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ABSTRACT. We prove a myriad of results related to the stabilizer in an algebraic group
G of a generic vector in a representation V of G over an algebraically closed field k. Our
results are on the level of group schemes, which carries more information than considering
both the Lie algebra ofG and the groupG(k) of k-points. ForG simple and V faithful and
irreducible, we prove the existence of a stabilizer in general position, sometimes called a
principal orbit type. We determine those G and V for which the stabilizer in general
position is smooth, or dimV/G < dimG, or there is a v ∈ V whose stabilizer in G is
trivial.
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1. INTRODUCTION

The aim of this paper is to prove, for an algebraically closed field k of arbitrary char-
acteristic, analogs of results that are known in the case k = C concerning an irreducible
representation V of a simple linear algebraic group G.

The first such result concerns the existence of a stabilizer in general position (s.g.p.)
also known as a principal orbit type for G acting on V . For v ∈ V , write Gv for the fixer
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of v in G; it is a closed sub-group-scheme of G. One says the action of G on V has an
s.g.p. if there is a closed sub-group-scheme G∗ of G and a dense open subset U of V such
that for all u ∈ U(k), there is a g ∈ G(k) such that gGug−1 = G∗. We prove in §§5–8:

Theorem 1.1. Every irreducible representation V of a simple algebraic group G over
an algebraically closed field k has an s.g.p. If dimV > dimG, the s.g.p. G∗ is a finite
group scheme. If dimV > dimG and ker[G → GL(V )] is central in G, then the identity
component of G∗ is contained in a torus and Lie(G∗) is a toral subalgebra of Lie(G).

In case char k = 0, Richardson proved the existence of an s.g.p. under weaker hypothe-
ses, e.g., in case G is merely assumed to be reductive [Ri 72, Th. A]. However, that claim
can fail when char k 6= 0, see Example 5.2. (There are additional, related results for C
that do not hold for k of prime characteristic, see Example 3.14.) Because of this, it is no
surprise that the arguments used here when char k 6= 0 are of a fundamentally different
nature. We rely on recent results proved in [GuL], [GaGu I], [GaGu II], and [GaGu III],
see §4 for a summary.

The previous work showed that, apart from an explicit list of cases, the stabilizer Gv of
a generic v ∈ V is the trivial group scheme, in which case the s.g.p. trivially exists. The
proof of Theorem 1.1 involves analyzing the many remaining cases. Along the way, we
determine the s.g.p. as a group scheme in almost all cases.

We also prove a result about when G∗ is commutative, see §9.
We mention that when an s.g.p. G∗ exists, one obtains as a consequence that the nat-

ural map in fppf cohomology H1
fppf(k,NG(G∗)) → H1

fppf(k,G) is surjective, see [LöM,
Cor. 4.5]. This provides in turn an upper bound on the essential dimension of G. We do
not pursue this avenue here.

Smoothness. Another feature that appears when char k is prime is that the group scheme
Gv need not be smooth. We call out those cases where it happens in the following result,
proved in §10. In the statement, the expression “for generic v ∈ V ” means that there is a
dense open subset U of V such that the statement holds for all v ∈ U(k) (in this case, that
Gv is smooth).

Theorem 1.2. Let V be a faithful and irreducible representation of a simple algebraic
group G over an algebraically closed field k. If it is not the case that Gv is smooth for
generic v ∈ V , then up to graph automorphism (G, char k, V ) appears in Table 4 or
(G, char k, V ) = (G2, 2, L(ω2)).

We were surprised to find that there was an example with V/G = Spec k yet the
generic stabilizer is non-smooth, namely the representation of G2 mentioned in theorem,
see Lemma 10.1 below.

One could weaken the hypothesis “faithful” in the theorem. Let N be the kernel of
G→ GL(V ). The quotient G/N acts faithfully on V (see §2) and is simple (Lemma 2.1),
so Theorem 1.2 applies to it. If (G/N)v is smooth (as given by Theorem 1.2) and N is
smooth (a hypothesis to replace “faithful”), then Gv is smooth because Gv/N = (G/N)v
[Milne, Prop. 1.62].

Rings of invariants. For a representation V ofG, the quotient V/G in the sense of Rosen-
licht is defined to be Spec k[V ]G, where k[V ]G is the ring of G-invariant functions on V .
In case G is reductive, k[V ]G is a finitely generated k-algebra [Sesh, Th. 2], and it has
dimension dimV − dimG+ dimGv for generic v ∈ V .

Combining the determination of Gv(k) from [GuL] with information about the possi-
bilities for dimV from [Lü], we can determine all cases where dimV/G is “small”. In
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the following result, L(α̃) is the irreducible representation of G with highest weight the
highest root α̃. This result is proved in §11.

Theorem 1.3. Suppose V is a faithful and irreducible representation of a simple algebraic
group G over an algebraically closed field k. If dim k[V ]G < dimG, then V = L(α̃) or
(G, char k, V ) belongs to Table 3, 4, or 5, up to graph automorphism.

Regular orbits. We also consider when a simple algebraic group acting on an irreducible
module has a regular orbit, i.e., when there exists a vector whose stabilizer is trivial. Note
that a necessary condition for there to exist a regular orbit is that the stabilizer of a generic
vector is finite, for otherwise the dimension of any stabilizer is positive. In characteristic
zero, it turns out that this is also sufficient. The following result is proved in §12.

Theorem 1.4. Suppose that V is a faithful and irreducible representation of a simple
algebraic group G over a field k of characteristic p 6= 2, 3, 5. Then exactly one of the
following possibilities occurs:

(a) there is some v ∈ V such that the stabilizer Gv is the trivial group scheme;
(b) dimV ≤ dimG;
(c) p is odd, G = SL4, and up to graph automorphism V = L(ω1 + peω2) for some

e ≥ 1; or
(d) p 6= 0,G is a quotient of SL`+1, and up to graph automorphism V = L(ω1+peω1)

or L(ω1 + peω`) for some e ≥ 1.

Note that dimV ≥ dimG is an obvious necessary condition for the existence of a
regular orbit. The theorem says that the condition is also sufficient, apart from a few
exceptions, namely the cases dimV = dimG, (c), and (d).

Other results. In addition to the results described so far, we also provide some other
applications, such as a result relating the generic stabilizer for G on V with the generic
stabilizer for G on a section of V (see §13) and a shorter proof of the classification of
groups with the same invariants from [GaGu 15] (see Theorem 14.1).

Acknowledgements. The results in this paper weave together and rest on several recent
papers, including [GuL]. Although Ross Lawther is not listed here as a co-author, this work
would not have been possible without his contributions. We also thank David Stewart and
the referee for their valuable comments on an earlier version of this article.

2. NOTATION AND BACKGROUND

Throughout this paper, we assume that k is an algebraically closed field. We consider
algebraic groups over k in the sense of [Milne], i.e., as affine group schemes of finite type
over k. Sometimes we write group scheme when it seems important to do so for clarity of
exposition.

For an algebraic groupG and any commutative k-algebraR, we putG(R) := Homk(k[G], R),
the set of R-points of G; it is an “abstract” or “ordinary” group. The algebraic group G is
finite if it is finite as a scheme over k, which holds if and only if G(k) is a finite group. We
say that G is commutative if G(R) is abelian for every k-algebra R.

We also consider the Lie algebra of G, which we denote by Lie(G) or g. Note that G is
smooth if and only if dimG = dim g, thatG is étale if and only if g = 0, andG is the trivial
group scheme Spec k if and only if g = 0 and G(k) = 1. We put G◦ for the connected
component of the identity in G. It is itself an algebraic group, and Lie(G◦) = Lie(G).
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The algebraic group G is semisimple if it is smooth and connected and has no smooth
connected solvable normal subgroups other than 1. It is simple (Milne says “almost-
simple”) if it is semisimple and every proper normal algebraic subgroup is finite.

We say that an action ρ : G → Aut(V ) is faithful if ker ρ is the trivial group scheme.
Our main results are for a faithful and irreducible representation V of a simple algebraic
group G. We view the hypothesis “faithful” as harmless. Indeed, suppose N is a normal
algebraic subgroup of G that is contained in the kernel of ρ. Then there is a quotient map
q : G → G/N [Milne, Th. 5.14] and a unique morphism ρ̄ : G/N → Aut(V ) so that
ρ = qρ̄ and ker ρ̄ = (ker ρ)/N [Milne, Th. 5.13, Th. 5.39]. In particular, the induced
action G/ ker ρ→ Aut(V ) is faithful. Moreover, when G is simple, so is G/N :

Lemma 2.1. If N is a proper normal sub-group-scheme of a simple algebraic group G,
then G/N is also simple.

Proof. The quotientG/N is smooth and connected becauseG is [Milne, Cor. 5.26, Prop. 5.59].
The inverse image H in G of a proper normal sub-group-scheme of G/N is a proper nor-
mal subgroup of G containing N , so H is finite and its image H/N in G/N is finite. �

In the setting of group schemes, N can be “large”. For example, suppose a representa-
tion ρ : G → GL(V ) is obtained as a Frobenius twist of another representation. Then ρ is
not faithful, because dρ : g → gl(V ) is zero; ker ρ contains the first Frobenius kernel G1.
In this case, G/G1 is isomorphic to G [Jan 03, I.9.5].

Near the end of this section, we provide another example, whereG = Sp2`, char k = 2,
and ρ is the spin representation.

Stabilizers. For a representation ρ : G → GL(V ) and v ∈ V , we write Gv for the closed
sub-group-scheme of G with R-points Gv(R) = {g ∈ G(R) | ρ(g)v = v} for every
commutative k-algebra R, the stabilizer of v in the ordinary group G(R). The Lie algebra
Lie(Gv) is the annihilator of v in g, denoted gv:

gv = {x ∈ g | dρ(x)v = 0}.
The following is a well-known example in the special case k = C, see for example

[Gurevich, 23.1] or [AnP, §1].

Example 2.2 (binary cubics). Take G = SL2 and V the space of binary cubics, i.e.,
homogeneous polynomials of degree 3 in variables x, y, over a field k of characteristic
6= 2. A generic vector v ∈ V is one that vanishes on three distinct lines in k2, such as
v = xy(x−y). One computes that Gv is the group scheme Z/3. (Compare the case λ = 3
in Example 5.4 below.)

The element w := x2y is not in the orbit of v. One can compute directly that Gw = 1,
i.e., the G-orbit of w is regular. (Compare Theorem 1.4 in the introduction.)

Focus now on the special case where char k = 3. Then V is reducible with socle L(3),
consisting of cubes of linear forms, and head L(1) spanned by the images of x2y, xy2.
The semisimplification V ′ of V is isomorphic to L(1) ⊕ L(1)[3]. The stabilizer in G of
a generic vector in the natural module L(1) is a 1-dimensional unipotent subgroup U , so
the stabilizer in G(k) of a generic v′ ∈ V ′ is an intersection U(k) ∩ U(k)g for a generic
g ∈ G(k), i.e., Gv(k) = 1. On the other hand, the Lie algebra g acts trivially on L(1)[3],
so gv′ = gv = Lie(U). In summary, Gv′ is infinitesimal whereas Gv is étale.

Example 2.3 (Diagonalizable groups). If G is a diagonalizable group scheme, then the
stabilizer of every generic v ∈ V is the kernel of G→ GL(V ). Therefore the s.g.p. exists
trivially.
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Suppose now merely that the identity component of G is a torus. In this case the s.g.p.
need not be the kernel of the action. (This contradicts [PoV, §7.2, Prop.], whose statement
is surely a typo.) Take for example V to be the natural representation of GL2 and G to be
the normalizer of the diagonal matrices, so G ∼= Gm oZ/2. A vector ( xy ) ∈ V with xy 6= 0

has stabilizer Z/2 in G with non-identity element
(

0 x/y
y/x 0

)
. Choosing another vector in

V of the same type and not in the span of the first, we find a stabilizer that is distinct from
but G-conjugate to the stabilizer of ( xy ). In this case the s.g.p. exists, is not the kernel of
the action, and is only determined by (G,V ) up to conjugacy class.

Irreducible representations. Recall that every irreducible representation V of G has a
highest weight λ. Write λ as a sum λ =

∑
ω cωω where the sum runs over the fundamental

dominant weights ω. One says that λ is restricted when p := char k 6= 0 if 0 ≤ cω < p
for all ω. (In case char k = 0, all dominant weights are, by definition, restricted.)

Suppose now that p 6= 0. Write λ = λ0 + prλ1 for some r ≥ 1, where λ0 =
∑
ω cωω

and 0 ≤ cω < pr for all ω. If λ0 and pr−1λ1 belong to T ∗ (e.g., if G is simply connected),
then L(λ) ∼= L(λ0) ⊗ L(pr−1λ1)[p] [Jan 03, II.3.16], the tensor product of L(λ0) and a
Frobenius twist of L(pr−1λ1). As a representation of g (forgetting about the action of
G(k)), this is the direct sum of dimL(λ1) copies of L(λ0).

We label the simple roots of G as in Table 1, which agrees with [Bour 02] as well as
[GuL]. Note that our other references, [GaGu I], [GaGu II], and [GaGu III] follow the
numbering of [Lü], which is different.

name torsion primes diagram

A` (` ≥ 1) none r r r · · · r r r
1 2 3 `−2 `−1 `

B` (` ≥ 3) 2 r r r · · · r r > r
1 2 3 `−2 `−1 `

C` (` ≥ 2) none r r r · · · r r < r
1 2 3 `−2 `−1 `

D` (` ≥ 4) 2 r r r · · · r r��
ZZ

r
r1 2 3 `−3

`−2

`

`−1

E6 2, 3
r r rr r r
1 3 4 5 6

2

E7 2, 3
r r rr r r r
1 3 4 5 6

2

7

E8 2, 3, 5
r r rr r r r r
1 3 4 5 6

2

7 8

F4 2, 3 r r> r r
1 2 3 4

G2 2 r< r
1 2

TABLE 1. Dynkin diagrams of simple root systems, with simple roots
numbered as in [Bour 02], and their torsion primes from [Dem, p. 299].
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Irreducible representations L(λ), L(λ′) of G are equivalent up to graph automorphism
if there is an automorphism φ of the Dynkin diagram (i.e., an automorphism of the root
system that normalizes the set of simple roots) so that φ(λ) = λ′; such representations
are equivalent up to an automorphism of G. For example, the representations ∧dkn and
∧n−dkn of SLn are equivalent up to graph automorphism. Our results, which are about
stabilizers in general position and so on, are transparently the same for representations that
are equivalent up to graph automorphism.

