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ABSTRACT. Motivated in part by representation theoretic questions, we prove that if G
is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that
contains a member of each conjugacy class of involutions of G.

1. INTRODUCTION

Let G be a finite group. An involution of G is an element of order 2. An elementary abelian
subgroup E of GG is a called a broad subgroup if every involution of G is conjugate to an
element of E. This definition is motivated in part by the fact that (using a theorem of R.
Knérr [7]) an irreducible character which vanishes identically on non-identity elements of E
lies in a 2-block of defect zero. This in turn allows us to prove that when G contains a broad
subgroup, the number of irreducible characters of G which lie in 2-blocks of positive defect of
G is at most |Cg(t)| for some involution ¢t € G. Our main result (which depends upon the
classification of finite simple groups) is:

Theorem 1. Let G be a finite quasi-simple group. Then G contains a broad subgroup.

Notice that it is immediate that a direct product of finite groups has a broad subgroup if
each direct factor has a broad subgroup.

We have the following corollary, which may be of independent interest:

Corollary 2. Let G be a finite quasi-simple group. If x and y are involutions of G, then x
commutes with some conjugate of y.

The promised application to character theory is provided by:

Corollary 3. Let G be a finite group with no non-trivial normal subgroup of odd order. Then
there is an involution t € F*(QG) such that the total number of irreducible characters of G
which do not lie over 2-blocks of defect zero of F*(G) is at most |Cg(t)].

This applies in particular when G is a non-abelian simple group, and since G = SLo(2")
(for n > 2) has exactly 2" irreducible characters which lie in 2-blocks of positive defect, while
|Cq(t)| = 2™ for each involution ¢ € G, the inequality of Corollary 3 may be sharp. If G is
quasisimple and the center has even order, then there is a central element of order 2 and so
the corollary is not useful.

Note that there is no direct analog of Theorem 1 for odd primes. For example if p > 5,
let S = SL,(p) with 4 < n < p. Since Z(S) has order prime to p, it suffices to produce an
example in S. Let 2 be a regular unipotent element (i.e. 2 has a single Jordan block of size n).
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Note that x has order p. Then Cg(z)/Z(S) is an elementary abelian p-group of rank n — 1. It
is straightforward to check that the only elements y € Cg(z) which have two Jordan blocks
have Jordan blocks of sizes (n +1)/2 if n is odd and two Jordan blocks of size n/2 if n is
even. Thus, z does not commute with an element of order p that has Jordan blocks of size
n —1 and 1.

For p = 3, we give an example where elements of order 3 are semisimple. Let S = SLg(q)
with ¢ = 4 (mod 9). Then Z = Z(S) = () has order 3. Let x € S satisfy 23 = 2. So in
G = S/Z, xZ is an element of order 3. Let y € S be an element of order 3 with a 7-dimensional
1-eigenspace. We claim that no conjugate of y commutes with £ modulo Z. Suppose there
is a conjugate ¢ of y commuting with z modulo Z. Then replacing 3’ by y, we see that
[z,y] = u € Z. Then y is conjugate to yu whence by considering eigenvalues, v = 1. So z
and y commute in S. Since y has a 1-dimensional eigenspace, x must preserve this space.
However, x has no eigenvalues in the base field, a contradiction.

The result also fails in general for almost simple groups for p = 2. Let G = O;fm(Qa) be the
orthogonal group. There are two conjugacy classes of involutions in the socle szm( @), which
are interchanged by an involution in G. Clearly such an outer involution cannot commute
with any element of either of the two conjugacy classes interchanged.

Note that all three families of counterexamples above are also counterexamples to Corollary
2. We also remark that it is easy to check that the quaternion group Qg is the only extra-
special 2-group which has a broad subgroup, while it is clear that for p odd, a non-abelian
p-group of exponent p never has a broad elementary abelian p-subgroup.

In the next three sections, we prove Theorem 1 for the various families of quasi-simple
groups. In the last two sections, we prove Corollary 3 and discuss some other character
theoretic results.

2. ALTERNATING AND SPORADIC GROUPS

We make a few preliminary remarks before starting the proof of Theorem 1. We may
assume that G has no non-trivial odd order normal subgroups and in particular if G is
quasisimple, we may assume that the center is a 2-group. We call an involution 2-central if it
is contained in the center of a Sylow 2-subgroup of G.

