Nano Energy 112 (2023) 108460

B WeE
Vo ! 4
nano energy

Contents lists available at ScienceDirect

Nano Energy

ELSEVIER journal homepage: www.elsevier.com/locate/nanoen " ooty

Check for

Face mask integrated with flexible and wearable manganite oxide e
respiration sensor

Lianxu Ye?, Fan Wu ", Ruixing Xu ¢, Di Zhang ¢, Juanjuan Lu ‘, Chuanlong Wang °,

Anjiang Dong , Sichen Xu ¢, Lejun Xue®, Zixin Fan', Longjie Xu“, Kaifeng Li®, Dong Li*,
Ahmed Kursumovic#, Run Zhao ', Rujun Tang®, Lei Qiu’, Haiyan Wang d

Judith L. MacManus-Driscoll ¥, Qingshen Jing ™", Weiwei Li*""", Hao Yang ™"

2 College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Y College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

€ School of Microelectronics & Data Science, Anhui University of Technology, Maanshan 243002, China

4 School of Materials Engineering and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

€ Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China

f Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of
Science and Technology, Suzhou 215009, China

8 Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 OFS, UK

" James Watt School of Engineering, University of Glasgow, Glasgow, UK, G12 8LT

i State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016,
China

ARTICLE INFO ABSTRACT
Keywords: Face masks are key personal protective equipment for reducing exposure to viruses and other environmental
Sensor hazards such as air pollution. Integrating flexible and wearable sensors into face masks can provide valuable

Flexible electronic devices insights into personal and public health. The advantages that a breath-monitoring face mask requires, including

multi-functional sensing ability and continuous, long-term dynamic breathing process monitoring, have been
underdeveloped to date. Here, we design an effective human breath monitoring face mask based on a flexible

Functional oxide films
La; _SryMnO3

Mica Lag 7Sro.sMnO3 (LSMO)/Mica respiration sensor. The sensor’s capabilities and systematic measurements are
investigated under two application scenes, namely clinical monitoring mode and daily monitoring mode, to
monitor, recognise, and analyse different human breath status, i.e., cough, normal breath, and deep breath. This
sensing system exhibits super-stability and multi-modal capabilities in continuous and long-time monitoring of
the human breath. We determine that during monitoring human breath, thermal diffusion in LSMO is responsible
for the change of resistance in flexible LSMO/Mica sensor. Both simulated and experimental results demonstrate
good discernibility of the flexible LSMO/Mica sensor operating at different breath status. Our work opens a route
for the design of novel flexible and wearable electronic devices.

1. Introduction directly revealed by breath status [4,5]. However, abnormal breath

parameters are frequently overlooked in many scenarios due to lack of
Human health and lives are under threat by respiratory viruses (e.g. proper monitoring equipment, which could indicate certain potential

COVID-19) and other pathogens. Respiratory viruses can attack the diseases [6]. For instance, breath rate is a valuable metric for deter-

human respiratory system such as lungs, leading to shortness of breath, mining clinical deterioration. A rising breath rate value beyond 27

lung damage, and impaired respiratory function [1-3]. The lungs are min~! is a predictive sign of cardiopulmonary arrest [7]. The abnor-

essential organs of the human body, when health conditions can be malities of breath, including imperceptible respiratory rate variability
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(RRV) [8,9], and sudden shortness of breath [10], indicate a
life-threatening alteration of the physiological status. A continuous,
long-term, multi-modal breath monitoring strategy is highly demanded
in clinical diagnosis and daily prevention.