Special characteristic. For the remainder of this section, suppose that G is simple and
simply connected. We say that char k is special for G if G has type G2 and char k = 3
or G has type B` (` ≥ 2), C` (` ≥ 2), or F4 and char k = 2. (This was written as
“exceptionally bad characteristic” in the title of [GaGu III].) That is, char k is special if
the Dynkin diagram of G has an edge with multiplicity char k. When that holds, there
is a very special isogeny π : G → Ḡ where Ḡ is also simple simply connected and the
root system of Ḡ is inverse to the root system of G, see [CoGP, §7.1] or [St 63, §10] for a
concrete description.

Now suppose that char k is special for G, so in particular ∆ has two root lengths. Write
a dominant weight λ as λ =

∑
cδωδ , where cδ ≥ 0 and ωδ is the fundamental weight dual

to δ∨ for δ ∈ ∆. We write λ = λs + λ` where λs =
∑
δ short cδωδ and λ` =

∑
δ long cδωδ ,

i.e., 〈λs, δ∨〉 = 0 for δ long and 〈λ`, δ∨〉 = 0 for δ short. Steinberg [St 63] shows that
L(λ) ∼= L(λ`)⊗ L(λs) and that furthermore the action of G on L(λ`) factors through the
very special isogeny. For example, in case G = Sp2` for some ` ≥ 2 and char k = 2,
Ḡ = Spin2`+1 and the non-faithful representation L(ω`) of G is obtained by composing
the very special isogeny π with the spin representation of Ḡ, which is irreducible and
faithful.

In particular, if L(λ) is faithful, then λs 6= 0.

3. ADJOINT REPRESENTATION

We record in this section various results about G acting on Lie(G) and the irreducible
representation L(α̃).

The generic stabilizer for simple G acting on Lie(Ad(G)) is determined in [GaGu 16,
Prop. 9.2]; this representation has an s.g.p. whose identity component is a maximal torus
in G. It follows that dim k[Lie(Ad(G))]G = rankG. However, Lie(Ad(G)) agrees with
g = Lie(G) if and only if the center of G, i.e., the kernel of G→ Ad(G), is étale.

The general statement is that the Lie algebra g̃ of the simply connected cover G̃ of G is
the Weyl module V (α̃) with highest weight the highest root α̃ and the head of V (α̃) is the
irreducible representation L(α̃), see for example [Ga 09b, 2.5].

For G simple, g is an irreducible representation of G — i.e., Lie(G) = L(α̃) — if and
only if the center Z(G̃) is étale and char k is not special for G, see [Hiss].

Lemma 3.1. The irreducible representation L(α̃) of a simple group G is faithful if and
only if G is adjoint, char k is not special for G, and (G, char k) 6= (PGL2, 2). If those
equivalent conditions hold, then the s.g.p. exists, its identity component is a maximal torus
of G, and

dim k[L(α̃)]G = rankG− dim Lie(Z(G̃)).

Proof. The kernel of the action of G̃ on V (α̃) is Z(G̃) [Milne, Prop. 21.7], so the kernel
of the action of G on V (α̃) is Z(G̃)/ ker[G̃ → G] ∼= Z(G). Thus, for L(α̃) to be faithful
it is necessary that G is adjoint.
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If char k is special for G, then n := ker dπ is a nonzero proper ideal in g̃ = V (α̃),
so its image in L(α̃) is zero. In particular, the image of n in g acts trivially on L(α̃). As
n 6⊆ Lie(Z(G̃)) [Hiss], its image in g is not zero, so g and the group scheme G do not act
faithfully on L(α̃).

Suppose for the remainder of the proof that G is adjoint and char k is not special for G.
Since G(k) is simple as an ordinary group, it acts faithfully on L(α̃), whence the kernel of
the action of G is infinitesimal.

The socle of g as a representation of G is irreducible [Hiss]; it is the subalgebra gener-
ated by the root subspaces, i.e., the image of the Lie algebra of the simply connected cover
of G̃ of G, see for example [GaGu I, Lemma 3.1(1)]. That is, L(α̃) is not faithful if and
only if the composition g̃→ g→ gl(L(α̃)) is zero if and only if (G, char k) = (PGL2, 2)
by [GaGu I, Lemma 3.1(2)]. This concludes the proof of the first sentence of the lemma.
For the remainder of the proof we suppose additionally that (G, char k) 6= (PGL2, 2).

Pick a maximal torus T̃ in G̃. The orbit of a generic element in V (α̃) meets Lie(T̃ ) by
[DemG, XIII.5.1, XIV.3.18], compare Lemma 5.8 below. A generic element t ∈ Lie(T̃ )
has image a generic element v ∈ L(α̃). The arguments of [GaGu I, Example 3.4] apply
and the stabilizer Gv of v has identity component the image T of T̃ and in particular
T ⊆ Gv ⊆ NG(T ).

An element n ∈ NG(T )(k) belongs to Gv if and only if Ad(n)t − t is in the kernel
of the map V (α̃) → L(α̃), i.e., is in Lie(Z(G̃)). Equivalently, if and only if every root α
vanishes on Ad(n)t− t. Since t is generic, this is equivalent to 〈α ◦Ad(n)− α, β∨〉 = 0
in k for every root α and coroot β∨, equivalently, the element α ◦Ad(n)−α in the weight
lattice is divisible by char k for every root α. This only depends on the image of n in the
Weyl group NG(T )/T and not on the choice of t, so Gv depends only on the choice of T̃
(equivalently, T ), verifying that Gv is an s.g.p. for the action of G on L(α̃). �

Example 3.2. The s.g.p. appearing in the statement of Lemma 3.1 need not be connected.
Take G of type E8, in which case the irreducible representation L(α̃) is g itself and G is
both simply connected and adjoint. In the notation of the proof, Gv is connected if and
only if char k 6= 2, see [GaGu 16, Prop. 9.2]. (Note that Steinberg’s result [St 75, Th. 0.2],
which shows in some cases that semisimple elements in g have connected centralizers,
assumes char k is not a torsion prime, so it does not apply here when char k is 2, 3, or 5.)
When char k = 2, Gv/G◦v ∼= Z/2, where the nontrivial element acts on the torus G◦v by
inversion.

Example 3.3. Suppose G = PGL3 and char k = 3. Then L(α̃) is sl3/k as both a G-
module and a Lie algebra. In the notation of the proof of Lemma 3.1, the image of Lie(T̃ )
in L(α̃) is a 1-dimensional maximal toral subalgebra kv. The Weyl group NG(T )/T is
the symmetric group on 3 letters, which acts on kv as ±1, whence the component group
Gv/G

◦
v is Z/3. We thank a referee for suggesting this example.

Example 3.4. We apply Lemma 3.1 to construct Table 2, where we list the cases where
simple G acts faithfully on L(α̃) and dim k[L(α̃)]G ≤ 2. If dim Lie(Z(G̃)) = 0, i.e.,
Z(G̃) is étale, then (type of G, char k) is one of (A1, 6= 2), (A2, 6= 3), (B2, 6= 2), or
(G2, 6= 3). If dim Lie(Z(G̃)) = 1, then rankG ≤ 3 and (type of G, char k) is (A2, 3)

or (A3, 2). Finally, if dim Lie(Z(G̃)) = 2, then G has type D2m for some m ≥ 2, so (type
of G, char k) = (D4, 2).

We will use the following in the proof of Theorem 14.1 at the end of the paper, but we
put it here because it only concerns L(α̃) as a representation.
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type of G char k dimL(α̃) dim k[L(α̃)]G

A1 6= 2 3 1
A2 6= 3 8 2
A2 3 7 1
A3 2 14 2
B2 6= 2 10 2
D4 2 26 2
G2 6= 3 14 2

TABLE 2. Simple G that act faithfully on L(α̃) such that
dim k[L(α̃)]G ≤ 2.

Lemma 3.5. Let G be a simple algebraic group. If there is a proper, connected, and
smooth algebraic subgroup of G that acts irreducibly on L(α̃), then char k is special for
G.

Proof. Let G′ be a connected, proper, and smooth subgroup of G that acts irreducibly on
L(α̃). Since the kernel of the action by G on L(α̃) is finite and G′ acts irreducibly, we
conclude that G′ has trivial radical and so is semisimple.

For sake of contradiction, suppose char k is not special. We may assume that G is
adjoint, so L(α̃) is the socle of g as a representation of G and g/L(α̃) is isomorphic to the
Lie algebra of the center of the simply connected cover of G. As the Lie algebra g′ is a G′-
invariant subspace of g, it contains L(α̃). In particular, G and G′ have the same number of
roots and the same unipotent radicals for the Borel subgroups. As these unipotent radicals
of a semisimple group generate the group, we find G = G′. �

For the sake of completeness, we provide the following converse to Lemma 3.5. In
the statement, the hypotheses “connected” and “smooth” are redundant because they are
included in the definition of simple (see §2). We have included them here to emphasize
that this is a converse to the preceding.

Lemma 3.6. Let G be a simple algebraic group. If char k is special for G, then there is a
proper, connected, smooth, and simple subgroup of G that acts irreducibly on L(α̃).

Proof. We may assume that G is simply connected, so L(α̃) is the head of g.
If G is of type Cn for n ≥ 2, the root subgroups for the short roots generate a sub-

group G′ of type Dn. The restriction of L(α̃) to G′ is a Frobenius twist of the natural
representation of dimension 2n, so G′ acts irreducibly on L(α̃).

If G has type Bn for n ≥ 3, F4, or G2, then the root subgroups for the long roots
generate a subgroup G′ of type Dn, D4, or A2 respectively. The description of g in [Hiss]
or [Hog] shows that Lie(G′) maps onto L(α̃) and indeed L(α̃) is also the irreducible part
of the adjoint representation of G′. �

Invariant polynomial functions. We now study the rings of invariant polynomial func-
tions k[g]G and k[L(α̃)]G, especially in the case where g 6= L(α̃).

Suppose G is simple and let T be a maximal torus in G. For W the Weyl group
NG(T )/T , the natural restriction map

(3.7) k[g]G → k[t]W
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is injective. Furthermore, it is an isomorphism if and only if (G, char k) 6= (Sp2`, 2) for
` ≥ 1, see [SpSt, II.3.17’], [Jan 04, p. 82, 7.12], or [ChaR]. This is sometimes called the
Chevalley Restriction Theorem.

IfG is simply connected, then k[t] from the previous paragraph is the symmetric algebra
on the weights with coefficients in k. If char k is not a torsion prime for (the root system
of) G as in Table 1, then k[t]W is a polynomial algebra [Dem, p. 297, Cor.]. If additionally
(G, char k) 6= (Sp2`, 2) for ` ≥ 1, then the generators of k[t]W have the same degrees as
they do for the analogous group in case k = C [Dem, p. 296, Cor., Th. 3].

Example 3.8. Suppose G has type G2. The only torsion prime for G is 2, so when
char k 6= 2, k[g]G is a polynomial ring with generators of degree 2 and 6 by the above
and [Bour 05, §VIII.8.3].

In case char k = 2, we apply the Chevalley Restriction Theorem by hand. The element
−1 in the Weyl group acts trivially on t, so k[t]W is the ring of invariant functions of the
symmetric group on 3 letters on its irreducible 2-dimensional representation. We conclude
that k[g]G is a polynomial ring with generators of degrees 2 and 3. (Alternatively, one can
apply the next two examples to an A2 subgroup containing T to see that k[g]G = k[t]W =
k[t]S3 = k[sl3]SL3 to draw the same conclusion.)

Example 3.9. For G = SLn, the ring of G-invariant functions on the space of n-by-n
matrices is polynomial with generators the coefficients of the characteristic polynomial.
Tracking the proof of [N, Prop. 4.1], one finds that the ring of invariants k[g]G is also
polynomial, with the same generators except for the trace. Away from the case n = 2 and
char k = 2, the Chevalley Restriction Theorem and Demazure’s result provides the same
conclusion.

In case n = 2 and char k = 2, the Weyl group W acts trivially on the Lie algebra t of
a maximal torus in G, so k[t]W is a polynomial ring in one variable, generated by a linear
function. The image of the restriction map k[g]G → k[t]W is (k[t]W )[2].

We now address k[L(α̃)]G in case g is a reducible representation.

Example 3.10. SupposeG is simple, char k is not special forG, and (type ofG, char k) 6=
(A1, 2). In particular, the Chevalley Restriction Theorem applies. As the action of G on
L(α̃) factors through the adjoint group Ḡ of G and our goal is to calculate k[L(α̃)]G, we
are free to choose G to be simply connected.

Under the hypotheses, L(α̃) is the image of g in ḡ. As Z(G) is contained in T [Milne,
Prop. 21.7], its Lie algebra z is contained in t. The natural maps k[t/z]G ↪→ k[t]G and
k[g/z]G ↪→ k[g]G are compatible with the isomorphism (3.7) in the sense that it induces
an isomorphism k[L(α̃)]G

∼−→ k[t0]W , where t0 := t/z is the image of t in the Lie algebra
of the image T of T . It is the subspace of Lie(T ) spanned by the elements hα in a Chevalley
basis where α is a root. (See [GaGu 15, Example 8.3] for a concrete illustration in the case
G is isogenous to SL4 and char k = 2, where L(α̃) has a polynomial ring of invariants
with generators of degrees 2 and 3.)

Corollary 3.11. Suppose G is simple and L(α̃) is faithful. If dim k[L(α̃)]G ≤ 2, then
k[L(α̃)]G is a polynomial ring.

Proof. The type of G and char k appear as a row in Table 2. If dim k[L(α̃)]G = 1,
then k[L(α̃)]G is a polynomial ring for dimension reasons [BeGuL, Prop. 6.1], so assume
dim k[L(α̃)]G = 2.

