 130 

Recently, we proposed an efficient segmentation approach, namely Norvana (Che & Olsen, 131 

2018). Norvana operated specifically on TLS data to take advantage of the scan pattern grid, which 132 

enabled all points within a scan to be stored into a compact 2D grid representation without any 133 

information loss. We then extended this conceptual idea to MLS data and developed Mo-Norvana (Che & 134 

Olsen, 2019), by introducing a robust trajectory reconstruction method that regenerates the scan pattern 135 

from an unorganized MLS point cloud. Both approaches proved to be very efficient, scalable, and capable 136 

of tackling a variety of shapes and objects. 137 

Artificial Intelligence 138 

Lately, due to the rapid development of computer vision, deep learning, and artificial intelligence 139 

(AI) technology combined with the growing availability of computing resources and public datasets, 140 

numerous studies have used AI for 3D point cloud processing. Rather than segmenting the point cloud 141 

into groups (i.e., instance segmentation) based on the surface characteristics, the computer vision and AI 142 

communities tend to be more concerned with classifying or labeling each individual point directly (called 143 

semantic segmentation) (Poux & Billen, 2019, Xie et al., 2020). Before deep learning became a widely 144 

popular technique in semantic segmentation for 3D point clouds, some work utilized machine learning 145 

methods. For example, Weinmann et al. (2015) analyzed different techniques in each step of a machine 146 

learning framework for semantic segmentation including neighborhood selection, feature extraction, 147 

feature selection, and supervised classifier. Recently, Bello et al. (2020) conducted a critical review on the 148 

use of deep learning in processing point clouds. In addition to this work, several relevant state-of-the-art 149 
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review papers have been published that focus on specific applications such as autonomous driving (e.g., 150 

Li et al., 2021) and 3D heritage (Matrone et al., 2020).  151 

Although it is undeniable that the deep learning technique is powerful and has tremendous 152 

potential in the context of point cloud processing, it is worth noting that most of the datasets used to 153 

develop and test these deep learning frameworks are often substantially sparser with significantly less 154 

geometric details than the dense point clouds acquired with survey-grade systems (Hackel et al., 2017). 155 

Additionally, most deep learning approaches require extensive compilations of high-quality training 156 

datasets to tackle a variety of systems and scenes, which is difficult given that the publicly available 3D 157 

training dataset cover very limited scenarios. Unfortunately, labeling 3D point cloud manually to generate 158 

training datasets can be tedious, time consuming, and often subjective. This immense effort required is 159 

rarely reported quantitatively, resulting in difficulties in predicting the cost of establishing an effective 160 

benchmark dataset. Hence, given this reliance on substantial training datasets, deep learning approaches 161 

face challenges of scalability and versatility for processing typical lidar datasets collected for the complex 162 

built environment.   163 

Summary of Limitations 164 

Although the aforementioned studies present reasonable segmentation results to different degrees, 165 

three important limitations in the state-of-the-art can be summarized as follows:  166 

(1) The overwhelming majority of approaches focus on extracting planar patches or surfaces. 167 

Consequently, such assumptions substantially impact their performance on other basic shapes or more 168 

complex objects common within the built environment. In particular, this limitation significantly hinders 169 

the application to outdoor scenes, which consist of both geometric primitives and irregular shapes.  170 

(2) Most existing approaches were only tested on a single dataset or several small datasets on the 171 

order of hundreds of thousands to a few million points. Many have also only been tested for a relatively 172 

small area where basic down-sampling can substantially reduce the data volume without significant loss 173 

of information. In practice, typical point cloud datasets often obtain hundreds of millions to billions of 174 

points and cover large areas. The efficiency of the majority of these methods do not scale linearly with 175 
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point size and sufficient information is not often reported to understand how they scale to larger datasets. 176 

Processing time typically increases exponentially with larger volumes of data resulting from the higher 177 

computational complexity, often involving many iterations and global optimizations.  178 

(3) Very few studies test their segmentation methods on a variety of datasets from different 179 

platforms; most are geared towards to a specific system and application. Because deploying multiple lidar 180 

and/or drone systems on a single project is becoming more and more common to maximize coverage and 181 

completeness as well as improve efficiency throughout the area of interest, it is crucial to have a method 182 

available that can simultaneously handle data from different sources. Lastly, a general-purpose 183 

segmentation approach can also improve data reuse and increase the value of the point cloud data as it 184 

supports many downstream analyses and applications. For instance, to be able to reconstruct 3D as-built 185 

models from high resolution point clouds to create digital twins, an automated and scalable segmentation 186 

is required to reduce the data complexity and simplify the modeling process by dividing the unorganized 187 

data into more manageable and meaningful groups.  188 

Objectives 189 

To overcome these limitations, we propose a novel, generalized segmentation framework, namely 190 

Vo-Norvana, that: (1) copes with a variety of regular and irregular shapes and objects; (2) reliably 191 

processes and efficiently scales to handle expansive, unorganized point cloud data containing hundreds of 192 

millions of points; (3) considers the level of uncertainty of the point cloud data to improve the 193 

segmentation, and (4) robustly handles data collected from different scenes and systems. We will 194 

illustrate the workflow in the methodology section and then present a series of experiments to 195 

demonstrate the effectiveness of the proposed approach both qualitatively and quantitatively. 196 

To clarify the novelty of the proposed approach, especially compared against our prior work 197 

including Norvana (Che & Olsen, 2018) and Mo-Norvana (Che & Olsen, 2019), we will explain key 198 

differences and innovations. First, Vo-Norvana structures the unorganized point cloud data via a new 199 

voxelization approach whereas Norvana and Mo-Norvana exploit the scan pattern grid, requiring specific 200 

sensor parameters and/or organized input data. Consequently, the proposed Vo-Norvana algorithm is able 201 
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to cope with a much broader range of 3D point cloud data from any platform (both individually and 202 

merged together) while the previous approaches can only handle specific data collected from TLS and 203 

MLS systems, respectively. Additionally, without being limited to work solely within a scan pattern grid, 204 

the proposed approach supports analysis at a custom scale that can be different from the acquisition 205 

resolution. Lastly, it is also worth pointing out that although all these three methods share a similar 206 

concept in the normal variation analysis, the implementation of the Vo-Norvana is fundamentally 207 

different in how it handles the data to compute the normals as well as its ability to consider the data 208 

uncertainty, enabling rougher surfaces to be effectively extracted.  209 

Methodology 210 

 The Vo-Norvana segmentation takes full-resolution georeferenced or registered point clouds as 211 

input without requiring any prior cleaning or subsampling. The segmentation consists of three primary 212 

steps (Figure 1), including: data organization (Section 2.1), normal variation analysis (Section 2.2), and 213 

point clustering (Section 2.3). Firstly, the input point cloud data is partitioned into 3D tiles with overlap 214 

along the boundary followed by a new voxelization approach that can reduce the data volume while 215 

preserving more geometric details compared with traditional voxelization methods. Secondly, in each 3D 216 

tile, each point will be analyzed with its neighbors to classify it as a smooth, rough, or invalid surface 217 

point. Then, based on the classification result, a custom region growing algorithm groups each class of 218 

points. Finally, the point classification and clustering results are mapped back to the original input 219 

datasets to ensure the integrity of the data and generate the full segmented point cloud.  220 