If G has at most one class of non 2-central involutions, then the result holds by considering
the abelian subgroup E = (Z(S), z) where S is a Sylow 2-subgroup of G and = € S is a non
2-central involution. If G has 3 conjugacy classes of involutions, C7,Cs and C'5 and there
exist x; € C; with xjx9x3 = 1, then the elementary abelian subgroup (z;, z9) intersects each
C;. If H is a subgroup of G and H intersects every conjugacy class of involutions of G and H
has a broad subgroup, then so does G.

The case of alternating groups is trivial.

Lemma 2.1. Let G = A,,n > 5. Let E be the mazximal elementary abelian subgroup of Sy,
with all orbits of size 2 if n is even and all orbits but one of size 2 if n is odd. Then every
involution in S, is conjugate to an element of E by an element of A,.

Lemma 2.2. Let G = 2A,,n > 5 be the nonsplit double cover of A,. Then G contains a
broad subgroup.

Proof. If x € A,, is an involution, then zx lifts to an involution in G if and only if the number
of points moved by x is a multiple of 8. Now choose a partition of {1,...,n} into subsets
Xo, X1,...,Xq where | X;| = 8 for i > 0 and |Xy| < 8. Let E be the elementary abelian
2-group F1 X ... x E4 where E; acts as a regular elementary abelian group of order 8 on Xj.
Note that if x € E, then 2 moves 8e points for some 0 < e < d. Let Z = Z(G) = (z) and
let f: G — G/Z be the natural map. Thus, if z € E, f~!(z) = {t,tz} with ¢ an involution.
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Thus, f~(F) is an elementary abelian 2-group containing a conjugate of every involution of
G. O

All but five of the sporadic groups have at most 2 conjugacy classes of involutions and
so at most one class of involutions that are not 2-central. As noted above, this implies the
result. The remaining cases are C'og, C'o1, Figo, Fiiog and B. The first four have three classes
of involutions and B has four such classes. In these cases, we just use GAP [5] to produce
E. One deals with the quasi-simple sporadic groups in a similar manner. The details of the
computations and more detailed explanations are given in [2, 2.3-10].

Lemma 2.3. Let G be a quasi-simple sporadic group. Then there exists an elementary abelian
subgroup E intersecting every conjugacy class of involutions in G.

Proof. First assume that G is simple. As noted above, there are only five sporadic groups with
more than 2 conjugacy classes of involutions. In each of the five cases, we produce a subgroup
H for which the theorem holds and which intersects each conjugacy class of involutions (this
condition can be checked using fusion tables in GAP [5]).

First set H = HS.2 = Aut(HS). Then H has four conjugacy classes of involutions and
using [5], one sees that there is an elementary abelian subgroup of order 8 intersecting each
conjugacy class of H.

In each of the five sporadic groups, we use [5] to a find a subgroup J of G intersecting all
conjugacy classes of G such that J also has the desired property. If G = Coy or B, there is a
subgroup J = H intersecting each class. If G = Coq, take J = Ag x S3. If G = Fligs or Fliog,
then we can choose J = 02(21% M) or O (211 Mag).

Now assume that G is quasisimple with Z = Z(G) a non-trivial 2-group. There are ten
groups to consider. If G = 2Myo, 2Mso, 2J5, 2HS, 2Ru or 25uz, there is an elementary
abelian subgroup H of G/Z such that H intersects each conjugacy class of involutions in G/Z
that lift to involutions in G' and none that lift to elements of order 4. Thus, if Z < K with
K/Z = H, then K is elementary abelian and intersects each conjugacy class of involutions in
G. If G = 2Fiy9, then all involutions lift to involutions and so just take the preimage of the
elementary abelian subgroup of G/Z intersecting all the classes of involutions. If G = 4 Mo,
then G has only two conjugacy classes of involutions and so the result holds.

Suppose that G = 2.C'o;. There are 4 classes of involutions which are lifts of the classes
2A and 2C involutions in C'o;. Thus, it suffices to show that there is a elementary abelian
subgroup K of Co; of order 4 containing 24 and 2C' involutions but no element from 2B.
This follows from the fact that the (24,24, 2C) structure constant of C'o; is nonzero. The
preimage of K is the desired broad subgroup.

