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ABSTRACT. We prove a myriad of results related to the stabilizer in an algebraic group
G of a generic vector in a representation V' of G over an algebraically closed field k. Our
results are on the level of group schemes, which carries more information than considering
both the Lie algebra of G and the group G (k) of k-points. For G simple and V faithful and
irreducible, we prove the existence of a stabilizer in general position, sometimes called a
principal orbit type. We determine those G and V' for which the stabilizer in general
position is smooth, or dim V/G < dim G, or there is a v € V whose stabilizer in G is
trivial.
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1. INTRODUCTION

The aim of this paper is to prove, for an algebraically closed field & of arbitrary char-
acteristic, analogs of results that are known in the case £ = C concerning an irreducible
representation V' of a simple linear algebraic group G.

The first such result concerns the existence of a stabilizer in general position (s.g.p.)
also known as a principal orbit type for G acting on V. For v € V, write G,, for the fixer
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of v in Gj it is a closed sub-group-scheme of G. One says the action of G on V has an
s.g.p. if there is a closed sub-group-scheme G, of GG and a dense open subset U of V' such
that for all u € U(k), there is a g € G(k) such that gG,,g~! = G.. We prove in §§5-8:

Theorem 1.1. Every irreducible representation V' of a simple algebraic group G over
an algebraically closed field k has an s.g.p. If dimV > dim G, the s.g.p. G, is a finite
group scheme. If dim V' > dim G and ker|G — GL(V)] is central in G, then the identity
component of G is contained in a torus and Lie(G..) is a toral subalgebra of Lie(Q).

In case char k = 0, Richardson proved the existence of an s.g.p. under weaker hypothe-
ses, e.g., in case G is merely assumed to be reductive [Ri 72, Th. A]. However, that claim
can fail when char k # 0, see Example 5.2. (There are additional, related results for C
that do not hold for k of prime characteristic, see Example 3.14.) Because of this, it is no
surprise that the arguments used here when char k # 0 are of a fundamentally different
nature. We rely on recent results proved in [GuL], [GaGuI], [GaGuII], and [GaGu III],
see §4 for a summary.

The previous work showed that, apart from an explicit list of cases, the stabilizer G,, of
a generic v € V is the trivial group scheme, in which case the s.g.p. trivially exists. The
proof of Theorem 1.1 involves analyzing the many remaining cases. Along the way, we
determine the s.g.p. as a group scheme in almost all cases.

We also prove a result about when G, is commutative, see §9.

We mention that when an s.g.p. G, exists, one obtains as a consequence that the nat-
ural map in fppf cohomology Hy (k, No(G.)) — Hi ¢(k,G) is surjective, see [LoM,
Cor. 4.5]. This provides in turn an upper bound on the essential dimension of G. We do
not pursue this avenue here.

Smoothness. Another feature that appears when char k is prime is that the group scheme
G, need not be smooth. We call out those cases where it happens in the following result,
proved in §10. In the statement, the expression “for generic v € V'’ means that there is a
dense open subset U of V' such that the statement holds for all v € U (k) (in this case, that
G, is smooth).

Theorem 1.2. Let V be a faithful and irreducible representation of a simple algebraic
group G over an algebraically closed field k. If it is not the case that G, is smooth for
generic v € V, then up to graph automorphism (G, char k, V') appears in Table 4 or
(G, chark, V) = (Gg,2, L(w2)).

We were surprised to find that there was an example with V/G = Speck yet the
generic stabilizer is non-smooth, namely the representation of G5 mentioned in theorem,
see Lemma 10.1 below.

One could weaken the hypothesis “faithful” in the theorem. Let N be the kernel of
G — GL(V). The quotient G/N acts faithfully on V' (see §2) and is simple (Lemma 2.1),
so Theorem 1.2 applies to it. If (G/N), is smooth (as given by Theorem 1.2) and N is
smooth (a hypothesis to replace “faithful”), then G,, is smooth because G,,/N = (G/N),
[Milne, Prop. 1.62].

Rings of invariants. For a representation V' of G, the quotient V/G in the sense of Rosen-
licht is defined to be Spec k[V]%, where k[V]¢ is the ring of G-invariant functions on V.
In case G is reductive, k[V]% is a finitely generated k-algebra [Sesh, Th. 2], and it has
dimension dim V' — dim G + dim G,, for generic v € V.

Combining the determination of G, (k) from [GuL] with information about the possi-
bilities for dim V' from [Lii], we can determine all cases where dim V/G is “small”. In
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the following result, L(&) is the irreducible representation of G' with highest weight the
highest root &. This result is proved in §11.

Theorem 1.3. Suppose V is a faithful and irreducible representation of a simple algebraic
group G over an algebraically closed field k. If dim k[V]¢ < dim G, then V = L(&) or
(G, char k, V') belongs to Table 3, 4, or 5, up to graph automorphism.

Regular orbits. We also consider when a simple algebraic group acting on an irreducible
module has a regular orbit, i.e., when there exists a vector whose stabilizer is trivial. Note
that a necessary condition for there to exist a regular orbit is that the stabilizer of a generic
vector is finite, for otherwise the dimension of any stabilizer is positive. In characteristic
zero, it turns out that this is also sufficient. The following result is proved in §12.

Theorem 1.4. Suppose that V' is a faithful and irreducible representation of a simple
algebraic group G over a field k of characteristic p # 2,3,5. Then exactly one of the
following possibilities occurs:

(a) there is some v € V such that the stabilizer G, is the trivial group scheme;

(b) dimV < dim G,

(¢) pisodd, G = SLy, and up to graph automorphism V- = L(w; + p°wa) for some
e>1;or

(d) p # 0, Gis aquotient of SLyy1, and up to graph automorphismV = L(w1+p°w1)
or L(wy + p°wy) for some e > 1.

Note that dim V' > dim G is an obvious necessary condition for the existence of a
regular orbit. The theorem says that the condition is also sufficient, apart from a few
exceptions, namely the cases dim V' = dim G, (c), and (d).

Other results. In addition to the results described so far, we also provide some other
applications, such as a result relating the generic stabilizer for G on V' with the generic
stabilizer for G on a section of V (see §13) and a shorter proof of the classification of
groups with the same invariants from [GaGu 15] (see Theorem 14.1).

Acknowledgements. The results in this paper weave together and rest on several recent
papers, including [GuL]. Although Ross Lawther is not listed here as a co-author, this work
would not have been possible without his contributions. We also thank David Stewart and
the referee for their valuable comments on an earlier version of this article.

2. NOTATION AND BACKGROUND

Throughout this paper, we assume that k is an algebraically closed field. We consider
algebraic groups over k in the sense of [Milne], i.e., as affine group schemes of finite type
over k. Sometimes we write group scheme when it seems important to do so for clarity of
exposition.

For an algebraic group G and any commutative k-algebra R, we put G(R) := Homy, (k[G], R),
the set of R-points of (5 it is an “abstract” or “ordinary” group. The algebraic group G is
finite if it is finite as a scheme over k, which holds if and only if G (k) is a finite group. We
say that G is commutative if G(R) is abelian for every k-algebra R.

We also consider the Lie algebra of G, which we denote by Lie(G) or g. Note that G is
smooth if and only if dim G = dim g, that G is éfale if and only if g = 0, and G is the trivial
group scheme Speck if and only if g = 0 and G(k) = 1. We put G° for the connected
component of the identity in G. It is itself an algebraic group, and Lie(G°) = Lie(G).
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The algebraic group G is semisimple if it is smooth and connected and has no smooth
connected solvable normal subgroups other than 1. It is simple (Milne says “almost-
simple”) if it is semisimple and every proper normal algebraic subgroup is finite.

We say that an action p: G — Aut(V) is faithful if ker p is the trivial group scheme.
Our main results are for a faithful and irreducible representation V' of a simple algebraic
group GG. We view the hypothesis “faithful” as harmless. Indeed, suppose N is a normal
algebraic subgroup of G that is contained in the kernel of p. Then there is a quotient map
q¢: G — G/N [Milne, Th. 5.14] and a unique morphism p: G/N — Aut(V) so that
p = qp and ker p = (ker p)/N [Milne, Th. 5.13, Th. 5.39]. In particular, the induced
action G/ ker p — Aut(V) is faithful. Moreover, when G is simple, so is G/N:

Lemma 2.1. If N is a proper normal sub-group-scheme of a simple algebraic group G,
then G/N is also simple.

Proof. The quotient G/N is smooth and connected because G is [Milne, Cor. 5.26, Prop. 5.59].
The inverse image H in G of a proper normal sub-group-scheme of G/N is a proper nor-
mal subgroup of G containing N, so H is finite and its image H/N in G/N is finite. O

In the setting of group schemes, N can be “large”. For example, suppose a representa-
tion p: G — GL(V) is obtained as a Frobenius twist of another representation. Then p is
not faithful, because dp: g — gl(V') is zero; ker p contains the first Frobenius kernel G .
In this case, G/G is isomorphic to G [Jan 03, 1.9.5].

Near the end of this section, we provide another example, where G = Sp,,, char k = 2,
and p is the spin representation.

Stabilizers. For a representation p: G — GL(V) and v € V, we write G,, for the closed
sub-group-scheme of G with R-points G,(R) = {g € G(R) | p(g)v = v} for every
commutative k-algebra R, the stabilizer of v in the ordinary group G(R). The Lie algebra
Lie(G,) is the annihilator of v in g, denoted g,:

g ={z € g|dp(z)v =0}
The following is a well-known example in the special case £k = C, see for example
[Gurevich, 23.1] or [AnP, §1].

Example 2.2 (binary cubics). Take G = SLo and V the space of binary cubics, i.e.,
homogeneous polynomials of degree 3 in variables z, y, over a field k£ of characteristic
# 2. A generic vector v € V is one that vanishes on three distinct lines in &2, such as
v = xy(x —y). One computes that G,, is the group scheme Z/3. (Compare the case A = 3
in Example 5.4 below.)

The element w := z2y is not in the orbit of v. One can compute directly that G, = 1,
i.e., the G-orbit of w is regular. (Compare Theorem 1.4 in the introduction.)

Focus now on the special case where char k = 3. Then V is reducible with socle L(3),
consisting of cubes of linear forms, and head L(1) spanned by the images of x2y, zy?.
The semisimplification V' of V' is isomorphic to L(1) @ L(1)[3. The stabilizer in G of
a generic vector in the natural module L(1) is a 1-dimensional unipotent subgroup U, so
the stabilizer in G(k) of a generic v’ € V” is an intersection U (k) N U (k)¢ for a generic
g € G(k), ie., G,(k) = 1. On the other hand, the Lie algebra g acts trivially on L(1)[],
80 gy = gy = Lie(U). In summary, G, is infinitesimal whereas G, is étale.

Example 2.3 (Diagonalizable groups). If GG is a diagonalizable group scheme, then the
stabilizer of every generic v € V is the kernel of G — GL(V). Therefore the s.g.p. exists
trivially.
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Suppose now merely that the identity component of G is a torus. In this case the s.g.p.
need not be the kernel of the action. (This contradicts [PoV, §7.2, Prop.], whose statement
is surely a typo.) Take for example V' to be the natural representation of GL5 and G to be
the normalizer of the diagonal matrices, so G = G,,,1Z/2. A vector () € V withzy # 0

0 z/y
y/xz 0
V' of the same type and not in the span of the first, we find a stabilizer that is distinct from

but G-conjugate to the stabilizer of (). In this case the s.g.p. exists, is not the kernel of
the action, and is only determined by (G, V') up to conjugacy class.

has stabilizer Z/2 in G with non-identity element ) Choosing another vector in

Irreducible representations. Recall that every irreducible representation V' of GG has a
highest weight \. Write A asasum A = )  ¢,w where the sum runs over the fundamental
dominant weights w. One says that \ is restricted when p := chark # 0if 0 < ¢, < p
for all w. (In case char k = 0, all dominant weights are, by definition, restricted.)

Suppose now that p # 0. Write A = Ay + p" A\; for some r > 1, where \y = Zw CooW
and 0 < ¢, < p" for all w. If A\g and p"~*\; belong to T* (e.g., if G is simply connected),
then L(\) = L(X\o) ® L(p"~*A)!P! [Jan 03, I1.3.16], the tensor product of L()\g) and a
Frobenius twist of L(p"~!\;). As a representation of g (forgetting about the action of
G(k)), this is the direct sum of dim L(A;) copies of L(Ao).

We label the simple roots of G as in Table 1, which agrees with [Bour 02] as well as
[GuL]. Note that our other references, [GaGul], [GaGuIlI], and [GaGuIII] follow the
numbering of [Lii], which is different.

name torsion primes diagram
Ag(621) none o e :.- - 0o—o o
1 2 3 -2 -1 ¢
1 2 3 £—2 (-1 ¥4
Co(0>2) none P,
1 2 3 -2 -1 £
-1
D€(£24) 2 o —o - .- -2
1 2 3 -3
¢
EG 2, 3 1 3 4 5 6
2
E'7 2, 3 1 3 4 5 6 7
2
Eg 2,3,5 13 45 6 7 8
2
Fy 2,3 o=
1 2 3 4
G2 2 [ ==
1 2

TABLE 1. Dynkin diagrams of simple root systems, with simple roots
numbered as in [Bour 02], and their torsion primes from [Dem, p. 299].
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Irreducible representations L(\), L(\') of G are equivalent up to graph automorphism
if there is an automorphism ¢ of the Dynkin diagram (i.e., an automorphism of the root
system that normalizes the set of simple roots) so that ¢(A) = )N; such representations
are equivalent up to an automorphism of G. For example, the representations A%k™ and
A"~k™ of SL,, are equivalent up to graph automorphism. Our results, which are about
stabilizers in general position and so on, are transparently the same for representations that
are equivalent up to graph automorphism.