If Z(G̃) is étale, we apply the Chevalley Restriction Theorem. Otherwise (type of
G, char k) = (A3, 2) or (D4, 2) and we apply Example 3.10. In either case, k[L(α̃)]G



10 S. GARIBALDI AND R.M. GURALNICK

is isomorphic to the ring of invariant polynomials of a pseudoreflection group (the Weyl
group) acting on a 2-dimensional space, so it is a polynomial ring by [N, Th. 5.1] or [KeM,
Prop. 7.1]. �

See Proposition 11.3 below for a stronger version of Corollary 3.11.

Proposition 3.12. Let G = PGLn for some n ≥ 2 over a field k. The following are
equivalent:

(1) k[L(α̃)]G is a polynomial ring.
(2) k[g]G is a polynomial ring.
(3) n ≤ 4 or char k does not divide n.

Proof. Suppose first that char k does not divide n. Then the representations sln, pgln, and
L(α̃) are all naturally identified with each other and k[sln]SLn is a polynomial ring as in
Example 3.9.

Therefore, we restrict our attention to the case where char k does divide n, applying
Example 3.10 for k[L(α̃)]G and the Chevalley Restriction Theorem for k[g]G. As the roots
ofG all have the same length, we may identify the root system with its dual and so identify
the toral subalgebra t of g with the weight lattice tensored with k and t0 with the subspace
spanned by the roots.

If we identify the Weyl group with the symmetric group Sn and consider its permutation
representation X with basis x1, . . . , xn, then the ring k[t] of functions on t with the action
by the Weyl group is identified with the symmetric algebra AY on the subspace Y of X
of elements whose coordinates sum to zero. Moreover, the space of characters on T that
vanish on t0 are a 1-dimensional subspace of Y and contain

∑
xi, so the functions on k[t0]

are identified with the symmetric algebra AZ on Z := Y/k
∑
xi. If n > 4, then ASn

Y and
ASn

Z are not polynomial rings, see [N, §4] and [KeM, §5], proving the claim in that case.
If n ≤ 4, then dim k[L(α̃)]G ≤ 2 and we have already observed that k[L(α̃)]G is a

polynomial ring in Corollary 3.11. If n = 2 or 3, then k[g]G is by the Chevalley Restriction
Theorem the functions in 1 or 2 variables that are invariant under a finite reflection group,
so for the same reason we conclude that k[g]G is a polynomial ring.

Finally, consider k[g]G in the case n = 4 and k = F2. The ring AY has generators

(3.13) y1 = x1 − x2, y2 = x2 − x3, y3 = x3 − x4.
Set

f1 = y1 + y3,

f2 = y21y
2
2 + y42 + y21y2y3 + y1y

2
2y3 + y21y

2
3 + y1y2y

2
3 + y22y

2
3 , and

f3 = y41y
2
2 + y21y

4
2 + y41y2y3 + y1y

4
2y3 + y41y

2
3 + y21y

2
2y

2
3 + y42y

2
3 + y21y

4
3 + y1y2y

4
3 + y22y

4
3

in AY . Rewriting these using (3.13), we find that f1 =
∑
xi is in AS4

Y and similarly
for f2 and f3. The determinant of the Jacobian matrix with (i, j) entry ∂fi/∂yj is not
zero (e.g., the term y51y

2
2y3 appears) and

∏
deg fi = |S4|, so the fi are algebraically

independent and k[g]G ∼= AS4

Y = k[f1, f2, f3] is a polynomial ring by the criterion from
[DerK, Th. 3.9.4]. �

Example 3.14. Let V be an irreducible and faithful representation of a simple algebraic
groupG over k. One can ask whether the property thatGv 6= 1 for generic v ∈ V (denoted
by (ST) in [PoV, §8]) is equivalent to the property that k[V ]G is a polynomial ring (denoted
by (FA) in ibid.). If char k = 0, then the two properties are equivalent, see [PoV, Th. 8.8]
and [KaPV].
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If G = PGLn such that char k divides n and n ≥ 5 and V = L(α̃), then (G,V )
satisfies (ST) (Lemma 3.1) but not (FA) (Proposition 3.12).

Alternatively, take G = PSp2n with the same hypotheses on n. The representation
V = L(ω2) is faithful and irreducible and Gv 6= 1 for generic v ∈ V , see Table 3.
Example 8.5 in [GaGu 15] shows that k[V ]G is isomorphic to the ring of invariants in the
preceding paragraph, so it too is not a polynomial ring.

4. SUMMARY OF SOME RECENT RESULTS

Recent results of the authors, which rely on Lübeck’s paper [Lü], combine with that
paper to give the following results.

Theorem 4.1. Let V be an irreducible and faithful representation of a simple linear alge-
braic group G over an algebraically closed field k.

(1) Suppose dimV > dimG. Then Gv is finite for generic v ∈ V , and dim k[V ]G =
dimV −dimG. Moreover,Gv 6= 1 for generic v ∈ V if and only if (G, char k, V )
is listed in Table 4 up to graph automorphism.

(2) If dimV = dimG, then G is adjoint, V is the adjoint representation Lie(G) =
L(α̃), char k is not special for G, there is a s.g.p. (whose identity component is a
maximal torus), and dim k[V ]G = rankG.

(3) If dimV < dimG, then (G, char k, V ) is listed in Table 3 up to graph automor-
phism or V = L(α̃).

In particular, Gv is finite for generic v ∈ V if and only if dimV > dimG.

We now justify the columns in Tables 3 and 4 concerning Gv . The k-points G(k)v =
Gv(k) for generic v ∈ V are from [GuL].

In Table 4, the Lie algebra gv was computed in [GaGu II] and [GaGu III]. Since G(k)v
is finite in all cases, if additionally gv = 0 then Gv is étale (in particular, smooth) and so
completely described by G(k)v . In particular, Gv is commutative if and only if G(k)v is
an abelian group. If gv 6= 0, then Gv is not smooth, and we study Gv in §6 and §7.

Proof. (1): Assume dimV > dimG. The rows in Table 4 are a union of the rows in Table
1 in each of [GaGu III] (those with gv 6= 0) and [GuL] (those with Gv(k) 6= 1), although
we have omitted those entries corresponding to non-faithful representations, such as spin
representations of Sp2` when char k = 2. Conversely, if gv = 0 and G(k)v = 1, then
Gv = 1.

Note that in each row of Table 4, Gv(k) is finite. This gives the claim on dim k[V ]G.
For the remainder of the proof, we assume that dimV ≤ dimG, so the highest weight

of V is restricted by an easy dimension argument as in [GaGu II, Lemma 1.1]. That is, V
is among the representations enumerated in [Lü].

If dimV = dimG, checking the tables in [Lü] verifies that V is the adjoint representa-
tion and char k is not special. Moreover, as dimV = dimG, the center of the simply con-
nected cover of G is étale and the generic stabilizer is computed in [GaGu 16, Prop. 9.2].
This verifies (2).

For (3), the list in Table 3 is somewhat shorter than in [Lü], because we have omitted
those representations that factor through the very special isogeny, i.e., those λ that vanish
on the short simple roots such as the spin representations of type C when char k = 2.

For the final claim, note that for V = L(α̃), Gv is not finite for generic v ∈ V by
Lemma 3.1. �
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G char k V Gv(k) dim k[V ]G

A` (` ≥ 1) any k`+1 A`−1U` 0
A` (` ≥ 1) 6= 2 S2(k`+1) D(`+1)/2 or B`/2 1

A` (odd ` ≥ 3) any ∧2(k`+1) C(`+1)/2 1
A` (even ` ≥ 4) · · · same as line above · · · C`/2U` 0

SL6 /µ3 any ∧3k6 A2
2.Z/(2, p) 1

SL7 any ∧3k7 G2 1
SL8 any ∧3k8 A2.Z/(2, p) 1

SO2`+1 (` ≥ 2) 6= 2 L(ω1) (natural) D` 1
Spin7 any L(ω3) (spin) G2 1
Spin9 any L(ω4) (spin) B3 1
Spin11 any L(ω5) (spin) A4.Z/(2, p) 1
Spin13 any L(ω6) (spin) A2

2.(Z/(2, p))2 2

Sp2` (` ≥ 2) any L(ω1) (natural) C`−1U2`−1 0
Sp6 6= 2 L(ω3) (“spin”) Ã2 1

PSp6 any L(ω2) C3
1 .Z/(3, p) 2− ε

PSp8 · · · same as line above · · · C4
1 .(Z/(2, p))2 3− ε

PSp2` (` ≥ 5) · · · same as line above · · · C`1 `− 1− ε
SO2` (` ≥ 4) any L(ω1) (natural) B`−1 1

Spin10 any spin B3U8 0
HSpin12 any half-spin A5.Z/(2, p) 1
Spin14 any spin G2

2.Z/(2, p) 1

G2 6= 2 L(ω1) (natural) A2 1
G2 2 same as line above A1U5 0
F4 any L(ω4) (natural) D4 2− ε
E6 any L(ω1) (minuscule) F4 1
E7 any L(ω7) (minuscule) E6.Z/(2, p) 1

TABLE 3. Irreducible faithful representations V for a simple algebraic
group G over an algebraically closed field k of characteristic p such that
dimV ≤ dimG, except for L(α̃) and up to graph automorphism. The
symbol ε represents 0 or 1, where the value is determined by ` and
char k.

Remark 4.2. In Table 4, the stabilizer Gv in Spin13 when char k = 2 is (SL3× SL3) o
(Z/2 × Z/2), as described in [GuL, Prop. 5.2.9]. The Z/2’s are generated by an element
that acts as an outer automorphism on each SL3 and an element that interchanges the two
SL3’s. This corrects a mistake in [GaGu 17, Prop. 9.2], where one of the Z/2 factors was
omitted.

The following is an analogue for group schemes of a result proved for G(k) in [GuL,
Cor. 11]. Recall that an algebraic group G is said to act generically freely on V if Gv = 1
for generic v ∈ V .

Corollary 4.3. Let G be a simple linear algebraic group acting faithfully and irreducibly
on a representation V . If V has a nonzero weight space with multiplicity > 1, then G acts
generically freely on V .
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Proof. We apply Theorem 4.1 and verify that the nonzero eigenvalues have multiplicity 1
in each faithful irreducible representation V = L(λ) that is not generically free.

The list of L(λ) where the nonzero eigenvalues have multiplicity 1 for k of prime char-
acteristic has been obtained in [TZ, Prop. 8], leveraging [Seitz, 6.1] and [ZS].

Alternatively, for each λ, if the irreducible representation over C with the same highest
weight has nonzero eigenvalues of multiplicity 1 (the list of such is known from [Howe,
Th. 4.6.3]), then we are done. The remaining λ can be treated in an ad hoc manner.

Yet another way to phrase the proof is to suppose that V has a nonzero weight space with
multiplicity 1 and apply [GuL, Cor. 11] to deduce that Gv(k) = 1 for generic v ∈ V . This
reduces the proof to verifying that nonzero eigenvalues have multiplicity 1 in the faithful
irreducible representations that have nonzero but infinitesimal generic stabilizer. There are
just four of these, appearing in Table 4. (While the generic stabilizers for these cases are
determined later in this paper, at this point we only need to know which representations
have infinitesimal generic stabilizers, which is known from combining the results of [GuL]
and [GaGu III].) �

Corollary 4.4. Let V be an irreducible representation of a simple algebraic group G.
Then either G has an open orbit in V or there is a dense open subset of V consisting of
closed G-orbits.

Proof. As theG-orbits in V are not changed by replacingG by a quotient, we may assume
that G acts faithfully. Suppose G does not have an open orbit in V , i.e., dim k[V ]G > 0.
Then by the theorem and Tables 3 and 4, for generic v ∈ V , the group Gv(k) is the k-
points of a reductive group, i.e., (Gv)red is reductive. Thus the quotient G/(Gv)red is
affine [Ri 77], whence the claim by [Po 72]. �

5. STABILIZERS IN GENERAL POSITION

For a vector v in a representation V of an algebraic groupG, one can consider separately
(1)Gv , the stabilizer of v inG as a closed sub-group-scheme ofG; (2)G(k)v , the stabilizer
of v in the abstract group G(k) of k-points of G; or (3) gv , the annihilator of v in the Lie
algebra g of G. The first carries at least as much information as the other two, in the sense
that

Gv(k) = G(k)v and Lie(Gv) = gv.

So far, we have focused on the notion of stabilizer in general position in the sense of group
schemes, i.e., (1). One can also consider versions for (2) and (3), namely:

Definition 5.1. For the group of k-points,G(k), we say that a stabilizer in general position
(s.g.p.) exists if there is a subgroup G(k)∗ of G(k) and a dense open subset U of V so that
for every u ∈ U(k), there is a g ∈ G(k) such that gG(k)ug

−1 = G(k)∗.
An s.g.p. for the Lie algebra g ofG is a subalgebra g∗ of g such that for every u ∈ U(k),

there is a g ∈ G(k) such that (Ad g)gu = g∗.

Recall that, if char k = 0 and G is reductive, then a stabilizer in general position G∗
exists by [Ri 72], see [PoV, §7] for a survey. Indeed, an s.g.p. exists even for the action of
reductive G on a smooth affine variety X when char k = 0. However, the same claim does
not hold in prime characteristic, even on the level of k-points, as the following example
demonstrates.

Example 5.2. The generic stabilizer need not exist when G is semisimple. For example,
take G = Spin7× SL4, char k = 2, and V = (spin)⊗ k4. Combining Prop. 6.2.9 and the
proof of Lemma 4.6.1 in [GuL] shows that for generic y ∈ P(V ), the stabilizer Gy(k) is
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semisimple with k-points of type B1×B1, but that there is no s.g.p. for the action of G(k)
on P(V ). (That is, there is a dense open subset of P(V ) on which the stabilizers in G(k)
are all isomorphic, but there is not one where they are conjugate under G(k).) As Gy(k)
is semisimple, it follows that the stabilizer Gv of a generic v ∈ V has the same k-points.
Therefore, if the action of G(k) on V has an s.g.p., then so does the action of G(k) on
P(V ) (and it would be the same s.g.p.), a contradiction.