Typically, breath rate of patients estimated by manual counting gives
discrete values, which cannot provide continuous, detailed information
about human respiratory status over a longer period of time or under
changing conditions without subjectivity and variance [11]. Further-
more, traditional nosocomial breath monitoring technologies have sig-
nificant drawbacks in accessibility for ordinary people due to their bulky
size, high cost, and the requirement for professional operation. Given
the remaining influence of the COVID-19 viruses, and other emerging
infective pathogens are still affecting the world, it is highly demanded
that respiration-related abnormality can be detected as earlier as
possible for timely treatment. Meanwhile, wearing a mask is an effective
approach to minimise the spread of viruses and prevent cross-infection
[12]. Therefore, a breath monitoring module that utilizes the face
mask as a carrier presents simplicity in collecting human breath pa-
rameters. The technological feasibility of monitoring human breath
using a face mask based on piezoelectret, thermistor or radio frequency
mechanism has sparked intensive scientific interest in recent years
[13-16]. Such a smart face mask is a meaningful application in clinical
therapeutics and daily prevention in minimising exposure to COVID-19
viruses and other environmental hazards. The waveforms of signals play
essential roles in judging health condition. For example, a deep analysis
to electroencephalograms (EEGs) and electrocardiograms (ECGs) could
provide significative information of the electrical activity of the brain
and heart, respectively [17,18]. Despite previously reported classes of
smart face masks which enable the real-time monitoring of human
breath rate, these masks do not consider the waveform of the response
signal and hence cannot satisfactorily reveal the physical condition to
the same extent as the EEG and ECG signals.

A typical smart face mask primarily consists of a sensing unit, a signal
reading circuit, and a control chip. The gained digital signals are
transmitted to the computer or a smartphone in wired or wireless way.
To fit on the surface of the mask and properly generate the response
signal for human breath, the sensing unit should be mechanically flex-
ible, breathing-airflow sensitive, and long-term stable. Typically, the
working principles of breath sensors include radio-frequency, capaci-
tance, piezoelectricity, triboelectricity, and resistance. For instance, a
multiscale porous organic substrate is printed with silver nanowires
(AgNWs) via spray printing to construct a radio frequency harmonic
transponder. A face mask configured with this transponder enables the
monitor of cough and mask-wearing state simply [13,14,16,19-22].
Resistive-type sensors present several advantages over other types,
including simple classes of materials, convenient manufacturing routes,
and straightforward measurement methods, which meet the re-
quirements of monitoring systems with minimum expenditure [23-26].
Additionally, the waveform generated by the resistive-type sensors is
smoother than that of others, which can deliver more details of the
human breath. Currently, sensors based on silicon, ZnO, reduced gra-
phene oxide (rGO), and other resistive-type materials are employed in
breath monitoring. For example, based on the piezoresistive principle,
the chemically etched Si nanorod arrays were manufactured and
demonstrated in sensing human breath. However, there are still some
problems that have not been solved. One is the multi-functional sensing
ability of the sensor to various human respiratory statuses, while the
other is continuous and long-term dynamic breathing process moni-
toring capacity [27-29].

Transition metal perovskite oxides are another type of sensor mate-
rials which can show a range of useful responses. Owing to the strong
coupling among spin, charge, orbital, and lattice degrees of freedom in
them, many fascinating physical properties such as superconducting,
half-metallic, ferromagnetic, ferroelectric, multiferroic, etc, are present
[30-39]. The half-metallic perovskite manganite oxides are particularly
attractive because of their diverse physical phenomena including (anti-)
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ferromagnetism (FM), colossal magnetoresistance (CMR),
metal-insulator transition (MIT), etc [40-42]. For example,
Lag.7Srp.sMnOgs (LSMO) has been widely investigated because of its high
Curie temperature among the manganites (T¢ ~ 360 K for bulk) and
almost full spin polarization at the Fermi level, which can be used for
designing novel electronic devices[43-45]. LSMO have been widely
employed in designing functional sensors, such as pressure sensor [46],
chemical sensor [47], humidity sensor [48] and strain sensor [49].
However, there is no special work reporting flexible and wearable LSMO
film as a human breath sensor. In addition, owing to the manganites and
Mica without toxicity, magnetic nanoparticles based on manganite
perovskite (Laj_4SryMnO3) have been widely utilized in various
biomedical applications, including therapeutic and diagnostic applica-
tions, e.g., magnetic hyperthermia therapy (MHT) and magnetic reso-
nance imaging (MRI) for the treatment of cancers [50]. Therefore, the
LSMO and Mica are very suitable materials for fabricating biocompat-
ible sensors.

