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Vo-Norvana: Versatile Framework for Efficient Segmentation of Large Point

Cloud Datasets
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Abstract

Dense 3D point clouds collected from rapidly evolving data acquisition techniques such as light detection
and ranging (lidar) and structure from motion (SfM) multi-view stereo (MVS) photogrammetry contain
detailed geometric information of a scene suitable for a wide variety of applications. Amongst the many
processes within a typical point cloud processing workflow, segmentation is often a crucial step to group
points with similar attributes to support more advanced modeling and analysis. Segmenting large point
cloud datasets (i.e., hundreds of millions to billions of points) can be extremely time consuming and
tedious to execute with current tools, which primarily rely on significant manual effort. While many
automated methods have been proposed, the practicality, scalability, and versatility of these approaches
remain a bottleneck stifling processing of large datasets. To overcome these challenges, this paper
introduces a novel, generalized segmentation framework called Vo-Norvana, which incorporates a new
voxelization technique, a normal variation analysis considering the positioning uncertainty of the point
cloud, and a custom region growing process for clustering. The proposed framework was tested with
several large-volume datasets collected in diverse scene types using several data acquisition platforms
including terrestrial lidar, mobile lidar, airborne lidar, and drone-based SfM-MVS photogrammetry. In
evaluating the accuracy of models generated from Vo-Norvana against manual segmentation, the average

error of the position, orientation, and dimensions are 2.7 mm, 0.083°, and 0.9 mm, respectively. Over 0.2
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million points per second and 36 thousand voxels per second can be achieved when segmenting an
airborne lidar dataset containing over 639 million points to about 1 million segments.

Keywords: point cloud, lidar, SfM, segmentation, voxelization, feature extraction

Introduction

Three-dimensional (3D) point clouds are a common form to digitally represent 3D objects or
scenes. Techniques such as light detection and ranging (lidar) and structure from motion (SfM) multi-
view stereo (MVS) photogrammetry have been adopted to collect 3D point clouds for numerous
applications (Olsen et al., 2013) supporting a wide range of disciplines. Lidar systems can be generally
categorized based on the acquisition platform into terrestrial laser scanning (TLS), mobile laser scanning
(MLYS), and airborne laser scanning (ALS). Point clouds contain the precise 3D location of each data
record and sometimes include other basic information such as color, intensity (strength of return signal
from lidar sensors), and so on. Additional processes including feature extraction, classification, and
modeling are often required to extract higher-level information for a variety of applications. Point cloud
segmentation is the process of grouping points based on common attributes such that instead of handling
each individual data record, subsequent process can operate with each segment as the basic unit rather.
Increasing spatial resolution and area of coverage in mapping efforts can raise data volumes
exponentially, which poses a substantial challenge for both manual and automated segmentation
approaches.

Herein, we propose a novel, generalized, and efficient point cloud segmentation framework to
cope with a variety of scenes (e.g., urban, rural, industrial sites, etc.) and systems (e.g., TLS, MLS, ALS,
StM/MVS photogrammetry, etc.). This paper describes the three primary steps of this automated
framework: data organization with a voxelization technique that can preserve geometric details, Normal
Variation Analysis (Norvana), and point clustering. Vo-Norvana offers several advances over existing

segmentation algorithms, including the ability to (1) cope with a variety of shapes in different sizes and
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produce high quality modelling results, (2) consider of positional uncertainty of the data both locally and
globally, reducing improper segmentation results from noise when combining scans or flightlines from
different locations, (3) achieve a much higher computational performance on large datasets (both in terms
of number of points and spatial extent), and (4) be versatile in processing data from a variety of systems
and scenes with minimal fine-tuning of parameters. These contributions are explored and demonstrated
through extensive testing of several representative datasets where the approached showed high accuracy
modelling results (within a few mm of manual modelling procedures), computational efficiency (over 0.2
million points per second and 36 thousand voxels per second for a large dataset of 639 million points).
Related Work

This section summarizes related research in point cloud segmentation. It will commence with a
brief background on segmentation followed by a description of common approaches to implement
segmentation including planar feature detection techniques, scan-to-bim processes, voxelization, data
structuring, and artificial intelligence.
Segmentation background

At its basic level, segmentation is a process to group points based on one or more common
attributes (e.g., intensity, color, normal, etc.). This process can divide millions of discrete points into
clusters such that instead of handling each individual point, subsequent processes can be efficiently
performed with each segment as the basic operating element, significantly reducing the data volume. For
example, generating thousands of geometric models directly from the original point cloud can be very
challenging given the ambiguity and complexity within a scene. In contrast, with a segmented point
cloud, the modeling or fitting technique only needs to fit one or a few primitives to the points within each
segment, resulting in more robust and efficient processing. Segmentation results can also be used as input
for object-based classification due to richer information provided within each segment compared with
individual points (e.g., Poux et al., 2020, Che et al., 2021a). Because manual processing of point cloud
data can be extremely tedious and time-consuming, much research has focused on different aspects of

automating point cloud segmentation in addition to point cloud processing more broadly.
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We recently conducted a thorough literature review on the subject of object recognition, feature
extraction, segmentation, and classification for MLS data (Che et al., 2019). Considering prior work
documented by other researchers and other detailed reviews of the state of the art (e.g., Grilli et al., 2017,
Xia et al., 2020), there has been a reasonably comprehensive coverage of existing segmentation methods
for both TLS and MLS. Thus, for the remainder of this section, we will focus on segmentation approaches
that apply to ALS and SfTM/MVS point clouds, as well as provide a summary of more recent or highly
relevant research associated with TLS and MLS to this work.

Compared with TLS and MLS, ALS data usually covers a much larger area and has a relatively
more consistent point density but generally suffers from limited coverage on vertical faces of objects
(e.g., buildings, trees, etc.) as well as lower resolution overall. Some of these issues can be reduced
through optimized flight planning such as lower flight altitude, higher overlap, and orientation of the
flight path (Vo et al., 2021). Given the large data volume and covered area, most ALS algorithms focus
on specific applications such as land cover classification, 3D reconstruction, or 3D urban modeling
(Wang, 2013; Wang et al., 2018).

Planar features

Within an urban environment, the vast majority of anthropogenic objects captured by ALS (e.g.,
roofs) consist of planar surfaces. Xia et al. (2020) thoroughly reviewed the state-of-the-art in extracting
geometric primitives such as planes from 3D point clouds. Since that review was published, several new
algorithms have been proposed (e.g., Poz et al., 2020, Wang et al., 2020, Zhu et al., 2021, Zhang et al.,
2021). Towards the objective of fitting a plane, one or multiple techniques are employed for segmentation
including the Hough transform, principal component analysis (PCA), random sample consensus
(RANSAC), and/or region growing. In application to ALS data, most of these approaches have been
focused on extracting roofs. Zhao et al. (2021) compared these techniques for roof segmentation and
found that most approaches proved effective for their test datasets. Nevertheless, these approaches
focused on only extracting planar surfaces such as rooftops, which can result in many artefacts of under-

and over-segmentation for other geometric shapes (e.g., spheres).
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A generalized segmentation algorithm capable of working with many different types of surfaces
is necessary for reliable execution of subsequent processes such as classification (Vosselman, 2013).
Other methods eliminate small planar segments by classifying point clouds into smooth and rough surface
segments (e.g., Ni et al., 2017) in an effort to improve the segmentation. Point cloud segmentation
algorithms for forest scenes are focused on individual tree segmentation (e.g., Wang et al., 2019, Yang et
al., 2020).

In principle, most of the aforementioned methods should also be adaptable to point clouds
generated with lidar or SEIM/MVS data obtained from an uncrewed aerial system (UAS) platform because
it has a similar scan acquisition geometry. However, to-date very few methods have been rigorously
tested and demonstrated on UAS-lidar or SEIM/MVS data likely due to differences in applications and
variant noise levels from these systems.