Data Organization 221 

Many voxelization approaches suffer from excessive memory consumption due to numerous empty 222 

voxels. Consequentially, methods directly exploiting voxelization for organizing a point cloud must balance 223 

the voxel size with the spatial extent of the point cloud. For example, for a 100 by 100 m area with a vertical 224 

extent of 50 m, an analysis at a scale (i.e., voxel size) of 0.05 m requires 4 billion voxels to be constructed. 225 

This large quantity of voxels is difficult to manage and significantly hinders processing including the point 226 
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cloud segmentation as each voxel has to be analyzed. Sometimes multiple iterations are required, further 227 

compounding the processing time. Additionally, using the aggregated information from voxels (e.g., single 228 

point at the center or centroid of a voxel) instead of the actual points can result in loss of geometric details. 229 

For instance, some methods resample the point cloud with the center coordinates of each voxel occupied 230 

by one or more points, while others use the average, median, or centroid coordinates of all the points within 231 

each voxel. Although these methods can simplify the analysis and reduce the computation complexity, they 232 

result in difficulty in precisely representing the geometry of an object. Hence, we propose a dynamic 233 

voxelization process to organize and structure the point cloud while preserving more geometric details.  234 

3D Tiling 235 

First, in the tiling process, we align the point cloud with the principal axis computed from principal 236 

component analysis (PCA) to reduce the total number of voxels required (Figure 2). In many cases, a 237 

rotation of the point cloud data about the Z-axis only would suffice for reducing the memory consumption. 238 

Secondly, we partition the point cloud data via coarse 3D tiles such that the more intense computations can 239 

take place in each tile to achieve high efficiency and low memory consumption. Then, to avoid boundary 240 

artifacts and ensure subsequent processing is seamless across adjacent tiles, we buffer each side of a 3D tile 241 

to provide overlap. The buffer size should be determined by considering the size of the searching window 242 

utilized in the subsequent processes to ensure a seamless analysis throughout the workflow. In the presented 243 

implementation of the proposed segmentation method, the minimum width of the buffer is 2 voxels on each 244 

side, and the dimension of each 3D tile is initialized as 200 times of the voxel size, 𝑆v, such that each 3D 245 

tile contains ~8.5 million (204 x 204 x 204) voxels in total. This allows the processing to balance between 246 

multiple factors including the extent of the data, typical size of a segment, the computing capacity (e.g., 247 

RAM, number of threads) and so on. It is also worth noting that the proposed framework includes the 248 

process of merging all the analysis results at the point clustering stage to cope with the large segments 249 

covered in multiple tiles.   250 

Voxelization 251 
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Recently, we introduced a related voxelization approach to down-sample point cloud data and 252 

demonstrated its effectiveness for ground filtering (Che et al., 2021b). Herein, we significantly improved 253 

this new voxelization approach to organize the point cloud data to enable more efficient data processing, 254 

especially in terms of memory consumption.  255 

Because each 3D tile can be processed independently, only the memory associated with the voxels 256 

within the specific tile under analysis need to be allocated at a time. Thus, we can dynamically voxelize the 257 

point cloud within each 3D tile while still liking the information and analysis results associated with each 258 

point back to the original point cloud throughout the entire process. In other words, the 3D tiles and voxels 259 

only serve as a structure to organize the point cloud, but do not actually down-sample the data for the final 260 

results as is commonly performed with most voxelization techniques. To further improve the efficiency, 261 

we record the indices of the 3D tile and voxel for each point such that the points can be directly mapped to 262 

the proper voxel and 3D tile with limited computational expense in case multiple iterations or processing 263 

steps are needed. To preserve the geometric details, we mark the point that is closest to the center of the 264 

corresponding voxel as core point candidates to represent the 3D coordinates of that specific voxel (Figure 265 

3). Notice that we utilize the voxel center rather than the barycenter or median coordinates because the 266 

point clouds can have highly variable point density, especially for lidar data. As a result, other approaches 267 

can bias the sampling result and result in challenges associated with modelling multiple scans and/or data 268 

sources. Next, to further normalize the point density, at each core point candidate, we search its neighbors 269 

with a diameter of half of the voxel scale and determine if it is indeed the core point with the shortest 270 

distance to the corresponding voxel center. If so, this core point candidate is marked as a core point while 271 

all the other points in the voxel are classified as accessory points.  272 

 After labeling the point cloud as core and accessory points, we can directly simplify the data 273 

robustly with a consistent point density by sampling the core points for the initial analysis before linking 274 

the results back to the full point cloud for the full segmentation. Compared with most other voxelization 275 

techniques, the proposed approach can preserve more geometric details because it samples from the original 276 

points rather than re-sampling using voxels or aggregating points. For example, given the point cloud in 277 
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Figure 3, simply using the voxel centers for re-sampling (occupied voxels) would completely fail to 278 

represent the zigzag pattern. If the re-sampling is conducted by taking the average or median coordinates 279 

of all points in each voxel, the sharp corners would likely be undesirably smoothed. Moreover, to ensure 280 

the robustness of the computation, a minimum number of points is often required. In other cases, a larger 281 

voxel size 𝑆v is needed, which would compromise details. Fortunately, the proposed voxelization 282 

framework keeps the original point cloud and only the core points are distributed with consistent spacing. 283 

Thus, further analysis for point cloud segmentation can be applied to the core points only with reduced 284 

computational complexity, followed by projecting the analysis and segmentation results from the core 285 

points to the accessory points to ensure the completeness.  286 

Norvana 287 

Our prior work of segmentation methods developed exclusively for terrestrial laser scanning (TLS) 288 

and mobile laser scanning (MLS) data both organize the point cloud data into a 2D scan pattern grid, 289 

followed by a normal variation analysis (Norvana), which exploits this data structure (Che & Olsen, 2018; 290 

Che & Olsen, 2019). In contrast, in this work our objective is to develop a general segmentation approach 291 

that can handle any type of point cloud. Hence, we generalize this technique by extending the same concept 292 

into 3D space as well as introduce several significant improvements to allow more flexibility in handling 293 

handle different types and qualities of point clouds. For example, while the 2D scan pattern grid embeds a 294 

lot of constraints in terms of both geometry and topology in neighbor searching, additional geometric 295 

constraints need to be added when generating a local triangular mesh in the proposed generalized Norvana 296 

stage. In addition, we now consider the data uncertainty including both local (e.g., ranging precision) and 297 

global (e.g., registration accuracy) errors during the Norvana process. Furthermore, although the previous 298 

versions of Norvana were able to identify smooth surfaces, they were sensitive to vegetation and other 299 

rough surfaces. To overcome this limitation, we implemented a multi-step feature classification to 300 

categorize the point cloud into smooth, rough, or invalid surfaces as well as unclassified points such that 301 

they are handled differently in the segmentation.  302 
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With the voxels serving as indices of the point cloud, a variety of neighbor searching strategies can 303 

be employed efficiently. Given a point or coordinates, we define its neighbor as the points lying within its 304 

corresponding and adjacent voxels. As a result, a total of 26 voxels needs to be jointly examined for 305 

neighbor searching. The normal vector at each point can be estimated by computing the eigenvector 306 

corresponding to the smallest eigenvalue derived from this point and its neighboring core points utilizing 307 

singular value decomposition (SVD). Notice that the normal estimation can take place at a different scale 308 

than the selected voxel size. The core points will be labeled as unclassified if the normal estimation does 309 

not yield a valid result (e.g., no close neighbors). Otherwise, the normal variation analysis is performed to 310 

each core point with its neighboring core points searched from its adjacent neighbor voxels. When the 311 

number of the core neighbor points for a core point is less than the given threshold (𝑇N_Neighbors), this core 312 

point is directly classified as an invalid surface point because it cannot form a reliable local surface for 313 

further analysis. Otherwise, the 3D coordinates of a core point and its neighbors are projected to a local 314 

coordinate system to align with the normal vector where the core point under analysis is defined as the 315 

origin, the normal vector is defined as z’-axis, and the x’ and y’-axis are set arbitrarily.  316 