In this work, we design a wearable human breath-monitoring face
mask by utilizing flexible LSMO/Mica sensor. The sensor shows long-
time response signals, demonstrating the system’s stable, restorable,
and endurable sensing ability when monitoring different breath modes,
i.e., cough, normal breath, and deep breath. We find the breath strength
and breath rate increase as human exercise intensity increases, accord-
ing to the results of the analysis of breath intensity, breath rate and the
shape of response signals. A combination of original signal waveform,
statistical breath intensity and breath rate offers the possibility to detect
abnormalities of the respiratory system. Furthermore, by comparing
simulated and experimental data, we confirm that thermal diffusion in
LSMO under the influence of breath airflow is responsible for the change
of resistance in flexible LSMO/Mica sensor during monitoring human
breath. Moreover, both simulated and experimental results demonstrate
good discernibility of flexible LSMO/Mica sensors for the applications of
monitoring different breath modes.

2. Results and discussions

We firstly fabricated LSMO thin films on flexible Mica substrates by
employing pulsed laser deposition with sintered LSMO target (Fig. S1).
High crystallinity LSMO thin films were epitaxially grown on Mica
substrates, according to the results of structural characterizations
including X-ray diffraction (XRD), high-resolution transmission electron
microscopy (HRTEM), and atomic force microscopy (AFM) (Fig. S2).
Moreover, the orientation relationship is determined to be LSMO [110]
|| Mica [001] and LSMO [1-11] || Mica [060], which is consistent with
previous work [51]. Besides, flexible LSMO/Mica thin films exhibit
exceptional resistance stability as a function of mechanical bending
cycles up to 50,000 with the temperature ranging from 15 °C to 45 °C
under a bending radius of 5 mm. (Fig. S3), in comparable to other re-
ports [52,53]. These results indicate that the change of electrical resis-
tance caused by the temperature variation through human exhalation
and inhalation can be detected and recognized in human breath
monitoring.

Fig. 1 depicts the roadmap of human breath monitoring systems.
Reliable signal transmission is highly desired in clinical monitoring to
continuously monitor the patient’s breath condition, therefore, the
wired scheme is the optimum option for clinical monitoring due to its
reliability. However, portability is highly needed in daily monitoring,
when the wireless scheme triumphs over the wired scheme in a human
breath-monitoring system [19,54]. Hence, we designed both wired and
wireless monitoring modes for flexible LSMO/Mica sensors in human
breath monitoring. As a sensor, a flexible LSMO/Mica thin film was
mounted on the inner side of a face mask using double-sided adhesive
tape (Fig. S4). Fig. 1b displays the schematic diagram of daily moni-
toring mode (or wireless mode) of flexible LSMO/Mica sensor. In wire-
less mode, a flexible LSMO/Mica sensor was connected to a compact
integrated circuit by the 4-wire resistance measurement method. The



L. Yeet al.

Daily monitoring

(b)

v

—_

o
~

Data analysis

4

.

N

Nano Energy 112 (2023) 108460

Clinical monitoring

(c)

<

Computer screen
L_I——
@
" 4
]
J0 T 1

Fig. 1. Implementation roadmap of human breath monitoring systems. a) Schematic diagram of monitoring human breath by utilizing manganite oxide respiration
sensor. Schematic diagrams of b) the wireless mode and c) the wired mode of LSMO/Mica sensors used in human breath monitoring. d) The obtained data is for

further processing and analysis.
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response signals were directly shown on smartphone screens to provide
information about human breath conditions. Fig. 1c¢ schematically il-
lustrates the clinical monitoring mode (or wired mode) of our flexible
LSMO/Mica sensor. In this mode, the flexible LSMO/Mica sensor was
directly connected to the flexible device analysis system (AES-4SD, SINO
AGGTECH) platform using the 2-wire method. The AES-4SD system
simultaneously serves as both current source and voltage readout, and
calculates the resistance, and then displays the response signals on a
computer screen. Afterwards, the measured data could be further pro-
cessed and analyzed for providing proper suggestions for human health
care and treatment (Fig. 1d).