Scan-to-BIM segmentation

Some approaches have been developed specifically for ground-based lidar point clouds, primarily
for handling planar surfaces to extract features from building fagades, indoor environments, bridges, and
other anthropogenic objects. These features are then used in applications such as 3D model
reconstruction, building information modeling (BIM), quality control inspection, progress tracking,
cultural heritage, and so forth (Wang & Kim, 2019). As an example, Maalek et al. (2018) proposed a
technique utilizing PCA that segments the point cloud into planar and linear features for the purpose of
tracking progress on a construction site. Bassier et al. (2017) proposed an approach based on region
growing and conditional random fields for the reconstruction of BIM models.

Voxelization

The voxelization process often organizes the point cloud into 3D grids or cubes containing a
number of points whereas supervoxels can be derived by refining the boundary considering the
homogeneity in terms of predefined attributes. The majority of generic segmentation approaches have
been developed based on voxelization (e.g., Vo et al., 2015) and super-voxelization (e.g., Mahmoudabadi

etal. 2013, Lin et al., 2017, Dong et al., 2018, Huang et al., 2019). For example, Xu et al., (2021)
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performed a comprehensive review on voxelization and super-voxelization methods and applications.
These voxels or supervoxels themselves inherently provide an over-segmented result, requiring an
additional step to cluster the supervoxels. It is worth noting that the supervoxelization is particularly
effective for buildings and scenes containing large planar surfaces. Unfortunately, investigation of its
performance for other curved surfaces has been limited.
Scan Pattern Grid

Recently, we proposed an efficient segmentation approach, namely Norvana (Che & Olsen,
2018). Norvana operated specifically on TLS data to take advantage of the scan pattern grid, which
enabled all points within a scan to be stored into a compact 2D grid representation without any
information loss. We then extended this conceptual idea to MLS data and developed Mo-Norvana (Che &
Olsen, 2019), by introducing a robust trajectory reconstruction method that regenerates the scan pattern
from an unorganized MLS point cloud. Both approaches proved to be very efficient, scalable, and capable
of tackling a variety of shapes and objects.
Artificial Intelligence

Lately, due to the rapid development of computer vision, deep learning, and artificial intelligence
(AI) technology combined with the growing availability of computing resources and public datasets,
numerous studies have used Al for 3D point cloud processing. Rather than segmenting the point cloud
into groups (i.e., instance segmentation) based on the surface characteristics, the computer vision and Al
communities tend to be more concerned with classifying or labeling each individual point directly (called
semantic segmentation) (Poux & Billen, 2019, Xie et al., 2020). Before deep learning became a widely
popular technique in semantic segmentation for 3D point clouds, some work utilized machine learning
methods. For example, Weinmann et al. (2015) analyzed different techniques in each step of a machine
learning framework for semantic segmentation including neighborhood selection, feature extraction,
feature selection, and supervised classifier. Recently, Bello et al. (2020) conducted a critical review on the

use of deep learning in processing point clouds. In addition to this work, several relevant state-of-the-art
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review papers have been published that focus on specific applications such as autonomous driving (e.g.,
Lietal., 2021) and 3D heritage (Matrone et al., 2020).

Although it is undeniable that the deep learning technique is powerful and has tremendous
potential in the context of point cloud processing, it is worth noting that most of the datasets used to
develop and test these deep learning frameworks are often substantially sparser with significantly less
geometric details than the dense point clouds acquired with survey-grade systems (Hackel et al., 2017).
Additionally, most deep learning approaches require extensive compilations of high-quality training
datasets to tackle a variety of systems and scenes, which is difficult given that the publicly available 3D
training dataset cover very limited scenarios. Unfortunately, labeling 3D point cloud manually to generate
training datasets can be tedious, time consuming, and often subjective. This immense effort required is
rarely reported quantitatively, resulting in difficulties in predicting the cost of establishing an effective
benchmark dataset. Hence, given this reliance on substantial training datasets, deep learning approaches
face challenges of scalability and versatility for processing typical lidar datasets collected for the complex
built environment.

Summary of Limitations

Although the aforementioned studies present reasonable segmentation results to different degrees,
three important limitations in the state-of-the-art can be summarized as follows:

(1) The overwhelming majority of approaches focus on extracting planar patches or surfaces.
Consequently, such assumptions substantially impact their performance on other basic shapes or more
complex objects common within the built environment. In particular, this limitation significantly hinders
the application to outdoor scenes, which consist of both geometric primitives and irregular shapes.

(2) Most existing approaches were only tested on a single dataset or several small datasets on the
order of hundreds of thousands to a few million points. Many have also only been tested for a relatively
small area where basic down-sampling can substantially reduce the data volume without significant loss
of information. In practice, typical point cloud datasets often obtain hundreds of millions to billions of

points and cover large areas. The efficiency of the majority of these methods do not scale linearly with
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point size and sufficient information is not often reported to understand how they scale to larger datasets.
Processing time typically increases exponentially with larger volumes of data resulting from the higher
computational complexity, often involving many iterations and global optimizations.

(3) Very few studies test their segmentation methods on a variety of datasets from different
platforms; most are geared towards to a specific system and application. Because deploying multiple lidar
and/or drone systems on a single project is becoming more and more common to maximize coverage and
completeness as well as improve efficiency throughout the area of interest, it is crucial to have a method
available that can simultaneously handle data from different sources. Lastly, a general-purpose
segmentation approach can also improve data reuse and increase the value of the point cloud data as it
supports many downstream analyses and applications. For instance, to be able to reconstruct 3D as-built
models from high resolution point clouds to create digital twins, an automated and scalable segmentation
is required to reduce the data complexity and simplify the modeling process by dividing the unorganized
data into more manageable and meaningful groups.

Objectives

To overcome these limitations, we propose a novel, generalized segmentation framework, namely
Vo-Norvana, that: (1) copes with a variety of regular and irregular shapes and objects; (2) reliably
processes and efficiently scales to handle expansive, unorganized point cloud data containing hundreds of
millions of points; (3) considers the level of uncertainty of the point cloud data to improve the
segmentation, and (4) robustly handles data collected from different scenes and systems. We will
illustrate the workflow in the methodology section and then present a series of experiments to
demonstrate the effectiveness of the proposed approach both qualitatively and quantitatively.

To clarify the novelty of the proposed approach, especially compared against our prior work
including Norvana (Che & Olsen, 2018) and Mo-Norvana (Che & Olsen, 2019), we will explain key
differences and innovations. First, Vo-Norvana structures the unorganized point cloud data via a new
voxelization approach whereas Norvana and Mo-Norvana exploit the scan pattern grid, requiring specific
sensor parameters and/or organized input data. Consequently, the proposed Vo-Norvana algorithm is able

8
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to cope with a much broader range of 3D point cloud data from any platform (both individually and
merged together) while the previous approaches can only handle specific data collected from TLS and
MLS systems, respectively. Additionally, without being limited to work solely within a scan pattern grid,
the proposed approach supports analysis at a custom scale that can be different from the acquisition
resolution. Lastly, it is also worth pointing out that although all these three methods share a similar
concept in the normal variation analysis, the implementation of the Vo-Norvana is fundamentally
different in how it handles the data to compute the normals as well as its ability to consider the data

uncertainty, enabling rougher surfaces to be effectively extracted.

Methodology

The Vo-Norvana segmentation takes full-resolution georeferenced or registered point clouds as
input without requiring any prior cleaning or subsampling. The segmentation consists of three primary
steps (Figure 1), including: data organization (Section 2.1), normal variation analysis (Section 2.2), and
point clustering (Section 2.3). Firstly, the input point cloud data is partitioned into 3D tiles with overlap
along the boundary followed by a new voxelization approach that can reduce the data volume while
preserving more geometric details compared with traditional voxelization methods. Secondly, in each 3D
tile, each point will be analyzed with its neighbors to classify it as a smooth, rough, or invalid surface
point. Then, based on the classification result, a custom region growing algorithm groups each class of
points. Finally, the point classification and clustering results are mapped back to the original input
datasets to ensure the integrity of the data and generate the full segmented point cloud.