One limitation of the segmentation analyzing the normal variations is its sensitivity to the positional 317 

errors and surface roughness (Che & Olsen, 2018). To cope with the positional uncertainty within point 318 

clouds, we adjust the positions of the neighboring core points towards the core point under analysis in z’ 319 

direction (Figure 4). Note that this adjustment is only performed temporarily for this local normal 320 

computation, and the actual coordinates of the point remain unchanged. We consider two types of 321 

uncertainty and simplified them by utilizing two constant parameters, 𝜎local and 𝜎global. If the neighboring 322 

core point is from the same source (e.g., scan, flight line, sensor), we utilize 𝜎local, which can be set as a 323 

function of the ranging accuracy according to the specifications of the system (mm- to cm-level). When 324 

combining data from different sources, in addition to 𝜎local, we further consider the errors from data 325 

processing (e.g., registration, georeferencing) by defining the global uncertainty 𝜎global (mm- to cm-level), 326 

which is often available in a data processing report. In some cases, the system specifications and/or data 327 
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reports are not available, the parameters can be estimated by measuring deviations of the point cloud in 328 

localized areas until a reasonable sample is obtained. To further consider the uncertainty at the core point 329 

in the following local analysis, the maximum allowable adjustment of its neighbor core points is set as two 330 

times of the 𝜎local or 𝜎global.  331 

Because we assumed that the point cloud only captures the surface of an object, we remove the 332 

neighbor core points that are closer than 0.25𝑆v on the x’-y’ plane to avoid creating a complex triangular 333 

mesh locally. Next, we sort the neighbor points by their projected horizontal angle (θ) within the x’-y’ plane 334 

and generate a triangular mesh around the core point under analysis. To avoid sharp triangles and improve 335 

the robustness of the segmentation, when the angle θ exceeds a threshold 𝑇θ (maximum tolerant angle), the 336 

core point under analysis is marked as an invalid surface. Otherwise, the normals of each triangle can be 337 

computed, and the normal gradients at the core point under analysis in different directions are computed 338 

with each pair of triangles in the local mesh. We further compare the largest normal gradient against a 339 

threshold of 𝑇∆Norm (maximum tolerated normal gradient) to label the core point under analysis as a smooth 340 

(≤ 𝑇∆Norm) or rough surface point (> 𝑇∆Norm).  341 

Point Clustering 342 

Several algorithms have been proposed to cluster points based on common attributes. For example, 343 

connected components is a common approach to efficiently group linked voxels with limited constraints 344 

due to the straightforward and fast neighbor searching process (Olsen et al., 2015) from the organization 345 

provided by the voxelization. Meanwhile, region growing is another common point clustering method very 346 

similar to connected components; however, it typically requires more constraints (e.g., difference in 347 

normals), providing more flexibility (Che & Olsen, 2018). In our proposed method, we extract smooth, 348 

rough, and invalid surfaces in order by utilizing some of the core concepts of the connected components 349 

approach to segment the point cloud but with different constraints and criteria (Table 1) similar to a region 350 

growing process. For each class of surfaces, the core points are first clustered and then mapped to their 351 
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nearby core and accessory points. Such a process enables high efficiency via the voxel-based neighbor 352 

searching while each surface class can still be segmented based on their general geometric characteristics.  353 

Specifically, we initiate the core point clustering by grouping the smooth surface core points. To 354 

determine whether a cluster from a core point can grow to a connected one, we first compute the difference 355 

of normals at these two core points (∆Norm in Figure 5). There are cases in which points lying on different 356 

surfaces have similar normal vectors. As a result, only checking the normal gradient can result in under-357 

segmentation issues where multiple surfaces can be grouped into the same segment. To cope with this 358 

situation, we temporarily adjust the position the one core point (point B in Figure 5) under analysis along 359 

the direction of the normal vector of the other point (point A in Figure 5) following the same process 360 

described in Section 2.3. Next, the normal vector as well as the adjusted coordinates of point B (point B’ in 361 

Figure 5) can be used to define a plane. On this plane, we assume point A and point B’ both lie on an arc 362 

where the normal vector at B’ can be computed. This yields another estimation of normal difference 363 

between these two core points (∆Norm′). The same analysis is then applied with point B swapped for point 364 

A to obtain another estimation of normal difference. Ultimately, this analysis essentially combines the 365 

estimation of both curvature and the normal gradient, strengthening the robustness by providing a total of 366 

three estimations of the normal gradient between points A and B. To grow from one smooth surface core 367 

point to the other, all three estimations need to be equal to or less than the threshold 𝑇∆Norm.  368 

After clustering all of the smooth surface core points, we dismiss smaller segments if the number 369 

of core points within a segment contains are less than a user-given parameter, 𝑇N_𝐶𝑜𝑟𝑒𝑠. Then, for each point 370 

that does not belong to a smooth surface segment, we first adjust and estimate the normal difference with 371 

all of its neighboring core points, which are segmented using the same approach as the core points. Among 372 

all the neighboring core points meeting the criteria of growing, we populate the point under analysis using 373 

the segment ID of the one with the shortest projected distance along the normal vector. This mapping 374 

approach not only groups the accessory points lying on a smooth surface to the nearest surface segment but 375 

also groups points lying on a sharp edge of multiple surfaces. 376 
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To further cluster the rough and invalid surfaces, we group the smooth and rough surface core 377 

points that have not been assigned to a segment first. The same procedure as segmenting smooth surfaces 378 

is followed but with different criteria to determine whether a point belongs to a rough surface. Because a 379 

rough surface has a larger deviation in the surface normal direction (Points D, E, and F in Figure 5), the 380 

metrics that we use for smooth surface would over-segment the point cloud in many cases. Hence, we 381 

simply compute and compare the normal difference between two points against the threshold 𝑇∆Norm to 382 

preserve the rough surface. This result is refined by examining the number of core members 𝑇N_𝐶𝑜𝑟𝑒𝑠 which 383 

can be given based on the voxel size 𝑆v and the minimum dimension of the objects of interest in the scene. 384 

Finally, all of the core points that have not yet been tagged with a segment ID are grouped into invalid 385 

surface segments. The same procedures are followed where the criterion is the 3D distance, which has 386 

already been embedded in the voxel-based neighbor searching, similar to connected components. The points 387 

tagged to a segment that fails to meet the threshold of 𝑇N_𝐶𝑜𝑟𝑒𝑠 will be assigned as unclassified noise. 388 