Good repeatability is an essential characteristic in assessing the
quality of a breath monitoring system, especially for the measurements
of common and perennial chronic respiratory diseases [21,55,56].
Therefore, we conducted long-term tests to examine the stability of
response to actual breath in clinical monitoring mode under different
breath status, i.e., cough, normal breath, and deep breath. The response
signals as a function of time are plotted in Fig. 2a. For the flexible
LSMO/Mica sensor described here, Ry is the initial resistance, AR is the
change of resistance under various breath statuses, and AR/Ry is defined
as the percent change in resistance for quantizing response results.
Excellent repeatability were observed in continuous breath monitoring
(or normal breath) for at least 3 h (Fig. S5), which is comparable to other
reports [13,57]. The value of AR/Ry distinctively alters in lockstep with
the breath state, from cough to normal breath to deep breath. Note that
after the deep breath the response signal of normal breath couldn’t
recover to its initial state at a certain level. This could be attributable to
the change in humidity gathered on the surface of flexible LSMO/Mica
sensor caused by exhalation and inhalation [48].

Fig. 2b presents the statistical data of breath intensity (defined as
AR/Rg) and breath rate (beats per minute, BPM) under various breath
status. The breath intensity of cough, normal breath, deep breath, and
back to normal breath is around 9.70 + 2.84%, 21.09 + 0.77%, 34.22
+ 1.57%, and 25.28 + 1.48%, respectively. A cough presents a lower
breath intensity than the others, while a deep breath has the highest
value among these breath statuses. The breath rate of cough, normal
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breath, deep breath, and back to normal breath is estimated to be around
40.62 +17.38, 19.30 & 2.88, 17.45 + 2.09, and 19.86 + 2.98 BPM,
agreeing well with the previous report [58]. A cough shows the highest
breath rate among these breath statuses, which is in accordance with the
previous study [13]. However, there is no discernible difference in rate
between normal breath and deep breath. This makes sense considering
that the tester is merely breathing deeper rather than quicker. Moreover,
we found that the normal breath rates before and after deep breath are
almost equivalent, suggesting the exceptional repeatability of the flex-
ible LSMO/Mica sensor in breath monitoring. A magnified view of the
details of response signals is further shown in Fig. 2c, indicating an
excellent sensing ability of flexible LSMO/Mica sensor for human
breath. Furthermore, the corresponding distribution diagram of valley
value (defined as the local minimum magnitude of -AR/Ry) and valley
position (defined as points in time) is summarized in Fig. 2d. Clearly,
different breath status presents unique shapes and disparate ranges in
their response signals. Within each period, the cough signal exhibits a
characteristic bimodal-peak waveform, whereas other breath status only
presents a single-peak waveform [22]. Although the rate of coughing
was higher than that of other breath status, the intensity was signifi-
cantly lower since the lungs need to shrink twice for each period and
hence can’t recover to their initial state. Altogether, these results
collectively indicate that flexible LSMO/Mica sensor exhibits splendid
discernibility of various breath status in continuous, long-term moni-
toring of the dynamic breathing process.