The following lemma allows us to leverage the results of Guralnick-Lawther (where
the s.g.p. was computed for the abstract group G(k)) and Garibaldi-Guralnick (where the
generic stabilizer was computed for the Lie algebra g).

Lemma 5.3. Let G be a group scheme over an algebraically closed field k acting on an
irreducible variety X so that

(1) there is an s.g.p. G(k)∗ for the action by the abstract group of points G(k) and
(2) there is an x ∈ X(k) such that dim gx = dimG(k)∗.

Then there is an s.g.p. for the action of the group scheme G on X and it is smooth.

Proof. The set {u ∈ X | dim gu ≤ dimG(k)∗} is open by upper semicontinuity of
dimension and it is nonempty by (2). Put U for its intersection with a nonempty open
subset of X consisting of u such that G(k)u is conjugate to G(k)∗. For any u ∈ U(k), we
have

dimG(k)u ≤ dim gu ≤ dimG(k)∗

where the first inequality holds because Gu is an algebraic group and the second is by
construction of U . As G(k)u and G(k)∗ are conjugate, they have the same dimension, and
we have verified that Gu is smooth.

For u, u′ ∈ U(k), there is a g ∈ G(k) so that gGug−1 and Gu′ have the same k-
points, by construction of U . As both group schemes are smooth, they agree [Milne,
Prop. 3.16]. �

Example 5.4 (Type A1). Suppose G has type A1 and V is a faithful irreducible represen-
tation with highest weight λ, a natural number. The hypothesis that G is faithful says that
char k does not divide λ (for otherwise V is a Frobenius twist of another representation)
and that G = SL2 if and only if λ is odd.

If λ = 1, then V is the tautological representation of SL2, which has an open orbit
(dim k[V ]G = 0), and therefore there is an s.g.p.

If λ = 2 (so char k 6= 2), then V is the adjoint representation and the stabilizer of a
generic element is a maximal torus. We find dim k[V ]G = 1.

If λ ≥ 3, then gv = 0 for generic v by [GaGu I, Examples 1.8 and 3.3]. As in [GuL,
Th. 2], Gv(k) is finite, and 6= 1 only for the cases in Table 4. By Lemma 5.3, there is an
s.g.p. for the action of G on V . In this case, dim k[V ]G = dimV − 3.

In summary, there is an s.g.p. for the action of G on V .

Here is another application of Lemma 5.3.

Lemma 5.5. For G = PSp2` with ` ≥ 3 and V the Weyl module V (ω2) or the irreducible
module L(ω2), an s.g.p. exists and it is smooth.

Proof. Proposition 5.2.5 of [GuL] shows that an s.g.p. exists for the action of G(k) on
V (ω2) and on L(ω2), and it has dimension 3`. Therefore, in view of Lemma 5.3, it suffices
to verify that dim gv = 3` for v generic in V (ω2) or L(ω2).

View the simply connected cover Sp2` of G as the subgroup of GL2` preserving the
alternating bilinear form s(m,m′) := m>Jm′ where J =

(
0 I`
−I` 0

)
. The group GSp2` of
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similarities of s is generated by Sp2` and scalar transformations. Its Lie algebra consists
of those x ∈ gl2` of the form

(
A B
C µI`−A>

)
for A,B,C ∈ gl` and µ ∈ k such that

B> = B and C> = C as in [GaGu III, Example 8.1]. There is a natural exact sequence
1 → Gm → GSp2` → G → 1 and the corresponding map gsp2` → g is surjective.
Therefore, it suffices to prove that dim(gsp2`)v = 3`+ 1 for generic v ∈ V .

We first treat the case V = V (ω2). Let Y be the space of self-adjoint operators with
respect to s, i.e., those transformations y of k2` such that s(ym,m) = 0 for all m ∈ k2`.
It is a representation of G under the action ρ(g)y = gyg−1. The ring of G-invariant
polynomial functions k[Y ]G has a linear generator that sends y ∈ Y to half the trace of
Jy, see [GaGu 15, Example 8.5] and the kernel of this linear map is V (ω2). Take V1 to be
the subspace of V (ω2) consisting of diagonal matrices. The mapG×V1 → V is dominant
[GoGu, Cor. 2.10], so we may take for generic v ∈ V a diagonal matrix v = ( L 0

0 L ) where
L ∈ gl` is diagonal with entries (λ1, . . . , λ`) such that

∑`
i=1 λi = 0. Note that forA ∈ gl`,

[A,L] has (i, j)-entry aij(λj − λi), which is zero when i = j and is a nonzero multiple of
aij when i 6= j (because ` ≥ 3). In particular, [A,L] = 0 if and only if A is diagonal. For
x ∈ gsp2`, we have

dρ(x)v = [x, v] =
(

[A,L] [B,L]

[C,L] [−A>,L]

)
,

whence x is in (gsp2`)v if and only if A, B, and C are diagonal, proving the claim for
V = V (ω2).

If char k does not divide `, then L(ω2) = V (ω2) and the proof is complete. So assume
char k divides `, in which case the subspace Y2 of scalar matrices is a G-invariant sub-
module of V (ω2) and L(ω2) = V (ω2)/Y2. (For this and the previous sentence, compare
for example [PrS, esp. Th. 2(iv)].) Re-reading the previous paragraph, we note that we
actually proved that [A,L] is scalar if and only if A is diagonal, and therefore we find that
the stabilizer in gsp2` of a generic vector v ∈ V (ω2) is the same as the stabilizer of its
image in L(ω2), completing the proof. �

When aiming to prove the existence of an s.g.p., the following lemma allows us to
focus on representations that are faithful. A shadow of it already appeared in the second
paragraph of the proof of Lemma 5.5.

Lemma 5.6. Let G be a group scheme acting on an irreducible variety X such that a
normal closed sub-group-scheme N of G acts trivially on X . If there is an s.g.p. (G/N)∗
for the action of G/N on X , then the inverse image of (G/N)∗ in G is an s.g.p. for G
acting on X .

Proof. The usual correspondence theorem between closed sub-group-schemes of G con-
taining N and closed sub-group-schemes of G/N as in [Milne, Th. 5.55] shows that, for
x ∈ X(k), (G/N)x = Gx/N . For u in the open subset U of X on which the s.g.p. is
defined and g ∈ (G/N)(k) satisfies g(G/N)ug

−1 = (G/N)∗, pick g ∈ G(k) mapping to
g. Then g−1G∗g is a closed sub-group-scheme of G containing N with image (G/N)u,
so it is Gu. �

Reducing to a smaller problem. Suppose V is a representation of an algebraic group G
and suppose it has an s.g.p. G∗. Set V1 := V G∗ , the subspace of elements fixed by G∗.
Then, because G∗ is an s.g.p., the map

(5.7) ψ : G× V1 → V defined by ψ(g, v) := gv

is dominant, i.e., for generic v ∈ V , the orbit G(k)v meets V1. In case G∗ = 1 (i.e., G
acts generically freely, which is from some points of view the typical case), then V1 = V
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and these statements are trivial. We remark that more sophisticated results are available,
see [LuR] or [Po 94, §2.1] for the case char k = 0 and [LöM] for results in arbitrary
characteristic.

Note that the same argument works if we replace the role of G∗ by an s.g.p. G(k)∗ for
the group of k-points, or g∗ for the Lie algebra of G. The same argument also shows that
(5.7) is dominant for V1 := V h, where h is a subspace of g with the property that there is an
open subset U ⊂ V such that for every u ∈ U there is a g ∈ G(k) such that (Ad g)gu ⊇ h.

Roughly speaking, one can “reverse” the observation in the previous two paragraphs
to find a subspace V1 such that a generic v ∈ V1 is a proxy for a generic element of V .
We formalize this observation in a lemma, where we write TransG(v, V1) for the closed
subscheme of G whose R-points are those g ∈ G(R) such that gv is in V1 ⊗R.

Lemma 5.8. Let V be a representation of an algebraic group G. If a subspace V1 of V
satisfies

dim TransG(v1, V1) ≤ dimG+ dimV1 − dimV

for generic v1 ∈ V1, then for generic v ∈ V the orbit Gv meets V1. If additionally there
is a subgroup H of G such that Gv1 = H for generic v1 ∈ V1, then H is an s.g.p. for the
action of G on V .

Proof. Suppose that v′ is also a generic element of V1. Then TransG(v′, v1) ⊆ TransG(v′, V1).
For the map ψ defined in (5.7), the fiber over v1 has dimension at most dimG+ dimV1 −
dimV , i.e., the dimension of imψ is at least dimV , whence ψ is dominant. �

6. θ-GROUPS

The pairs (G,V ) = (SL8 /µ4,∧4k8), (HSpin16, half-spin), or (SL9 /µ3,∧3k9) from
Table 4 are examples of “θ-groups” or “Vinberg representations”. They are constructed
as follows. Take G̃ to be a split adjoint group of type E7, E8, or E8 respectively and set
m = 2, 2, or 3. Pick a maximal torus T in G̃ and a set of simple roots α1, . . . , α` of G̃
relative to T . We define a Z/m-grading on g̃ by setting g̃0 to contain t := Lie(T ) and g̃i to
contains those root subalgebras g̃α such that the height of the root α is congruent to i mod
m. We find thatG is a subgroup of G̃ such that g is identified with g̃0 and the adjoint action
of G on g̃1 is equivalent to the representation V . See [V], [AzBS], [PoV, §8.5], [Le], and
[ReLYG] for more on this general family of representations.

If char k 6= m, then it was verified in [GaGu II, §7] that gv = 0 for generic v ∈ V .
As the s.g.p. exists for the action by the group of k-points G(k) on V and Gv is smooth
(because dim gv = dimG(k)v), the s.g.p. exists for the action of the group scheme G.

The rest of this section concerns the case char k = m.

Proposition 6.1. Suppose char k = 2 and (G,V ) is either (SL8 /µ4,∧4k8) or (HSpin16, half-spin).
Then the s.g.p. exists for the action of G on V and is (Z/2)r × µr2 for r = 3 or 4, respec-
tively.

The HSpin16 case was proved in Premet’s appendix to [GaGu 17]. We adapt his method
to encompass both cases and present it here in a side-by-side proof in order to highlight the
similarities between the two cases. The case G = SL8 /µ4 has two minor extra complica-
tions, namely that the adjoint group G̃ is not simply connected and that there is an outer
automorphism of G arising from conjugation by an element of G̃.

Proof. TheE7 root system is contained inE8 in the span of α1, . . . , α7. In the root system
of G̃, we find a subsystem of type A`1 with simple roots γ1, . . . , γ`. Specifically, using the
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notation
acdefg
b

to denote the root aα1 + bα2 + cα3 + dα4 + eα5 + fα6 + gα7 of E7 and similarly for E8,
as in [Bour 02, Pl. VI and VII]. We take γ1, . . . , γ7 to be

010000
0 , 0000001 , 0001000 , 0121001 , 0000010 , 0122211 , 2343212

and in the case of E8 we set also γ8 = 2465432
3 . (These choices agree with the ones made

in the proof of Prop. 5.1.1 in [GuL].) The γi generate a sublattice of T ∗, corresponding to
a quotient T . We put H := ker[T → T ], a finite group scheme that is the Cartier dual of
T ∗/T

∗
, i.e., H ∼= µr2 for r as in the statement.

We can describe H explicitly as follows. As the root system of G̃ is simply laced, we
identify it with its inverse root system and roots with coroots. The coroot γi defines a
cocharacter ωi : Gm → T with differential dωi : k → t such that dω(1) = hγi , an element
of the Cartan basis of g̃ corresponding to the coroot γi. The composition γj ◦ ωi is either
trivial (i 6= j) or the squaring map (i = j), so ωi embeds a copy of µ2 in H . Varying i,
we find all of H . On the level of Lie algebras, t is identified with T ∗⊗ k and h := Lie(H)

is the span of the hγi with dim h = r. (Note that when G̃ has type E7, T ∗ is the weight
lattice, and hα2

+ hα5
+ hα7

= 0 in t.)
To determine the centralizers CG(H) and CG(h), we consider instead the bilinear pair-

ing on the roots. ForM the Cartan matrix and η the matrix whose ith row is the coefficients
of γi, the product ηM viewed as a matrix with entries in k has right kernel spanned by the
rows of η. That is, if α is in the root lattice Q and 〈α, γi〉 is divisible by 2 for all γi, then
α is in the span of the γi’s and 2Q. One finds that the roots α of even height do not lie in
this span, i.e., have odd inner product with some γi. Therefore, the 1-parameter subgroup
Gα does not belong to either centralizer, because there is some γi such that α and γi have
odd inner product. It follows that T is the identity component of CG(H) and CG(h).

Each γi has odd height, and we set V1 to be the 2`-dimensional subspace of g̃1 spanned
by g̃γi and g̃−γi for all i. Let v ∈ V1 be generic. (We remark that at this point we have
observed that h = gv .) For any 2-by-2 matrix A =

(
0 x
y 0

)
, A2 is the scalar matrix with xy

on the diagonal. It follows that the elements v[2]
e ∈ h for e ≥ 1 span h, so the stabilizer

Gv centralizes h and normalizes CG(h)◦, i.e., Gv is contained in NG(T ).
For v′ ∈ V1 also generic, the transporter {g ∈ G | gv = v′} consists of elements

normalizing T . It follows that TransG(v1, V1) ⊆ NG(T ), so the transporter has dimension
at most `. For both choices of (G,V ) we have dimV = dimG + dimV1 − `, so Lemma
5.8 applies.

We now compute the generic stabilizer Gv . As char k = 2, the simple reflections in
the Weyl group are elements of NG̃(T ) of order 2, giving an expression for NG̃(T ) as a
semidirect product of T and the Weyl group. An elementary argument as in [GaGu 17,
p. 552] shows that for each i G̃v contain an element whose image in the Weyl group
NG̃(T )/T is the reflection in the root γi and that these elements account for all the cosets
of T in G̃v . That is, G̃v is a semi-direct product H o (Z/2)`.