Lastly, some core points lying along the surface edges as well as some of the accessory points may 389 

not yet be segmented. To map the core point segmentation results to these unlabeled points, we use the 390 

similar criteria to determine whether an unlabeled point belongs to a segment or not. Note that because the 391 

estimated normal of a point located on the edge between surfaces can be unreliable, for smooth surface 392 

segments, we only take one estimation of the normal gradient with the known normal vector of the 393 

segmented core point. If more than one segment meets the criteria at an unlabeled point, this point will be 394 

labeled as the same with the closest labeled core point. The projected distance is used for smooth and rough 395 

surface segments whereas the 3D distance is used for invalid surfaces.  396 

Experiment 397 

Overview 398 

We tested the proposed Vo-Norvana segmentation both quantitatively and qualitatively with five 399 

distinct datasets (Figure 6, Table 2) from different systems to examine the effectiveness and versatility of 400 

the proposed method. Notably, Table 2 relates key information related to each dataset (e.g., dimensions 401 
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and point count) and parameters used in processing (e.g., voxel size) to several metrics for evaluating 402 

processing efficiency. The first dataset consists of a single TLS scan (Leica ScanStation P40) acquired in 403 

an indoor setting and captures basic geometric shapes for quantitatively evaluating and comparing the 404 

quality of the segmentation results for modeling purposes. The remaining datasets are significantly larger 405 

in terms of both data size and extent to evaluate the scalability and robustness of the method, including a 406 

TLS dataset containing 8 scans, a MLS dataset collected by a Leica Pegasus:Two system, an ALS dataset 407 

containing 20 flightlines, and a point cloud data from an uncrewed airborne system (UAS) using SfM 408 

MVS photogrammetry. Note that the adjusted extent is the dimension of the data after the data is rotated 409 

to align to its principal axis (Figure 2) while a voxel containing at least one data point are defined as a 410 

valid voxel. All data are stored in an unorganized format, namely LASzip (i.e., LAZ), compressed from 411 

the ASPRS LAS format (Isenburg, 2013; ASPRS, 2019). Additional details about each dataset and the 412 

selected parameters will be discussed in the following sections. The metrics of quantifying the efficiency 413 

of the proposed method (Table 2) are discussed in details in the Computational Performance section.   414 

Computational Performance 415 

The proposed algorithm was implemented using C++ with OpenMP parallel programming within 416 

the Visual Studio 2019 platform. All tests were performed on a desktop computer configured with Intel 417 

Xeon W-2145 CPU @ 3.70 GHz (8 cores, 16 threads) and 128 GB RAM. The processing times reported 418 

in Table 2 for each dataset includes all steps (e.g., data preparation, normal estimation, voxelization, 419 

segmentation, etc.) except for data I/O. To holistically evaluate the computational performance of Vo-420 

Norvana, in addition to the overall processing time, we calculate the point, voxel, and segment-based 421 

performance. The point-based performance is computed using the total number of points to represent the 422 

data volume, in general. Because the voxelization process simplifies the data, the spatial extent of the 423 

dataset and voxel size should also be considered when analyzing processing times. We calculated the 424 

voxel-based performance using the total number of valid voxels so that empty voxels were excluded. 425 

Because the highest resolution voxel size is ultimately a function of the point density and scale of the 426 

features to be extracted, the voxel-based performance turned out to be somewhat consistent across the 427 
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different datasets. It is worth noting that although a larger voxel size can increase performance, the lower 428 

resolution can substantially limit the use of the data. One reason behind the lower voxel-based efficiency 429 

for the TLS dataset is that it has a relatively large extent in the Z direction compared with the MLS, ALS, 430 

and UAS-SfM datasets. This imbalance potentially reduces the spatial coherence when loading data into 431 

the cache. Lastly, the number of segments represents the overall complexity of the scene given the voxel 432 

size; hence, we calculated the segment-based performance (i.e., number of segments per second) to 433 

highlight the variety of the testing data in terms of the scene complexity.  434 

In summary, based on the results presented in Table 2, Vo-Norvana is highly efficient in 435 

processing unorganized point cloud data with a wide range of complexities. In addition, the extraordinary 436 

scalability of our approach is demonstrated by successful testing of datasets containing hundreds of 437 

millions of points. 438 

Accuracy Assessment 439 

Many researchers simply report the accuracy of a segmentation method using a point-based 440 

assessment using common statistical metrics such as recall, precision, F-1 score, accuracy, and so on. 441 

Unfortunately, such metrics treat each point with the same weight; as a result, they can be substantially 442 

biased by the segment size when a dataset is large where larger segments dominate and the finer details of 443 

relatively simple segments are ignored. Thus, we assessed and analyzed the accuracy of Vo-Norvana by 444 

evaluating fitted geometric models derived from the segmented point clouds. The reference models we 445 

used are derived from the manual and Norvana segmentations from our prior work of the same 446 

benchmark dataset (Che et al. 2018), which consists of one plane, two spheres, two cylinders and two 447 

cones.  448 

 A voxel size of 0.01 m was used to be consistent with the analysis scale used in our prior work 449 

developing Norvana. In Vo-Norvana, a local error 𝜎local of 3 mm was given based on the scanner 450 

specifications. Unlike Norvana, Vo-Norvana does not have a designated step to remove mixed pixels 451 

given that the scanner location is unknown due to the unorganized data format. However, we found 452 

increasing the minimum and lowering the maximum neighbor angles 𝑇θ can somewhat mitigate errors 453 
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caused by mixed pixels. For the comparison, the intermediate results of segmenting the core points as 454 

well as those from the full segmentation (Figure 7) are both evaluated to demonstrate the ability of Vo-455 

Norvana to preserve geometric details with the benefits of mapping the results back to the full point cloud 456 

rather than work with a down-sampled version as is common in many other works.  457 

In addition to the manual and Norvana segmentation, we also performed segmentation via 458 

RANSAC and QTPS (Zhu et al., 2021) for comparison. For both methods, we fine-tuned the settings to 459 

match the parameters used in Norvana and Vo-Norvana. RANSAC was set to specifically detect planes, 460 

cylinders, and cones from the input point cloud. It is also worth noting that we only used the RANSAC 461 

segmentation/fitting results but not the shape recognition information because of the poor recognition that 462 

occurred, especially between planes, spheres, and cylinders. The RANSAC segmentation produced 53 463 

segments while QTPS segments the point cloud into 102 segments (Figure 7). Because QTPS was 464 

developed primarily for ALS data targeting planar surfaces, it significantly over-segmented the curved 465 

surfaces such that a meaningful comprehensive quantitative analysis could not be conducted for the 466 

objects of interest.  467 

The modeling process was then performed using the Leica Cyclone software with the RANSAC 468 

option disabled to ensure the fitting was fully based on least squares. The error statistics are first reported 469 

to validate the fitting quality of each model and method (Table 3). The mean, standard deviation, and 470 

absolute mean errors among all the four approaches are mostly on par; however, the absolute maximum 471 

errors for the Vo-Norvana results are slightly larger than, but still comparable with, the manual, RANSAC 472 

and Norvana segmentation. As most of the absolute maximum errors are near the voxel size (0.01 m) 473 

used in the voxelization, such differences can be largely explained by the specified scale of analysis. 474 

Next, we compared the number of points in the segments for modeling which shows that the Vo-Norvana 475 

segmentation is more similar to the manual process because both operate data in a 3D space, whereas 476 

Norvana organizes data into a 2D scan pattern. Additionally, because Vo-Norvana considers the point 477 

uncertainty in the process, it is less sensitive to noise compared with Norvana in our prior work. 478 
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As another approach to further assess the accuracy of the modeling results using the different 479 

segmentation approaches, we compared the position, orientation, and shape of the models (Table 4). As 480 

the comparison shows, the accuracy of the position and shape is mostly at the millimeter, if not sub-481 

millimeter, level while the errors in orientation are generally lower than 0.1°. These errors vary with the 482 

objects because of their shapes, sizes, materials and so forth. While in this simple case, the RANSAC 483 

segmentation yields slightly better results overall mostly due to the extra input of the target primitives, 484 