Data Organization

Many voxelization approaches suffer from excessive memory consumption due to numerous empty
voxels. Consequentially, methods directly exploiting voxelization for organizing a point cloud must balance
the voxel size with the spatial extent of the point cloud. For example, for a 100 by 100 m area with a vertical
extent of 50 m, an analysis at a scale (i.e., voxel size) of 0.05 m requires 4 billion voxels to be constructed.

This large quantity of voxels is difficult to manage and significantly hinders processing including the point
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cloud segmentation as each voxel has to be analyzed. Sometimes multiple iterations are required, further
compounding the processing time. Additionally, using the aggregated information from voxels (e.g., single
point at the center or centroid of a voxel) instead of the actual points can result in loss of geometric details.
For instance, some methods resample the point cloud with the center coordinates of each voxel occupied
by one or more points, while others use the average, median, or centroid coordinates of all the points within
each voxel. Although these methods can simplify the analysis and reduce the computation complexity, they
result in difficulty in precisely representing the geometry of an object. Hence, we propose a dynamic
voxelization process to organize and structure the point cloud while preserving more geometric details.
3D Tiling

First, in the tiling process, we align the point cloud with the principal axis computed from principal
component analysis (PCA) to reduce the total number of voxels required (Figure 2). In many cases, a
rotation of the point cloud data about the Z-axis only would suffice for reducing the memory consumption.
Secondly, we partition the point cloud data via coarse 3D tiles such that the more intense computations can
take place in each tile to achieve high efficiency and low memory consumption. Then, to avoid boundary
artifacts and ensure subsequent processing is seamless across adjacent tiles, we buffer each side of a 3D tile
to provide overlap. The buffer size should be determined by considering the size of the searching window
utilized in the subsequent processes to ensure a seamless analysis throughout the workflow. In the presented
implementation of the proposed segmentation method, the minimum width of the buffer is 2 voxels on each
side, and the dimension of each 3D tile is initialized as 200 times of the voxel size, Sy, such that each 3D
tile contains ~8.5 million (204 x 204 x 204) voxels in total. This allows the processing to balance between
multiple factors including the extent of the data, typical size of a segment, the computing capacity (e.g.,
RAM, number of threads) and so on. It is also worth noting that the proposed framework includes the
process of merging all the analysis results at the point clustering stage to cope with the large segments
covered in multiple tiles.

Voxelization

10
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Recently, we introduced a related voxelization approach to down-sample point cloud data and
demonstrated its effectiveness for ground filtering (Che et al., 2021b). Herein, we significantly improved
this new voxelization approach to organize the point cloud data to enable more efficient data processing,
especially in terms of memory consumption.

Because each 3D tile can be processed independently, only the memory associated with the voxels
within the specific tile under analysis need to be allocated at a time. Thus, we can dynamically voxelize the
point cloud within each 3D tile while still liking the information and analysis results associated with each
point back to the original point cloud throughout the entire process. In other words, the 3D tiles and voxels
only serve as a structure to organize the point cloud, but do not actually down-sample the data for the final
results as is commonly performed with most voxelization techniques. To further improve the efficiency,
we record the indices of the 3D tile and voxel for each point such that the points can be directly mapped to
the proper voxel and 3D tile with limited computational expense in case multiple iterations or processing
steps are needed. To preserve the geometric details, we mark the point that is closest to the center of the
corresponding voxel as core point candidates to represent the 3D coordinates of that specific voxel (Figure
3). Notice that we utilize the voxel center rather than the barycenter or median coordinates because the
point clouds can have highly variable point density, especially for lidar data. As a result, other approaches
can bias the sampling result and result in challenges associated with modelling multiple scans and/or data
sources. Next, to further normalize the point density, at each core point candidate, we search its neighbors
with a diameter of half of the voxel scale and determine if it is indeed the core point with the shortest
distance to the corresponding voxel center. If so, this core point candidate is marked as a core point while
all the other points in the voxel are classified as accessory points.

After labeling the point cloud as core and accessory points, we can directly simplify the data
robustly with a consistent point density by sampling the core points for the initial analysis before linking
the results back to the full point cloud for the full segmentation. Compared with most other voxelization
techniques, the proposed approach can preserve more geometric details because it samples from the original
points rather than re-sampling using voxels or aggregating points. For example, given the point cloud in

11
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Figure 3, simply using the voxel centers for re-sampling (occupied voxels) would completely fail to
represent the zigzag pattern. If the re-sampling is conducted by taking the average or median coordinates
of all points in each voxel, the sharp corners would likely be undesirably smoothed. Moreover, to ensure
the robustness of the computation, a minimum number of points is often required. In other cases, a larger
voxel size S, is needed, which would compromise details. Fortunately, the proposed voxelization
framework keeps the original point cloud and only the core points are distributed with consistent spacing.
Thus, further analysis for point cloud segmentation can be applied to the core points only with reduced
computational complexity, followed by projecting the analysis and segmentation results from the core
points to the accessory points to ensure the completeness.
Norvana

Our prior work of segmentation methods developed exclusively for terrestrial laser scanning (TLS)
and mobile laser scanning (MLS) data both organize the point cloud data into a 2D scan pattern grid,
followed by a normal variation analysis (Norvana), which exploits this data structure (Che & Olsen, 2018;
Che & Olsen, 2019). In contrast, in this work our objective is to develop a general segmentation approach
that can handle any type of point cloud. Hence, we generalize this technique by extending the same concept
into 3D space as well as introduce several significant improvements to allow more flexibility in handling
handle different types and qualities of point clouds. For example, while the 2D scan pattern grid embeds a
lot of constraints in terms of both geometry and topology in neighbor searching, additional geometric
constraints need to be added when generating a local triangular mesh in the proposed generalized Norvana
stage. In addition, we now consider the data uncertainty including both local (e.g., ranging precision) and
global (e.g., registration accuracy) errors during the Norvana process. Furthermore, although the previous
versions of Norvana were able to identify smooth surfaces, they were sensitive to vegetation and other
rough surfaces. To overcome this limitation, we implemented a multi-step feature classification to
categorize the point cloud into smooth, rough, or invalid surfaces as well as unclassified points such that

they are handled differently in the segmentation.
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With the voxels serving as indices of the point cloud, a variety of neighbor searching strategies can
be employed efficiently. Given a point or coordinates, we define its neighbor as the points lying within its
corresponding and adjacent voxels. As a result, a total of 26 voxels needs to be jointly examined for
neighbor searching. The normal vector at each point can be estimated by computing the eigenvector
corresponding to the smallest eigenvalue derived from this point and its neighboring core points utilizing
singular value decomposition (SVD). Notice that the normal estimation can take place at a different scale
than the selected voxel size. The core points will be labeled as unclassified if the normal estimation does
not yield a valid result (e.g., no close neighbors). Otherwise, the normal variation analysis is performed to
each core point with its neighboring core points searched from its adjacent neighbor voxels. When the
number of the core neighbor points for a core point is less than the given threshold (TN Neighbors)> this core
point is directly classified as an invalid surface point because it cannot form a reliable local surface for
further analysis. Otherwise, the 3D coordinates of a core point and its neighbors are projected to a local
coordinate system to align with the normal vector where the core point under analysis is defined as the
origin, the normal vector is defined as z’-axis, and the x’ and y’-axis are set arbitrarily.