The centralizer ofG in G̃ isG itself—G is a maximal rank subgroup by construction. If
G̃ has type E8, then there is no element of G̃ that normalizes G and such that conjugation
is an outer automorphism ofG because in that case we would find inside the representation
g̃ of G both half-spin representations but there is only one; in this case NG̃(G) = G. If G̃
has type E7, then NG̃(G) = Go Z/2, because −1 is an element of the Weyl group of E7

(so is given by conjugation by an element of NG̃(T )) but not the Weyl group of A7.
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For each of the elements of (Z/2)` in the Weyl group of G̃ generated by the reflections
in the γi, one checks whether it normalizes the roots of G. In both cases, one finds a
subgroup of order 16, i.e., (Z/2)4. In case G̃ has type E8, this subgroup belongs to G by
the previous paragraph, proving the claim that Gv is (Z/2)4 × µ4

2. In case G̃ has type E7,
again by the preceding paragraph, one finds that Gv is (Z/2)3 × µ3

2. In either case, Gv
does not depend on the choice of generic element v ∈ V1. Lemma 5.8 gives that Gv is the
s.g.p. for the action of G on V . �

We now treat the remaining case. The argument is similar to the preceding.

Proposition 6.2. Suppose char k = 3 and (G,V ) = (SL9 /µ3,∧3k9). Then the s.g.p.
exists for the action of G on V and is (Z/3)2 × µ2

3.

Proof. We follow the outline of the proof of the previous proposition, where G̃ = E8,
replacing throughout the prime 2 with 3. We find a subsystem of typeA4

2 with simple roots
γ1, . . . , γ8:

1000000
0 , 01000000 , 00010000 , 00001000 , 00000001 , 12321001 , 00000010 , 24654313

Note that γi, γi+1 span a subsystem of type A2 for i = 1, 3, 5, 7. The sublattice of T ∗

generated by the γis defines a quotient T of T , and we set H := ker[T → T ]. We find
H ∼= µ2

3, generated by cocharacters α1 + 2α3 and α5 + 2α6.
As in the preceding proof, CG(H) and CG(h) have identity component T . We set V1 to

be the 12-dimensional subspace of V spanned by g̃β for β a root in the A4
2 subsystem of

height congruent to 1 mod 3, i.e., β = γi, γi+1, or −γi − γi+1 for i = 1, 3, 5, 7. Lemma
5.8 applies.

As the 3-by-3 matrix of the cyclic permutation (1 2 3) has determinant 1, it follows
that the element sγisγi+1

of order 3 in the Weyl group of G̃ is the image of an element
of order three in NG̃(T ). An elementary argument as in the the preceding proof shows
that NG̃(T )/T is the subgroup of the Weyl group generated by these simple reflections,
isomorphic to (Z/3)4. The subgroup of this stabilizing the roots ofG is (Z/3)2. It follows,
therefore, that Gv is isomorphic to (Z/3)2 × µ2

3. �

7. INFINITESIMAL STABILIZERS

Table 4 lists four representations that have infinitesimal generic stabilizers. That is, for
generic v ∈ V they have Gv(k) = 1 by [GuL] and gv 6= 0 by [GaGu II]. In this section,
we show that these representations have an s.g.p. and determine it as a group scheme.

Proposition 7.1. If (G, char k, V ) is (i) (Spin5, 5, L(ω1 + ω2)) or (ii) (Sp8, 3, L(ω3)),
then V has a s.g.p., which is isomorphic to (i) µ5 or (ii) µ3 × µ3 respectively.

Proof. Put p := char k. Fix a pinning for G, which includes a maximal torus T and a
Chevalley basis for g. As G is simply connected, the cocharacter lattice Hom(Gm, T ) is
identified with the coroot lattice for the root system of G. Put H for the subtorus of T
generated by imβ∨ for β∨ as follows:

(7.2) (i) α∨1 + 2α∨2 (ii) α∨1 + α∨4 , α∨2 + α∨4 .

Because T normalizes H , it also normalizes V h, the subspace of V annihilated by h, and
in particular V h is a sum of weight spaces. (Recall that all weights of V have multiplicity
1.) We find that V h has weights:

(i) 2ω1 − ω3,−ω1 + 3ω2

(ii) 2ω1 − ω2 − ω3 + ω4, ω3, ω1 + ω2 − ω4, −ω1 + 2ω2 − 2ω3 + ω4.
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and their negatives.
Note that dimG − rankG = dimV − dimV h. As in the proof of Lemma 4.1 of

[GaGu II], for generic v ∈ V h, we have TransG(v, V h) ⊆ NG(h) ⊂ NG(T ), so the trans-
porter has dimension at most rankG and Lemma 5.8 applies with V1 := V h. Moreover,
there is a dense open subset U of V h such that Gu is a closed subgroup of NG(T ) for each
u ∈ U(k). On the other hand, for generic v ∈ V , Gv(k) = 1 by [GuL, §2.7], which shows
that (after possibly shrinking U ), Gu is a closed subgroup of T for each u ∈ U(k).

That is, Gu is the intersection of kerω|T as ω varies over weights displayed above. The
quotient of the weight lattice T ∗ by the sublattice generated by those weights is (i) Z/5 or
(ii) Z/3× Z/3 respectively, proving the claim. �

Proposition 7.3. Let (G, char k, V ) = (SL4, p, L(peω1 + ω2)). If
(i) p is odd and e ≥ 1 or

(ii) p = 2 and e ≥ 2,
then V has an s.g.p., which is isomorphic to (i) µpe or (ii) µpe+1 respectively.

Proof. Put q := pe > 1. Identify the natural representation k4 with L(ω1). Put W1

(resp. W2) for the subspace of vectors with the last (resp. first) two coordinates zero, so
k4 = W1 ⊕ W2. Put Ĵ for the subgroup of SL4 normalizing or interchanging W1 and
W2, equivalently, the normalizer of W1 ⊗ W2 in L(ω2) = ∧2(W1 ⊕ W2). Its identity
component consists of block diagonal matrices with diagonal elements g1, g2 ∈ GL2(k)
such that det g1 det g2 = 1. Put

U := (W1 ⊕W2)[q] ⊗ (W1 ⊗W2) ⊆ L(ω1)[q] ⊗ L(ω2) = V.

We verify the hypotheses of Lemma 5.8, with V1 := U . A generic element of U is
u =

∑
xi ⊗ yi with the yi a basis for W1 ⊗W2. If gu′ = u for some u′ ∈ U , then g

preserves W1 ⊗W2 and so the dimension of the transporter is at most

dim Ĵ = 7 = dimG+ dimV1 − dimV,

as required. We know by [GuL, Prop. 2.8.3] that the stabilizer H of a generic v ∈ U is
infinitesimal, and in particular is connected and contained in the identity component J of
Ĵ .

Let T denote the copy of Gm in J such that t ∈ k× acts on W1 as multiplication by
t and on W2 as multiplication by t−1. The group J is evidently generated by T and the
subgroup SL2× SL2 of block diagonal matrices in SL4 mentioned in the first paragraph of
the proof. The two groups overlap in a copy of µ2 (diagonally embedded in SL2× SL2)
and we find that J is (T × SL2× SL2)/µ2.

For R a commutative k-algebra write [a, b, c] for the image of (a, b, c) ∈ T (R) ×
SL2(R) × SL2(R) ∈ J(R). We remark that there are two “obvious” copies of µ4 in
J , namely a µ4 < T and the center of SL4. Indeed, suppose ζ ∈ µ4(R) has order 4. The
element [ζ, 1, 1] ∈ J belongs to µ4(R) ⊂ T (R), whereas [ζ, ζ2, 1] = [ζ3, 1, ζ2] belongs to
the center of SL4.

The kernelK of the action. Let us determine the group schemeK := ker[J → GL(U)].
If [a, b, c] ∈ K(R), then b, c belong to Z(SL2)(R) = µ2(R) and in particular c2 = 1. If
c 6= 1, then we have [a, b, c] = [a, b, c][c, c, c] = [ac, bc, 1] in J , so every element in K(R)
is of the form [a, b, 1] for some b ∈ µ2(R).

OnW [q]
1 ⊗W1⊗W2, the element [a, b, 1] acts by a scalar aqbq+1. For the other summand

in U , the scalar is a−qb. So [a, b, 1] is in K(R) if and only if

(7.4) aqbq+1 = 1 = a−qb.
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In this way, we find a copy of µq contained in K as elements [a, 1, 1] for a ∈ µq(R). This
subgroup contains all the elements of K(R) of the form [a, 1, 1].

If p is odd, then (7.4) reduces to aq = 1 = ba−q . That is, b = 1 and we find that
K = µq ⊂ T .

If p = 2, then (7.4) reduces aqb = 1 = a−qb, so a2q = 1 and b = aq . That is, there
is an isomorphism µ2q → K defined on R-points via a 7→ [a, aq, 1] = [aq+1, 1, aq] and
K ∩ T = µq .

Alternatively, consider a maximal torus S := T ×Gm ×Gm ⊂ T × SL2× SL2 where
Gm stands for the diagonal matrices in SL2. The image of S in J contains the kernel K.
Writing (1, 0, 0) for a fundamental weight on T and similarly for the other two components
of S, the weights of U are

(7.5) (q,±q ± 1,±1) and (−q,±1,±q ± 1)

where the signs may be chosen independently. The kernel of S on U is the intersection of
the kernels of these weights; to say the same thing differently, the image S of S in J/K
has character lattice S

∗
in S∗ generated by the weights of U . When p = 2, the lattice has

index 4q in S∗ and basis (q, 1, 1), (0, 2, 0), (0, 0, 2).

The center of Lie(J/K). Put T for the central torus in J/K, the image of T . If p is
odd, then the center of SL2× SL2 injects into J/K, and we find that Z(J/K) ∼= T × µ2.
If p = 2, then the image of the center of SL2× SL2 in J/K is a copy of µ2, which is
contained in T , so Z(J/K) = T . In either case, Lie(Z(J/K)) = Lie(T ).

Verification that H = K. Trivially the generic stabilizer H = Jv contains K, and
we claim they are equal. To see this, we verify that J/K acts generically freely on U .
Indeed, H/K = (J/K)v , and (H/K)(k) = 1 because H(k) = 1 [Milne, Prop. 5.47].
Consequently, we are reduced to showing that Lie(J/K)v = 0.

Suppose for the moment that

(7.6) dimUx ≤ 8 for nilpotent or semisimple x ∈ Lie(J/K) \ Lie(T ).

As dim(Ad J/K)x ≤ dim J/K − rank J/K = 4, we find that

dim(Ad J/K)x+ dimUx < dimU,

whence Lie(J/K)v = Lie(T )v by [GaGu I, Lemma 1.6(2)]. As J/K is reductive and
Lie(J/K)v is contained in the center of Lie(J/K), it follows easily that Lie(J/K)v = 0,
compare [GaGu I, Lemma 1.7].

Verification of (7.6). We now go back and verify claim (7.6). Suppose first that x
is semisimple. There is a maximal torus of J/K whose Lie algebra contains x [Hu 67,
Th. 13.3, Rem. 13.4]; since all maximal tori are conjugate we may assume that x is in
Lie(S). If p is odd, then Lie(J/K) ∼= t ⊕ so4 (because T/µq ∼= T ) where t ∈ t acts
on W [q]

i ⊗W1 ⊗W2 via (−1)i+1t and so4 acts on it as a sum of 2 copies of its natural
representation. Write x = t+x0 for t ∈ t and x0 ∈ so4. As x is not central, x0 6= 0, so the
largest eigenspace of x0 on the natural representation has dimension at most 2. It follows
that dim(W

[q]
i ⊗W1 ⊗W2)x ≤ 4, whence (7.6).

Suppose now that x is semisimple and p = 2. For each weight of U on S as in (7.5),
we express it in terms of the basis for the sublattice S

∗
of S∗ and reduce mod 2 to find the

weights of U on Lie(S); these are

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1),



GENERIC STABILIZERS FOR SIMPLE ALGEBRAIC GROUPS 23

each with multiplicity 4. If dimUx > 8, then at least three of these vanish on x. But any
three of these are linearly independent, so x = 0, a contradiction, verifying (7.6).

Suppose now that x is nilpotent. Then x is the image of an element in

so4 = Lie((SL2× SL2)/µ2) ⊂ J/µq,
and x acts on U as on 4 copies of the natural representation k4. Since a nonzero nilpotent
in so4 has kernel of dimension at most 2 on the natural module, (7.6) follows. �

In the previous proposition when p = 2, SL4 does not act faithfully on V . To address
this, we provide:

Corollary 7.7. If (G, char k, V ) = (SL4 /µ2, 2, L(2eω1 + ω2)) for some e ≥ 2, then V is
a faithful representation of G and has an s.g.p. that is isomorphic to µ2e .

Proof. SL4 acts on V with kernel µ2 and generic stabilizer isomorphic to µ2e+1 (Prop. 7.3),
so Lemma 5.6 gives that SL4 /µ2 has an s.g.p. and it is isomorphic to µ2e+1/µ2

∼= µ2e . �

8. EXISTENCE OF AN S.G.P.: PROOF OF THEOREM 1.1

We will now prove Theorem 1.1, where V is an irreducible representation of a simple
algebraic group G. Suppose first that G acts faithfully on V . The case V = L(α̃) was
treated in Lemma 3.1. If G acts generically freely on V , then there is nothing to prove, so
assume Gv 6= 1 for generic v.

Consider the case dimV > dimG. By Theorem 4.1(1), we may assume that (G, char k, V )
is listed in Table 4.

In the cases where Gv is finite étale for generic v, [GuL] shows that the s.g.p. exists for
the action by G(k). Since gv = 0 for generic v, it follows that there is an s.g.p. for the
action of G (Lemma 5.3).

For (HSpin16, any, half-spin) see [GaGu 17, Th. 1.2] or Prop. 6.1. For (SL8 /µ4, 2,∧4k8)
and (SL9 /µ3, 3,∧3k9), see Propositions 6.1 and 6.2 respectively. In all three cases,
G∗ = (Z/p)r × µrp for p := char k and some r > 1, so the identity component of G∗
is µrp. The proofs in §6 show that in each case µrp is contained in a torus of G.