RANSAC was unsuccessful at obtaining satisfactory results with drastic over- and under-segmentation as 485 

well as requiring a very long processing time on the other datasets tested. Also note that the accuracy of 486 

the core-only segmentation is worse than the full Vo-Norvana result, which demonstrates that mapping 487 

the segmentation results from the voxels to all of the points helps improve the accuracy in modeling 488 

applications. Nevertheless, the core-only segmentation result can still be sufficient for many applications 489 

to provide higher computational efficiency and lower data volume, if desired. 490 

Versatility Tests 491 

 We further performed Vo-Norvana segmentation to process four large datasets acquired by TLS, 492 

MLS, ALS, and UAS-SfM to evaluate the versatility and scalability of the algorithm. These datasets 493 

cover a wide range of data collection methods, scene types, and objects. We also attempted to test several 494 

existing methods (e.g., RANSAC, QTPS) for comparison. Unfortunately, these approaches struggled in 495 

processing the large datasets (both point counts and spatial extent) and suffered substantial over and 496 

under-segmentation given the complexity of these scenes. Hence a meaningful comparison is not 497 

possible.  498 

3.4.1 TLS Testing 499 

The TLS test dataset was collected near Weatherford Hall located on the Oregon State University 500 

campus in Corvallis, Oregon, United States. The angular resolution of each scan is 0.02° and the 501 

maximum range is 120 m. Given that this dataset contains multiple scans registered together, the reported 502 

registration RMS error statistic of 6 mm is used to estimate 𝜎global. The voxel size was set as 0.05 m based 503 

on our prior work while the minimum segment size was set to 50 voxels to minimize segmentation of 504 
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small objects. All other parameters (i.e., 𝜎local, 𝑇∆Norm, 𝑇N_Neighbors, 𝑇θ) were kept the same as the 505 

benchmark test to demonstrate that the method is not highly sensitive to parameter selection (Table 2). 506 

Not that this same dataset was also tested and documented in detail in our prior work (Che & Olsen, 507 

2018) for comparison. 508 

Vo-Norvana categorizes the input point cloud into four classes: smooth surface, rough surface, 509 

invalid surface, and unclassified noise. For the TLS dataset (Figure 8), man-made objects such as road, 510 

sidewalk, and buildings are mostly classified as smooth surface while the tree trunks and grass 511 

categorized as rough surfaces. Tree branches and leaves, as well as other linear or other irregular shapes 512 

are mostly tagged as invalid surfaces, whereas the unclassified noise primarily consists of small clusters. 513 

Close-up views of different objects further highlight the effectiveness of the proposed approach 514 

(Figure 9). For example, the architectural features (e.g., divided blocks, columns, windows, etc.) were 515 

correctly segmented for the building façade (Figure 9 (A) and (B)). Note that the façade below the 516 

balcony at the bottom of the building is a curved surface. Similarly, the curb face is effectively segmented 517 

as a single segment (Figure 9 (B)). Additionally, several moving objects were captured during the scans 518 

(e.g., vehicles, bikes, pedestrians, etc.), resulting in numerous unwanted points in the data. Vo-Norvana 519 

effectively segmented these points into clusters such that they can be easily removed given that these 520 

objects were grouped into segments mostly classified as invalid surfaces. For the trees, which vary in 521 

species and sizes throughout the scene (Figure 9 (A) and (C)), the tree trunks and crowns were separated 522 

into different segments because they were categorized into different classes, as discussed in the prior 523 

section. 524 

MLS Testing 525 

Next, we evaluated the proposed method on an MLS dataset collected along a 1.3 km stretch of 526 

road through a sub-urban area in Philomath, Oregon, United States with an average speed of 6.7 m/s and 527 

an angular resolution of 0.07°. Compared to the TLS data consisting of multiple scans to cover an area, 528 

MLS data typically has a lower point density, depending on the range and driving speed. Moreover, in 529 

addition to the ranging and angle measurement errors of the lidar sensor itself, because the GNSS 530 
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receivers and Inertial Measurement Unit (IMU) provide direct georeferencing, the accuracy of MLS point 531 

cloud is typically lower than TLS. As a result, we set the 𝜎local to 0.01 m based on empirical evaluation of 532 

the data quality of several datasets with this specific system. The parameters 𝑇N_Neighbors and 𝑇θ were set 533 

to 3 and 150°, respectively, due to the lower point density and rare occurrence of mixed pixels in MLS 534 

data. 535 

The segmented results (Figure 10) show that most ground points were grouped into a single 536 

segment including the road, sidewalks, and driveways except for areas further from the scanner with a 537 

local point density lower than the analysis scale (e.g., black points in Figure 10 (A, B)). Similar to the 538 

TLS data, the sidewalk and roadway were segmented together because they are smoothly connected via 539 

the curb ramps and driveways. Although most of the curbs were separated from the roadway and 540 

sidewalk, some were over-segmented into smaller sections rather than as a long stretch as in the TLS 541 

testing (Figure 10 (A, C, D, E)). The primary reason is that the point density in such areas is relatively 542 

low, and hence the normal estimation is less accurate. In addition to horizontal features, the vertical 543 

features were accurately segmented. For example, not only were the utility poles clearly distinguished 544 

from the ground, but different components (e.g., pole, ground wire, guy wire, crossarm, transformer, etc.) 545 

were also be separated into their own segments (Figure 10 (A, B, C, D)), potentially supporting detailed 546 

modeling and further analysis. Some utility poles appear to be over-segmented (e.g., Figure 10 (D)) 547 

because the secondary wires occlude the MLS system at certain angles, dividing the pole into multiple 548 

sections. If the point density is sufficient on the wires and powerlines, Vo-Norvana can be used to extract 549 

and segment these linear features, which are classified as invalid surface points (Figure 10 (C, D)). Signs 550 

of varying sizes located at different heights were accurately segmented with the poles and boards properly 551 

separated. (Figure 10 (A, B, E)). In a few cases, the sign boards were spilt into two parts at the pole 552 

because only the back of the sign was captured by the MLS system. 553 

ALS Testing 554 

Very few segmentation methods are tested on both ground-based and airborne lidar datasets. 555 

Hence, to validate the versatility and scalability of the Vo-Norvana segmentation, we tested it with a 556 
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massive, publicly available dataset (Laefer et al., 2017) collected in Dublin, Ireland, in 2015 (Figure 11) 557 

encompassing an area of approximately 9 sq. km. More specifically, we selected all 20 flight lines on the 558 