Special characteristic. For the remainder of this section, suppose that GG is simple and
simply connected. We say that char k is special for G if G has type G5 and chark = 3
or G has type By ({ > 2), Cy (¢ > 2), or Fy and chark = 2. (This was written as
“exceptionally bad characteristic” in the title of [GaGuIlI].) That is, char & is special if
the Dynkin diagram of G has an edge with multiplicity char k. When that holds, there
is a very special isogeny m: G — G where G is also simple simply connected and the
root system of G is inverse to the root system of GG, see [CoGP, §7.1] or [St63, §10] for a
concrete description.

Now suppose that char & is special for G, so in particular A has two root lengths. Write
a dominant weight A as A = ) csws, where ¢5 > 0 and wy is the fundamental weight dual
to 0¥ for § € A. We write A\ = A\ + Ag where Ay = D 5 Csws and Ap = D5 long C3W5,
ie., (As,8Y) = 0 for § long and (\g,dY) = 0 for § short. Steinberg [St63] shows that
L(X) =2 L(A\¢) ® L(Xs) and that furthermore the action of G on L(\;) factors through the
very special isogeny. For example, in case G = Sp,, for some ¢ > 2 and chark = 2,
G = Spiny,,, and the non-faithful representation L(w;) of G is obtained by composing
the very special isogeny 7 with the spin representation of G, which is irreducible and
faithful.

In particular, if L(\) is faithful, then Ay # 0.

3. ADJOINT REPRESENTATION

We record in this section various results about G acting on Lie(G) and the irreducible
representation L(&).

The generic stabilizer for simple G acting on Lie(Ad(G)) is determined in [GaGu 16,
Prop. 9.2]; this representation has an s.g.p. whose identity component is a maximal torus
in G. Tt follows that dim k[Lie(Ad(G))]¢ = rank G. However, Lie(Ad(G)) agrees with
g = Lie(G) if and only if the center of G, i.e., the kernel of G — Ad(G), is étale.

The general statement is that the Lie algebra g of the simply connected cover Gof Gis
the Weyl module V(&) with highest weight the highest root & and the head of V(&) is the
irreducible representation L(&), see for example [Ga 09b, 2.5].

For G simple, g is an irreducible representation of G — i.e., Lie(G) = L(&) — if and
only if the center Z (CNT') is étale and char k is not special for G, see [Hiss].

Lemma 3.1. The irreducible representation L(&) of a simple group G is faithful if and
only if G is adjoint, char k is not special for G, and (G,char k) # (PGLa,2). If those
equivalent conditions hold, then the s.g.p. exists, its identity component is a maximal torus
of G, and

dim k[L(&)]¢ = rank G — dim Lie(Z(G)).

Proof. The kernel of the action of G on V(&) is Z(G) [Milne, Prop. 21.7], so the kernel
of the action of G on V(&) is Z(G)/ ker[G — G] =2 Z(G). Thus, for L(&) to be faithful
it is necessary that G is adjoint.
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If char k is special for G, then n := kerdr is a nonzero proper ideal in § = V(&),
so its image in L(&) is zero. In particular, the image of n in g acts trivially on L(&). As
ng Lie(Z(é)) [Hiss], its image in g is not zero, so g and the group scheme G do not act
faithfully on L(&).

Suppose for the remainder of the proof that G is adjoint and char k is not special for G.
Since G(k) is simple as an ordinary group, it acts faithfully on L(&), whence the kernel of
the action of G is infinitesimal.

The socle of g as a representation of G is irreducible [Hiss]; it is the subalgebra gener-
ated by the root subspaces, i.e., the image of the Lie algebra of the simply connected cover
of G of G, see for example [GaGu I, Lemma 3.1(1)]. That is, L(&) is not faithful if and
only if the composition § — g — gl(L(&)) is zero if and only if (G, char k) = (PGLy, 2)
by [GaGul, Lemma 3.1(2)]. This concludes the proof of the first sentence of the lemma.
For the remainder of the proof we suppose additionally that (G, char k) # (PGL3, 2).

Pick a maximal torus T in G. The orbit of a generic element in V(&) meets Lie(T') by
[DemG, XIII.5.1, XIV.3.18], compare Lemma 5.8 below. A generic element ¢t € Lie(f)
has image a generic element v € L(&). The arguments of [GaGul, Example 3.4] apply
and the stabilizer G, of v has identity component the image 7" of T and in particular
T C G, C Ng(T).

An element n € N¢(T)(k) belongs to G, if and only if Ad(n)t — ¢ is in the kernel
of the map V(&) — L(&), i.e., is in Lie(Z(G)). Equivalently, if and only if every root a
vanishes on Ad(n)t — ¢. Since ¢ is generic, this is equivalent to (o o Ad(n) — a, 3Y) =0
in k for every root a and coroot 3V, equivalently, the element oo Ad(n) — « in the weight
lattice is divisible by char k for every root o.. This only depends on the image of n in the
Weyl group N¢(T')/T and not on the choice of ¢, so G,, depends only on the choice of T
(equivalently, T'), verifying that G,, is an s.g.p. for the action of G on L(&). O

Example 3.2. The s.g.p. appearing in the statement of Lemma 3.1 need not be connected.
Take G of type Es, in which case the irreducible representation L(a) is g itself and G is
both simply connected and adjoint. In the notation of the proof, GG, is connected if and
only if char k # 2, see [GaGu 16, Prop. 9.2]. (Note that Steinberg’s result [St 75, Th. 0.2],
which shows in some cases that semisimple elements in g have connected centralizers,
assumes char k is not a torsion prime, so it does not apply here when char % is 2, 3, or 5.)
When char k = 2, G,,/GS = Z/2, where the nontrivial element acts on the torus G by
inversion.

Example 3.3. Suppose G = PGLg3 and chark = 3. Then L(&) is sl3/k as both a G-
module and a Lie algebra. In the notation of the proof of Lemma 3.1, the image of Lie(f)
in L(&) is a 1-dimensional maximal toral subalgebra kv. The Weyl group Ng(T)/T is
the symmetric group on 3 letters, which acts on kv as £1, whence the component group
G, /G? is Z/3. We thank a referee for suggesting this example.

Example 3.4. We apply Lemma 3.1 to construct Table 2, where we list the cases where
simple G acts faithfully on L(a) and dim k[L(&)]¢ < 2. If dim Lie(Z(G)) = 0, i.e.,
Z(G) is étale, then (type of G, chark) is one of (A1, # 2), (As,#3), (Ba,#2), or
(G, # 3). If dimLie(Z(G)) = 1, then rank G < 3 and (type of G, char k) is (As, 3)
or (As, 2). Finally, if dim Lie(Z(é)) = 2, then G has type D, for some m > 2, so (type
of G,char k) = (D4, 2).

We will use the following in the proof of Theorem 14.1 at the end of the paper, but we
put it here because it only concerns L(&) as a representation.
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typeof G chark dim L(&) dimk[L(&)]¢
A 42 3 1
Ay £3 8 2
Ag 3 7 1
As 2 14 2
By 49 10 2
Dy 2 26 2
Go 43 14 2

TABLE 2. Simple G that act faithfully on L(&) such that
dim k[L(a)]% < 2.

Lemma 3.5. Let G be a simple algebraic group. If there is a proper, connected, and
smooth algebraic subgroup of G that acts irreducibly on L(&), then char k is special for
G.

Proof. Let G’ be a connected, proper, and smooth subgroup of G that acts irreducibly on
L(&). Since the kernel of the action by G on L(&) is finite and G’ acts irreducibly, we
conclude that G’ has trivial radical and so is semisimple.

For sake of contradiction, suppose char k is not special. We may assume that G is
adjoint, so L(&) is the socle of g as a representation of G and g/L(&) is isomorphic to the
Lie algebra of the center of the simply connected cover of G. As the Lie algebra g’ is a G’-
invariant subspace of g, it contains L(&). In particular, G and G’ have the same number of
roots and the same unipotent radicals for the Borel subgroups. As these unipotent radicals
of a semisimple group generate the group, we find G = G'. (]

For the sake of completeness, we provide the following converse to Lemma 3.5. In
the statement, the hypotheses “connected” and “smooth” are redundant because they are
included in the definition of simple (see §2). We have included them here to emphasize
that this is a converse to the preceding.

Lemma 3.6. Let G be a simple algebraic group. If char k is special for G, then there is a
proper, connected, smooth, and simple subgroup of G that acts irreducibly on L(&).

Proof. We may assume that G is simply connected, so L(&) is the head of g.

If G is of type C,, for n > 2, the root subgroups for the short roots generate a sub-
group G’ of type D,,. The restriction of L(&) to G’ is a Frobenius twist of the natural
representation of dimension 2n, so G’ acts irreducibly on L(&).

If G has type B,, for n > 3, Fy, or G, then the root subgroups for the long roots
generate a subgroup G’ of type D,,, Dy, or As respectively. The description of g in [Hiss]
or [Hog] shows that Lie(G”) maps onto L(&) and indeed L(&) is also the irreducible part
of the adjoint representation of G'. (]

Invariant polynomial functions. We now study the rings of invariant polynomial func-
tions k[g]“ and k[L(&)]%, especially in the case where g # L(&).

Suppose G is simple and let 7" be a maximal torus in G. For W the Weyl group
N¢(T)/T, the natural restriction map

(3.7) k[g]¢ — K[V
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is injective. Furthermore, it is an isomorphism if and only if (G, char k) # (Spy,, 2) for
¢ > 1, see [SpSt, I1.3.17’], [Jan 04, p. 82, 7.12], or [ChaR]. This is sometimes called the
Chevalley Restriction Theorem.

If G is simply connected, then k[t] from the previous paragraph is the symmetric algebra
on the weights with coefficients in k. If char k is not a torsion prime for (the root system
of) G as in Table 1, then k[t]"" is a polynomial algebra [Dem, p. 297, Cor.]. If additionally
(G, char k) # (Spsy,2) for £ > 1, then the generators of k[t]"V have the same degrees as
they do for the analogous group in case £ = C [Dem, p. 296, Cor., Th. 3].

Example 3.8. Suppose G has type G2. The only torsion prime for G is 2, so when
chark # 2, k[g]® is a polynomial ring with generators of degree 2 and 6 by the above
and [Bour 05, § VIIL.8.3].

In case char k = 2, we apply the Chevalley Restriction Theorem by hand. The element
—1 in the Weyl group acts trivially on t, so k[t]" is the ring of invariant functions of the
symmetric group on 3 letters on its irreducible 2-dimensional representation. We conclude
that k[g] is a polynomial ring with generators of degrees 2 and 3. (Alternatively, one can
apply the next two examples to an A, subgroup containing 7" to see that k[g]¢ = k[{]V =
k[t]%* = k[sl3]5"2 to draw the same conclusion.)

Example 3.9. For G = SL,,, the ring of G-invariant functions on the space of n-by-n
matrices is polynomial with generators the coefficients of the characteristic polynomial.
Tracking the proof of [N, Prop. 4.1], one finds that the ring of invariants k[g]“ is also
polynomial, with the same generators except for the trace. Away from the case n = 2 and
char k = 2, the Chevalley Restriction Theorem and Demazure’s result provides the same
conclusion.

In case n = 2 and char k = 2, the Weyl group W acts trivially on the Lie algebra t of
a maximal torus in G, so k[t]"V is a polynomial ring in one variable, generated by a linear
function. The image of the restriction map k[g]® — k[{" is (k[("V)(.

We now address k[L(&)]“ in case g is a reducible representation.

Example 3.10. Suppose G is simple, char k is not special for G, and (type of G, char k) #
(A1,2). In particular, the Chevalley Restriction Theorem applies. As the action of G on
L(&) factors through the adjoint group G' of G and our goal is to calculate k[L(&)]¢, we
are free to choose G to be simply connected.

Under the hypotheses, L(&) is the image of g in g. As Z(G) is contained in T' [Milne,
Prop. 21.7], its Lie algebra 3 is contained in t. The natural maps k[t/3] < k[t] and
k[g/3]¢ < k[g]® are compatible with the isomorphism (3.7) in the sense that it induces
an isomorphism k[L(&)]% = k[to]", where to := t/3 is the image of t in the Lie algebra
of the image T of T'. Itis the subspace of Lie(7T') spanned by the elements A, in a Chevalley
basis where « is a root. (See [GaGu 15, Example 8.3] for a concrete illustration in the case
G is isogenous to SL4 and char k = 2, where L(&) has a polynomial ring of invariants
with generators of degrees 2 and 3.)

Corollary 3.11. Suppose G is simple and L(&) is faithful. If dim k[L(&)]¢ < 2, then
E[L(&)]C is a polynomial ring.

Proof. The type of G and char k appear as a row in Table 2. If dimk[L(&)]¢ = 1,
then k[L(&)]¢ is a polynomial ring for dimension reasons [BeGuL, Prop. 6.1], so assume
dim k[L(&)]¢ = 2.