The four cases in Table 4 where Gv(k) = 1 were treated in §7. In each case, G∗ is
connected and contained in a maximal torus of G.

We note that in all of these cases with dimV > dimG, the the s.g.p.G∗ is a finite group
scheme. For the third claim, since G∗ is finite, its identity component G◦∗ is non-trivial
exactly when G∗ is not smooth; those cases are covered in the two preceding paragraphs.
Since G◦∗ is contained in a maximal torus T of G, we have Lie(G∗) = Lie(G◦∗) ⊆ Lie(T ).

Consider now the cases in Table 3. If dimV/G ≤ 1, then there is an open G-orbit in
P(V ) [BeGuL, §6], hence an s.g.p. exists. For (PSp2`, any, L(ω2)), the existence of an
s.g.p. was established in Lemma 5.5. The s.g.p. for the representation (Spin13, any, spin)
was calculated in [GaGu 17, §8,9] and [GuL, Prop. 5.2.9], see Remark 4.2.

There is one final case from Table 3, which we treat in the following lemma.

Lemma 8.1 (natural representation of F4). Let G be a group of type F4, and let V be its
“natural” Weyl module V (ω4) of dimension 26 or the irreducible quotient L(ω4) of the
Weyl module. Then the s.g.p. exists for G acting on V , and it is isomorphic to Spin8.

Proof. Suppose first that V is the Weyl module. The group G can be viewed as the (al-
gebraic) group of automorphisms of an Albert algebra J , where V is the codimension-1
subspace of elements of trace zero. See [Pe 18] and [Jac 68] for background on Albert
algebras.
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As a vector space, J can be written as the set of hermitian 3-by-3 matrices with en-
tries in an octonion algebra. The set E of diagonal matrices is a cubic étale algebra,
and the sub-group-scheme of G fixing E elementwise is isomorphic to Spin8, by the ar-
guments in [KnMRT, §38] and [Jac 71, Th. 6]. (Although stated under the hypothesis
that char k 6= 2, 3, the arguments go through without this hypothesis with only cosmetic
changes. Alternatively, in case char = 2 or 3, one can check this on the level of k-points
and use a computer to verify that the generic stabilizer in g has dimension at most 28.)

A generic element v ∈ V generates a cubic étale subalgebraEv of J . (This is essentially
when char k 6= 2, because in that case every element generates a commutative associative
subalgebra, and properties of the generic minimal polynomial show that a generic element
generates a separable subalgebra of degree 3. When char k = 2, the same reasoning works
by invoking [McC, Prop. 1].) Therefore the stabilizer Gv of v is the subgroup of G fixing
Ev elementwise. As k is algebraically closed, Ev is isomorphic toE as a k-algebra, and so
is conjugate under G to E by Jacobson’s Embedding Theorem (which, in this generality,
is [Pe 15, §4.12]). This proves the claim for the Weyl module.

The Weyl module only fails to be irreducible when char k = 3 [Lü]. In that case, the
irreducible representation is the quotient of V by the span of the identity element of J .
For v generic in the irreducible quotient, any inverse image of it in the Weyl module again
generates a cubic étale subalgebra of J , and the Weyl module case again shows that the
s.g.p. exists for the action of G. �

We have now accounted for all of the representations in Table 3, proving Theorem 1.1
under the assumption that V is faithful. So drop the assumption that V is faithful and put
N := ker[G→ GL(V )]. Then G/N is simple (Lemma 2.1) and acts faithfully on V , so it
has an s.g.p. (G/N)∗. The inverse image of (G/N)∗ in G is an s.g.p. for the action of G
(Lemma 5.6). If dimV > dimG, then since V is irreducible, G acts nontrivially on V and
N is a finite group scheme. We conclude that dimG∗ = dimN + dim(G/N)∗ = 0, i.e.,
G∗ is also finite. If additionally N is central, then N is contained in every maximal torus
T of G and there is a bijection between maximal tori of G and G/N given by T ↔ T/N
[BoTi, Th. 2.20(ii)]. Therefore, the inverse image in G of any maximal torus of G/N
containing (G/N)∗ is a maximal torus of G containing G∗. This completes the proof of
Theorem 1.1.

9. THE S.G.P. IS COMMUTATIVE FOR LARGE V

Building on what has gone before, we easily obtain the following result concerning
when the s.g.p. is commutative.

Proposition 9.1. Let V be a faithful and irreducible representation of a simple algebraic
group G. If dimV > dimG+ 1, then either

(1) for generic v ∈ V the stabilizer Gv is a commutative group scheme or
(2) (G, char k, V ) = (SL9 /µ3, 2,∧3k), up to graph automorphism.

Proof. Assume Gv 6= 1, for otherwise there is nothing to prove. By Theorem 4.1(1), up to
graph automorphism (G, char k, V ) belongs to Table 4. In that table, only four rows have
Gv non-commutative. (This claim relies on the results of §6 and §7.) Of those four, only
the row (SL9 /µ3, 2,∧3k9) has dimension at least dimG+ 1. �

10. SMOOTHNESS: PROOF OF THEOREM 1.2

We now address the question of whether the group scheme Gv stabilizing a generic
v ∈ V , is smooth. Specifically, we prove Theorem 1.2.
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We may assume that the stabilizer Gv of a generic v ∈ V is not the trivial group
scheme. If V = L(α̃), then the generic stabilizer has identity component a maximal torus
(Lemma 3.1). Therefore, by Theorem 4.1, we may assume that, up to graph automorphism,
(G, char k, V ) belongs to Table 3 or 4.

We complete the proof of Theorem 1.2 by noting that the representations in Table 3
have Gv smooth except for G2 in characteristic 2. For SOn with n ≥ 5, when n is odd or
char k 6= 2, the stabilizer of an anisotropic vector in the tautological representation kn is
SOn−1. The stabilizers in spin or half-spin representations of groups of type B and D are
determined in [GaGu 17].

The natural representation of F4 is treated in Lemma 8.1. (For char k 6= 3, the smooth-
ness was established by different means in [Stw, Th. 3.2].) One can check easily the cases
of the natural representations of SLn and Sp2`. For SLn acting on S2kn with char k 6= 2
or ∧2kn with n even, the stabilizer of a generic element is the definition of the special
orthogonal or symplectic group. If n is odd for ∧2kn, it is the stabilizer of a degenerate
form but it is straightforward to compute that it is smooth.

Here are two techniques that leverage our knowledge of the stabilizerG(k)v on the level
of k-points. First, Gv is smooth if and only if dim gv = dimG(k)v . On the other hand, we
may view g as a representation of the abstract groupG(k)v , i.e., the k-points of the smooth
subgroup (Gv)red of Gv . The group G(k)v normalizes the Lie algebra gv , which contains
h := Lie((Gv)red) as a G(k)v-invariant subalgebra. Moreover, dim h = dimG(k)v .
By hypothesis, g acts faithfully on V , so gv 6= g (otherwise g would act trivially) and
z(g) ∩ gv = 0 (if a nonzero central element of g annihilates a nonzero vector in V , it
annihilates V ). This provides many constraints on gv .

Second, for any particular characteristic p = char k, we may construct g and V over Fp.
For every field k′ ⊇ Fp and every v′ ∈ V ⊗ k′, we have dim gv ≤ dim gv′ . In particular,
it suffices to find such a v′, say with k′ = Fp3 , such that dim gv′ = dimG(k)v; such a v′

can be sought using a computer as described in [GaGu II, §3].

The next result concerns the “natural” representation of a group G of type G2, which
has highest weight ω2. The Weyl module V (ω2) is 7-dimensional and has a nonzero G-
invariant quadratic form q, see for example [GaN, §4.4]. One can argue as in [FH, §23] or
[SpV, 1.6.4, 1.7.3, 2.2.4] that the orbit of the highest weight vector is the set of nonzero v
such that q(v) = 0. The stabilizer of v inG has codimension 1 in a parabolic subgroup, and
we denote it byA1U5, where U5 stands for the unipotent radical of the parabolic subgroup.
The representation V (ω2) is irreducible if and only if char k 6= 2.

Lemma 10.1 (natural representation of G2). For G of type G2 and V = L(ω2), the sta-
bilizer Gv is smooth (resp. reductive) for generic v ∈ V if and only if char k 6= 2. If
char k = 2, then G(k) acts transitively on the nonzero vectors in V , Gv is not smooth, and
(Gv)red = A1U5.

Proof. Over Z, we take an ordered basis of the 7-dimensional Weyl module V (ω2) con-
sisting of weight vectors vµ for the weights µ = 2α1 + α2, α1 + α2, α1, 0, −α1,
−(α1 + α2), −(2α1 + α2) respectively and such that the root element eα1

and corre-
sponding 1-parameter subgroup xα1

: Ga → G2 corresponding to the root α1 are given by
the matrices

(10.2) eα1
=


0 −1

0
0 1
0 2
0
0 −1

0

 and xα1
(t) = exp(teα1

) =


1 −t

1
1 t t2

1 2t
1

1 −t
1





26 S. GARIBALDI AND R.M. GURALNICK

as in the proof of [GuL, Prop. 5.2.14].
If char k 6= 2, then V is the base change to k of the Weyl module, and the stabilizer

Gv is SL3. This can be seen from the further explicit calculations in the proof of [GuL,
Prop. 5.2.14] or as in [Stw] or by identifying V with the space of trace zero octonions as
in [KnMRT, p. 507, Exercise 6c].

If char k = 2, then V is obtained from the Weyl module over k by modding out by the
span of v0. The action ofG on L(ω2) preserves the alternating bilinear form obtained from
q on L(ω2) and so gives an inclusion G → Sp6. For any finite field K of characteristic 2,
one has Sp6(K) = G(K) Sp6(K)v for any nonzero v ∈ L(ω2) [LiPS]. The same factor-
ization of Sp6 therefore holds over the algebraic closure of F2 and so over the algebraically
closed field k of characteristic 2. The transitivity of the action for G(k) now follows from
the same transitivity for Sp6(k).

Here is an alternate argument that G(k) acts transitively. For each y ∈ V , pick x ∈
V (ω2) such that x 7→ y. One can argue (e.g., by interpreting the Weyl module as the trace
zero subspace of the octonions) that the G-invariant quadratic from q on the Weyl module
is not zero on v0, so by scaling q we may assume that q(v0) = 1. For each λ ∈ k, we have
q(x + λv0) = q(x) + λ2, so there is a unique choice of x such that x 7→ y and q(x) = 0.
Since G(k) has two orbits on the hypersurface q = 0, it has two orbits on L(ω2). Note that
this argument shows that, on the level of k-points, the stabilizer agrees with the stabilizer
of the highest weight vector, i.e., is A1U5. (Or see [GuL, Prop. 5.2.14].)

It remains to verify that the stabilizer is not smooth. One can read off the action of
elements of a Chevalley basis on V by writing them as matrices as we have done above
and deleting the 4th row and column. By the transitivity of G(k), we may pick the highest
weight vector v = v2α1+α2

as a generic vector. The Lie algebra stabilizer gv is normalized
by the maximal torus T in G underlying these calculations (because Tv ⊆ kv), so gv is a
sum of gv ∩ t and those root subalgebras gα that belong to gv . We note from (10.2) that
eα1

annihilates the image of v−α1
in V . Since α1 and 2α1 + α2 are both short roots, they

are in the same orbit under the Weyl group, and it follows that e−(2α1+α2) annihilates v,
so dim gv ≥ 9. One can check that this is all of gv by verifying that each of the remaining
four root subalgebras gα for negative α do not annihilate v or by using a computer to find
a vector v′ ∈ V such that dim gv′ = 9. �

We remark that in the proof above one can read off from (10.2) that the stabilizer of
v−α1

in imxα1
has R-points {xα1

(t) | t ∈ R such that 2t = 0} and Lie algebra the root
subspace gα1 . (The isomorphism class of this group scheme is generally denoted α2.) In
this way, we can concretely see the source of the extra dimension in gv .

Lemma 10.3 (∧3k7). For G = SL7 and V = ∧3k7, the stabilizer Gv of a generic vector
v ∈ V is a simple algebraic group of type G2. In particular, Gv is smooth.

Proof. In the case k = C, this result goes back at least to [E], see [Ag] for context. For
general k, [GuL, Prop. 5.2.17] shows that G(k)v are the k-points of a subgroup of type G2

so that the tautological representation of SL7 restricts to the Weyl module V (ω2) of G2.
In the notation established above, dim h = 14. It remains to show that Gv is smooth, i.e.,
that gv = h, equivalently that dim gv = 14.

If char k 6= 2, 7, then, as a representation of G2, sl7 = so7 ⊕ L(2ω2), where so7
can be identified with skew-symmetric matrices and L(2ω2) with the trace zero symmetric
matrices, and so7/h is the natural representation ofG2. The only Lie algebra lying between
h and sl7 is so7. However, the restriction of V to so7 has head the spin representation with
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generic stabilizer G2, so the stabilizer in so7 of a generic vector in V can be no larger than
h, whence gv 6= so7, completing the proof in this case.

If k has characteristic 2 or 7, one uses a computer to find a v′ ∈ V such that dim gv′ =
14.

(Alternatively, [GuL, Prop. 5.2.17] shows that an s.g.p. exists on the level of k-points.
Then, for any specific choice of char k — whether 2, 7, or something else — it suffices by
Lemma 5.3 to use a computer to find a v ∈ V such that dim gv = 14.) �

Some unusual features of Lie algebras of groups of type G2 when char k is 2, 3, or 7
are discussed in [CaRE].

For (G,V ) = (SL8,∧3k8), one needs to show that dim gv ≤ 8. This can be argued
in a manner similar to Lemma 10.3. Alternatively, the stabilizer gv is computed explicitly
in [SatoK, pp. 87–90]. The latter proof goes through if char k 6= 2, 3. In the remaining
characteristics, dim gv ≤ 8 can be verified by computer.