To demonstrate the portability of LSMO in breath monitoring, a
wireless human breath-monitoring face mask containing a flexible
LSMO/Mica sensor and a wireless signal processing module was
designed, as illustrated in Fig. 3a. The change of resistance in analog
signals of the flexible LSMO/Mica sensor to the breath is converted into
digital signals under the operation of the wireless signal processing
module and transmitted to the smartphone by Bluetooth (Fig. 1b and
Fig. S4). In practice, the working current is only around 10 mA for the
processing module and 0.1 mA for flexible LSMO/Mica sensor. Hence, it
is expected that the face mask can work for dozens of hours with an
attached fully charged 300-mAh lithium battery, enough for daily
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Fig. 3. a) Schematic diagram of the wireless human breath monitoring module. b) The stability of flexible LSMO/Mica sensor for human breath at sitting mode
recorded within one week. c¢) Top panel: magnification of waveform of day 1, day 3, day 5, and day 7. Bottom panel: corresponding distribution diagram of valley
value (-AR/Ry) and valley positions (time). d) Statistical histogram of breath intensity and rates obtained from day 1 to day 7.
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monitoring. An endurance test was performed to investigate the long-
term responding stability. Fig. 3b shows the response signals of human
breath versus time for one hour every day within one week, which were
recorded at human static (sitting) status. Magnified views of the wave-
form measured from day 1, day 3, day 5, day 7, and their corresponding
distribution diagram of valley value and valley position are presented in
Fig. 3c. We observed fairly stable and restorable response signals
generated from the flexible LSMO/Mica sensor. Additionally, Fig. 3d
statistically summarizes the data of breath intensity and rate that was
gathered from days 1 to day 7. The long-term stability of the wireless
mode is clearly demonstrated by a stable breath intensity and rate,
which is comparable to the previous study [20]. This robust sensing
behaviour can be attributed to the excellent electrical transport property
of flexible LSMO/Mica sensor. On the other hand, at a micro level, by
comparing Fig. 3b with Fig. 3d, we can see that the breath intensities of
days 4-7 are a little higher than that of days 1-3, while the breath rates
of days 4-7 are a little lower than that of days 1-3. This may be due to
the fluctuation in the breathing state of the tester at different dates to a
certain extent, i.e., breathing a little lighter and faster or a little deeper
and slower. In addition, under a sudden sneeze, the LSMO/Mica sensor
shows a response within 0.1 s (Fig. S6), indicating it can work normally
under a high-speed impact. Also, the sensing ability of the LSMO/Mica
sensor is not damaged after sanitizing with medical alcohol (Fig. S7).
To explore the individual differences in respiratory behaviours with
application of the flexible LSMO/Mica sensor operating under a wireless
mode [59]. two volunteers (Tester #1 or Ty, Male; Tester #2 or Ty,
Female) were recruited to perform the following tests. Different moving
speeds on a treadmill, i.e., 0 KPH (kilometres per hour), 3 KPH, 6 KPH,
and 9 KPH were defined as the modes of sitting, walking, jogging, and
running, respectively. The breath signals wirelessly transmitted from a
breath-monitoring face mask are shown in Fig. 4a. Obviously, different
intensities of exercises induce different values of AR/Ry. Statistical
histograms of breath intensity and rate for T; and Ty under different
modes are summarized in Fig. 4b. The data collected from the male and
female presents a similar trend when moving speeds increase [60]. For
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Ty, breath intensities of walking, jogging, and running were around
6.70 + 0.27%, 13.34 + 1.08%, and 14.09 + 1.10%, respectively, and
his corresponding breath rates were around 20.40 + 4.54, 25.45 + 5.84,
and 27.17 + 4.97 BPM. Note that T; increases the oxygen uptake rate by
enormously increasing the breath intensity and slightly increasing
breath rate to accommodate the exercise strength. This means deeper
breath might be more acceptable for Ty. For Ty, breath intensities were
around 7.28 &+ 0.58%, 12.22 4+ 1.20%, and 10.97 4 0.76%, and her
corresponding breath rates were around 18.64 + 6.00, 21.28 + 4.03
and 39.87 + 2.78 BPM for walking, jogging, and running, respectively.

We observed a similar tendency as T; at low exercise strength (£ 6
KPH). However, the breath intensity decreases and breath rate increases
as the exercise strength increases to 9 KPH, indicating that T, prefers to
increase the breath rate than breath intensity for promoting the intake of
oxygen. The breath rate-time curves (Fig. S8) also clearly reveal these
differences between the testers. It should also be mentioned that T
suffered from airway hyperresponsiveness (AHR) two years ago, which
is a state characterized by easily triggered bronchospasm (contraction of
the bronchioles or small airways) [61]. Consequently, for the sitting
status as shown in Fig. 4b, T; presented a little lower breath intensity
(7.82 £ 0.46%) than that of Ty (9.78 + 0.87%), but his breath rate
(23.92 + 2.19 BPM) was much higher than that of Ty (13.40 + 4.27
BPM), and was also little higher than that of a healthy person [7,58]. The
magnifying waveform of breath and the corresponding distribution di-
agram of the valley value and valley position for T; and T; are further
displayed in Fig. 4c—d, also supporting the same conclusions. Further-
more, take running state of Ty for exampling (Fig. S9), which presents
the highest breath rate, the response/recovery time of 0.7 s/0.7 s is fast
enough to generate accurate signal to human breath. Overall, these re-
sults strongly support that our wireless face masks based on flexible
LSMO/Mica sensors possess distinguished stability and multi-modal
advantages in capturing clinic meaningful information from contin-
uous, long-term monitoring of the dynamic human breath. In addition,
the experimental results (Fig. 2b, Fig. 3d and Fig. 4b) reveal that the
common range of breath rate of human breath is about 15-45 BPM), i.e.,
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less than 4 s for each breath cycle. The fluctuation in ambient temper-
ature caused by the different motion modes is not periodic and has a
much longer variation period than that of breathing. On the other hand,
the LSMO/Mica respiration sensor mounted on the face mask is close to
the nose and mouth. Therefore, the response signals of the LSMO/Mica
respiration sensor result from the temperature variation of respiratory
airflow rather than that of the human body.