One limitation of the segmentation analyzing the normal variations is its sensitivity to the positional
errors and surface roughness (Che & Olsen, 2018). To cope with the positional uncertainty within point
clouds, we adjust the positions of the neighboring core points towards the core point under analysis in z’
direction (Figure 4). Note that this adjustment is only performed temporarily for this local normal
computation, and the actual coordinates of the point remain unchanged. We consider two types of
uncertainty and simplified them by utilizing two constant parameters, 0joca and Ogjgpar- If the neighboring
core point is from the same source (e.g., scan, flight line, sensor), we utilize gy,.,, Which can be set as a
function of the ranging accuracy according to the specifications of the system (mm- to cm-level). When
combining data from different sources, in addition to gj,.,, we further consider the errors from data
processing (e.g., registration, georeferencing) by defining the global uncertainty gy, (mm- to cm-level),

which is often available in a data processing report. In some cases, the system specifications and/or data
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reports are not available, the parameters can be estimated by measuring deviations of the point cloud in
localized areas until a reasonable sample is obtained. To further consider the uncertainty at the core point
in the following local analysis, the maximum allowable adjustment of its neighbor core points is set as two
times of the gy, Or Oglobal-

Because we assumed that the point cloud only captures the surface of an object, we remove the
neighbor core points that are closer than 0.25S,, on the x’-y’ plane to avoid creating a complex triangular
mesh locally. Next, we sort the neighbor points by their projected horizontal angle () within the x’-y’ plane
and generate a triangular mesh around the core point under analysis. To avoid sharp triangles and improve
the robustness of the segmentation, when the angle 6 exceeds a threshold Ty (maximum tolerant angle), the
core point under analysis is marked as an invalid surface. Otherwise, the normals of each triangle can be
computed, and the normal gradients at the core point under analysis in different directions are computed
with each pair of triangles in the local mesh. We further compare the largest normal gradient against a
threshold of Txnorm (Maximum tolerated normal gradient) to label the core point under analysis as a smooth
(£ Tanorm) Or rough surface point (> Tanorm)-

Point Clustering

Several algorithms have been proposed to cluster points based on common attributes. For example,
connected components is a common approach to efficiently group linked voxels with limited constraints
due to the straightforward and fast neighbor searching process (Olsen et al., 2015) from the organization
provided by the voxelization. Meanwhile, region growing is another common point clustering method very
similar to connected components; however, it typically requires more constraints (e.g., difference in
normals), providing more flexibility (Che & Olsen, 2018). In our proposed method, we extract smooth,
rough, and invalid surfaces in order by utilizing some of the core concepts of the connected components
approach to segment the point cloud but with different constraints and criteria (Table 1) similar to a region

growing process. For each class of surfaces, the core points are first clustered and then mapped to their
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nearby core and accessory points. Such a process enables high efficiency via the voxel-based neighbor
searching while each surface class can still be segmented based on their general geometric characteristics.

Specifically, we initiate the core point clustering by grouping the smooth surface core points. To
determine whether a cluster from a core point can grow to a connected one, we first compute the difference
of normals at these two core points (ANorm in Figure 5). There are cases in which points lying on different
surfaces have similar normal vectors. As a result, only checking the normal gradient can result in under-
segmentation issues where multiple surfaces can be grouped into the same segment. To cope with this
situation, we temporarily adjust the position the one core point (point B in Figure 5) under analysis along
the direction of the normal vector of the other point (point A in Figure 5) following the same process
described in Section 2.3. Next, the normal vector as well as the adjusted coordinates of point B (point B’ in
Figure 5) can be used to define a plane. On this plane, we assume point A and point B’ both lie on an arc
where the normal vector at B’ can be computed. This yields another estimation of normal difference
between these two core points (ANorm"). The same analysis is then applied with point B swapped for point
A to obtain another estimation of normal difference. Ultimately, this analysis essentially combines the
estimation of both curvature and the normal gradient, strengthening the robustness by providing a total of
three estimations of the normal gradient between points A and B. To grow from one smooth surface core
point to the other, all three estimations need to be equal to or less than the threshold Tanorm-

After clustering all of the smooth surface core points, we dismiss smaller segments if the number
of core points within a segment contains are less than a user-given parameter, Ty cores- Then, for each point
that does not belong to a smooth surface segment, we first adjust and estimate the normal difference with
all of its neighboring core points, which are segmented using the same approach as the core points. Among
all the neighboring core points meeting the criteria of growing, we populate the point under analysis using
the segment ID of the one with the shortest projected distance along the normal vector. This mapping
approach not only groups the accessory points lying on a smooth surface to the nearest surface segment but

also groups points lying on a sharp edge of multiple surfaces.
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To further cluster the rough and invalid surfaces, we group the smooth and rough surface core
points that have not been assigned to a segment first. The same procedure as segmenting smooth surfaces
is followed but with different criteria to determine whether a point belongs to a rough surface. Because a
rough surface has a larger deviation in the surface normal direction (Points D, E, and F in Figure 5), the
metrics that we use for smooth surface would over-segment the point cloud in many cases. Hence, we
simply compute and compare the normal difference between two points against the threshold Tanorm to
preserve the rough surface. This result is refined by examining the number of core members Ty _¢ores Which
can be given based on the voxel size S, and the minimum dimension of the objects of interest in the scene.
Finally, all of the core points that have not yet been tagged with a segment ID are grouped into invalid
surface segments. The same procedures are followed where the criterion is the 3D distance, which has
already been embedded in the voxel-based neighbor searching, similar to connected components. The points
tagged to a segment that fails to meet the threshold of Ty ¢ores Will be assigned as unclassified noise.

Lastly, some core points lying along the surface edges as well as some of the accessory points may
not yet be segmented. To map the core point segmentation results to these unlabeled points, we use the
similar criteria to determine whether an unlabeled point belongs to a segment or not. Note that because the
estimated normal of a point located on the edge between surfaces can be unreliable, for smooth surface
segments, we only take one estimation of the normal gradient with the known normal vector of the
segmented core point. If more than one segment meets the criteria at an unlabeled point, this point will be
labeled as the same with the closest labeled core point. The projected distance is used for smooth and rough
surface segments whereas the 3D distance is used for invalid surfaces.

Experiment
Overview

We tested the proposed Vo-Norvana segmentation both quantitatively and qualitatively with five

distinct datasets (Figure 6, Table 2) from different systems to examine the effectiveness and versatility of

the proposed method. Notably, Table 2 relates key information related to each dataset (e.g., dimensions
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and point count) and parameters used in processing (e.g., voxel size) to several metrics for evaluating
processing efficiency. The first dataset consists of a single TLS scan (Leica ScanStation P40) acquired in
an indoor setting and captures basic geometric shapes for quantitatively evaluating and comparing the
quality of the segmentation results for modeling purposes. The remaining datasets are significantly larger
in terms of both data size and extent to evaluate the scalability and robustness of the method, including a
TLS dataset containing 8 scans, a MLS dataset collected by a Leica Pegasus:Two system, an ALS dataset
containing 20 flightlines, and a point cloud data from an uncrewed airborne system (UAS) using SfM
MVS photogrammetry. Note that the adjusted extent is the dimension of the data after the data is rotated
to align to its principal axis (Figure 2) while a voxel containing at least one data point are defined as a
valid voxel. All data are stored in an unorganized format, namely LASzip (i.e., LAZ), compressed from
the ASPRS LAS format (Isenburg, 2013; ASPRS, 2019). Additional details about each dataset and the
selected parameters will be discussed in the following sections. The metrics of quantifying the efficiency
of the proposed method (Table 2) are discussed in details in the Computational Performance section.
Computational Performance

The proposed algorithm was implemented using C++ with OpenMP parallel programming within
the Visual Studio 2019 platform. All tests were performed on a desktop computer configured with Intel
Xeon W-2145 CPU @ 3.70 GHz (8 cores, 16 threads) and 128 GB RAM. The processing times reported
in Table 2 for each dataset includes all steps (e.g., data preparation, normal estimation, voxelization,
segmentation, etc.) except for data 1/0O. To holistically evaluate the computational performance of Vo-
Norvana, in addition to the overall processing time, we calculate the point, voxel, and segment-based
performance. The point-based performance is computed using the total number of points to represent the
data volume, in general. Because the voxelization process simplifies the data, the spatial extent of the
dataset and voxel size should also be considered when analyzing processing times. We calculated the
voxel-based performance using the total number of valid voxels so that empty voxels were excluded.
Because the highest resolution voxel size is ultimately a function of the point density and scale of the
features to be extracted, the voxel-based performance turned out to be somewhat consistent across the
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different datasets. It is worth noting that although a larger voxel size can increase performance, the lower
resolution can substantially limit the use of the data. One reason behind the lower voxel-based efficiency
for the TLS dataset is that it has a relatively large extent in the Z direction compared with the MLS, ALS,
and UAS-SfM datasets. This imbalance potentially reduces the spatial coherence when loading data into
the cache. Lastly, the number of segments represents the overall complexity of the scene given the voxel
size; hence, we calculated the segment-based performance (i.e., number of segments per second) to
highlight the variety of the testing data in terms of the scene complexity.