If Z(G) is étale, we apply the Chevalley Restriction Theorem. Otherwise (type of
G,chark) = (As,2) or (D4,2) and we apply Example 3.10. In either case, k[L(&)]¢
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is isomorphic to the ring of invariant polynomials of a pseudoreflection group (the Weyl
group) acting on a 2-dimensional space, so it is a polynomial ring by [N, Th. 5.1] or [KeM,
Prop. 7.1]. (]

See Proposition 11.3 below for a stronger version of Corollary 3.11.

Proposition 3.12. Let G = PGL,, for some n > 2 over a field k. The following are
equivalent:

(1) k[L(&)]€ is a polynomial ring.

() k[g)¢ is a polynomial ring.

(3) n < 4 or char k does not divide n.

Proof. Suppose first that char k£ does not divide n. Then the representations sl,,, pgl,,, and
L(&) are all naturally identified with each other and k[sl,,]°" is a polynomial ring as in
Example 3.9.

Therefore, we restrict our attention to the case where char k does divide n, applying
Example 3.10 for k[L(&)]¢ and the Chevalley Restriction Theorem for k[g]“. As the roots
of GG all have the same length, we may identify the root system with its dual and so identify
the toral subalgebra t of g with the weight lattice tensored with & and t; with the subspace
spanned by the roots.

If we identify the Weyl group with the symmetric group .S,, and consider its permutation
representation X with basis 21, . . ., z,, then the ring k[t] of functions on t with the action
by the Weyl group is identified with the symmetric algebra Ay on the subspace Y of X
of elements whose coordinates sum to zero. Moreover, the space of characters on 7" that
vanish on t( are a 1-dimensional subspace of Y and contain } , x;, so the functions on k[to]
are identified with the symmetric algebra Ay on Z := Y/k > x;. If n > 4, then Af,“ and
Ag" are not polynomial rings, see [N, §4] and [KeM, §5], proving the claim in that case.

If n < 4, then dim k[L(&)]¢ < 2 and we have already observed that k[L(&)]“ is a
polynomial ring in Corollary 3.11. If n = 2 or 3, then k[g]“ is by the Chevalley Restriction
Theorem the functions in 1 or 2 variables that are invariant under a finite reflection group,
so for the same reason we conclude that k[g]“ is a polynomial ring.

Finally, consider k[g}G in the case n = 4 and k = F5. The ring Ay has generators

(3.13) Y1 =T1 — T2, Yo =2T2—T3, Y3=T3— T4
Set
J1 =1y +ys,
f2 = yivs + Ys + yivaus + v1y3ys + Yiv3 + vivays +v3y3, and

f3 = yiys +yiyz + yilyeys + yiyays + Yiv3 + yiy3vs + vaus + yivs + viveys + y3v;
in Ay. Rewriting these using (3.13), we find that f; = > x; is in qu,‘* and similarly
for fo and fs;. The determinant of the Jacobian matrix with (7, j) entry df; /0y, is not
zero (e.g., the term y7y3y3 appears) and [[deg f; = |S4|, so the f; are algebraically
independent and k[g]® = Af;l = k[f1, f2, f3] is a polynomial ring by the criterion from
[DerK, Th. 3.9.4]. (]

Example 3.14. Let V' be an irreducible and faithful representation of a simple algebraic
group G over k. One can ask whether the property that G, # 1 for generic v € V (denoted
by (ST) in [PoV, §8]) is equivalent to the property that k[V]¢ is a polynomial ring (denoted
by (FA) in ibid.). If char k = 0, then the two properties are equivalent, see [PoV, Th. 8.8]
and [KaPV].
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If G = PGL,, such that char k divides n and n > 5 and V = L(&), then (G,V)
satisfies (ST) (Lemma 3.1) but not (FA) (Proposition 3.12).

Alternatively, take G = PSp,,, with the same hypotheses on n. The representation
V = L(ws) is faithful and irreducible and G, # 1 for generic v € V, see Table 3.
Example 8.5 in [GaGu 15] shows that k£[V/]¢ is isomorphic to the ring of invariants in the
preceding paragraph, so it too is not a polynomial ring.

4. SUMMARY OF SOME RECENT RESULTS

Recent results of the authors, which rely on Liibeck’s paper [Lii], combine with that
paper to give the following results.

Theorem 4.1. Let V be an irreducible and faithful representation of a simple linear alge-
braic group G over an algebraically closed field k.

(1) Suppose dimV > dim G. Then G, is finite for generic v € V, and dim k[V]¢ =
dim V —dim G. Moreover, G,, # 1 for genericv € V if and only if (G, char k, V')
is listed in Table 4 up to graph automorphism.

(2) If dimV = dim G, then G is adjoint, V is the adjoint representation Lie(G) =
L(&), char k is not special for G, there is a s.g.p. (whose identity component is a
maximal torus), and dim k[V]¢ = rank G.

3) IfdimV < dim G, then (G, char k, V') is listed in Table 3 up to graph automor-
phism or V. = L(&).

In particular, G, is finite for generic v € V if and only if dim V' > dim G.

We now justify the columns in Tables 3 and 4 concerning G,,. The k-points G(k), =
G, (k) for generic v € V are from [GuL].

In Table 4, the Lie algebra g,, was computed in [GaGu II] and [GaGu III]. Since G(k),
is finite in all cases, if additionally g,, = O then G, is étale (in particular, smooth) and so
completely described by G(k),. In particular, G, is commutative if and only if G(k), is
an abelian group. If g, # 0, then G, is not smooth, and we study G, in §6 and §7.

Proof. (1): Assume dim V' > dim G. The rows in Table 4 are a union of the rows in Table
1 in each of [GaGuIII] (those with g, # 0) and [GuL] (those with G, (k) # 1), although
we have omitted those entries corresponding to non-faithful representations, such as spin
representations of Sp,, when char k = 2. Conversely, if g, = 0 and G(k), = 1, then
G, =1.

Note that in each row of Table 4, G, (k) is finite. This gives the claim on dim k[V].

For the remainder of the proof, we assume that dim V' < dim G, so the highest weight
of V is restricted by an easy dimension argument as in [GaGuII, Lemma 1.1]. That is, V
is among the representations enumerated in [Lii].

If dim V' = dim G, checking the tables in [Lii] verifies that V' is the adjoint representa-
tion and char k is not special. Moreover, as dim V' = dim G, the center of the simply con-
nected cover of G is étale and the generic stabilizer is computed in [GaGu 16, Prop. 9.2].
This verifies (2).

For (3), the list in Table 3 is somewhat shorter than in [Lii], because we have omitted
those representations that factor through the very special isogeny, i.e., those A that vanish
on the short simple roots such as the spin representations of type C' when char k = 2.

For the final claim, note that for V' = L(&), G, is not finite for generic v € V by
Lemma 3.1. (]
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G char k 14 Gy (k) dim k[V]¢

A, (0>1) any s AU, 0
Ag(€>1) # 2 S2 (k1) D(gy1y/2 ot Byjo 1
Ay (odd £ > 3) any /\Q(ki“_l) C(g+1)/2 1
Ay (even l > 4) - same as line above - - - Co2Uyp 0
SLg /3 any I A3.2/(2,p) 1
SL~, any A3 Gy 1
SLg any A3ES As.7/(2,p) 1
SOgpr1 € >2) #£2 L(w1) (natural) D, 1
Spin, any L(ws) (spin) G 1
Sping any L(wy) (spin) B3 1
Sping any L(ws) (spin) Ay Z/(2,p) 1
Spin, 5 any L(we) (spin) A3.(Z/(2,p))? 2
Spyy (0 > 2) any L(w1) (natural) Cy_1Uszp_1 0
Spe #£2 L(ws) (“spin”) Ay 1

PSpg any L(ws) C3.Z/(3,p) 2—¢

PSpg - same as line above - -~ C{.(Z/(2,p))? 3—¢

PSpy, (€ > 5) - same as line above - - - (o {—1-¢

SO (£ > 4) any L(w1) (natural) By 1
Spin; any spin B3Ug 0
HSpin,, any half-spin As.Z/(2,p) 1
Spiny, any spin G3.7Z/(2,p) 1
Ga #*2 L(w1) (natural) Ay 1
Gy 2 same as line above A1Us 0

F, any L(w4) (natural) Dy 2—c¢
Eg any  L(w;) (minuscule) F, 1
E; any  L(w7) (minuscule) Es.Z/(2,p) 1

TABLE 3. Irreducible faithful representations V' for a simple algebraic
group G over an algebraically closed field & of characteristic p such that
dim V' < dim G, except for L(&) and up to graph automorphism. The
symbol ¢ represents 0 or 1, where the value is determined by ¢ and
char k.

Remark 4.2. In Table 4, the stabilizer G,, in Spin;; when chark = 2 is (SL3 x SL3) %
(Z)2 x Z/2), as described in [GuL, Prop. 5.2.9]. The Z/2’s are generated by an element
that acts as an outer automorphism on each SL3 and an element that interchanges the two
SL3’s. This corrects a mistake in [GaGu 17, Prop. 9.2], where one of the Z /2 factors was
omitted.

The following is an analogue for group schemes of a result proved for G(k) in [GuL,
Cor. 11]. Recall that an algebraic group G is said to act generically freelyon V if G, = 1
for genericv € V.

Corollary 4.3. Let G be a simple linear algebraic group acting faithfully and irreducibly
on a representation V. If V' has a nonzero weight space with multiplicity > 1, then G acts
generically freely on V.
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Proof. We apply Theorem 4.1 and verify that the nonzero eigenvalues have multiplicity 1
in each faithful irreducible representation V' = L(\) that is not generically free.

The list of L(\) where the nonzero eigenvalues have multiplicity 1 for k of prime char-
acteristic has been obtained in [TZ, Prop. 8], leveraging [Seitz, 6.1] and [ZS].

Alternatively, for each ), if the irreducible representation over C with the same highest
weight has nonzero eigenvalues of multiplicity 1 (the list of such is known from [Howe,
Th. 4.6.3]), then we are done. The remaining A can be treated in an ad hoc manner.

Yet another way to phrase the proof is to suppose that V' has a nonzero weight space with
multiplicity 1 and apply [GuL, Cor. 11] to deduce that G, (k) = 1 for generic v € V. This
reduces the proof to verifying that nonzero eigenvalues have multiplicity 1 in the faithful
irreducible representations that have nonzero but infinitesimal generic stabilizer. There are
just four of these, appearing in Table 4. (While the generic stabilizers for these cases are
determined later in this paper, at this point we only need to know which representations
have infinitesimal generic stabilizers, which is known from combining the results of [GuL]
and [GaGuIII].) O

Corollary 4.4. Let V be an irreducible representation of a simple algebraic group G.
Then either G has an open orbit in 'V or there is a dense open subset of V consisting of
closed G-orbits.

Proof. As the G-orbits in V' are not changed by replacing GG by a quotient, we may assume
that G acts faithfully. Suppose G' does not have an open orbit in V, i.e., dim k[V]¢ > 0.
Then by the theorem and Tables 3 and 4, for generic v € V, the group G, (k) is the k-
points of a reductive group, i.e., (G )rea is reductive. Thus the quotient G/(G,)red 18
affine [Ri 77], whence the claim by [Po 72]. U

5. STABILIZERS IN GENERAL POSITION

For a vector v in a representation V' of an algebraic group G, one can consider separately
(1) Gy, the stabilizer of v in G as a closed sub-group-scheme of G; (2) G(k),, the stabilizer
of v in the abstract group G(k) of k-points of G; or (3) g,, the annihilator of v in the Lie
algebra g of G. The first carries at least as much information as the other two, in the sense
that

Gy(k)=G(k), and Lie(G,) = g,.
So far, we have focused on the notion of stabilizer in general position in the sense of group
schemes, i.e., (1). One can also consider versions for (2) and (3), namely:

Definition 5.1. For the group of k-points, G(k), we say that a stabilizer in general position
(s.g.p.) exists if there is a subgroup G(k). of G(k) and a dense open subset U of V' so that
for every u € U(k), there is a g € G(k) such that gG(k),g~ " = G(k)..

An s.g.p. for the Lie algebra g of G is a subalgebra g.. of g such that for every u € U(k),
there is a g € G(k) such that (Ad ¢)g, = g..

Recall that, if char k = 0 and G is reductive, then a stabilizer in general position G
exists by [Ri72], see [PoV, §7] for a survey. Indeed, an s.g.p. exists even for the action of
reductive G on a smooth affine variety X when char k = 0. However, the same claim does
not hold in prime characteristic, even on the level of k-points, as the following example
demonstrates.

Example 5.2. The generic stabilizer need not exist when G is semisimple. For example,
take G = Spin, x SLy, chark = 2, and V = (spin) ® k*. Combining Prop. 6.2.9 and the
proof of Lemma 4.6.1 in [GuL] shows that for generic y € P(V), the stabilizer G, (k) is



16 S. GARIBALDI AND R.M. GURALNICK

semisimple with k-points of type By x By, but that there is no s.g.p. for the action of G(k)
on P(V'). (That is, there is a dense open subset of P(V') on which the stabilizers in G(k)
are all isomorphic, but there is not one where they are conjugate under G(k).) As G, (k)
is semisimple, it follows that the stabilizer G, of a generic v € V has the same k-points.
Therefore, if the action of G(k) on V has an s.g.p., then so does the action of G(k) on
P(V') (and it would be the same s.g.p.), a contradiction.