Consider now the case (G,V ) = (E6, minuscule). As a representation of F4, e6/f4
is the smallest nontrivial Weyl module of F4, V (ω4), of dimension 26. (See [ChevS] for
a view of this statement from the perspective of Jordan algebras.) The image of gv in
V (ω4) is contained in the radical. If char k 6= 3, then this radical is zero and gv = h.
If char k = 3, then the radical is z(e6), and again the image of gv is zero. (For this case
and the case of (E7, minuscule) in the following paragraph, smoothness of the generic
stabilizer is also contained in [Stw].)

The representations (G,V ) = (SL6 /µ3,∧3k6), (Sp6, “spin”), and (E7, minuscule), all
belong to a family of representations considered in [Rö] and [Ga 09a, §12]. In each case,
there is a group G̃ and a simple root α of G̃ that is the only one not orthogonal to the
highest root of G̃, G is a subgroup of G generated by the roots of α-height zero, and the
root subalgebras of α-height 1 in g̃ span a G-submodule of g̃ equivalent to V . Moreover,
there is a unique simple root β of G not orthogonal to the highest weight of V , and β has
coefficient 1 in the highest root ofG so that the root subgroups ofG corresponding to roots
of β-height zero generate a group G0 of the same description as G(k)v . If char k 6= 2, the
G-orbits in V are described in terms of the root system of G̃ in [Rö] and a representative
generic vector v is provided such that G0(k) ⊆ G(k)v , whence equality. Grading g by β-
height, we find g contains g0, a rank 1 torus t, and subspaces g1, g−1 spanned by roots of
β-height 1 and −1 respectively; these latter two subspaces are irreducible representations
of G0 [AzBS, Th. 2c]. That is, the composition series of gv/h, as a representation of
G0(k), has simple factors contained in t, g1, g−1. The explicit description of v from [Rö]
shows that these cannot be contained in gv as in [Ga 09a, 12.2], whence Gv is smooth. If
char k = 2, we verify that Gv is smooth using Magma.

The case (G,V ) = (PSp2`, L(ω2)) for ` ≥ 3 has a smooth s.g.p. by Lemma 5.5. This
completes the proof of Theorem 1.2.

11. REPRESENTATIONS WITH “FEW” INVARIANTS: PROOF OF THEOREM 1.3

We now classify those irreducible representations V such that the dimV/G < dimG;
there are relatively few.

Proof of Theorem 1.3. If dimV ≤ dimG, then V = L(α̃) or (G, char k, V ) belongs to
Table 3 by Theorem 4.1(2) and (3), so assume dimV > dimG. Then, by Theorem 4.1(1),
the stabilizer of a generic vector in V is a finite group scheme, whence

(11.1) dim k[V ]G = dimV − dimG.
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That is, we are reduced to determining the faithful irreducible representations of G such
that dimG < dimV < 2 dimG. This is done in the next proposition, completing the
proof of Theorem 1.3. �

Proposition 11.2. Let V be a faithful and irreducible representation of a simple algebraic
group G over an algebraically closed field k. If dimG < dimV < 2 dimG, then up to
graph automorphism (G, char k, V ) appears in Table 4 or 5.

Proof. Suppose first that the highest weight λ of V is restricted. Then the tables in [Lü]
list all possibilities for (G, char k, V ), completing the proof in this case.

If char k = 0, then that is the only case, so suppose p := char k 6= 0.
We use the following observation. Put m for the smallest dimension of a nontrivial

irreducible restricted representation of G. We note that m2 > 2 dimG unless G has type
A` or C2 and that m3 > 2 dimG regardless of the type of G.

Write λ =
∑
e≥0 p

eλe where λe is restricted for all e, so dimV =
∏
e dimL(λe).

Because V is faithful and not restricted, λ0 6= 0 and λe 6= 0 for some e > 0. If a third
summand is not zero, then dimV ≥ m3 > 2 dimG, and we conclude that λ = λ0 + peλe
for some e > 0 with λ0, λe 6= 0.

For G of type A`, m = `+ 1, and the representations of this dimension are L(ω1) and
L(ω1)∗ = L(ω`). The representations L(ω1 + peω`) and L(ω1 + peω1) appear in Table
4. Similarly, for G of type C2, m = 4, corresponding to L(ω1) and the representation
L(ω1 + peω1) appears in Table 5.

So suppose that dimL(λi) > m for i = 0 or e. Noting that dimL(λi) < 2(dimG)/m,
there are few possibilities for λi. If G has type C2, then the upper and lower bounds on
dimL(λi) in the preceding two sentences are 4 and 5, so there are no possibilities. If
G has type A`, then we find only one possibility, that G has type A3 and λi = ω2 with
dimL(ω2) = 6. The resulting representations appear in the third row of Table 5. �

When k[V ]G is a polynomial ring. Regarding cases where dimV/G is small, it is clear
that dimV/G = 0 if and only if there is a dense open G-orbit in V , if and only if V/G =
Spec k = A0. Similarly, dimV/G ≤ 1 if and only if there is a dense open G-orbit in
P(V ), see, for example, [Po 80, Prop. 12] for char k = 0 or [BeGuL, Prop. 6.1] for char k
arbitrary. We have: If dimV/G = 1, then V/G ∼= A1.

If dimV/G = 2, G simple, and char k = 0, then V/G ∼= A2 by [Kempf, Th. 2.4].
Is the same conclusion true if k is allowed to have prime characteristic? We prove the
following.

Proposition 11.3. Let V be a faithful irreducible representation of a simple algebraic
groupG. If dimV/G = 2, then V/G ∼= A2 unless perhaps (G, char k, V ) is (Spin5, 5, L(ω1+
ω2)) or (Spin13, any, spin).

Proof. We apply the classification of possibilities for (G, char k, V ) provided by Theorem
1.3. By Corollary 3.11, we may assume that V 6= L(α̃). The minimum of dim k[V ]G for
the representations in Table 5 is 5, so (G, char k, V ) belongs to Table 3 or 4.

For (PSp6, 6= 3, L(ω2)) and (PSp8, 2, L(ω2)), the ring k[V ]G is described in [GaGu 15,
Examples 8.3, 8.5] and it is polynomial.

The representations (F4, 6= 2, 3, natural), (PGL2, 6= 2, 3, S4k2), and (PGL3, 6= 2, 3, S3k3)
arise as θ-groups (a.k.a. Vinberg representations) where the overgroup is of type E6, A2,
and D4 and the automorphism θ of the overgroup has order 2, 2, and 3 respectively. (See,
e.g., [PoV, p. 260–262] or [ReLYG, p. 1154].) By [Le, Th. 4.23], k[V ]G is a polynomial
ring.
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The case (F4, 2, natural) is not covered by the result from [Le]. Instead we refer to
[GaGu 15, Example 11.4], which shows that k[V ]G is a polynomial ring with generators
of degree 2 and 3. �

12. REGULAR ORBITS

In this section we consider when a simple algebraic group G acting on an irreducible
module V has a regular orbit, i.e., when there is some v ∈ V with Gv = 1. We will
consider this first just for the points and then consider the same problem for group schemes,
resulting in a proof Theorem 1.4.

The following is an immediate consequence of [GuL, Table 1]. We only state the result
in characteristics other than 2, 3, and 5 as this is what we shall use.

Proposition 12.1. Let G be a simple algebraic group over the algebraically closed field k
of characteristic p := char k 6= 2, 3, 5 such that Gv(k) acts faithfully and irreducibly on
V . If Gv(k) is finite for some v, then either Gw(k) = 1 for some w or the following holds
(up to twists by Frobenius or graph automorphisms), p 6= 0, G is a quotient of SL`+1, and
V = L(ω1 + peω1) or L(ω1 + peω`) for some e ≥ 1.

We now consider the case when there is a regular orbit for the group scheme. Of course,
if char k = 0, then the previous result implies that there exists a regular orbit if and only if
the generic stabilizer is finite, if and only if dimV > dimG (Theorem 4.1).

In the following, we write PΩn for n = 3 or n ≥ 5 for the adjoint group of type B`
(when n = 2`+ 1 is odd) or D` (when n = 2` is even).

Lemma 12.2. Let G = PΩn for n = 3 or n ≥ 5 with char k 6= 2 and V the nontrivial
irreducible composition factor of the symmetric square of the orthogonal module. Then
there exists v ∈ V with Gv the trivial group scheme.

Proof. Let W denote the space of symmetric n × n matrices of trace 0. View SOn(k)
as the subgroup of SLn(k) of matrices A with AA> = 1. Then SOn(k) acts on W by
conjugation with kernel the center. Note that W = V unless p divides n, in which case
V = W/W0 where W0 are the scalar matrices.

We recall that over an algebraically closed field, every matrix is similar to a symmetric
matrix, see for example [BuGS, Lemma 3.1]. In particular, let A be a symmetric nilpo-
tent matrix with minimal polynomial of degree n. The centralizer of A in Mn(k) is the
subalgebra k[A], which consists of symmetric matrices. This shows that gA = 0, since g
is the Lie algebra of skew symmetric matrices. If U is orthogonal and UA = AU , then
U = f(A) for some polynomial f . As U is symmetric and orthogonal, it is an involution.
There are no non-scalar involutions in k[A] and so GA(k) = 1, whence GA is the trivial
group scheme.

This completes the proof if p does not divide n. If p does divide n, the result follows by
observing that if any matrix commutes with A modulo scalars, it commutes with A, since
the only nilpotent matrix in the set A+ λI is A. �

Proof of Theorem 1.4. Recall that V is a faithful and irreducible representation of a simple
group G over a field k of characteristic 6= 2, 3, 5.

In case (b), i.e., dimV ≤ dimG, then dimGv > 0 for generic v ∈ V (Th. 4.1), so there
cannot be a regular orbit. In case (c), dim gv > 0 for generic v ∈ V , so dim gv′ > 0 for all
v′ ∈ V and there cannot be a regular orbit. In case (d), there is no v ∈ V with Gv(k) = 1
[GuL, Prop. 5.1.8], so there cannot be a regular orbit. In summary, if any of (b), (c), or (d)
hold, then the other three conditions fail.
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Therefore, we assume that dimV > dimG and that we are not in case (c) nor (d), and
we aim to prove the existence of a regular orbit. We may assume the s.g.p. is not the trivial
group scheme, whence by Theorem 4.1, up to graph automorphism (G, char k, V ) belongs
to Table 4. Lemma 12.2 handles four rows of the table, including (SL2 /µ2, 6= 2, 3, S4k2)
with n = 3 and (SL4 /µ4 6= 2, L(2ω2)) with n = 6. The row (SL2, 6= 2, 3, S3k2) is from
Example 2.2.

The remaining cases in Table 4 are examples of θ-groups, where G is the identity com-
ponent of the subgroup of an overgroup H fixed by an automorphism θ of finite order. The
cases for (G,V ) are:

(i) (PGL3, L(3ω1)), with H of type D4 and θ of order 3;
(ii) (SL8 /µ4, L(ω4)), with H of type E7 and θ of order 2;

(iii) (SL9 /µ3, L(ω3)), with H of type E8 and θ of order 3;
(iv) (Spin16 /µ2, half-spin), with H of type E8 and θ of order 2; or
(v) (PSp8, L(ω4)), with H of type E6 and θ of order 2.

So Let G < H be as in the five cases above. Since p 6= 2, 3 or 5, char k is good for H .
Then G = CH(θ)◦ and h is the direct sum of the eigenspaces of θ. Note that g is the trivial
eigenspace and V can be identified with the nontrivial eigenspace or one of the nontrivial
eigenspaces if θ has order 3 and in that case V ∗ is the other eigenspace. It follows by [GuL,
5.1.4] that there exists a regular nilpotent element v ∈ V and Gv(k) = 1. It also follows
by the computation in [GuL] that the centralizer of v in H is contained in the sum of the
nontrivial eigenspaces of θ whence its intersection with h is 0. Let J = CH(n). So J is an
abelian group of dimension equal to the rank ofH and θ normalizesH with CJ(θ) = 1. In
good characteristic, the centralizer of v in h is the Lie algebra of CJ(θ) and this is 0 since
θ acts without fixed points on CH(v) and so also on its Lie algebra. �

13. NOT-NECESSARILY-SEMISIMPLE REPRESENTATIONS

Let W be a section of a representation V of an algebraic group G. That is, there are
G-invariant subspaces V1 ⊆ V2 ⊆ V so that W ∼= V2/V1 as representations of G. In this
section, we discuss connections between the stabilizers Gw and Gv of generic w ∈W and
v ∈ V respectively.

If W is a summand of V , then one can take w to be a projection of v in W , in which
case Gw evidently contains Gv , compare [Lö, Lemma 2.15]. Unfortunately, this statement
does not easily extend to the case where W is not a summand of V , see [GaGu I, Example
2.6], which gives an example with G = Ga where W is a subspace of V and Gw = 1, yet
Gv 6= 1. (See also Example 2.2 for a different but related phenomenon.)

We do know, by an easy argument using upper semicontinuity of dimension, that

(13.1) dimGw ≥ dimGv and dim gw ≥ dim gv

for generic w ∈ W and v ∈ V when W is a section of V , see for example [GaGu I,
Example 2.2].

Recall that a representation V of G is generically free if Gv = 1 for generic v ∈ V . We
have: If char k = 0 and a representation V of G has a section W that is generically free,
then V is generically free because W is a summand of V . Theorem 13.3 below provides a
version of this in prime characteristic.

Separably free actions. Note that if V is generically free, the kernel N of the action is
necessarily trivial. To accommodate the possibility that N 6= 1, we make the following
definition.
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Definition 13.2. A representation V of G is separably free if the kernel N := ker[G →
GL(V )] of the action is étale and (G/N)v = 1 for generic v ∈ V .

Theorem 13.3. Let V be a representation of a simple algebraic group G. If V has an
irreducible section that is separably (resp. generically) free as a representation of G, then
V is separably (resp. generically) free.

Before proving the theorem, we note some lemmas. The following is well known, and
a proof is contained in [GaGu 15, §10], compare [GaGu 17, Lemma 2.6(i)].