In summary, based on the results presented in Table 2, Vo-Norvana is highly efficient in
processing unorganized point cloud data with a wide range of complexities. In addition, the extraordinary
scalability of our approach is demonstrated by successful testing of datasets containing hundreds of
millions of points.

Accuracy Assessment

Many researchers simply report the accuracy of a segmentation method using a point-based
assessment using common statistical metrics such as recall, precision, F-1 score, accuracy, and so on.
Unfortunately, such metrics treat each point with the same weight; as a result, they can be substantially
biased by the segment size when a dataset is large where larger segments dominate and the finer details of
relatively simple segments are ignored. Thus, we assessed and analyzed the accuracy of Vo-Norvana by
evaluating fitted geometric models derived from the segmented point clouds. The reference models we
used are derived from the manual and Norvana segmentations from our prior work of the same
benchmark dataset (Che et al. 2018), which consists of one plane, two spheres, two cylinders and two
cones.

A voxel size of 0.01 m was used to be consistent with the analysis scale used in our prior work
developing Norvana. In Vo-Norvana, a local error gy, of 3 mm was given based on the scanner
specifications. Unlike Norvana, Vo-Norvana does not have a designated step to remove mixed pixels
given that the scanner location is unknown due to the unorganized data format. However, we found

increasing the minimum and lowering the maximum neighbor angles Ty can somewhat mitigate errors
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caused by mixed pixels. For the comparison, the intermediate results of segmenting the core points as
well as those from the full segmentation (Figure 7) are both evaluated to demonstrate the ability of Vo-
Norvana to preserve geometric details with the benefits of mapping the results back to the full point cloud
rather than work with a down-sampled version as is common in many other works.

In addition to the manual and Norvana segmentation, we also performed segmentation via
RANSAC and QTPS (Zhu et al., 2021) for comparison. For both methods, we fine-tuned the settings to
match the parameters used in Norvana and Vo-Norvana. RANSAC was set to specifically detect planes,
cylinders, and cones from the input point cloud. It is also worth noting that we only used the RANSAC
segmentation/fitting results but not the shape recognition information because of the poor recognition that
occurred, especially between planes, spheres, and cylinders. The RANSAC segmentation produced 53
segments while QTPS segments the point cloud into 102 segments (Figure 7). Because QTPS was
developed primarily for ALS data targeting planar surfaces, it significantly over-segmented the curved
surfaces such that a meaningful comprehensive quantitative analysis could not be conducted for the
objects of interest.

The modeling process was then performed using the Leica Cyclone software with the RANSAC
option disabled to ensure the fitting was fully based on least squares. The error statistics are first reported
to validate the fitting quality of each model and method (Table 3). The mean, standard deviation, and
absolute mean errors among all the four approaches are mostly on par; however, the absolute maximum
errors for the Vo-Norvana results are slightly larger than, but still comparable with, the manual, RANSAC
and Norvana segmentation. As most of the absolute maximum errors are near the voxel size (0.01 m)
used in the voxelization, such differences can be largely explained by the specified scale of analysis.
Next, we compared the number of points in the segments for modeling which shows that the Vo-Norvana
segmentation is more similar to the manual process because both operate data in a 3D space, whereas
Norvana organizes data into a 2D scan pattern. Additionally, because Vo-Norvana considers the point

uncertainty in the process, it is less sensitive to noise compared with Norvana in our prior work.
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As another approach to further assess the accuracy of the modeling results using the different
segmentation approaches, we compared the position, orientation, and shape of the models (Table 4). As
the comparison shows, the accuracy of the position and shape is mostly at the millimeter, if not sub-
millimeter, level while the errors in orientation are generally lower than 0.1°. These errors vary with the
objects because of their shapes, sizes, materials and so forth. While in this simple case, the RANSAC
segmentation yields slightly better results overall mostly due to the extra input of the target primitives,
RANSAC was unsuccessful at obtaining satisfactory results with drastic over- and under-segmentation as
well as requiring a very long processing time on the other datasets tested. Also note that the accuracy of
the core-only segmentation is worse than the full Vo-Norvana result, which demonstrates that mapping
the segmentation results from the voxels to all of the points helps improve the accuracy in modeling
applications. Nevertheless, the core-only segmentation result can still be sufficient for many applications
to provide higher computational efficiency and lower data volume, if desired.

Versatility Tests

We further performed Vo-Norvana segmentation to process four large datasets acquired by TLS,
MLS, ALS, and UAS-SfM to evaluate the versatility and scalability of the algorithm. These datasets
cover a wide range of data collection methods, scene types, and objects. We also attempted to test several
existing methods (e.g., RANSAC, QTPS) for comparison. Unfortunately, these approaches struggled in
processing the large datasets (both point counts and spatial extent) and suffered substantial over and
under-segmentation given the complexity of these scenes. Hence a meaningful comparison is not
possible.

3.4.1 TLS Testing

The TLS test dataset was collected near Weatherford Hall located on the Oregon State University
campus in Corvallis, Oregon, United States. The angular resolution of each scan is 0.02° and the
maximum range is 120 m. Given that this dataset contains multiple scans registered together, the reported

registration RMS error statistic of 6 mm is used to estimate ,jopa- The voxel size was set as 0.05 m based

on our prior work while the minimum segment size was set to 50 voxels to minimize segmentation of
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small objects. All other parameters (i.€., Gjocat, TaANorm> IN_Neighbors> 19) Were kept the same as the

benchmark test to demonstrate that the method is not highly sensitive to parameter selection (Table 2).
Not that this same dataset was also tested and documented in detail in our prior work (Che & Olsen,
2018) for comparison.

Vo-Norvana categorizes the input point cloud into four classes: smooth surface, rough surface,
invalid surface, and unclassified noise. For the TLS dataset (Figure 8), man-made objects such as road,
sidewalk, and buildings are mostly classified as smooth surface while the tree trunks and grass
categorized as rough surfaces. Tree branches and leaves, as well as other linear or other irregular shapes
are mostly tagged as invalid surfaces, whereas the unclassified noise primarily consists of small clusters.

Close-up views of different objects further highlight the effectiveness of the proposed approach
(Figure 9). For example, the architectural features (e.g., divided blocks, columns, windows, etc.) were
correctly segmented for the building fagade (Figure 9 (A) and (B)). Note that the fagade below the
balcony at the bottom of the building is a curved surface. Similarly, the curb face is effectively segmented
as a single segment (Figure 9 (B)). Additionally, several moving objects were captured during the scans
(e.g., vehicles, bikes, pedestrians, etc.), resulting in numerous unwanted points in the data. Vo-Norvana
effectively segmented these points into clusters such that they can be easily removed given that these
objects were grouped into segments mostly classified as invalid surfaces. For the trees, which vary in
species and sizes throughout the scene (Figure 9 (A) and (C)), the tree trunks and crowns were separated
into different segments because they were categorized into different classes, as discussed in the prior
section.