We have experimentally confirmed the thermoresistance response of
our LSMO/Mica sensor to temperature variation (Fig. S3). To clarify
how the thermal flow affects the electrical resistivity of the LSMO/Mica
sensor and to gain insight into the correlation between the thermal
distribution and the resistance change in the flexible LSMO/Mica sensor,
we performed a finite element analysis (FEA) using the COMSOL Mul-
tiphysics software. A rectangular flexible LSMO/Mica sensor was placed
at the centre of an area that was exposed to the breath airflow. The
simulation was conducted to present a 2D cross-sectional views of the
temperature change of the sensor and its surrounding environment, with
the exhale breath flowing vertically downwards from the top of the
view, and inhale breath flowing the opposite way. Different breath
modes possessed distinctive flowing patterns, e.g. normal breath had
exhale and inhale flowing speed of up to 2 m/s at a rate of 10/min, deep
breath had the same exhale and inhale speed but a slower rate of 6/min,
while cough presented a higher exhale speed of up to 6 m/s with a much
more intensive rate. It was simulated that the exhale breath would bring
warmer air to the surrounding area while inhale breath would vacuum
such warm air to let cooler air in, thus to change the temperature of the
LSMO sensor through heat conduction. Fig. 5a provides typical images
for the thermal distribution at the cross-section of LSMOs at their highest
heated-up status under different breath modes, i.e., initial state, normal
breath (Movie S1), deep breath (Movie S2), and cough (Movie S3). The
temperature field was uniformly distributed on the cross-sectional area
of LSMO at the initial state and presented differences after being
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subjected to various breath airflow. For quantizing the average dis-
crepancies among these situations, an averaged value of cross-sectional
temperature variations (AT) was determined to be O K for initial state,
while 0.60 K for normal breath, 1.04 K for deep breath, and 0.56 K for
cough. We found that the temperature variation at the left and right
edges of the rectangular LSMO is higher, which might be due to the
difference in thermal conductivity. According to previous reports
[62-64], the thermal conductivity of LSMO (1-3 W/m-K) and Mica (~
0.5 W/m-K) is substantially higher than that of air (~ 0.026 W/m-K),
resulting in difficulty for heat dissipation at the edges of LSMO than its
middle.

Supplementary material related to this article can be found online at
doi:10.1016/j.nanoen.2023.108460.