The following lemma allows us to leverage the results of Guralnick-Lawther (where
the s.g.p. was computed for the abstract group G(k)) and Garibaldi-Guralnick (where the
generic stabilizer was computed for the Lie algebra g).

Lemma 5.3. Let G be a group scheme over an algebraically closed field k acting on an
irreducible variety X so that

(1) there is an s.g.p. G(k). for the action by the abstract group of points G(k) and
(2) thereis an x € X (k) such that dim g, = dim G(k)..

Then there is an s.g.p. for the action of the group scheme G on X and it is smooth.

Proof. The set {u € X | dimg, < dimG(k).} is open by upper semicontinuity of
dimension and it is nonempty by (2). Put U for its intersection with a nonempty open
subset of X consisting of u such that G(k),, is conjugate to G(k).. For any u € U (k), we
have
dim G(k),, < dimg, < dimG(k).

where the first inequality holds because G, is an algebraic group and the second is by
construction of U. As G(k),, and G(k), are conjugate, they have the same dimension, and
we have verified that G, is smooth.

For u,u’ € U(k), there is a ¢ € G(k) so that gG,g~! and G, have the same k-
points, by construction of U. As both group schemes are smooth, they agree [Milne,
Prop. 3.16]. (I

Example 5.4 (Type A;). Suppose G has type A; and V is a faithful irreducible represen-
tation with highest weight A, a natural number. The hypothesis that G is faithful says that
char k£ does not divide A (for otherwise V' is a Frobenius twist of another representation)
and that G = SLs if and only if A is odd.

If A = 1, then V is the tautological representation of SLo, which has an open orbit
(dim k[V]¢ = 0), and therefore there is an s.g.p.

If A = 2 (so chark # 2), then V is the adjoint representation and the stabilizer of a
generic element is a maximal torus. We find dim k[V]¢ = 1.

If A > 3, then g, = O for generic v by [GaGuI, Examples 1.8 and 3.3]. As in [GuL,
Th. 2], G, (k) is finite, and # 1 only for the cases in Table 4. By Lemma 5.3, there is an
s.g.p. for the action of G on V. In this case, dim k[V]¢ = dim V' — 3.

In summary, there is an s.g.p. for the action of G on V.

Here is another application of Lemma 5.3.

Lemma 5.5. For G = PSpy, with £ > 3 and V the Weyl module V (ws) or the irreducible
module L(ws), an s.g.p. exists and it is smooth.

Proof. Proposition 5.2.5 of [GuL] shows that an s.g.p. exists for the action of G(k) on
V(w2) and on L(ws), and it has dimension 3¢. Therefore, in view of Lemma 5.3, it suffices
to verify that dim g,, = 3¢ for v generic in V (w2) or L(ws).

View the simply connected cover Spy, of G as the subgroup of GLg, preserving the

alternating bilinear form s(m,m’) := m " Jm' where J = (_% ). The group GSpy, of
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similarities of s is generated by Sp,, and scalar transformations. Its Lie algebra consists
of those x € gl,, of the form (é ,W?AT) for A,B,C € gl, and u € k such that

BT = Band CT = C as in [GaGuIII, Example 8.1]. There is a natural exact sequence
1 —- G — GSpyy — G — 1 and the corresponding map gsp,, — g is surjective.
Therefore, it suffices to prove that dim(gsp,,), = 3¢ + 1 for genericv € V.

We first treat the case V' = V' (ws). Let Y be the space of self-adjoint operators with
respect to s, i.e., those transformations % of k¢ such that s(ym, m) = 0 for all m € k.
It is a representation of G under the action p(g)y = gyg~'. The ring of G-invariant
polynomial functions k[Y]“ has a linear generator that sends y € Y to half the trace of
Jy, see [GaGu 15, Example 8.5] and the kernel of this linear map is V' (w-). Take V] to be
the subspace of V' (ws) consisting of diagonal matrices. The map G x V; — V' is dominant

[GoGu, Cor. 2.10], so we may take for generic v € V a diagonal matrix v = (5 ) where

L € gl, is diagonal with entries (A1, . .., A¢) such that Zle A; = 0. Note that for A € gl,,
[A, L] has (7, j)-entry a;;(A; — X;), which is zero when ¢ = j and is a nonzero multiple of
a;; when ¢ # j (because £ > 3). In particular, [A, L] = 0 if and only if A is diagonal. For

T € gspoy, We have
AL B,L
dp(z)v = [z,v] = (%CL} [JAT]L]) ’

whence z is in (gspsy,), if and only if A, B, and C are diagonal, proving the claim for
V= V(OJQ).

If char k does not divide ¢, then L(w2) = V (w2) and the proof is complete. So assume
char k divides ¢, in which case the subspace Y5 of scalar matrices is a G-invariant sub-
module of V(ws) and L(ws) = V(wz)/Ya. (For this and the previous sentence, compare
for example [PrS, esp. Th. 2(iv)].) Re-reading the previous paragraph, we note that we
actually proved that [A, L] is scalar if and only if A is diagonal, and therefore we find that
the stabilizer in gsp,, of a generic vector v € V(ws) is the same as the stabilizer of its
image in L(ws), completing the proof. d

When aiming to prove the existence of an s.g.p., the following lemma allows us to
focus on representations that are faithful. A shadow of it already appeared in the second
paragraph of the proof of Lemma 5.5.

Lemma 5.6. Let G be a group scheme acting on an irreducible variety X such that a
normal closed sub-group-scheme N of G acts trivially on X. If there is an s.g.p. (G/N),
for the action of G/N on X, then the inverse image of (G/N), in G is an s.g.p. for G
acting on X.

Proof. The usual correspondence theorem between closed sub-group-schemes of G con-
taining IV and closed sub-group-schemes of G/N as in [Milne, Th. 5.55] shows that, for
x € X(k), (G/N)y = G,/N. For u in the open subset U of X on which the s.g.p. is
defined and g € (G/N)(k) satisfies g(G/N),g~* = (G/N)., pick g € G(k) mapping to
g. Then g~1G.g is a closed sub-group-scheme of G containing N with image (G/N ).,
soitis Gy,. [l

Reducing to a smaller problem. Suppose V is a representation of an algebraic group G
and suppose it has an s.g.p. G.. Set V; := V-, the subspace of elements fixed by G..
Then, because G, is an s.g.p., the map

(5.7) Y: G xVqp —V  defined by ¢(g,v) := gv

is dominant, i.e., for generic v € V, the orbit G(k)v meets V;. In case G, = 1 (ie., G
acts generically freely, which is from some points of view the typical case), then V3 = V
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and these statements are trivial. We remark that more sophisticated results are available,
see [LuR] or [Po94, §2.1] for the case chark = 0 and [L6M] for results in arbitrary
characteristic.

Note that the same argument works if we replace the role of G, by an s.g.p. G(k), for
the group of k-points, or g. for the Lie algebra of G. The same argument also shows that
(5.7) is dominant for V; := V", where b is a subspace of g with the property that there is an
open subset U C V such that for every u € U thereis a g € G(k) such that (Ad g)g,, 2 b.

Roughly speaking, one can “reverse” the observation in the previous two paragraphs
to find a subspace V; such that a generic v € V; is a proxy for a generic element of V.
We formalize this observation in a lemma, where we write Transg (v, V4) for the closed
subscheme of G whose R-points are those g € G(R) such that gv isin V; ® R.

Lemma 5.8. Let V be a representation of an algebraic group G. If a subspace Vi of V'
satisfies

dim Transg(v1, V1) < dim G + dimV; — dim V'
for generic v1 € Vi, then for generic v € V the orbit Gv meets V. If additionally there

is a subgroup H of G such that G,,, = H for generic v1 € Vi, then H is an s.g.p. for the
action of Gon'V.

Proof. Suppose that v’ is also a generic element of V. Then Transg (v’, v1) C Transg (v, V7).
For the map v defined in (5.7), the fiber over v; has dimension at most dim G + dim V; —
dim V/, i.e., the dimension of im ¢} is at least dim V', whence 1 is dominant. O

6. 6-GROUPS

The pairs (G, V) = (SLg /p4, A*k®), (HSpin, g, half-spin), or (SLg /3, A2k®) from
Table 4 are examples of “f-groups” or “Vinberg representations”. They are constructed
as follows. Take G to be a split adjoint group of type F-, Eg, or Fg respectively and set
m = 2, 2, or 3. Pick a maximal torus 7" in G and a set of simple roots o, ..., ap of G
relative to T'. We define a Z/m-grading on g by setting g to contain t := Lie(T") and g, to
contains those root subalgebras g, such that the height of the root « is congruent to i mod
m. We find that G is a subgroup of G such that g is identified with gg and the adjoint action
of GG on g is equivalent to the representation V. See [V], [AzBS], [PoV, §8.5], [Le], and
[ReLYG] for more on this general family of representations.

If char k # m, then it was verified in [GaGull, §7] that g, = 0 for generic v € V.
As the s.g.p. exists for the action by the group of k-points G(k) on V and G, is smooth
(because dim g,, = dim G(k),,), the s.g.p. exists for the action of the group scheme G.

The rest of this section concerns the case char k = m.

Proposition 6.1. Suppose char k = 2 and (G, V) is either (SLg /j14, AN*k®) or (HSpin g, half-spin).
Then the s.g.p. exists for the action of G on'V and is (Z/2)" x p% for r = 3 or 4, respec-
tively.

The HSpin, 4 case was proved in Premet’s appendix to [GaGu 17]. We adapt his method
to encompass both cases and present it here in a side-by-side proof in order to highlight the
similarities between the two cases. The case G = SLg /114 has two minor extra complica-
tions, namely that the adjoint group G is not simply connected and that there is an outer
automorphism of G arising from conjugation by an element of G.

Pr0~0f. The E~ root system is contained in Eg in the span of oy, . . ., 7. In the root system
of G, we find a subsystem of type A% with simple roots v, ... ,7e. Specifically, using the
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notation
acde fg
b

to denote the root ac; + bag + cas + day + eas + fag + gar of E7 and similarly for F,
as in [Bour 02, P1. VI and VII]. We take ~1,...,77 to be

010000 000000 000100 012100 000001 012221 234321
0 s 1 sy 0 s 1 s 0 s 1 s 2

and in the case of Fg we set also 75 = 2435432. (These choices agree with the ones made

in the proof of Prop. 5.1.1 in [GuL].) The ; generate a sublattice of T, corresponding to
a quotient 7. We put H := ker[T" — T/, a finite group scheme that is the Cartier dual of
T* /T*, i.e., H = pj for r as in the statement.

We can describe H explicitly as follows. As the root system of G is simply laced, we
identify it with its inverse root system and roots with coroots. The coroot v; defines a
cocharacter w; : G,, — T with differential dw; : & — t such that dw(1) = h.,,, an element
of the Cartan basis of g corresponding to the coroot ;. The composition -y; o w; is either
trivial (i # j) or the squaring map (i = j), so w; embeds a copy of s in H. Varying i,
we find all of H. On the level of Lie algebras, t is identified with 7* ® k and b := Lie(H)
is the span of the h,, with dimf = r. (Note that when G has type Er, T™ is the weight
lattice, and hq, + hay + ha, = 0int.)

To determine the centralizers C(H) and C¢(h), we consider instead the bilinear pair-
ing on the roots. For M the Cartan matrix and 7 the matrix whose ith row is the coefficients
of ~;, the product nM viewed as a matrix with entries in k has right kernel spanned by the
rows of 7. That is, if « is in the root lattice () and («, ;) is divisible by 2 for all ;, then
« is in the span of the 7;’s and 2¢). One finds that the roots « of even height do not lie in
this span, i.e., have odd inner product with some ~y;. Therefore, the 1-parameter subgroup
G, does not belong to either centralizer, because there is some -; such that « and ; have
odd inner product. It follows that 7T is the identity component of Cz(H) and C(h).

Each ~; has odd height, and we set V; to be the 2¢-dimensional subspace of g; spanned
by g, and g_-, for all . Let v € V; be generic. (We remark that at this point we have
observed that h = g,.) For any 2-by-2 matrix A = (2 S), A? is the scalar matrix with zy
on the diagonal. It follows that the elements 2% e h for e > 1 span b, so the stabilizer
G, centralizes ) and normalizes C;(h)°, i.e., G, is contained in N (T).

For v/ € Vj also generic, the transporter {g € G | gv = v’} consists of elements
normalizing 7. It follows that Transg (v, V1) C Ng(T), so the transporter has dimension
at most £. For both choices of (G, V') we have dimV = dim G + dim V; — ¥, so Lemma
5.8 applies.

We now compute the generic stabilizer G,. As chark = 2, the simple reflections in
the Weyl group are elements of Ng(T') of order 2, giving an expression for Nz (T') as a
semidirect product of 7" and the Weyl group. An elementary argument as in [GaGu 17,
p. 552] shows that for each ¢ G, contain an element whose image in the Weyl group
Ng(T')/T is the reflection in the root y; and that these elements account for all the cosets
of T in G,. That is, G,, is a semi-direct product H x (Z/2)".