MLS Testing

Next, we evaluated the proposed method on an MLS dataset collected along a 1.3 km stretch of
road through a sub-urban area in Philomath, Oregon, United States with an average speed of 6.7 m/s and
an angular resolution of 0.07°. Compared to the TLS data consisting of multiple scans to cover an area,
MLS data typically has a lower point density, depending on the range and driving speed. Moreover, in

addition to the ranging and angle measurement errors of the lidar sensor itself, because the GNSS
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receivers and Inertial Measurement Unit (IMU) provide direct georeferencing, the accuracy of MLS point
cloud is typically lower than TLS. As a result, we set the g}y, to 0.01 m based on empirical evaluation of
the data quality of several datasets with this specific system. The parameters Ty_eighbors and Ty were set
to 3 and 150°, respectively, due to the lower point density and rare occurrence of mixed pixels in MLS
data.

The segmented results (Figure 10) show that most ground points were grouped into a single
segment including the road, sidewalks, and driveways except for areas further from the scanner with a
local point density lower than the analysis scale (e.g., black points in Figure 10 (A, B)). Similar to the
TLS data, the sidewalk and roadway were segmented together because they are smoothly connected via
the curb ramps and driveways. Although most of the curbs were separated from the roadway and
sidewalk, some were over-segmented into smaller sections rather than as a long stretch as in the TLS
testing (Figure 10 (A, C, D, E)). The primary reason is that the point density in such areas is relatively
low, and hence the normal estimation is less accurate. In addition to horizontal features, the vertical
features were accurately segmented. For example, not only were the utility poles clearly distinguished
from the ground, but different components (e.g., pole, ground wire, guy wire, crossarm, transformer, etc.)
were also be separated into their own segments (Figure 10 (A, B, C, D)), potentially supporting detailed
modeling and further analysis. Some utility poles appear to be over-segmented (e.g., Figure 10 (D))
because the secondary wires occlude the MLS system at certain angles, dividing the pole into multiple
sections. If the point density is sufficient on the wires and powerlines, Vo-Norvana can be used to extract
and segment these linear features, which are classified as invalid surface points (Figure 10 (C, D)). Signs
of varying sizes located at different heights were accurately segmented with the poles and boards properly
separated. (Figure 10 (A, B, E)). In a few cases, the sign boards were spilt into two parts at the pole
because only the back of the sign was captured by the MLS system.

ALS Testing
Very few segmentation methods are tested on both ground-based and airborne lidar datasets.

Hence, to validate the versatility and scalability of the Vo-Norvana segmentation, we tested it with a

22



557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

massive, publicly available dataset (Laefer et al., 2017) collected in Dublin, Ireland, in 2015 (Figure 11)
encompassing an area of approximately 9 sq. km. More specifically, we selected all 20 flight lines on the
Northeast and Southwest direction from the entire dataset, comprising nearly 640 million points. A
typical ALS data processing workflow would partition the data into 2D tiles to make this immense data
volume more manageable early in and throughout the processing. While this approach is effective for
some processing tasks, tiling requires adding overlaps between tiles as well as additional treatments to
link segments across multiple tiles to ensure the consistency of the segmentation results, particularly near
the boundary of each tile. Since the Vo-Norvana segmentation establishes 3D tiles during voxelization as
only a temporary measure, we input the individual flight lines as separate files and processed the entire
test dataset directly without having to process as individual tiles. This strategy allowed us to account for
offsets between flightlines in the segmentation analysis compared to the typical processing approach of
merging data from all flightlines before tiling. The voxel size S, was determined to be 0.35 m based on

the typical point density while the local error g,y and global error gyqp, Were both 0.03 m according to

the data report (Laefer et al., 2017). We also set the minimum segment size to ensure each segment

occupied at least 10 voxels. The other parameters Tanorm» TN_Neighbors and Tg were kept the same with

prior tests to be consistent. Given the vast size and complexity of this dataset, herein we will showcase
select smaller regions across the dataset to demonstrate the effectiveness of the proposed approach. To
provide some reference of the actual scene, we added the corresponding satellite images along with the
screenshot of the segmented point cloud.

First of all, the ground surface (mostly paved road or sidewalk surfaces) was segmented into a
couple of very large segments, demonstrating that Vo-Norvana can serve effectively as a ground filtering
approach for ALS data in an urban scene (Figures 12-14). In this case, the ground (e.g., road surface,
sidewalk, etc.) did not turn out to be one segment because there are railroad tracks passing through the
scene and splitting the road surface into two parts. Then along the river, the water surface was clustered

given the fact that it appeared as a smooth or rough surface in the lidar data (Figures 12 and 14). In
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addition, the vehicles captured in the scene were not separated into individual objects (Figure 14) because
Vo-Norvana segmented the body of a car into multiple parts based on the distinct changes in geometry.

A variety of roof structures and types are presented in this area including flat, hip, valley, dormer,
dome, and others (Figure 12, 13, 15, and 16). Most of the roofs consist of planar surfaces and each face
was extracted as a segment. Admittingly, these simplistic roofs are relatively easy to tackle with any
segmentation approach where basic plane fitting can readily distinguish each face of the roof. However,
in contrast, the courts and church (the left and center of Figure 12) both feature a dome roof, which can be
very challenging to most existing methods. With Vo-Norvana, they were correctly segmented into a single
cluster while the tips were separated from the dome. Another example shows that Vo-Norvana also
managed to divide an octagonal roof to each planar face with other roof in different types and sizes
(Figure 16). It is also worth noting that most facets of the arched roof of the train station (Figure 15) were
segmented correctly with the exception of a few facets representing glass skylights that are adversely
impacted by the increased lidar ranging uncertainty. Nevertheless, despite these minor issues, Vo-
Norvana robustly copes with a variety of complex geometric surfaces throughout the scene.

The Vo-Norvana segmentation is proven to be capable of handling objects and features in a
variety of shapes and dimensions. The ALS dataset captures several other types of assets such as
streetlamps, traffic lights, and poles. Because the spatial resolution is much lower than typical TLS and
MLS data, the points lying on these objects were classified as invalid surfaces but were still segmented
properly (Figure 14). Similarly, the guard rails on the bridge were also clustered into a segment. In
addition to the infrastructure, tree crowns can be also of interest in the ALS point cloud, and Vo-Norvana
can be used to reliably distinguish individual trees within the point cloud. The points representing the tree
crowns were classified as invalid surface points, and each was typically clustered into a single large
segment; however, sometimes they were subdivided into a few smaller segments that can be grouped with
further process (Figures 12 and 13).

UAS-SfM Testing
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Lastly, we rigorously tested Vo-Norvana segmentation on a UAS-SfM point cloud, which tends
to be noisier compared with the TLS data. These data were collected from a historic paper mill next to the
Willamette Falls in Oregon City, Oregon, United States (Bresky, 2016) using a DJI Phantom 4 RTK UAS
with approximately 10 ground control points observed with GNSS and processed against a base station.
The post-processing was performed in Agisoft Metashape, providing a typical point spacing in the dense
point cloud of approximately 0.05 m. It is worth noting that even though multiple flightlines with
significant overlap were planned and flown to cover the area of interest, unlike the airborne lidar, the
point cloud itself cannot be divided into individual flightlines given that the SfM process requires data
from overlapping flightlines be combined to reconstruct the point cloud via bundle adjustment. As a

result, we considered the UAS-SfM point cloud as a single, merged point cloud and did not apply dyjopai

while setting gj,.4 to 0.01 m based on the residuals at ground control points. The other parameters were again
kept as consistent as possible with the other tests. Vo-Norvana yielded a quick but robust segmentation of
various features in the scene (Figure 17). For example, the hydroelectric dam (Figure 17 (A)) was
captured in the point cloud and segmented into different parts. In the paper mill, several storage tanks
with spherical or cylindrical shapes of different sizes were cleanly extracted (Figure 17 (B, C)). The
performance of the proposed segmentation of the roofs was robust (Figure 17 (D)) and similar to the
result of ALS testing discussed in the prior section.
Summary

In the experiment, we tested a total of five different point cloud datasets including a TLS
benchmark dataset, an outdoor TLS dataset collected in the university campus, an MLS dataset captured
in a suburban area, an ALS dataset covering an entire city in a high resolution, and a UAS-SfM point
cloud acquired from an industrial site. We first evaluated the computational performance of the Vo-
Norvana segmentation considering the number of points, data extent, and scene complexity (e.g., number
of segments). By exploiting parallel programming (8 cores, 16 threads), the largest dataset (ALS)
containing nearly 640 million points can be segmented within 50 minutes without any pre-processing.