Simulated and experimental AT are further compared and summa-
rized in Fig. 5b and Fig. S10. Where, simulated AT is obtained from the
COMSOL data, while experimental AT is estimated calculated from real
breath signals (Fig. 2) and electrical resistivity of LSMO (Fig. S3b). It can
be seen that normal breath and deep breath modes are clearly distin-
guished in both simulation and experiment. The value of AT in the deep
breath mode is higher than that of normal breath mode, revealing the
responsiveness of flexible LSMO/Mica sensor for different human breath
modes. To further understand dynamic response signals to warm air
flow, simulated and experimental cough modes were designed,
including coughing once, twice, and thrice in a whole breath period,
which were named as single-cough, double-cough, and triple-cough. The
simulation airflow, simulation averaged sensor temperature and
experimental response signals (AR/Rg) exhibit a good agreement with
each other, as depicted in Fig. 5c. A positive and a negative flow rate
represented the exhale and the inhale from a breath, respectively.
Furthermore, these three cough statuses generated 1/2/3 sharp falling
edges in the response signals (AR/Ry), which are the crucial features for
distinguishing a cough from a normal breath. The simulated AT was
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Fig. 5. a) The temperature field distribution simulated in flexible LSMO/Mica sensor at its highest heated-up status obtained at different breath states. b) The change
of temperature in flexible LSMO/Mica sensor at normal breath and deep breath obtained from simulation (top panel) and experiment (bottom panel). ¢) Correlation
among experimental response signals of human breath, simulated temperature variations, and airflow velocity (predefined for simulation). d) The change of tem-
perature in flexible LSMO/Mica sensor at single-, double-, and triple-cough obtained from simulation (top panel) and experiment (bottom panel).
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further compared to the experimental AT, as presented in Fig. 5d.
Different coughs were clearly distinguished according to both simulated
and experimental results. Based on the simulated results, we determined
that the resistance change in a flexible LSMO/Mica sensor is caused by
the thermal distribution from mouth. More importantly, these results
strongly indicate good responsiveness and discernibility of our flexible
LSMO/Mica sensor for different human breath modes.

3. Conclusion

In conclusion, we have fabricated high-quality flexible and inorganic
epitaxial LSMO thin film on a flexible Mica substrate, which was inte-
grated as a sensor in a human breath-monitoring face mask. Two kinds
of application scenarios were tested to investigate and demonstrate the
feasibility of flexible LSMO/Mica sensor in monitoring human breath.
The detected signals from the breath were accessed and viewed on a
smartphone or computer in real time. The sensing system presented
outstanding stability and a multi-modal capability in continuous, long-
time monitoring of the dynamic human breath. By using our smart
masks, breath parameters from the disparate breath situations of
humans of different genders were further analyzed and discussed,
revealing the differences in breath modes between male and female. In
addition, supported by COMSOL simulation, we determined that the
temperature distribution in LSMO under the influence of a breath
airflow is responsible for the change of resistance in the flexible LSMO/
Mica sensor during the measurements of the human breath. More
importantly, both simulated and experimental results demonstrated
good discernibility of the flexible LSMO/Mica sensor for different breath
modes. Our work provides a new pathway to design flexible and wear-
able human breath-monitoring face masks to detect possible abnor-
malities of the respiratory system, with meaningful applications in
clinical and daily monitoring.

4. Methods
4.1. Thin film fabrication

Fluorophlogopite mica (F-Mica) is a kind of flexible substrate that
has been extensively utilized in the deposition of functional oxides.
Lag 7Srp.sMnOs (LSMO) thin films were directly deposited on Mica
(Changchun Taiyuan Fluorophlogopite Co., China) substrates using a
PLD system coupled to a KrF excimer laser (COMPexPRO 205F,
A = 248 nm, Coherent Inc.) operating at a laser intensity of 1.5 J-cm™
and a pulse frequency of 4 Hz. The manufacturing process of poly-
crystalline LSMO target used in this study was covered in our earlier
paper [65]. The optimal conditions for epitaxial development of LSMO
were a substrate temperature of 700 °C and a partial pressure of 0.1
mbar. Highly-pure nitrogen gas flow was used to form a (110)-oriented
LSMO seed layer[51], and then highly-pure oxygen gas was replaced the
nitrogen to grow LSMO film. The PLD chamber spontaneously cooled to
room temperature after the completion of film deposition.