The centralizer of G in G is G itself—G is a maximal rank subgroup by construction. If
G has type Ejs, then there is no element of G that normalizes G and such that conjugation
is an outer automorphism of GG because in that case we would find inside the representation
g of G both half-spin representations but there is only one; in this case N5(G) = G. If G
has type E7, then Nz(G) = G x Z/2, because —1 is an element of the Weyl group of E7
(so is given by conjugation by an element of N(T')) but not the Weyl group of A7.
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For each of the elements of (Z/2) in the Weyl group of G generated by the reflections
in the ~;, one checks whether it normalizes the roots of G. In both cases, one finds a
subgroup of order 16, i.e., (Z/2)*. In case G has type Eg, this subgroup belongs to G by
the previous paragraph, proving the claim that G, is (Z/2)* x pi. In case G has type B,
again by the preceding paragraph, one finds that G, is (Z/2)® x u3. In either case, G,
does not depend on the choice of generic element v € V7. Lemma 5.8 gives that G, is the
s.g.p. for the action of Gon V. ]

We now treat the remaining case. The argument is similar to the preceding.

Proposition 6.2. Suppose chark = 3 and (G,V) = (SLg /u3, A%k®). Then the s.g.p.
exists for the action of G on'V and is (Z/3)? x 3.

Proof. We follow the outline of the proof of the previous proposition, where G = Eg,
replacing throughout the prime 2 with 3. We find a subsystem of type A3 with simple roots

Yis-- o5 Y8:

1000000 0100000 0001000 0000100 0000000 1232100 0000001 2465431
0 0 0 0 1 1 0 s 3

) ) ) ) ) )

Note that 7;,v;+1 span a subsystem of type Ao for ¢ = 1,3,5,7. The sublattice of T
generated by the 7;s defines a quotient 7 of 7', and we set H := ker[T — T]. We find
H = u%, generated by cocharacters oy + 2ai3 and o + 2a6.

As in the preceding proof, C¢(H) and C () have identity component 7. We set V; to
be the 12-dimensional subspace of V' spanned by gg for 3 a root in the A3 subsystem of
height congruent to 1 mod 3, i.e., 8 = 7;, Vi+1, Of —y; — Vit1 fori = 1,3,5,7. Lemma
5.8 applies.

As the 3-by-3 matrix of the cyclic permutation (12 3) has determinant 1, it follows
that the element s.,s,,,, of order 3 in the Weyl group of G is the image of an element
of order three in N(T). An elementary argument as in the the preceding proof shows
that N5(T')/T is the subgroup of the Weyl group generated by these simple reflections,
isomorphic to (Z/3)*. The subgroup of this stabilizing the roots of G is (Z/3)?. It follows,
therefore, that G, is isomorphic to (Z/3)? x p3. O

7. INFINITESIMAL STABILIZERS

Table 4 lists four representations that have infinitesimal generic stabilizers. That is, for
generic v € V they have G, (k) = 1 by [GuL] and g,, # 0 by [GaGuII]. In this section,
we show that these representations have an s.g.p. and determine it as a group scheme.

Proposition 7.1. If (G, chark,V') is (i) (Spins, 5, L(w1 + w2)) or (ii) (Spg,3, L(ws)),
then V has a s.g.p., which is isomorphic to (i) us or (ii) us X ps respectively.

Proof. Put p := char k. Fix a pinning for GG, which includes a maximal torus 7" and a
Chevalley basis for g. As G is simply connected, the cocharacter lattice Hom(G,,,, T) is
identified with the coroot lattice for the root system of G. Put H for the subtorus of T’
generated by im 3V for 8" as follows:

(7.2) (i) of +2ay (it) of +aof, oy +af.

Because T normalizes H, it also normalizes V9, the subspace of V annihilated by b, and
in particular V" is a sum of weight spaces. (Recall that all weights of 1 have multiplicity
1.) We find that VY has weights:

(1) 2(4)1 — W3, —W1q + 3&)2

(11) 20.)1 — Wg — W3 + Wy, W3, W1 + W — Wyq, —W71 + 20.)2 — 20.)3 —+ wy.
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and their negatives.

Note that dim G’ — rank G = dimV — dim VY. As in the proof of Lemma 4.1 of
[GaGu 1], for generic v € VY, we have Transg (v, V) C Ng(h) C Ng(T), so the trans-
porter has dimension at most rank GG and Lemma 5.8 applies with V; := VY. Moreover,
there is a dense open subset U of VY such that G, is a closed subgroup of Ng (T) for each
u € U(k). On the other hand, for generic v € V, G, (k) = 1 by [GuL, §2.7], which shows
that (after possibly shrinking U), G, is a closed subgroup of 7" for each u € U (k).

That is, G,, is the intersection of ker w|r as w varies over weights displayed above. The
quotient of the weight lattice T by the sublattice generated by those weights is (i) Z/5 or
(i) Z/3 x Z/3 respectively, proving the claim. O

Proposition 7.3. Let (G, chark,V) = (SLy, p, L(p¢wi + wo)). If
(1) pisoddande > 1 or
(i) p=2ande > 2,
then V has an s.g.p., which is isomorphic to (i) ppe or (ii) pyet+1 respectively.

Proof. Put ¢ := p° > 1. Identify the natural representation k% with L(w;). Put W,
(resp. Wa) for the subspace of vectors with the last (resp. first) two coordinates zero, so
k' = W, & W,. Put J for the subgroup of S, normalizing or interchanging W; and
W, equivalently, the normalizer of Wy @ Wy in L(ws) = A%2(W7 @ Wa). Its identity
component consists of block diagonal matrices with diagonal elements g1, go € GLa(k)
such that det g; det go = 1. Put

U:=(W e W)l oW, @Ws,) C Lw)e Lw)=V.

We verify the hypotheses of Lemma 5.8, with V7 := U. A generic element of U is
u =Y. x; @ y; with the y; a basis for Wy ® Wa. If gu’ = u for some v/ € U, then g
preserves Wi @ W and so the dimension of the transporter is at most

dimJ =7=dimG + dimV; — dimV,

as required. We know by [GuL, Prop. 2.8.3] that the stabilizer H of a generic v € U is
infinitesimal, and in particular is connected and contained in the identity component J of
J.

Let T denote the copy of G,,, in J such that ¢ € k£* acts on W7 as multiplication by
t and on W5 as multiplication by ¢t 1. The group .J is evidently generated by T" and the
subgroup SLo x SLq of block diagonal matrices in SL4 mentioned in the first paragraph of
the proof. The two groups overlap in a copy of p9 (diagonally embedded in SLy x SLo)
and we find that J is (7' x SLa x SLa) /.

For R a commutative k-algebra write [a, b, c] for the image of (a,b,c¢) € T(R) x
SLo(R) x SLo(R) € J(R). We remark that there are two “obvious” copies of 4 in
J, namely a py < T and the center of SL4. Indeed, suppose ¢ € p4(R) has order 4. The
element [, 1,1] € J belongs to pu4(R) C T(R), whereas [, (2, 1] = [¢3, 1, (?] belongs to
the center of SLy4.

The kernel K of the action. Let us determine the group scheme K := ker[J — GL(U)].
If [a, b, c] € K(R), then b, c belong to Z(SLa)(R) = pa(R) and in particular ¢ = 1. If
¢ # 1, then we have [a, b, ] = [a,b, c][¢, ¢, c] = [ac, be, 1] in J, so every element in K (R)
is of the form [a, b, 1] for some b € ps(R).

On Wl[q] QW1 ®Wa, the element [a, b, 1] acts by a scalar a? b9+, For the other summand
in U, the scalar is a~9b. So [a, b, 1] is in K (R) if and only if

(7.4) alp?tt =1 = a7 9.
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In this way, we find a copy of i, contained in K as elements [a, 1, 1] for a € p4(R). This
subgroup contains all the elements of K (R) of the form [a, 1, 1].
If p is odd, then (7.4) reduces to a? = 1 = ba~9. Thatis, b = 1 and we find that

K=up,CT.

If p = 2, then (7.4) reduces a%b = 1 = ¢~ b, so a®? = 1 and b = a?. That is, there
is an isomorphism f2, — K defined on R-points via a — [a,a?,1] = [a?"!,1,a9] and
KNT = py.

Alternatively, consider a maximal torus S :=T x G,,, X G,,, C T x SLgy x SLy where
G, stands for the diagonal matrices in SLo. The image of S in J contains the kernel K.
Writing (1, 0, 0) for a fundamental weight on 7" and similarly for the other two components
of S, the weights of U are

(7.5) (¢ £¢g£1,£1) and (—¢,£1,+q+1)

where the signs may be chosen independently. The kernel of .S on U is the intersection of
the kernels of these weights; to say the same thing differently, the image S of S in J/K
has character lattice S in S* generated by the weights of U. When p = 2, the lattice has
index 4¢q in S* and basis (¢, 1,1), (0,2,0), (0,0, 2).

The center of Lie(J/K). Put T for the central torus in .J/K, the image of T'. If p is
odd, then the center of SLy x SLy injects into J/ K, and we find that Z(J/K) = T X ps.
If p = 2, then the image of the center of SLy x SLs in J/K is a copy of 2, which is
contained in T, so Z(.J/K) = T. In either case, Lie(Z(J/K)) = Lie(T).

Verification that H = K. Trivially the generic stabilizer H = J, contains K, and
we claim they are equal. To see this, we verify that J/K acts generically freely on U.
Indeed, H/K = (J/K),, and (H/K)(k) = 1 because H(k) = 1 [Milne, Prop. 5.47].
Consequently, we are reduced to showing that Lie(.J/K), = 0.

Suppose for the moment that

(7.6) dimU* < 8 for nilpotent or semisimple = € Lie(.J/K) \ Lie(T).
As dim(Ad J/K)z < dim J/K — rank J/K = 4, we find that
dim(Ad J/K)x + dimU® < dim U,

whence Lie(J/K), = Lie(T), by [GaGul, Lemma 1.6(2)]. As J/K is reductive and
Lie(J/K), is contained in the center of Lie(J/K), it follows easily that Lie(J/K), = 0,
compare [GaGu I, Lemma 1.7].

Verification of (7.6). We now go back and verify claim (7.6). Suppose first that x
is semisimple. There is a maximal torus of J/K whose Lie algebra contains = [Hu 67,
Th. 13.3, Rem. 13.4]; since all maximal tori are conjugate we may assume that x is in

Lie(S). If p is odd, then Lie(J/K) = t & so4 (because T'/u, = T) where ¢ € t acts
on Wi[Q] ® Wi ® Wy via (—1)iT1t and so4 acts on it as a sum of 2 copies of its natural
representation. Write x = t +x for ¢t € tand xg € so4. As x is not central, 2y # 0, so the
largest eigenspace of z( on the natural representation has dimension at most 2. It follows
that dim (W ® Wy © Wy)* < 4, whence (7.6).

Suppose now that z is semisimple and p = 2. For each weight of U on S as in (7.5),
we express it in terms of the basis for the sublattice 5" of S* and reduce mod 2 to find the

weights of U on Lie(SS); these are
(1’070)’ (170’ 1)? (]‘7]‘?0)7 (17 1’ 1)?
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each with multiplicity 4. If dim U” > 8, then at least three of these vanish on z. But any
three of these are linearly independent, so = = 0, a contradiction, verifying (7.6).
Suppose now that x is nilpotent. Then x is the image of an element in

504 = Lie((SL2 X SLQ)/MQ) C J//.Lq,

and x acts on U as on 4 copies of the natural representation k*. Since a nonzero nilpotent
in s04 has kernel of dimension at most 2 on the natural module, (7.6) follows. O

In the previous proposition when p = 2, SL4 does not act faithfully on V. To address
this, we provide:

Corollary 7.7. If (G,char k, V') = (SLyg /2,2, L(2°w + w)) for some e > 2, then V is
a faithful representation of G and has an s.g.p. that is isomorphic to jize.

Proof. SLy4 acts on V' with kernel us and generic stabilizer isomorphic to gige+1 (Prop. 7.3),
so Lemma 5.6 gives that SL4 /i has an s.g.p. and it is isomorphic to pige+1 /o = pge. O

8. EXISTENCE OF AN S.G.P.: PROOF OF THEOREM 1.1

We will now prove Theorem 1.1, where V' is an irreducible representation of a simple
algebraic group G. Suppose first that G acts faithfully on V. The case V' = L(&) was
treated in Lemma 3.1. If G acts generically freely on V, then there is nothing to prove, so
assume G, # 1 for generic v.

Consider the case dim V' > dim G. By Theorem 4.1(1), we may assume that (G, char k, V')
is listed in Table 4.

In the cases where G, is finite étale for generic v, [GuL] shows that the s.g.p. exists for
the action by G(k). Since g, = 0 for generic v, it follows that there is an s.g.p. for the
action of G (Lemma 5.3).

For (HSpin, 4, any, half-spin) see [GaGu 17, Th. 1.2] or Prop. 6.1. For (SLg /4, 2, A*k®)
and (SLg /u3,3,A%k?), see Propositions 6.1 and 6.2 respectively. In all three cases,
G. = (Z/p)" x p, for p := char k and some r > 1, so the identity component of G
is 1, The proofs in §6 show that in each case f;, is contained in a torus of G.

The four cases in Table 4 where G, (k) = 1 were treated in §7. In each case, G, is
connected and contained in a maximal torus of G.

We note that in all of these cases with dim V' > dim G, the the s.g.p. G is a finite group
scheme. For the third claim, since G, is finite, its identity component G is non-trivial
exactly when G is not smooth; those cases are covered in the two preceding paragraphs.
Since G is contained in a maximal torus T" of G, we have Lie(G,) = Lie(G¢) C Lie(T).