Then, we assessed the accuracy of Vo-Norvana quantitatively by comparing its modeling results to two
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existing automated methods as well as manually derived results. The average differences of the position,
orientation, and dimension between the models generated from Vo-Norvana and manual segmentation are
0.0027 m, 0.0830°, and 0.0009 m, respectively, which indicates minimal difference between the methods.
Finally, we demonstrated the versatility of the proposed framework on TLS, MLS, ALS, and UAS-SfM
datasets. The results show that Vo-Norvana segmented these point clouds effectively and efficiently with
relatively consistent parameter settings. Because each parameter has a clear physical meaning, it is
straightforward for users to give proper values based on the data quality, target objects, level of detail
desired, and other factors. The high computational performance also enables efficient parameter fine-

tuning when needed.

Conclusion

This paper introduces a novel point cloud segmentation framework, Vo-Norvana, based on a
specialized voxelization technique that can preserve geometric details to a large degree. Vo-Norvana
consists of three primary steps, data organization, Normal Variation Analysis (Norvana), and point
clustering and provides segment IDs and classes to unorganized point cloud automatically. Vo-Norvana
was tested on a diverse range of datasets and scenes including terrestrial lidar, mobile lidar, airborne lidar,
and UAS-SfM. The data volume ranges from about 1.3 million points in a laboratory setting to nearly 640
million points at a city-wide scale. The segmentation results were evaluated and discussed both
qualitatively and quantitatively. Key highlights observed with the proposed approach are as follows:

1. Unlike most existing methods, Vo-Norvana is not limited to pre-defined geometric primitives
such that it can cope with a variety of shapes in different sizes to complete the segmentation
for general purposes. The automated modelling results derived from the segmented point
cloud can satisfy most applications.

2. Vo-Norvana also can consider the positional uncertainty of the data both locally and globally,
reducing improper segmentation results from noise when combining scans or flightlines from

different locations.
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3. By being designed to effectively take advantage of parallel programming, Vo-Norvana
consistently achieves a computational performance on the order of hundreds of thousands of
points or tens of thousands of voxels per second on a desktop computer. This efficiency holds
even when processing hundreds of millions of points that cover an entire city at a time,
demonstrating the outstanding scalability of the Vo-Norvana framework.

4. The versatility of the proposed approach was proven through extensive tests on point cloud
data collected from different scenes (e.g., architecture, sub-urban, urban, industry) using a
wide range of systems (e.g., ground and aerial-based, lidar and SfM-based) with relatively
consistent parameter settings which does not require extensive fine-tuning.

Although not directly demonstrated in this manuscript due to scope, the point cloud segmentation
results can be improved by combining multiple iterations of Vo-Norvana with different parameter settings
to perform a multi-scale analysis considering the objects of interest and adapting to the variable point
density within the scene. Such results can directly benefit semantic segmentation by feeding rich
information extracted from each segment determined at several different scales. We are currently utilizing
Vo-Norvana to enable efficient feature extraction, classification, modelling, and other applications, as
well as performing additional quantitative assessments of accuracy. For example, in our recent work, we
applied the proposed segmentation approach as a pre-processing tool to separate walls, floors, ceilings,
furniture, and other objects for supporting the Scan-to-BIM process including the 2D floor plan
generation and 3D modelling (Baru et al., 2022). In the future, we plan to leverage the Vo-Norvana
framework in developing novel machine learning and deep learning approaches due to its efficiency and

scalability.
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Table 1. Summary of the proposed point clustering ap,

proach for different types of surfaces.

Surface Clustering
Neighbor Searching | Member Core Points Criteria / Segment Criteria
Class
Thresholds
Normal gradient
Smooth Smooth (3 estimations)
TANorm
i . Number of b
ioe}ifehl?boolrrﬁ fil(;n;e%f Unclustered Smooth Normal gradient mber (7), core members
Rough £ £ + (1 estimation) N_Cores
Rough TaNorm
Invalid All remaining 3D distance
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Table 2. Key information (e.g., dimensions, errors), parameters, and processing efficiency for the
datasets used in the experimentation. The efficiency is reported in four metrics: processing time,

point-based, voxel-based, and segment-based performance.

Key Information and Parameters Benchmark TLS MLS ALS UAS-SftM
Number of scans/flight lines 1 8 1 20 1
Number of points 1,205,600 391,764,131 | 75,657,595 | 639,309,547 | 79,541,367
Number of valid voxels 96,655 18,688,805 | 23,933,223 | 105,012,969 | 17,596,719
Adjusted X extent (m) 3.0 289 1,367 2,818 344
Adjusted Y extent (m) 4.0 290 486 3,095 704
Adjusted Z extent (m) 3.0 44 153 518 60
Voxel size S, (m) 0.010 0.050 0.050 0.350 0.100
Local error gj,., (m) 0.003 0.003 0.010 0.030 0.010
Global error a4, (M) - 0.006 - 0.030 -
Min segment size Ty cores 100 50 50 10 10
Max no“nf‘clleggf fed;)em Tanorm 15 15 15 15 15
Min neighbor TN Neighbors 8 8 3 3 3
Max neighbor angle Ty (degree) 90 90 150 150 150
Number of segments 56 16,435 28,490 979,668 18,762
Processing time (s) 3 1,030 633 2,929 347
Point-based performance
(million pointi per second) 0.402 0.380 0.120 0.218 0.229
Voxel-based performance
(million valid Vogels per second) 0.032 0.018 0.038 0.036 0.051
Segment-based performance 19 16 45 334 156
(segments per second)
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Table 3. Summary of the quality of the model fitting statistics from the Manual, RANSAC,
Norvana, Vo-Norvana (Core) and Vo-Norvana (Full). Note that the Manual and Norvana results
were reported in Che & Olsen (2018) while RANSAC modeling was conducted in

CloudCompare.