Northeast and Southwest direction from the entire dataset, comprising nearly 640 million points. A 559 

typical ALS data processing workflow would partition the data into 2D tiles to make this immense data 560 

volume more manageable early in and throughout the processing. While this approach is effective for 561 

some processing tasks, tiling requires adding overlaps between tiles as well as additional treatments to 562 

link segments across multiple tiles to ensure the consistency of the segmentation results, particularly near 563 

the boundary of each tile. Since the Vo-Norvana segmentation establishes 3D tiles during voxelization as 564 

only a temporary measure, we input the individual flight lines as separate files and processed the entire 565 

test dataset directly without having to process as individual tiles. This strategy allowed us to account for 566 

offsets between flightlines in the segmentation analysis compared to the typical processing approach of 567 

merging data from all flightlines before tiling. The voxel size 𝑆v was determined to be 0.35 m based on 568 

the typical point density while the local error 𝜎local and global error 𝜎global were both 0.03 m according to 569 

the data report (Laefer et al., 2017). We also set the minimum segment size to ensure each segment 570 

occupied at least 10 voxels. The other parameters 𝑇∆Norm, 𝑇N_Neighbors and 𝑇θ were kept the same with 571 

prior tests to be consistent. Given the vast size and complexity of this dataset, herein we will showcase 572 

select smaller regions across the dataset to demonstrate the effectiveness of the proposed approach. To 573 

provide some reference of the actual scene, we added the corresponding satellite images along with the 574 

screenshot of the segmented point cloud.  575 

 First of all, the ground surface (mostly paved road or sidewalk surfaces) was segmented into a 576 

couple of very large segments, demonstrating that Vo-Norvana can serve effectively as a ground filtering 577 

approach for ALS data in an urban scene (Figures 12-14). In this case, the ground (e.g., road surface, 578 

sidewalk, etc.) did not turn out to be one segment because there are railroad tracks passing through the 579 

scene and splitting the road surface into two parts. Then along the river, the water surface was clustered 580 

given the fact that it appeared as a smooth or rough surface in the lidar data (Figures 12 and 14). In 581 
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addition, the vehicles captured in the scene were not separated into individual objects (Figure 14) because 582 

Vo-Norvana segmented the body of a car into multiple parts based on the distinct changes in geometry. 583 

A variety of roof structures and types are presented in this area including flat, hip, valley, dormer, 584 

dome, and others (Figure 12, 13, 15, and 16). Most of the roofs consist of planar surfaces and each face 585 

was extracted as a segment. Admittingly, these simplistic roofs are relatively easy to tackle with any 586 

segmentation approach where basic plane fitting can readily distinguish each face of the roof. However, 587 

in contrast, the courts and church (the left and center of Figure 12) both feature a dome roof, which can be 588 

very challenging to most existing methods. With Vo-Norvana, they were correctly segmented into a single 589 

cluster while the tips were separated from the dome. Another example shows that Vo-Norvana also 590 

managed to divide an octagonal roof to each planar face with other roof in different types and sizes 591 

(Figure 16). It is also worth noting that most facets of the arched roof of the train station (Figure 15) were 592 

segmented correctly with the exception of a few facets representing glass skylights that are adversely 593 

impacted by the increased lidar ranging uncertainty. Nevertheless, despite these minor issues, Vo-594 

Norvana robustly copes with a variety of complex geometric surfaces throughout the scene.  595 

The Vo-Norvana segmentation is proven to be capable of handling objects and features in a 596 

variety of shapes and dimensions. The ALS dataset captures several other types of assets such as 597 

streetlamps, traffic lights, and poles. Because the spatial resolution is much lower than typical TLS and 598 

MLS data, the points lying on these objects were classified as invalid surfaces but were still segmented 599 

properly (Figure 14). Similarly, the guard rails on the bridge were also clustered into a segment. In 600 

addition to the infrastructure, tree crowns can be also of interest in the ALS point cloud, and Vo-Norvana 601 

can be used to reliably distinguish individual trees within the point cloud. The points representing the tree 602 

crowns were classified as invalid surface points, and each was typically clustered into a single large 603 

segment; however, sometimes they were subdivided into a few smaller segments that can be grouped with 604 

further process (Figures 12 and 13).   605 

UAS-SfM Testing 606 
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Lastly, we rigorously tested Vo-Norvana segmentation on a UAS-SfM point cloud, which tends 607 

to be noisier compared with the TLS data. These data were collected from a historic paper mill next to the 608 

Willamette Falls in Oregon City, Oregon, United States (Bresky, 2016) using a DJI Phantom 4 RTK UAS 609 

with approximately 10 ground control points observed with GNSS and processed against a base station. 610 

The post-processing was performed in Agisoft Metashape, providing a typical point spacing in the dense 611 

point cloud of approximately 0.05 m. It is worth noting that even though multiple flightlines with 612 

significant overlap were planned and flown to cover the area of interest, unlike the airborne lidar, the 613 

point cloud itself cannot be divided into individual flightlines given that the SfM process requires data 614 

from overlapping flightlines be combined to reconstruct the point cloud via bundle adjustment. As a 615 

result, we considered the UAS-SfM point cloud as a single, merged point cloud and did not apply 𝜎global 616 

while setting 𝜎local to 0.01 m based on the residuals at ground control points. The other parameters were again 617 

kept as consistent as possible with the other tests. Vo-Norvana yielded a quick but robust segmentation of 618 

various features in the scene (Figure 17). For example, the hydroelectric dam (Figure 17 (A)) was 619 

captured in the point cloud and segmented into different parts. In the paper mill, several storage tanks 620 

with spherical or cylindrical shapes of different sizes were cleanly extracted (Figure 17 (B, C)). The 621 

performance of the proposed segmentation of the roofs was robust (Figure 17 (D)) and similar to the 622 

result of ALS testing discussed in the prior section. 623 

Summary 624 

 In the experiment, we tested a total of five different point cloud datasets including a TLS 625 

benchmark dataset, an outdoor TLS dataset collected in the university campus, an MLS dataset captured 626 

in a suburban area, an ALS dataset covering an entire city in a high resolution, and a UAS-SfM point 627 

cloud acquired from an industrial site. We first evaluated the computational performance of the Vo-628 

Norvana segmentation considering the number of points, data extent, and scene complexity (e.g., number 629 

of segments). By exploiting parallel programming (8 cores, 16 threads), the largest dataset (ALS) 630 

containing nearly 640 million points can be segmented within 50 minutes without any pre-processing. 631 

Then, we assessed the accuracy of Vo-Norvana quantitatively by comparing its modeling results to two 632 
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existing automated methods as well as manually derived results. The average differences of the position, 633 

orientation, and dimension between the models generated from Vo-Norvana and manual segmentation are 634 

0.0027 m, 0.0830°, and 0.0009 m, respectively, which indicates minimal difference between the methods. 635 

Finally, we demonstrated the versatility of the proposed framework on TLS, MLS, ALS, and UAS-SfM 636 

datasets. The results show that Vo-Norvana segmented these point clouds effectively and efficiently with 637 

relatively consistent parameter settings. Because each parameter has a clear physical meaning, it is 638 

straightforward for users to give proper values based on the data quality, target objects, level of detail 639 

desired, and other factors. The high computational performance also enables efficient parameter fine-640 

tuning when needed.  641 

Conclusion 642 

This paper introduces a novel point cloud segmentation framework, Vo-Norvana, based on a 643 

specialized voxelization technique that can preserve geometric details to a large degree. Vo-Norvana 644 

consists of three primary steps, data organization, Normal Variation Analysis (Norvana), and point 645 

clustering and provides segment IDs and classes to unorganized point cloud automatically. Vo-Norvana 646 

was tested on a diverse range of datasets and scenes including terrestrial lidar, mobile lidar, airborne lidar, 647 

and UAS-SfM. The data volume ranges from about 1.3 million points in a laboratory setting to nearly 640 648 

million points at a city-wide scale. The segmentation results were evaluated and discussed both 649 

qualitatively and quantitatively. Key highlights observed with the proposed approach are as follows: 650 