Consider now the cases in Table 3. If dim V//G < 1, then there is an open G-orbit in
P(V) [BeGuL, §6], hence an s.g.p. exists. For (PSp,,, any, L(w2)), the existence of an
s.g.p. was established in Lemma 5.5. The s.g.p. for the representation (Spin, 5, any, spin)
was calculated in [GaGu 17, §8,9] and [GuL, Prop. 5.2.9], see Remark 4.2.

There is one final case from Table 3, which we treat in the following lemma.

Lemma 8.1 (natural representation of Fy). Let G be a group of type Fy, and let V be its
“natural” Weyl module V (w4) of dimension 26 or the irreducible quotient L(wy) of the
Weyl module. Then the s.g.p. exists for G acting on 'V, and it is isomorphic to Sping.

Proof. Suppose first that V' is the Weyl module. The group G can be viewed as the (al-
gebraic) group of automorphisms of an Albert algebra J, where V' is the codimension-1
subspace of elements of trace zero. See [Pe 18] and [Jac 68] for background on Albert
algebras.
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As a vector space, J can be written as the set of hermitian 3-by-3 matrices with en-
tries in an octonion algebra. The set F of diagonal matrices is a cubic étale algebra,
and the sub-group-scheme of G fixing E elementwise is isomorphic to Sping, by the ar-
guments in [KnMRT, §38] and [Jac71, Th. 6]. (Although stated under the hypothesis
that char k # 2, 3, the arguments go through without this hypothesis with only cosmetic
changes. Alternatively, in case char = 2 or 3, one can check this on the level of k-points
and use a computer to verify that the generic stabilizer in g has dimension at most 28.)

A generic element v € V generates a cubic étale subalgebra E, of .J. (This is essentially
when char k # 2, because in that case every element generates a commutative associative
subalgebra, and properties of the generic minimal polynomial show that a generic element
generates a separable subalgebra of degree 3. When char k = 2, the same reasoning works
by invoking [McC, Prop. 1].) Therefore the stabilizer G, of v is the subgroup of G fixing
E, elementwise. As k is algebraically closed, E, is isomorphic to E as a k-algebra, and so
is conjugate under G to E by Jacobson’s Embedding Theorem (which, in this generality,
is [Pe 15, §4.12]). This proves the claim for the Weyl module.

The Weyl module only fails to be irreducible when char & = 3 [Lii]. In that case, the
irreducible representation is the quotient of V' by the span of the identity element of J.
For v generic in the irreducible quotient, any inverse image of it in the Weyl module again
generates a cubic étale subalgebra of .J, and the Weyl module case again shows that the
s.g.p. exists for the action of G. (]

We have now accounted for all of the representations in Table 3, proving Theorem 1.1
under the assumption that V' is faithful. So drop the assumption that V' is faithful and put
N :=ker[G — GL(V)]. Then G/N is simple (Lemma 2.1) and acts faithfully on V, so it
has an s.g.p. (G/N)... The inverse image of (G/N), in G is an s.g.p. for the action of G
(Lemma 5.6). If dim V' > dim G, then since V is irreducible, GG acts nontrivially on V' and
N is a finite group scheme. We conclude that dim G, = dim N + dim(G/N). = 0, i.e.,
G is also finite. If additionally /V is central, then NV is contained in every maximal torus
T of G and there is a bijection between maximal tori of G and G/N givenby T +» T'/N
[BoTi, Th. 2.20(ii)]. Therefore, the inverse image in G of any maximal torus of G/N
containing (G/N), is a maximal torus of G containing G.. This completes the proof of
Theorem 1.1.

9. THE S.G.P. IS COMMUTATIVE FOR LARGE V'

Building on what has gone before, we easily obtain the following result concerning
when the s.g.p. is commutative.

Proposition 9.1. Let V' be a faithful and irreducible representation of a simple algebraic
group G. If dimV > dim G + 1, then either

(1) for generic v € V the stabilizer G, is a commutative group scheme or

(2) (G,chark,V) = (SLg /us, 2, A3k), up to graph automorphism.

Proof. Assume G, # 1, for otherwise there is nothing to prove. By Theorem 4.1(1), up to
graph automorphism (G, char k, V') belongs to Table 4. In that table, only four rows have
G, non-commutative. (This claim relies on the results of §6 and §7.) Of those four, only
the row (SLg /13,2, A2k®) has dimension at least diim G + 1. O

10. SMOOTHNESS: PROOF OF THEOREM 1.2

We now address the question of whether the group scheme G, stabilizing a generic
v € V, is smooth. Specifically, we prove Theorem 1.2.
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We may assume that the stabilizer G, of a generic v € V is not the trivial group
scheme. If V' = L(&), then the generic stabilizer has identity component a maximal torus
(Lemma 3.1). Therefore, by Theorem 4.1, we may assume that, up to graph automorphism,
(G, char k, V') belongs to Table 3 or 4.

We complete the proof of Theorem 1.2 by noting that the representations in Table 3
have G, smooth except for G5 in characteristic 2. For SO,, with n > 5, when n is odd or
char k # 2, the stabilizer of an anisotropic vector in the tautological representation k"™ is
SO,,—1. The stabilizers in spin or half-spin representations of groups of type B and D are
determined in [GaGu 17].

The natural representation of F} is treated in Lemma 8.1. (For char k # 3, the smooth-
ness was established by different means in [Stw, Th. 3.2].) One can check easily the cases
of the natural representations of SL,, and Sp,,. For SL,, acting on S2k™ with char k # 2
or A2k™ with n even, the stabilizer of a generic element is the definition of the special
orthogonal or symplectic group. If n is odd for A2k™, it is the stabilizer of a degenerate
form but it is straightforward to compute that it is smooth.

Here are two techniques that leverage our knowledge of the stabilizer G(k), on the level
of k-points. First, G, is smooth if and only if dim g, = dim G(k),,. On the other hand, we
may view g as a representation of the abstract group G/(k),, i.e., the k-points of the smooth
subgroup (G )red Of Gy,. The group G(k), normalizes the Lie algebra g,,, which contains
h := Lie((Gy)red) as a G(k),-invariant subalgebra. Moreover, dimf) = dim G(k),.
By hypothesis, g acts faithfully on V, so g, # g (otherwise g would act trivially) and
3(g) Ng, = O (if a nonzero central element of g annihilates a nonzero vector in V, it
annihilates V). This provides many constraints on g,,.

Second, for any particular characteristic p = char k, we may construct g and V' over [F,,.
For every field &’ O [F,, and every v' € V ® k/, we have dim g, < dim g,-. In particular,
it suffices to find such a v/, say with &’ = I3, such that dim g,» = dim G(k),; such a v’
can be sought using a computer as described in [GaGu II, §3].

The next result concerns the “natural” representation of a group G of type G2, which
has highest weight ws. The Weyl module V' (w2) is 7-dimensional and has a nonzero G-
invariant quadratic form ¢, see for example [GaN, §4.4]. One can argue as in [FH, §23] or
[SpV, 1.6.4, 1.7.3, 2.2.4] that the orbit of the highest weight vector is the set of nonzero v
such that g(v) = 0. The stabilizer of v in G has codimension 1 in a parabolic subgroup, and
we denote it by A, Us, where U stands for the unipotent radical of the parabolic subgroup.
The representation V' (ws) is irreducible if and only if char k # 2.

Lemma 10.1 (natural representation of Gs). For G of type G2 and V' = L(w»), the sta-
bilizer G, is smooth (resp. reductive) for generic v € V if and only if chark # 2. If
char k = 2, then G (k) acts transitively on the nonzero vectors in' V, G, is not smooth, and
(Gv)red = A1U5-

Proof. Over Z, we take an ordered basis of the 7-dimensional Weyl module V (w2) con-
sisting of weight vectors v,, for the weights 1 = 21 + ag, a1 + az, a1, 0, —ay,
—(a1 + a2), —(2a1 + ag) respectively and such that the root element e, and corre-
sponding 1-parameter subgroup z,, : G, — G2 corresponding to the root o are given by
the matrices

0 -1 1 —t
0 1
(102) eq, = °%

1tt?

2 and z,, (t) = exp(tey,) = 12t
0-1 b
0 1
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as in the proof of [GuL, Prop. 5.2.14].

If char k # 2, then V is the base change to k of the Weyl module, and the stabilizer
G, is SL3. This can be seen from the further explicit calculations in the proof of [GuL,
Prop. 5.2.14] or as in [Stw] or by identifying V' with the space of trace zero octonions as
in [KnMRT, p. 507, Exercise 6c].

If char k£ = 2, then V is obtained from the Weyl module over k£ by modding out by the
span of vg. The action of G on L(w5) preserves the alternating bilinear form obtained from
g on L(ws) and so gives an inclusion G — Spy. For any finite field K of characteristic 2,
one has Spg(K) = G(K) Spg(K), for any nonzero v € L(ws) [LiPS]. The same factor-
ization of Spg therefore holds over the algebraic closure of [F; and so over the algebraically
closed field k of characteristic 2. The transitivity of the action for G(k) now follows from
the same transitivity for Spg (k).

Here is an alternate argument that G(k) acts transitively. For each y € V, pick « €
V' (w2) such that  — y. One can argue (e.g., by interpreting the Weyl module as the trace
zero subspace of the octonions) that the G-invariant quadratic from ¢ on the Weyl module
is not zero on vy, so by scaling ¢ we may assume that g(vo) = 1. For each A € k, we have
q(x + Mvg) = q(z) + N2, so there is a unique choice of = such that x +— y and ¢(z) = 0.
Since G(k) has two orbits on the hypersurface ¢ = 0, it has two orbits on L(ws). Note that
this argument shows that, on the level of k-points, the stabilizer agrees with the stabilizer
of the highest weight vector, i.e., is A;Us. (Or see [GuL, Prop. 5.2.14].)

It remains to verify that the stabilizer is not smooth. One can read off the action of
elements of a Chevalley basis on V' by writing them as matrices as we have done above
and deleting the 4th row and column. By the transitivity of G(k), we may pick the highest
weight vector v = Va4, +4, as a generic vector. The Lie algebra stabilizer g, is normalized
by the maximal torus 7" in G underlying these calculations (because T'v C kv), so g, is a
sum of g, N t and those root subalgebras g, that belong to g,,. We note from (10.2) that
€q, annihilates the image of v_,, in V. Since o; and 2a; + a9 are both short roots, they
are in the same orbit under the Weyl group, and it follows that e_ (24, t4,) annihilates v,
so dim g,, > 9. One can check that this is all of g, by verifying that each of the remaining
four root subalgebras g, for negative o do not annihilate v or by using a computer to find
a vector v’ € V such that dim g, = 9. O

We remark that in the proof above one can read off from (10.2) that the stabilizer of
V_q, in imz,, has R-points {z,, (t) | t € R such that 2¢t = 0} and Lie algebra the root
subspace g, . (The isomorphism class of this group scheme is generally denoted cxs.) In
this way, we can concretely see the source of the extra dimension in g,,.

Lemma 10.3 (A3k"). For G = SL; and V = A3K7, the stabilizer G, of a generic vector
v € V is a simple algebraic group of type Gs. In particular, G, is smooth.

Proof. In the case k = C, this result goes back at least to [E], see [Ag] for context. For
general k, [GuL, Prop. 5.2.17] shows that G(k),, are the k-points of a subgroup of type G
so that the tautological representation of SL7 restricts to the Weyl module V' (ws) of Gs.
In the notation established above, dim h = 14. It remains to show that GG, is smooth, i.e.,
that g, = b, equivalently that dim g, = 14.

If char k # 2,7, then, as a representation of G, sl; = so7 @& L(2ws), where so7
can be identified with skew-symmetric matrices and L(2w5) with the trace zero symmetric
matrices, and 507/ is the natural representation of G. The only Lie algebra lying between
b and sl is so7. However, the restriction of V' to so7 has head the spin representation with
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generic stabilizer G2, so the stabilizer in so; of a generic vector in V' can be no larger than
b, whence g, # s07, completing the proof in this case.

If k has characteristic 2 or 7, one uses a computer to find a v’ € V such that dim g, =
14.

(Alternatively, [GuL, Prop. 5.2.17] shows that an s.g.p. exists on the level of k-points.
Then, for any specific choice of char k — whether 2, 7, or something else — it suffices by
Lemma 5.3 to use a computer to find a v € V such that dim g,, = 14.) O

Some unusual features of Lie algebras of groups of type GGo when char k is 2, 3, or 7
are discussed in [CaRE)].

For (G,V) = (SLg, A3k®), one needs to show that dim g, < 8. This can be argued
in a manner similar to Lemma 10.3. Alternatively, the stabilizer g, is computed explicitly
in [SatoK, pp. 87-90]. The latter proof goes through if char k # 2,3. In the remaining
characteristics, dim g,, < 8 can be verified by computer.

Consider now the case (G,V) = (FEg, minuscule). As a representation of Fy, ¢s/f4
is the smallest nontrivial Weyl module of Fy, V' (wy4), of dimension 26. (See [ChevS] for
a view of this statement from the perspective of Jordan algebras.) The image of g, in
V' (wy) is contained in the radical. If chark # 3, then this radical is zero and g, = b.
If char k = 3, then the radical is 3(eg), and again the image of g, is zero. (For this case
and the case of (E7, minuscule) in the following paragraph, smoothness of the generic
stabilizer is also contained in [Stw].)