Object Approach Error Statistics (m) #.of
Mean Std. Dev. | Abs. Mean | Abs. Max. Points
Manual 0.0000 0.0013 0.0011 0.0047 132,983
RANSAC 0.0000 0.0014 0.0011 0.0069 133,485
Plane Norvana 0.0000 0.0013 0.0010 0.0044 126,435
Vo-Norvana (Core) 0.0000 0.0014 0.0011 0.0092 6,989
Vo-Norvana (Full) 0.0000 0.0014 0.0011 0.0102 132,836
Manual 0.0000 0.0022 0.0018 0.0091 119,872
RANSAC 0.0000 0.0023 0.0019 0.0089 123,019
Spherel Norvana 0.0000 0.0022 0.0018 0.0091 117,257
Vo-Norvana (Core) 0.0000 0.0025 0.0021 0.0080 9,696
Vo-Norvana (Full) 0.0000 0.0023 0.0019 0.0092 122,153
Manual 0.0000 0.0010 0.0008 0.0048 40,109
RANSAC 0.0000 0.0011 0.0008 0.0091 42,132
Sphere2 Norvana 0.0000 0.0010 0.0007 0.0060 39,200
Vo-Norvana (Core) 0.0000 0.0013 0.0010 0.0056 3,660
Vo-Norvana (Full) 0.0000 0.0010 0.0008 0.0055 41,897
Manual 0.0000 0.0002 0.0002 0.0018 4,661
RANSAC 0.0000 0.0003 0.0002 0.0017 4,625
Cylinder1 Norvana 0.0000 0.0004 0.0003 0.0014 3,595
Vo-Norvana (Core) 0.0000 0.0003 0.0003 0.0015 265
Vo-Norvana (Full) 0.0000 0.0003 0.0002 0.0016 4,614
Manual 0.0000 0.0004 0.0003 0.0017 11,890
RANSAC 0.0000 0.0005 0.0004 0.0027 12.285
Cylinder2 Norvana 0.0000 0.0004 0.0003 0.0017 5,668
Vo-Norvana (Core) 0.0000 0.0012 0.0006 0.0131 1,145
Vo-Norvana (Full) 0.0000 0.0010 0.0005 0.0173 12,719
Manual 0.0000 0.0006 0.0004 0.0028 34,298
RANSAC 0.0000 0.0006 0.0005 0.0048 35,144
Conel Norvana 0.0000 0.0005 0.0004 0.0025 30,881
Vo-Norvana (Core) 0.0000 0.0007 0.0006 0.0044 2,192
Vo-Norvana (Full) 0.0000 0.0006 0.0005 0.0053 35,161
Manual 0.0000 0.0006 0.0005 0.0026 15,428
RANSAC 0.0000 0.0007 0.0005 0.0062 16,108
Cone2 Norvana 0.0000 0.0005 0.0004 0.0062 13,329
Vo-Norvana (Core) 0.0000 0.0008 0.0006 0.0045 1,062
Vo-Norvana (Full) 0.0000 0.0006 0.0005 0.0059 15,445

34



828  Table 4. Comparison of the modeling results using the RANSAC, Norvana, Vo-Norvana (Core) and Vo-
829  Norvana (Full) compared with the manually extracted results.

. Difference against manual modeling results
Object Approach — - -
Position (m) Orientation (°) Shape (m)
RANSAC 0.0027 0.0090 -
Norvana 0.0031 0.0069 -
Plane
Vo-Norvana (Core) 0.0101 0.0148 -
Vo-Norvana (Full) 0.0036 0.0123 -
RANSAC 0.0002 - 0.0003
Norvana 0.0001 - 0.0000
Spherel Vo-Norvana (Core) 0.0014 - 0.0015
Vo-Norvana (Full) 0.0001 - 0.0001
RANSAC 0.0002 - 0.0002
Norvana 0.0004 - 0.0008
Sphere2 Vo-Norvana (Core) 0.0006 -0.0006
Vo-Norvana (Full) 0.0001 - -0.0001
RANSAC 0.0003 0.1365 -0.0005
. Norvana 0.0015 0.7468 -0.0006
Cylinder1
Vo-Norvana (Core) 0.0019 0.1146 -0.0006
Vo-Norvana (Full) 0.0022 0.0845 -0.0004
RANSAC 0.0005 0.0044 0.0000
Norvana 0.0039 0.0152 0.0021
Cylinder2 Vo-Norvana (Core) 0.0023 0.0179 0.0009
Vo-Norvana (Full) 0.0023 0.0227 0.0009
RANSAC 0.0093 0.1308 0.0010
Norvana 0.0105 0.1776 -0.0031
Conel
Vo-Norvana (Core) 0.0246 0.3797 0.0025
Vo-Norvana (Full) 0.0061 0.0889 0.0011
RANSAC 0.0060 0.2528 0.0042
Norvana 0.0090 0.1509 0.0000
Cone2
Vo-Norvana (Core) 0.0078 0.4410 0.0025
Vo-Norvana (Full) 0.0045 0.2066 0.0030
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Figure 1. Workflow of Vo-Norvana framework for point cloud segmentation.

Figure 2. Example of the proposed PCA alignment and 3D tiling approach to optimize the partitioning of
mobile lidar data

Figure 3. Simplified 2D schematic of the proposed voxelization and subsampling approach.

Figure 4. Schematic illustrating proposed core point Norvana where point #0 (yellow) is the point under
analysis while the others are its 8 neighboring core points. The two graphs in the center show the
side view and top view of the points in the projected coordinate system of point #0. In the side
view, parameter o (i.€., Ojocal OF Oglohal depending whether the neighboring point and point #0 are
from the same source or not) represents the positioning uncertainty of a point with respect to
point #0. From the top view, point #8 is removed from the analysis to reduce the sensitivity of the
proposed analysis to the noise. The graph on the right shows the process of generating a mesh
where the angle 0 at point #0 for each triangle cannot be larger than T,

Figure 5. Growing process for smooth surface and rough surface where point A and B are both classified
as smooth surface core points while point D, E, F are classified as rough surface points. In the
process of growing from point A to B, two of the three estimations of the normal difference
between these two points are shown in the figure where point B’ is the adjusted position for point
B with the given parameter o (i.€., Ojocal OF Ogighal) While the third estimation is obtained in a
similar way with ANorm' by adjusting point A along the normal of point B. When clustering
points on smooth and rough surfaces, the estimations of normal differences are compared against
the user parameter Tanorm-

Figure 6. Overview of the lidar datasets used in the experiment, including the Benchmark, TLS, MLS,
ALS, and UAS SfM/MVS data.

Figure 7. Segmentation results from the benchmark data with RANSAC, QTPS, core points only and full
dataset with Vo-Norvana where each randomly assigned color represents a unique segment and

unclassified points are colored in black.
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Figure 8. Feature classification and segmentation result for TLS data where each distinct color
(randomized) represents a unique segment. Unclassified points are colored in black. Subplots
show smooth, rough, invalid and unclassified points.

Figure 9. Close-up views of the segmentation result on the TLS dataset where each color represents a
unique distinct segment. Unclassified points are colored in black. Close-ups are shown for the
building fagade (A) to highlight the ability to segment complex architectural details, a busy street
(B) with noise from pedestrians and vehicles to highlight the usefulness for noise removal, and
segmentation of individual tree canopies (C).

Figure 10. Segmentation result of the MLS testing dataset where each color represents a unique distinct
segment. Unclassified points are colored in black. Close-ups show the detailed segmentation of a
variety of urban objects including buildings (A and C), poles (A, B, C, and D), powerlines (C and
D), signs (A, B, and E), curbs (C, D, and E), and the road surface (A, B, C, D, and E).

Figure 11. Segmentation results for the ALS test dataset where each distinct color represents a unique
segment. Unclassified points are colored in black. Locations of closeup views for details shown in
Figure 12 - 16 are identified.

Figure 12. Close-up view of the segmented point cloud and reference satellite images near Four Courts
(left) and Adam & Eve’s Church and St. Audoen’s Church (right) where multiple types of roofs
are successfully segmented. Numbers show common points between the photograph and point
cloud for reference.

Figure 13. Close-up view of the segmented point cloud and reference satellite image near
Communications Workers’ Union consisting of trees, road, and buildings (roof).

Figure 14. Close-up view of the segmented point cloud and reference street view images at Talbot
Memorial Bridge where the pole-like objects in different sizes are segmented into individual

objects. The objects highlighted include street lamps (a, b, ) and traffic lights (c, d).
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Figure 15. Close-up view of the segmented point cloud and reference satellite image at Pearse Station
and St Andrew’s Roman Catholic Church where a variety of complex buildings present in the
scene.

Figure 16. Close-up view of the segmented point cloud and reference satellite image at Technological
University Dublin and Seetec jobpath Bishops Square where the roofs consist of a variety of

shapes.

Figure 17. Segmentation result of the UAS-SfM testing data where each distinct color represents a unique

segment. Unclassified points are colored in black. The close-up views include: (A) a

hydroelectric dam (the photograph is from the source UAS imagery dataset); (B) cylindrical and

spherical storage tanks in different sizes; (C) a cylindrical storage tank; (D) various types of
building roofs. Numbers show common points between the photograph and point cloud for

reference.

38