1. Unlike most existing methods, Vo-Norvana is not limited to pre-defined geometric primitives 651 

such that it can cope with a variety of shapes in different sizes to complete the segmentation 652 

for general purposes. The automated modelling results derived from the segmented point 653 

cloud can satisfy most applications.  654 

2. Vo-Norvana also can consider the positional uncertainty of the data both locally and globally, 655 

reducing improper segmentation results from noise when combining scans or flightlines from 656 

different locations. 657 
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3. By being designed to effectively take advantage of parallel programming, Vo-Norvana 658 

consistently achieves a computational performance on the order of hundreds of thousands of 659 

points or tens of thousands of voxels per second on a desktop computer. This efficiency holds 660 

even when processing hundreds of millions of points that cover an entire city at a time, 661 

demonstrating the outstanding scalability of the Vo-Norvana framework. 662 

4. The versatility of the proposed approach was proven through extensive tests on point cloud 663 

data collected from different scenes (e.g., architecture, sub-urban, urban, industry) using a 664 

wide range of systems (e.g., ground and aerial-based, lidar and SfM-based) with relatively 665 

consistent parameter settings which does not require extensive fine-tuning.     666 

Although not directly demonstrated in this manuscript due to scope, the point cloud segmentation 667 

results can be improved by combining multiple iterations of Vo-Norvana with different parameter settings 668 

to perform a multi-scale analysis considering the objects of interest and adapting to the variable point 669 

density within the scene. Such results can directly benefit semantic segmentation by feeding rich 670 

information extracted from each segment determined at several different scales. We are currently utilizing 671 

Vo-Norvana to enable efficient feature extraction, classification, modelling, and other applications, as 672 

well as performing additional quantitative assessments of accuracy. For example, in our recent work, we 673 

applied the proposed segmentation approach as a pre-processing tool to separate walls, floors, ceilings, 674 

furniture, and other objects for supporting the Scan-to-BIM process including the 2D floor plan 675 

generation and 3D modelling (Baru et al., 2022). In the future, we plan to leverage the Vo-Norvana 676 

framework in developing novel machine learning and deep learning approaches due to its efficiency and 677 

scalability.  678 
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Table 1. Summary of the proposed point clustering approach for different types of surfaces. 814 

Surface 

Class 
Neighbor Searching Member Core Points 

Clustering 

Criteria / 

Thresholds 

Segment Criteria 

Smooth 

Core points from 26 

neighboring voxels 

Smooth 

Normal gradient 

(3 estimations) 

 𝑇∆Norm 

Number of core members 

𝑇N_Cores Rough 

Unclustered Smooth 

 + 

Rough 

Normal gradient 

(1 estimation) 

 𝑇∆Norm 

Invalid All remaining 3D distance 

  815 

  816 
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Table 2. Key information (e.g., dimensions, errors), parameters, and processing efficiency for the 817 

datasets used in the experimentation. The efficiency is reported in four metrics: processing time, 818 

point-based, voxel-based, and segment-based performance. 819 

Key Information and Parameters Benchmark TLS MLS ALS UAS-SfM 

Number of scans/flight lines 1 8 1 20 1 

Number of points 1,205,600 391,764,131 75,657,595 639,309,547 79,541,367 

Number of valid voxels 96,655 18,688,805 23,933,223 105,012,969 17,596,719 

Adjusted X extent (m) 3.0 289 1,367 2,818 344 

Adjusted Y extent (m) 4.0 290 486 3,095 704 

Adjusted Z extent (m) 3.0 44 153 518 60 

Voxel size 𝑆v (m) 0.010 0.050 0.050 0.350 0.100 

Local error 𝜎local (m) 0.003 0.003 0.010 0.030 0.010 

Global error 𝜎global (m) - 0.006 - 0.030 - 

Min segment size 𝑇N_𝐶𝑜𝑟𝑒𝑠  100 50 50 10 10 

Max normal gradient 𝑇∆Norm 

(degree) 
15 15 15 15 15 

Min neighbor 𝑇N_Neighbors 8 8 3 3 3 

Max neighbor angle 𝑇θ (degree) 90 90 150 150 150 

Number of segments 56 16,435 28,490 979,668 18,762 

Processing time (s) 3 1,030 633 2,929 347 

Point-based performance 

(million points per second) 
0.402 0.380 0.120 0.218 0.229 

Voxel-based performance 

(million valid voxels per second) 
0.032 0.018 0.038 0.036 0.051 

Segment-based performance 

(segments per second) 
19 16 45 334 156 
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Table 3. Summary of the quality of the model fitting statistics from the Manual, RANSAC, 822 
Norvana, Vo-Norvana (Core) and Vo-Norvana (Full). Note that the Manual and Norvana results 823 

were reported in Che & Olsen (2018) while RANSAC modeling was conducted in 824 
CloudCompare.   825 

Object Approach 
Error Statistics (m) # of 

Points Mean Std. Dev. Abs. Mean Abs. Max. 

Plane 

Manual 0.0000 0.0013 0.0011 0.0047 132,983 

RANSAC 0.0000 0.0014 0.0011 0.0069 133,485 

Norvana 0.0000 0.0013 0.0010 0.0044 126,435 

Vo-Norvana (Core) 0.0000 0.0014 0.0011 0.0092 6,989 

Vo-Norvana (Full) 0.0000 0.0014 0.0011 0.0102 132,836 

Sphere1 

Manual 0.0000 0.0022 0.0018 0.0091 119,872 

RANSAC 0.0000 0.0023 0.0019 0.0089 123,019 

Norvana 0.0000 0.0022 0.0018 0.0091 117,257 

Vo-Norvana (Core) 0.0000 0.0025 0.0021 0.0080 9,696 

Vo-Norvana (Full) 0.0000 0.0023 0.0019 0.0092 122,153 

Sphere2 

Manual 0.0000 0.0010 0.0008 0.0048 40,109 

RANSAC 0.0000 0.0011 0.0008 0.0091 42,132 

Norvana 0.0000 0.0010 0.0007 0.0060 39,200 

Vo-Norvana (Core) 0.0000 0.0013 0.0010 0.0056 3,660 

Vo-Norvana (Full) 0.0000 0.0010 0.0008 0.0055 41,897 

Cylinder1 

Manual 0.0000 0.0002 0.0002 0.0018 4,661 

RANSAC 0.0000 0.0003 0.0002 0.0017 4,625 

Norvana 0.0000 0.0004 0.0003 0.0014 3,595 

Vo-Norvana (Core) 0.0000 0.0003 0.0003 0.0015 265 

Vo-Norvana (Full) 0.0000 0.0003 0.0002 0.0016 4,614 

Cylinder2 

Manual 0.0000 0.0004 0.0003 0.0017 11,890 

RANSAC 0.0000 0.0005 0.0004 0.0027 12.285 

Norvana 0.0000 0.0004 0.0003 0.0017 5,668 

Vo-Norvana (Core) 0.0000 0.0012 0.0006 0.0131 1,145 

Vo-Norvana (Full) 0.0000 0.0010 0.0005 0.0173 12,719 

Cone1 

Manual 0.0000 0.0006 0.0004 0.0028 34,298 

RANSAC 0.0000 0.0006 0.0005 0.0048 35,144 

Norvana 0.0000 0.0005 0.0004 0.0025 30,881 

Vo-Norvana (Core) 0.0000 0.0007 0.0006 0.0044 2,192 

Vo-Norvana (Full) 0.0000 0.0006 0.0005 0.0053 35,161 

Cone2 

Manual 0.0000 0.0006 0.0005 0.0026 15,428 

RANSAC 0.0000 0.0007 0.0005 0.0062 16,108 

Norvana 0.0000 0.0005 0.0004 0.0062 13,329 

Vo-Norvana (Core) 0.0000 0.0008 0.0006 0.0045 1,062 

Vo-Norvana (Full) 0.0000 0.0006 0.0005 0.0059 15,445 
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Table 4. Comparison of the modeling results using the RANSAC, Norvana, Vo-Norvana (Core) and Vo-828 
Norvana (Full) compared with the manually extracted results.  829 