4.2. Properties characterization

The crystal nature of LagSrg3MnOs/Mica heterostructures was
identified by an X-ray diffractometer (Empyrean, Malvern Panalytical)
configured with Cu K, radiation (A = 1.5406 A). The surface topography
of Lag 7Srg.3sMnO3/Mica heterostructures was examined by Atomic Force
Microscope (AFM, Asylum Research MFP-3D, Oxford Instruments),
which was working at tapping mode with an AC240TS-R3 probe
(70-75KHz, Olympus Corporation). The microstructure of
Lag 7Sro.sMnOs/Mica heterostructures was characterized by Trans-
mission Electron Microscope (TEM, Thermo Fisher Scientific TALOS
F200X), which was operated at 200KV. Transport properties (p(T)
curves) of the Lag 7Srp sMnOs/Mica heterostructures were measured by
using Physical Property Measurement System (PPMS, QD).
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Lag.7Srg.sMnOs/Mica heterostructure was mechanically exfoliated, cut
into a rectangle shape (10 mm x 3 mm), and placed on the Flexible
Device Analysis System (AES-4 SD, SINO AGGTECH) platform for
studying the mechanical flexibility. Silver conductive epoxy and plat-
inum wire were used to connect Lag7Srg.3sMnOs/Mica thin films and
measurement units by the 2-wire method. Using the percent change of
electrical resistance AR/Ro to characterize the response of the
Lag 7Srg.3MnO3/Mica heterostructure to different stimulation (AR and
Ro are the resistance change and the initial resistance value of
Lao,7Sro,3Mn03).

4.3. Sensor design

Two kinds of application scenarios, including clinical monitoring
mode and daily monitoring mode, were designed and investigated to
demonstrate breath monitoring. For pursuing the stability of signal
transmission in simulating the clinical monitoring mode (i.e. wired
mode), the flexible LSMO/Mica sensor (10 mm x 3 mm) was attached
to the inner side of the face mask with double-sided adhesive tape and
connected with an AES-4 SD system by the 2-wire method to test the
monitoring capacity for human breath. In the daily monitoring mode (i.
e. wireless mode), an integrated circuit board containing a MOS-FET, an
operational amplifier, a crystal oscillator, an analog-to-digital (A/D)
converter, a 32-bit microcontroller unit (MCU), and a Bluetooth (BT)
module was used to obtain and transmit signals. Similarly, flexible
LSMO/Mica thin film (10 mm x 3 mm) was mounted on the inner side
of the face mask using double-sided adhesive tape, but, the connection to
the integrated circuit was the 4-wire method. The collected breath data
was wirelessly transmitted via Bluetooth and displayed on a smartphone
screen in real time. Informed consent for experimentation with volun-
teers was obtained prior to their participation in this study. Specially,
the methodology of acquiring breath rate-time (such as Fig. S5b) from
breath signals (as shown in Fig. S5a) is showed in Fig. S11. In a AR/Ro-
time curve, we define the valley position of each breath cycle as.

t, 0, 63, oy Ty, thgs e

hence the total time for a breath cycle at moment t;, is,
Aty = ty - by,

then, the corresponding breath rate at this moment is,
60/At, (unit: BPM)

Finally, we can calculate breath rate within 1/10/20 or any breath
cycles as required. In this work, calculating breath rate every 20 breath
cycles makes a good appearance in the breath rate-time curve, just like
the heart rate curve acquired by a commercial smart bracelet.

4.4. COMSOL simulation

Conjugate heat transfer with laminar flow multiphysics module was
adopted for simulating the thermal conductance between breath flow
and the sensor. A 2D mode was used to study the cross-section view of
the sensor and its surrounding atmosphere. The sensor had dimensions
of 10 mm long and 0.5 mm thick, with a heat capacity set at 550 J/
(kg K) referred from experimental data[66]. LSMO sensor was located at
the center of a considerable trapezoidal area, which was assigned to be
filled with air. The top edge of the trapezoid was made the inlet of the
airflow (representing the “mouth”) with temperature set at 37 °C, which
could be imposed with various flow rates including positive rates
standing for exhaling and negative for inhaling. And the bottom edge of
the trapezoid was made the outlet with freedom of airflow with tem-
perature set at 20 °C, whereas the side edges of the trapezoid area were
set to be thermal insulated for proximity. The LSMO sensor was located
approximately 17.5 mm away from the top inlet edge. A “time--
dependent” study was used with time-related breath rate curves for
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mimicking normal breath, deep breath and coughs. Average tempera-
tures of the cross-section areas of the sensor were calculated under
different breath conditions.
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