The representations (G, V) = (SLg /13, A*k5), (Spg, “spin”), and (F7, minuscule), all
belong to a family of representations considered in [R6] and [Ga(09a, §12]. In each case,
there is a group G and a simple root o of G that is the only one not orthogonal to the
highest root of G, Gisa subgroup of G generated by the roots of a-height zero, and the
root subalgebras of a-height 1 in g span a G-submodule of g equivalent to V. Moreover,
there is a unique simple root 3 of G not orthogonal to the highest weight of V/, and 3 has
coefficient 1 in the highest root of G so that the root subgroups of G corresponding to roots
of S-height zero generate a group G of the same description as G (k),. If char k # 2, the
G-orbits in V are described in terms of the root system of G in [R6] and a representative
generic vector v is provided such that Go(k) C G(k),, whence equality. Grading g by (-
height, we find g contains g, a rank 1 torus t, and subspaces g1, g—1 spanned by roots of
[B-height 1 and —1 respectively; these latter two subspaces are irreducible representations
of Gy [AzBS, Th. 2c]. That is, the composition series of g, /b, as a representation of
Go(k), has simple factors contained in t, g1, g—1. The explicit description of v from [R0]
shows that these cannot be contained in g, as in [Ga(09a, 12.2], whence G, is smooth. If
char k = 2, we verify that G,, is smooth using Magma.

The case (G, V) = (PSpyy, L(ws)) for £ > 3 has a smooth s.g.p. by Lemma 5.5. This
completes the proof of Theorem 1.2.

11. REPRESENTATIONS WITH “FEW” INVARIANTS: PROOF OF THEOREM 1.3

We now classify those irreducible representations V' such that the dim V/G < dim G;
there are relatively few.

Proof of Theorem 1.3. If dimV < dim G, then V = L(&) or (G, char k, V') belongs to
Table 3 by Theorem 4.1(2) and (3), so assume dim V' > dim . Then, by Theorem 4.1(1),
the stabilizer of a generic vector in V is a finite group scheme, whence

(11.1) dim k[V]¢ = dim V — dim G.



28 S. GARIBALDI AND R.M. GURALNICK

That is, we are reduced to determining the faithful irreducible representations of G such
that dim G < dimV < 2dim G. This is done in the next proposition, completing the
proof of Theorem 1.3. (]

Proposition 11.2. Let V' be a faithful and irreducible representation of a simple algebraic
group G over an algebraically closed field k. If dim G < dimV < 2dim G, then up to
graph automorphism (G, char k, V') appears in Table 4 or 5.

Proof. Suppose first that the highest weight A of V' is restricted. Then the tables in [Lii]
list all possibilities for (G, char k, V'), completing the proof in this case.

If char k = 0, then that is the only case, so suppose p := char k # 0.

We use the following observation. Put m for the smallest dimension of a nontrivial
irreducible restricted representation of G. We note that m? > 2dim G unless G has type
Ay or Cy and that m® > 2 dim G regardless of the type of G.

Write X = ) o p°Ae Where A is restricted for all e, so dim V' = [], dim L(Ac).
Because V is faithful and not restricted, Ay # 0 and A, # 0 for some e > 0. If a third
summand is not zero, then dim V' > m? > 2dim G, and we conclude that A = Ao + p°
for some e > 0 with Ag, Ae # 0.

For G of type Ay, m = ¢ + 1, and the representations of this dimension are L(w1) and
L(w1)* = L(wg). The representations L(w; + p°w) and L(w; + p°wy) appear in Table
4. Similarly, for G of type Cy, m = 4, corresponding to L(w;) and the representation
L(wy 4 pfwy) appears in Table 5.

So suppose that dim L(\;) > m for i = 0 or e. Noting that dim L()\;) < 2(dim G)/m,
there are few possibilities for ;. If G has type C5, then the upper and lower bounds on
dim L(;) in the preceding two sentences are 4 and 5, so there are no possibilities. If
G has type Ay, then we find only one possibility, that G has type A3 and A\; = wo with
dim L(wsy) = 6. The resulting representations appear in the third row of Table 5. (I

When k[V]€ is a polynomial ring. Regarding cases where dim V/G is small, it is clear
that dim V/G = 0 if and only if there is a dense open G-orbit in V, if and only if V/G =
Speck = AP, Similarly, dim V/G < 1 if and only if there is a dense open G-orbit in
P(V), see, for example, [Po 80, Prop. 12] for char k& = 0 or [BeGuL, Prop. 6.1] for char k
arbitrary. We have: If diim V/G = 1, then V/G = Al.

If dim V/G = 2, G simple, and char k = 0, then V/G =2 A? by [Kempf, Th. 2.4].
Is the same conclusion true if k is allowed to have prime characteristic? We prove the
following.

Proposition 11.3. Let V' be a faithful irreducible representation of a simple algebraic
group G. Ifdim V/G = 2, then V/G = A? unless perhaps (G, char k, V') is (Spins, 5, L(w1+
wa)) or (Spin, s, any, spin).

Proof. We apply the classification of possibilities for (G, char k, V') provided by Theorem
1.3. By Corollary 3.11, we may assume that V' # L(&). The minimum of dim k[V]¢ for
the representations in Table 5 is 5, so (G, char k, V') belongs to Table 3 or 4.

For (PSpg, # 3, L(ws)) and (PSpg, 2, L(w2)), the ring k[V]< is described in [GaGu 15,
Examples 8.3, 8.5] and it is polynomial.

The representations (Fy, # 2, 3, natural), (PGLg, # 2,3, S*k?), and (PGLs, # 2, 3, S3k3)
arise as f-groups (a.k.a. Vinberg representations) where the overgroup is of type Eg, Ao,
and D, and the automorphism 6 of the overgroup has order 2, 2, and 3 respectively. (See,
e.g., [PoV, p. 260-262] or [ReLYG, p. 1154].) By [Le, Th. 4.23], k[V]G is a polynomial
ring.
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The case (Fy, 2, natural) is not covered by the result from [Le]. Instead we refer to
[GaGu 15, Example 11.4], which shows that £[V]¢ is a polynomial ring with generators
of degree 2 and 3. (]

12. REGULAR ORBITS

In this section we consider when a simple algebraic group G acting on an irreducible
module V' has a regular orbit, i.e., when there is some v € V with G, = 1. We will
consider this first just for the points and then consider the same problem for group schemes,
resulting in a proof Theorem 1.4.

The following is an immediate consequence of [GuL, Table 1]. We only state the result
in characteristics other than 2, 3, and 5 as this is what we shall use.

Proposition 12.1. Let G be a simple algebraic group over the algebraically closed field k
of characteristic p := chark # 2,3, 5 such that G, (k) acts faithfully and irreducibly on
V. If G, (k) is finite for some v, then either G.,(k) = 1 for some w or the following holds
(up to twists by Frobenius or graph automorphisms), p # 0, G is a quotient of SLy 1, and
V = L(w;1 + pw1) or L(wy + ptwy) for some e > 1.

We now consider the case when there is a regular orbit for the group scheme. Of course,
if char k = 0, then the previous result implies that there exists a regular orbit if and only if
the generic stabilizer is finite, if and only if dim V' > dim G (Theorem 4.1).

In the following, we write P, forn = 3 or n > 5 for the adjoint group of type By
(when n = 2¢ 4+ 1 is odd) or D, (when n = 2/ is even).

Lemma 12.2. Let G = P2, for n = 3 or n > 5 with chark # 2 and V the nontrivial
irreducible composition factor of the symmetric square of the orthogonal module. Then
there exists v € V with G,, the trivial group scheme.

Proof. Let W denote the space of symmetric n X n matrices of trace 0. View SO, (k)
as the subgroup of SL,, (k) of matrices A with AAT = 1. Then SO, (k) acts on W by
conjugation with kernel the center. Note that W = V unless p divides n, in which case
V = W/W;, where W), are the scalar matrices.

We recall that over an algebraically closed field, every matrix is similar to a symmetric
matrix, see for example [BuGS, Lemma 3.1]. In particular, let A be a symmetric nilpo-
tent matrix with minimal polynomial of degree n. The centralizer of A in M, (k) is the
subalgebra k[A], which consists of symmetric matrices. This shows that g4 = 0, since g
is the Lie algebra of skew symmetric matrices. If U is orthogonal and UA = AU, then
U = f(A) for some polynomial f. As U is symmetric and orthogonal, it is an involution.
There are no non-scalar involutions in k[A] and so G 4(k) = 1, whence G 4 is the trivial
group scheme.

This completes the proof if p does not divide n. If p does divide n, the result follows by
observing that if any matrix commutes with A modulo scalars, it commutes with A, since
the only nilpotent matrix in the set A + Al is A. O

Proof of Theorem 1.4. Recall that V' is a faithful and irreducible representation of a simple
group G over a field k of characteristic # 2, 3, 5.

In case (b), i.e., dim V' < dim G, then dim G, > 0 for generic v € V (Th. 4.1), so there
cannot be a regular orbit. In case (c), dim g,, > 0 for generic v € V, so dim g, > 0 for all
v’ € V and there cannot be a regular orbit. In case (d), there is no v € V with G, (k) = 1
[GuL, Prop. 5.1.8], so there cannot be a regular orbit. In summary, if any of (b), (¢), or (d)
hold, then the other three conditions fail.
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Therefore, we assume that dim V' > dim (G and that we are not in case (c) nor (d), and
we aim to prove the existence of a regular orbit. We may assume the s.g.p. is not the trivial
group scheme, whence by Theorem 4.1, up to graph automorphism (G, char k, V') belongs
to Table 4. Lemma 12.2 handles four rows of the table, including (SLo /p2, # 2,3, S*k?)
with n = 3 and (SLy /4 # 2, L(2ws)) with n = 6. The row (SLg, # 2, 3, S%k?) is from
Example 2.2.

The remaining cases in Table 4 are examples of §-groups, where G is the identity com-
ponent of the subgroup of an overgroup H fixed by an automorphism 6 of finite order. The
cases for (G, V) are:

(i) (PGL3, L(3w1)), with H of type D4 and 6 of order 3;

(ii) (SLg /pa, L(wy)), with H of type E; and 6 of order 2;

(iii) (SLg /ps, L(w3)), with H of type Eg and 6 of order 3;

(iv) (Spinyg /2, half-spin), with H of type Es and 6 of order 2; or
(v) (PSpg, L(ws)), with H of type Eg and @ of order 2.

So Let G < H be as in the five cases above. Since p # 2,3 or 5, char k is good for H.
Then G = Cy(6)° and b is the direct sum of the eigenspaces of 6. Note that g is the trivial
eigenspace and V' can be identified with the nontrivial eigenspace or one of the nontrivial
eigenspaces if 6 has order 3 and in that case V'* is the other eigenspace. It follows by [GuL,
5.1.4] that there exists a regular nilpotent element v € V and G, (k) = 1. It also follows
by the computation in [GuL] that the centralizer of v in H is contained in the sum of the
nontrivial eigenspaces of § whence its intersection with b is 0. Let J = Cgz(n). So J is an
abelian group of dimension equal to the rank of H and # normalizes H with C';(6) = 1. In
good characteristic, the centralizer of v in b is the Lie algebra of C;(6) and this is 0 since
0 acts without fixed points on C'gy (v) and so also on its Lie algebra. g

13. NOT-NECESSARILY-SEMISIMPLE REPRESENTATIONS

Let W be a section of a representation V' of an algebraic group GG. That is, there are
G-invariant subspaces V; C V5 C V so that W = V,/V; as representations of G. In this
section, we discuss connections between the stabilizers G, and G,, of generic w € W and
v € V respectively.

If W is a summand of V, then one can take w to be a projection of v in W, in which
case G, evidently contains GG,,, compare [L6, Lemma 2.15]. Unfortunately, this statement
does not easily extend to the case where W is not a summand of V', see [GaGu I, Example
2.6], which gives an example with G = G, where W is a subspace of V and G,, = 1, yet
G, # 1. (See also Example 2.2 for a different but related phenomenon.)

We do know, by an easy argument using upper semicontinuity of dimension, that

(13.1) dimG, >dimG, and dimg, > dimg,

for generic w € W and v € V when W is a section of V, see for example [GaGul,
Example 2.2].

Recall that a representation V' of G is generically free if G,, = 1 for genericv € V. We
have: If char k = 0 and a representation V of G has a section W that is generically free,
then 'V is generically free because W is a summand of V. Theorem 13.3 below provides a
version of this in prime characteristic.

Separably free actions. Note that if V' is generically free, the kernel N of the action is
necessarily trivial. To accommodate the possibility that N # 1, we make the following
definition.
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Definition 13.2. A representation V of G is separably free if the kernel N := ker[G —
GL(V)] of the action is étale and (G/N),, = 1 for genericv € V.

Theorem 13.3. Let V' be a representation of a simple algebraic group G. If V has an
irreducible section that is separably (resp. generically) free as a representation of G, then
V' is separably (resp. generically) free.

Before proving the theorem, we note some lemmas. The following is well known, and
a proof is contained in [GaGu 15, §10], compare [GaGu 17, Lemma 2.6(i)].

Lemma 13.4. Let V be a representation of a semisimple algebraic group G over an alge-
braically closed field k. If, for every g € G(k) that is (i) noncentral semisimple and whose
image in GL(V') has prime order or (ii) unipotent, we have dim V9 + dim ¢ < dimV,
then for genericv € V, G, (k) is central in G (k).