Object Approach 
Difference against manual modeling results 

Position (m) Orientation (°) Shape (m) 

Plane 

RANSAC 0.0027 0.0090 - 

Norvana 0.0031 0.0069 - 

Vo-Norvana (Core) 0.0101 0.0148 - 

Vo-Norvana (Full) 0.0036 0.0123 - 

 

Sphere1 

RANSAC 0.0002 -  0.0003 

Norvana 0.0001 -  0.0000 

Vo-Norvana (Core) 0.0014 -  0.0015 

Vo-Norvana (Full) 0.0001 -  0.0001 

 

Sphere2 

RANSAC 0.0002 -  0.0002 

Norvana 0.0004 -  0.0008 

Vo-Norvana (Core) 0.0006  -0.0006 

Vo-Norvana (Full) 0.0001 - -0.0001 

Cylinder1 

RANSAC 0.0003 0.1365 -0.0005 

Norvana 0.0015 0.7468 -0.0006 

Vo-Norvana (Core) 0.0019 0.1146 -0.0006 

Vo-Norvana (Full) 0.0022 0.0845 -0.0004 

 

Cylinder2 

RANSAC 0.0005 0.0044  0.0000 

Norvana 0.0039 0.0152  0.0021 

Vo-Norvana (Core) 0.0023 0.0179  0.0009 

Vo-Norvana (Full) 0.0023 0.0227  0.0009 

Cone1 

RANSAC 0.0093 0.1308  0.0010 

Norvana 0.0105 0.1776 -0.0031 

Vo-Norvana (Core) 0.0246 0.3797  0.0025 

Vo-Norvana (Full) 0.0061 0.0889  0.0011 

Cone2 

RANSAC 0.0060 0.2528  0.0042 

Norvana 0.0090 0.1509  0.0000 

Vo-Norvana (Core) 0.0078 0.4410 0.0025 

Vo-Norvana (Full) 0.0045 0.2066 0.0030 
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Figure 1. Workflow of Vo-Norvana framework for point cloud segmentation. 831 

Figure 2. Example of the proposed PCA alignment and 3D tiling approach to optimize the partitioning of 832 

mobile lidar data 833 

Figure 3. Simplified 2D schematic of the proposed voxelization and subsampling approach. 834 

Figure 4. Schematic illustrating proposed core point Norvana where point #0 (yellow) is the point under 835 

analysis while the others are its 8 neighboring core points. The two graphs in the center show the 836 

side view and top view of the points in the projected coordinate system of point #0. In the side 837 

view, parameter σ (i.e., σlocal or σglobal depending whether the neighboring point and point #0 are 838 

from the same source or not) represents the positioning uncertainty of a point with respect to 839 

point #0. From the top view, point #8 is removed from the analysis to reduce the sensitivity of the 840 

proposed analysis to the noise. The graph on the right shows the process of generating a mesh 841 

where the angle θ at point #0 for each triangle cannot be larger than Tθ. 842 

Figure 5. Growing process for smooth surface and rough surface where point A and B are both classified 843 

as smooth surface core points while point D, E, F are classified as rough surface points. In the 844 

process of growing from point A to B, two of the three estimations of the normal difference 845 

between these two points are shown in the figure where point B’ is the adjusted position for point 846 

B with the given parameter σ (i.e., σlocal or σglobal) while the third estimation is obtained in a 847 

similar way with ∆Norm′ by adjusting point A along the normal of point B. When clustering 848 

points on smooth and rough surfaces, the estimations of normal differences are compared against 849 

the user parameter T∆Norm.  850 

Figure 6. Overview of the lidar datasets used in the experiment, including the Benchmark, TLS, MLS, 851 

ALS, and UAS SfM/MVS data. 852 

Figure 7. Segmentation results from the benchmark data with RANSAC, QTPS, core points only and full 853 

dataset with Vo-Norvana where each randomly assigned color represents a unique segment and 854 

unclassified points are colored in black. 855 
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Figure 8. Feature classification and segmentation result for TLS data where each distinct color 856 

(randomized) represents a unique segment. Unclassified points are colored in black. Subplots 857 

show smooth, rough, invalid and unclassified points.  858 

Figure 9. Close-up views of the segmentation result on the TLS dataset where each color represents a 859 

unique distinct segment. Unclassified points are colored in black. Close-ups are shown for the 860 

building façade (A) to highlight the ability to segment complex architectural details, a busy street 861 

(B) with noise from pedestrians and vehicles to highlight the usefulness for noise removal, and 862 

segmentation of individual tree canopies (C).  863 

Figure 10. Segmentation result of the MLS testing dataset where each color represents a unique distinct 864 

segment. Unclassified points are colored in black. Close-ups show the detailed segmentation of a 865 

variety of urban objects including buildings (A and C), poles (A, B, C, and D), powerlines (C and 866 

D), signs (A, B, and E), curbs (C, D, and E), and the road surface (A, B, C, D, and E).  867 

Figure 11. Segmentation results for the ALS test dataset where each distinct color represents a unique 868 

segment. Unclassified points are colored in black. Locations of closeup views for details shown in 869 

Figure 12 - 16 are identified. 870 

Figure 12. Close-up view of the segmented point cloud and reference satellite images near Four Courts 871 

(left) and Adam & Eve’s Church and St. Audoen’s Church (right) where multiple types of roofs 872 

are successfully segmented. Numbers show common points between the photograph and point 873 

cloud for reference. 874 

Figure 13. Close-up view of the segmented point cloud and reference satellite image near 875 

Communications Workers’ Union consisting of trees, road, and buildings (roof). 876 

Figure 14. Close-up view of the segmented point cloud and reference street view images at Talbot 877 

Memorial Bridge where the pole-like objects in different sizes are segmented into individual 878 

objects. The objects highlighted include street lamps (a, b, e) and traffic lights (c, d).   879 
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Figure 15. Close-up view of the segmented point cloud and reference satellite image at Pearse Station 880 

and St Andrew’s Roman Catholic Church where a variety of complex buildings present in the 881 

scene. 882 

Figure 16. Close-up view of the segmented point cloud and reference satellite image at Technological 883 

University Dublin and Seetec jobpath Bishops Square where the roofs consist of a variety of 884 

shapes. 885 

Figure 17. Segmentation result of the UAS-SfM testing data where each distinct color represents a unique 886 

segment. Unclassified points are colored in black. The close-up views include: (A) a 887 

hydroelectric dam (the photograph is from the source UAS imagery dataset); (B) cylindrical and 888 

spherical storage tanks in different sizes; (C) a cylindrical storage tank; (D) various types of 889 

building roofs. Numbers show common points between the photograph and point cloud for 890 

reference.  891 

 892 