Lemma 13.4. Let V be a representation of a semisimple algebraic group G over an alge-
braically closed field k. If, for every g ∈ G(k) that is (i) noncentral semisimple and whose
image in GL(V ) has prime order or (ii) unipotent, we have dimV g + dim gG < dimV ,
then for generic v ∈ V , Gv(k) is central in G(k).

As a consequence of previous work on irreducible representations of simple groups, we
have the following converse:

Lemma 13.5 (Corollary 7 in [GuL]). Let V be a faithful and irreducible representation of
a simple algebraic group G over an algebraically closed field k. The stabilizer Gv(k) = 1
for generic v ∈ V if and only if dimV g + dim gG < dimV for all g ∈ G(k) of prime
order (modulo the center) and, if char k = 0, all unipotent g.

The analogue of Lemma 13.5 for Lie algebras is false. For example, when char k = p 6=
0, for any vector space W , the irreducible and faithful representation V = W ⊗W [p] of
G = SL(W ) has gv = 0 for generic v ∈ V , yet dimxG + dimV x = dimV + dimW − 2
for x a root element, see [GaGu I, §10].

Proof of Theorem 13.3. Suppose first that the irreducible sectionW of V is separably free.
Put N := ker[G → GL(W )] and Z := ker[G → GL(V )], so Z ⊆ N . By hypothesis, N
is étale, so Z is also. In particular, both N and Z are central in G.

If any summand of V is separably free, then V is separably free. Writing V as a direct
sum of theZ(G)-homogeneous components we may assume that V isZ(G)-homogeneous.

By Lemma 13.5, the inequality dimW g + dim gG < dimW holds for the relevant
g ∈ G(k). Then it is easy to see that dimV g + dim gG < dimV for those same g. The
easier lemma, Lemma 13.4, now shows thatGv(k) is a central subgroup for generic v ∈ V .
As V is Z(G)-homogeneous, Gv(k) = Z(k).

Because Lie(N) = Lie(Z) = 0, the natural maps Lie(G)→ Lie(G/N) and Lie(G)→
Lie(G/Z) are isomorphisms, and we obtain isomorphisms of generic stabilizers Lie(G/N)w ∼=
gw and Lie(G/Z)v ∼= gv . As dim gv ≤ dim gw = 0, we find that Gv is étale, so Gv = Z,
i.e., V is separably free.

In case W is generically free, then (1) N = 1 so Z = 1 and (2) V is separably free by
the above. So V is generically free. �

Conjecture 13.6. If G is reductive and W is a generically free section of V , then V is
generically free.

14. REPRESENTATIONS WITH THE SAME INVARIANTS

We give a new proof of one of the main results of [GaGu 15], Theorem 14.1 below,
which characterizes inclusions where the subgroup and overgroup have the same invariants.
The original proof relied on results from [Seitz], whereas the following, quite different
proof avoids that reference and instead uses the information about the dimension of the
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generic stabilizer. This approach leaves very few cases to examine. In this final section of
the paper, we stop viewing algebraic groups as affine schemes and instead view them in a
naive way as the group of k-points under the Zariski topology, as is done, for example in
[Hu 81].

Theorem 14.1 (Theorem 13.1 in [GaGu 15]). Suppose that G < H ≤ SL(V ) with G a
simple algebraic group over an algebraically closed field k acting irreducibly on V , and
H connected and closed in SL(V ). If dim k[V ]G = dim k[V ]H , then k[V ]G = k[V ]H and
one of the following holds, up to a Frobenius twist and/or a twist by a graph automorphism:

(1) H = SL(V ) and k[V ]G = k (i.e., dim k[V ]G = 0).
(2) H = Sp(V ), char k = 2, G = G2, dimV = 6, and k[V ]G = k.
(3) H = SO(V ), k[V ]G = k[q] for a homogeneous quadratic form q (in particular,

dim k[V ]G = 1).
(4) (G,H, V, char k) is in Table 6.

The possibilities for G in (1) and (3) can be extracted from Tables 3 and 4; see Tables
C and D in [GaGu 15] for an explicit list.

Remark 14.2. The statement of Theorem 14.1 is slightly different from the one in [GaGu 15].
The earlier version erroneously omitted the hypothesis that H is connected. Of course, the
dimension of the ring of invariants only depends on the connected component of the iden-
tity but certainly the actual ring of invariants can change.

The earlier version also omitted the inclusion G2 < PSp6 from Table 6. For this in-
clusion, G2 embeds in PSp6 when char k = 2 via the natural irreducible representation
of G2. The 14-dimensional representation L(ω2) of PSp6 restricts to the adjoint represen-
tation of G2. To see this, note that the representation ∧2k6 of PSp6 is k ⊕ L(ω2), and
compare the restrictions of this and the adjoint module to an A2 subgroup of G2. The fact
that the ring of invariants on this representation is polynomial with generators of degrees
2 and 3 as in Table 6 is [GaGu 15, Example 8.5] for PSp6 and Example 3.8 for G2. The
equality k[V ]G = k[V ]H in the other cases was proved in [GaGu 15].

G H dimV char k degrees

PGL3 G2 7 3 2
G2 PSp6 14 2 2, 3

Spin11 HSpin12 32 all

{
4 if char k 6= 2

2 if char k = 2

SO2n (n ≥ 3) PSp2n

{
2n2−n−2 if n even

2n2−n−1 if n odd
2

{
?

2, 3, . . . , n

SO8 or Sp8 F4 26 2 2, 3
SLn SLn⊗ SLn n2 6= 0 n

TABLE 6. Representations referred to in Theorem 14.1, copied from
Table E in [GaGu 15]. The representations in the last row are denoted
L(ω1 + peω`) and L(ω1 + peω1) in Table 4. Note that since this section
views algebraic groups in the naive sense, when char k = 2 we have
natural identifications SOn = PΩn and Sp2n = PSp2n.

We use the following.
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Lemma 14.3. Let G < H ≤ SL(V ) with G a simple algebraic group acting irreducibly
on V and H a closed connected subgroup. Then dim k[V ]H = dim k[V ]G if and only
GHv is dense in H for generic v ∈ V .

Proof. If GHv is dense in H , then Gv = GHvv is dense in Hv for generic v and so
the maximal dimension of G and H orbits are the same. Since the dimension of the ring
of invariants is the codimension of a maximal dimensional orbit, the density assumption
implies that the dimensions of the ring of invariants are the same.

Conversely, if the dimensions of the ring of invariants are the same, then there exists a
nonempty subset O of V such that dimGv = dimHv for all v ∈ O and since Hv is an
irreducible variety Gv is dense in Hv. Thus, dimGHv = dimG + dimHv − dimGv =
dimHv + dimH − dimHv = dimH and so GHv is dense in H . �

Lemma 14.4. Let G be a simple algebraic irreducible subgroup of H = Sp2` with ` ≥ 3.
If dimG ≥ dimH − 3`, then char k = 2 and either (1) G = SO2` or (2) G = G2 and
` = 3.

Proof. The right side of the inequality in the statement is 2`2 − 2`, which is increasing for
` ≥ 3. Its minimum value is 12, so G cannot have type A1, A2, B2, or C2. Otherwise,
the natural representation of H is an irreducible self-dual representation L(λ) of G of
dimension between 6 and 2`G, where `G is the real number ≥ 3 such that 2`2G − 2`G =
dimG.

In case λ is restricted, the tables in [Lü] verify the claim. Indeed, for other group types,
the smallest self-dual irreducible module with restricted highest weight is already too large.

In general, we may write λ = λ0 + pλ1 with λ0 restricted and p := char k 6= 0. Since
G acts faithfully on L(λ), λ0 6= 0. By hypothesis, L(λ) is self-dual, i.e., λ is fixed by
−w0 for w0 the longest element of the Weyl group, so the same is true for λ0, λ1. Then
dimL(λ) = dimL(λ0) · dimL(λ1), so the examination of the dimensions of self-dual
representations in the preceding paragraph shows that λ1 = 0, i.e., λ is restricted. �

Proof of Theorem 14.1. In view of the remarks just after the statement of the theorem, it
suffices to show that equality of the dimension of the ring of invariants only occurs in the
cases listed in the conclusion.

We first consider the case thatH is not simple. If not, then V is tensor decomposable for
H and so also G whence by [GuL], Gv is generically finite (and almost always generically
trivial by [GaGu II]). In particular, dim k[V ]G = dimV − dimG.

We may assume that H = H1 × H2, G embeds in Hi by the projection πi and that
V = V1 ⊗ V2 where Vi is an irreducible Hi-module. Let J := π1(H)× π2(H) ∼= G×G.
So G ≤ J ≤ H .

Let di = dimVi and assume that d = d1 ≤ d2. Let v =
∑d
i=1 ei ⊗ fi where the ei

constitute a basis for V1. Observe that π2 restricted to Hv has trivial kernel. Indeed, if
h ∈ Hv and π2(h) = 1, then h fixes each fi and so fixes v if and only if hei = ei for all i,
whence h is trivial on V1 and so on V .

If d1 < d2, then we see that Jv ∼= π2(Hv) stabilizes the span of f1, . . . , fd and
so π2(Hv) is properly contained in H2. Thus dim Jv < dimG and so dim k[V ]H ≤
dim k[V ]J < dimV − dimH + dimG = dimV − dimG = dim k[V ]G.

So we may assume that d1 = d2 and identify V1 = V2 = W (as vector spaces rather
than G-modules). Note that in L = SL(W ) ⊗ SL(W ), the stabilizer in L of a generic
vector is a diagonal subgroup D, i.e., it is isomorphic to SL(W ) and the projection onto
either factor is a bijection. If π2(G) 6= SL(W ), then clearly dimπ2(G ∩ D) < dimG
for generic D. Thus, dim Jv < dimG for generic v and so arguing as above, we see
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that dim k[V ]H < dim k[V ]G. If π2(G) = SL(W ), then G ∼= SL(W ) and V is a tensor
product of two G-modules each of which are Frobenius twists of the natural module or its
dual. In this case, dim k[V ]G = 1 and (G,H, V ) are as in the last line of Table 6.

So now assume that H is simple. If dimHv = 0 for some v ∈ V , then dim k[V ]H =
dimV − dimH < dimV − dimG = dim k[V ]G, a contradiction. So dimV ≤ dimH ,
(H, char k, V ) is in Table 3 or V is the irreducible part of the adjoint module for H .

First consider the case that V is the irreducible part of the adjoint module for H . As H
acts faithfully, char k is not special and H is adjoint. Lemma 3.5 provides a contradiction.

Next consider the case that H = Sp(W ) = Sp2` for some ` > 2 and V = L(ω2).
Thus, dimV = `(2` − 1) − δ with δ = 1 or 2. Suppose that G is not irreducible on
W . Let X be a G-composition factor of W of maximal dimension e. So e ≤ 2` − 2. If
e = 2, then the largest composition factor of G on ∧2W is 4-dimensional, a contradiction.
Otherwise, G has a nontrivial composition factor on V of dimension at most dim∧2X =
(`− 2)(2`− 3) < dimV , whence G is not irreducible on V , a contradiction.

Also,GHv is dense inH so dimG ≥ dimH−3`, sinceHv is generically of dimension
3`. Now apply Lemma 14.4 to deduce that (G,H, V, char k) are as in the 2nd or 4th lines
of Table 6.

In the remaining cases from Table 3, we have d = dim k[V ]H ≤ 2. If d = 1, then
inspection of Tables 3, 4, and 5 show (1), (2), or (3) of the theorem hold or we are in the
case of line 1 of Table 6. So we may assume that d = 2.

First assume that dimV > dimG and so d := dim k[V ]G = dimV − dimG > 0.
Then by Theorem 1.3 one of the following holds:

• G = A1, p 6= 2, 3, V = L(ω4) with dimV = 5;
• G = A2, p 6= 2, 3, V = L(3ω1) with dimV = 10; or
• G = B2, p = 5, V = L(ω1 + ω2) with dimV = 12.

The possibilities for H with dim k[V ]H = 2 are also given in Theorem 1.3 and we see that
there are no examples.

Next consider the case that dimV ≤ dimG. If V is the nontrivial composition factor
of the adjoint module (and char k is not special for G) and dim k[V ]G ≤ 2, then (G, p)
appears in Table 2. Again, the possibilities for H are all given in the tables and we see the
only examples are captured in the 2nd and 4th rows of Table 6.

Finally assume that dimV < dimG and and we are not in the case of the adjoint
module. Thus, G and H both occur in Table 3 and we see that there are no containments
(when d = 2). �

An immediate consequence of Theorem 14.1 is:

Corollary 14.5. Under the hypotheses of Theorem 14.1: If Gv is finite for generic v ∈ V
or dimV > dimG, then char k 6= 0 and (G,H, V, char k) are as in the last row of Table
6.

Corollary 14.6. Let V be a faithful and irreducible representation of a simple algebraic
groupG. Let e be the greatest common divisor of the degrees of the homogeneous elements
of k[V ]G. Assume that (G,V ) is not given (up to twist) in the statement of Theorem 14.1.
If m is a sufficiently large multiple of e, then for almost all homogeneous f ∈ k[V ]G of
degree m, G is the identity component of the stabilizer of f .

Proof. There are only finitely many closed subgroupsH of SL(V ) containingG (see [LiT]
or [GaGu 15, Prop. 9.2]) and by the previous result dim k[V ]H < dim k[V ]G. Thus, for
m sufficiently large (and a multiple of e), the set of f ∈ k[V ]G that are homogeneous
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whose stabilizer has connected component strictly containing G is a finite union of proper
subspaces of the degree m invariants of G, whence the result. �

In fact using results of Seitz and Testerman and others (see [Seitz], [BuGMT, BuGT,
BuMT]), for most (G,V ) it is the case that G is maximal in the corresponding classi-
cal group (SO(V ), Sp(V ), or SL(V )) and so any homogeneous G-invariant (other than a
scalar times a power of the invariant quadratic form in the case G < SO(V )) has stabi-
lizer whose connected component is G. See [GaGu 15] for many examples of this, e.g., if
G = E8 and V is the adjoint module.
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