As a consequence of previous work on irreducible representations of simple groups, we
have the following converse:

Lemma 13.5 (Corollary 7 in [GuL]). Let V be a faithful and irreducible representation of
a simple algebraic group G over an algebraically closed field k. The stabilizer G, (k) = 1
for generic v € V if and only if dim V9 + dim ¢ < dimV for all g € G(k) of prime
order (modulo the center) and, if char k = 0, all unipotent g.

The analogue of Lemma 13.5 for Lie algebras is false. For example, when char k = p #
0, for any vector space W, the irreducible and faithful representation V = W @ WP of
G = SL(W) has g,, = 0 for generic v € V, yet dim 2% 4+ dim V? = dim V 4 dim W — 2
for x a root element, see [GaGu 1, §10].

Proof of Theorem 13.3. Suppose first that the irreducible section W of V' is separably free.
Put N := ker[G — GL(W)] and Z := ker[G — GL(V)], so Z C N. By hypothesis, N
is étale, so Z is also. In particular, both N and Z are central in G.

If any summand of V' is separably free, then V is separably free. Writing V' as a direct
sum of the Z(G)-homogeneous components we may assume that V' is Z(G)-homogeneous.

By Lemma 13.5, the inequality dim W9 + dim ¢¢ < dim W holds for the relevant
g € G(k). Then it is easy to see that dim V9 + dim g¢ < dim V for those same g. The
easier lemma, Lemma 13.4, now shows that G, (k) is a central subgroup for genericv € V.
As V' is Z(G)-homogeneous, G, (k) = Z (k).

Because Lie(N) = Lie(Z) = 0, the natural maps Lie(G) — Lie(G/N) and Lie(G) —
Lie(G/Z) are isomorphisms, and we obtain isomorphisms of generic stabilizers Lie(G/N ),, =
gw and Lie(G/Z), & g,. As dimg, < dimg,, = 0, we find that G, is étale, so G, = Z,
i.e., V is separably free.

In case W is generically free, then (1) N = 1so Z = 1 and (2) V is separably free by
the above. So V is generically free. (]

Conjecture 13.6. If G is reductive and W is a generically free section of V, then V is
generically free.

14. REPRESENTATIONS WITH THE SAME INVARIANTS

We give a new proof of one of the main results of [GaGu 15], Theorem 14.1 below,
which characterizes inclusions where the subgroup and overgroup have the same invariants.
The original proof relied on results from [Seitz], whereas the following, quite different
proof avoids that reference and instead uses the information about the dimension of the
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generic stabilizer. This approach leaves very few cases to examine. In this final section of
the paper, we stop viewing algebraic groups as affine schemes and instead view them in a
naive way as the group of k-points under the Zariski topology, as is done, for example in
[Hu 81].

Theorem 14.1 (Theorem 13.1 in [GaGu 15]). Suppose that G < H < SL(V') with G a
simple algebraic group over an algebraically closed field k acting irreducibly on V, and
H connected and closed in SL(V). If dim k[V]¢ = dim k[V]¥, then k[V|¢ = k[V]H and
one of the following holds, up to a Frobenius twist and/or a twist by a graph automorphism:

(1) H=SL(V)and k[V]® =k (i.e, dimk[V]% = 0).

(2) H=Sp(V), chark =2, G = Go, dimV = 6, and k[V]|® = k.

(3) H = SO(V), k[V]9 = k|q| for a homogeneous quadratic form q (in particular,

dim k[V]¢ = 1).
4 (G, H,V,chark) is in Table 6.

The possibilities for GG in (1) and (3) can be extracted from Tables 3 and 4; see Tables
C and D in [GaGu 15] for an explicit list.

Remark 14.2. The statement of Theorem 14.1 is slightly different from the one in [GaGu 15].
The earlier version erroneously omitted the hypothesis that H is connected. Of course, the
dimension of the ring of invariants only depends on the connected component of the iden-
tity but certainly the actual ring of invariants can change.

The earlier version also omitted the inclusion G2 < PSpg from Table 6. For this in-
clusion, G embeds in PSpg when char k = 2 via the natural irreducible representation
of G2. The 14-dimensional representation L(w2) of PSpg restricts to the adjoint represen-
tation of G. To see this, note that the representation A2k of PSpg is k @ L(ws), and
compare the restrictions of this and the adjoint module to an A, subgroup of G5. The fact
that the ring of invariants on this representation is polynomial with generators of degrees
2 and 3 as in Table 6 is [GaGu 15, Example 8.5] for PSps and Example 3.8 for G2. The
equality k[V] = k[V]H in the other cases was proved in [GaGu 15].

G H dimV char k degrees
PGL; Gy 7 3 2
Gso PSpg 14 2 2,3
Spin,, HSpin, 32 all {4 fehark #2
2 ifchark =2
n?—n— if n eve ?
SOs, (1 >3)  PSpy, aromm2 dmeen
2n?—n—1 ifnodd 2,3,...,n
SOg or SpS F4 26 2 2, 3
SL,, SL, ®SL, n? #0 n

TABLE 6. Representations referred to in Theorem 14.1, copied from
Table E in [GaGu 15]. The representations in the last row are denoted
L(w;y + p°w) and L(wy + p°wy ) in Table 4. Note that since this section
views algebraic groups in the naive sense, when chark = 2 we have
natural identifications SO,, = P(),, and Sp,,, = PSp,,,.

We use the following.
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Lemma 14.3. Let G < H < SL(V) with G a simple algebraic group acting irreducibly
on'V and H a closed connected subgroup. Then dim k[V]H = dim k[V]% if and only
GH, is dense in H for genericv € V.

Proof. 1f GH, is dense in H, then Gv = GH,v is dense in Hv for generic v and so
the maximal dimension of G and H orbits are the same. Since the dimension of the ring
of invariants is the codimension of a maximal dimensional orbit, the density assumption
implies that the dimensions of the ring of invariants are the same.

Conversely, if the dimensions of the ring of invariants are the same, then there exists a
nonempty subset O of V' such that dim Gv = dim Hv for all v € O and since Hv is an
irreducible variety Gv is dense in Hv. Thus, dim GH, = dim G + dim H, — dim G, =
dim H, + dim H — dim H, = dim H and so GH,, is dense in H. [l

Lemma 14.4. Let G be a simple algebraic irreducible subgroup of H = Spy, with { > 3.
If dim G > dim H — 3¢, then char k = 2 and either (1) G = SOg or (2) G = G4 and
{=3.

Proof. The right side of the inequality in the statement is 2/? — 2/, which is increasing for
¢ > 3. Its minimum value is 12, so G cannot have type A;, A, Bs, or Cy. Otherwise,
the natural representation of H is an irreducible self-dual representation L(\) of G of
dimension between 6 and 2/, where £ is the real number > 3 such that 26%; —2a =
dim G.

In case A is restricted, the tables in [Lii] verify the claim. Indeed, for other group types,
the smallest self-dual irreducible module with restricted highest weight is already too large.

In general, we may write A = Xy + pA; with A restricted and p := char k # 0. Since
G acts faithfully on L()\), Ao # 0. By hypothesis, L()) is self-dual, i.e., A is fixed by
—wjq for wy the longest element of the Weyl group, so the same is true for Ay, A;. Then
dim L(A) = dim L(Ag) - dim L(A1), so the examination of the dimensions of self-dual
representations in the preceding paragraph shows that A\; = 0, i.e., X is restricted. (]

Proof of Theorem 14.1. In view of the remarks just after the statement of the theorem, it
suffices to show that equality of the dimension of the ring of invariants only occurs in the
cases listed in the conclusion.

We first consider the case that H is not simple. If not, then V' is tensor decomposable for
H and so also G whence by [GuL], G,, is generically finite (and almost always generically
trivial by [GaGu IT]). In particular, dim k[V]¢ = dim V — dim G.

We may assume that H = H; x Hy, G embeds in H; by the projection m; and that
V = Vi ® V, where Vj is an irreducible H;-module. Let J := 71 (H) x my(H) =2 G x G.
SoG<J<H.

Let d; = dimV; and assume that d = d; < dy. Letv = Z?zl e; ® f; where the e;
constitute a basis for V7. Observe that 7o restricted to H, has trivial kernel. Indeed, if
h € H, and mo(h) = 1, then h fixes each f; and so fixes v if and only if he; = e; for all 4,
whence h is trivial on V7 and soon V.

If di < ds, then we see that J, = mo(H,) stabilizes the span of fi,..., fs and
so ma(H,) is properly contained in Hy. Thus dim.J, < dim G and so dim k[V]7 <
dimk[V]/ < dimV —dim H + dim G = dim V — dim G = dim k[V]€.

So we may assume that d; = dy and identify V; = V5 = W (as vector spaces rather
than G-modules). Note that in L = SL(W) ® SL(W), the stabilizer in L of a generic
vector is a diagonal subgroup D, i.e., it is isomorphic to SL(T¥) and the projection onto
either factor is a bijection. If m2(G) # SL(W), then clearly dim 72 (G N D) < dim G
for generic D. Thus, dim J, < dim G for generic v and so arguing as above, we see
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that dim k[V]# < dim k[V]9. If mo(G) = SL(W), then G = SL(W) and V is a tensor
product of two GG-modules each of which are Frobenius twists of the natural module or its
dual. In this case, dim k[V]¢ = 1 and (G, H, V) are as in the last line of Table 6.

So now assume that H is simple. If dim H,, = 0 for some v € V, then dim k[V]# =
dimV — dim H < dimV — dim G = dim k[V]€, a contradiction. So dim V' < dim H,
(H,char k, V) is in Table 3 or V is the irreducible part of the adjoint module for H.

First consider the case that V' is the irreducible part of the adjoint module for H. As H
acts faithfully, char & is not special and H is adjoint. Lemma 3.5 provides a contradiction.

Next consider the case that H = Sp(W) = Sp,, for some ¢ > 2 and V = L(ws).
Thus, dim V' = ¢(2¢ — 1) — § with § = 1 or 2. Suppose that G is not irreducible on
W. Let X be a G-composition factor of W of maximal dimension e. Soe < 2¢ — 2. If
e = 2, then the largest composition factor of G on A2V is 4-dimensional, a contradiction.
Otherwise, G has a nontrivial composition factor on V' of dimension at most dim A2X =
(£ —2)(2¢ — 3) < dim V, whence G is not irreducible on V, a contradiction.

Also, GH,, is dense in H so dim G > dim H — 3/, since H, is generically of dimension
3¢. Now apply Lemma 14.4 to deduce that (G, H, V, char k) are as in the 2nd or 4th lines
of Table 6.

In the remaining cases from Table 3, we have d = dim k[V] < 2. If d = 1, then
inspection of Tables 3, 4, and 5 show (1), (2), or (3) of the theorem hold or we are in the
case of line 1 of Table 6. So we may assume that d = 2.

First assume that dim V' > dim G and so d := dimk[V]¢ = dimV — dim G > 0.
Then by Theorem 1.3 one of the following holds:

e G=A1,p#2,3,V =L(wy) withdimV = 5;

o G=A3,p#2,3,V =L(3w;) withdim V' = 10; or

e G=DBy,p=5V =L(w +wsy) withdimV = 12.
The possibilities for H with dim k[V]# = 2 are also given in Theorem 1.3 and we see that
there are no examples.

Next consider the case that dim V' < dim G. If V is the nontrivial composition factor
of the adjoint module (and char k is not special for G) and dim k[V]¢ < 2, then (G, p)
appears in Table 2. Again, the possibilities for H are all given in the tables and we see the
only examples are captured in the 2nd and 4th rows of Table 6.

Finally assume that dim V' < dim G and and we are not in the case of the adjoint
module. Thus, G and H both occur in Table 3 and we see that there are no containments
(when d = 2). O

An immediate consequence of Theorem 14.1 is:

Corollary 14.5. Under the hypotheses of Theorem 14.1: If G, is finite for genericv € V.
or dimV > dim G, then char k # 0 and (G, H,V, char k) are as in the last row of Table
6.

Corollary 14.6. Let V' be a faithful and irreducible representation of a simple algebraic
group G. Let e be the greatest common divisor of the degrees of the homogeneous elements
of k[V]Y. Assume that (G, V) is not given (up to twist) in the statement of Theorem 14.1.
If m is a sufficiently large multiple of e, then for almost all homogeneous f € k[V]G of
degree m, G is the identity component of the stabilizer of f.

Proof. There are only finitely many closed subgroups H of SL(V') containing G (see [LiT]
or [GaGu 15, Prop. 9.2]) and by the previous result dim k[V] < dim k[V]“. Thus, for
m sufficiently large (and a multiple of ¢), the set of f € k[V] that are homogeneous



GENERIC STABILIZERS FOR SIMPLE ALGEBRAIC GROUPS 35

whose stabilizer has connected component strictly containing G is a finite union of proper
subspaces of the degree m invariants of (G, whence the result. O

In fact using results of Seitz and Testerman and others (see [Seitz], [BuGMT, BuGT,
BuMT]), for most (G, V) it is the case that G is maximal in the corresponding classi-
cal group (SO(V'), Sp(V'), or SL(V')) and so any homogeneous G-invariant (other than a
scalar times a power of the invariant quadratic form in the case G < SO(V')) has stabi-
lizer whose connected component is G. See [GaGu 15] for many examples of this, e.g., if
G = Eg and V is the adjoint module.
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