Finally suppose that G = 2.B. There are 5 classes of involutions in G. It suffices to show
that there is an elementary abelian subgroup K of B of order 4 that contains elements
from the classes 24, 2B, and 2D (but no element from 2C'). This follows from the fact that
the (2A4,2B,2D) structure constant of B is nonzero. The preimage of K is the given broad
subgroup. O

3. GROUPS OF LIE TYPE IN CHARACTERISTIC 2

In this section ¢ is a power of 2. We consider the finite simple groups of Lie type over F,,.
We will typically work with the simply connected group (which will have center of odd order)
which is sufficient. We begin by observing that the centralizer of an involution is connected
in the ambient algebraic group (it is not true that all centralizers of unipotent elements are
connected).

Lemma 3.1. Let X be a simple algebraic group over any algebraically closed field of charac-
teristic 2. Let g € X be an involution. Let o be a Steinberg endomorphism of X (i.e. the fized
subgroup X, of o on X 1is finite).
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(1) Cx(g) is connected.
(2) If g is o-invariant, then g~ N X, is a single conjugacy class in X,.

Proof. Since Z(X) is finite of odd order, the result does not depend upon the isogeny type of
X. So we may work with the most convenient form of the group. It follows by Lang-Steinberg,
that (1) implies (2) and indeed, the converse is true as well.

If o is the standard ¢-Frobenius endomorphism of X, we write X, = X(q).

If G is exceptional, we just quote [10, Chapter 22]. This also follows from the result in [1]
where is it shown that any involution in X, is conjugate to an involution in X (2) and there
is no fusion of classes of involutions in X (2) in any X (¢) (and so also in X). This argument
holds in the case of classical groups with one minor complication. In both [1] and [10], the
classes in the case X = SO, (k), n even (or in X, ), are given in terms of conjugacy in the
orthogonal group. In fact, there is only one pair of SO-classes which are not also O-classes
(and only if n = 4m). This O(V')-class is denoted agy, in [1] and W (2)™ in [10]. Aside from
that pair of classes, one can argue as above (i.e. either consider the results in [1] or [10]).
If we use [10], then in results about centralizers, the centralizer usually has two connected
components and so is connected in SO(V'). Consider this last case. Let g € X be in one of
the classes of involutions that is not O(V)-invariant. Then the centralizer of g in O(V) is
contained in X. It is shown in [10] that this is connected (and so also for the other class). O

Remark 3.2. (1) We note that if X is a classical group, there is a fairly elementary proof.
We just need to observe that any two involutions in X (g) which are conjugate in X are
already conjugate in X (g). If X = SL,,(k), then any involution in X (g) is contained in the
radical of the parabolic subgroup stabilizing a subspace of dimension |(n + 1)/2]. Similarly,
if X = Sp,,,(k), every involution acts trivially on a totally singular n-dimensional space. In
both cases, the result follows by elementary linear algebra.

The argument for SOg, (k) is slightly more complicated but follows from the fact that
two involutions in SOg, (k) which are conjugate in Sp,, (k) are already conjugate in Oay, (k)
1, 4, 10].

(2) Also note that the connectedness of centralizers in the simple case implies the same result
for any connected reductive group as well.

(3) Costantini [3] has shown that if X is a simple algebraic group in characteristic 2, then
centralizers of involutions are spherical (i.e. there are only finitely many double cosets
Cx(g)\X/B with g an involution and B a Borel subgroup) and moreover that Cpg(g) is
connected and from that one can deduce the connectedness of C'x(g). The proof does depend
on the classification of involutions [1].

3.1. Linear, Unitary and Symplectic Groups. The case of SL,(q) is obvious.

Lemma 3.3. Let G = SL,,(¢) = SL(V),n > 2 and set m = |[(n+ 1)/2]. Let P be the
stabilizer of an m-dimensional subspace W of V.. Then any involution in G is conjugate to an
element acting trivially on W. In particular, if Q is the unipotent radical of the stabilizer of
W, then Q is elementary abelian and every involution of G is conjugate to an element of Q.

For symplectic and unitary groups, we use the following elementary observation.

Lemma 3.4. Let n > 2 with G = SUsay,(q) or Spy,(q). Then any involution g acts trivially
on a totally isotropic subspace of dimension n and so the elementary abelian subgroup @
that is the unipotent radical of the stabilizer of a totally singular subspace of dimension n
intersects every conjugacy class of involutions.

Proof. If G = Sp,,,(q), the argument is easier (and is given in [4, Lemma 4.4]). So we assume
that G = SUay(q).
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Let W be the fixed space of an involution g € G. Note that dim W > n. If W is totally
singular, the result follows. Otherwise g is trivial on a nondegenerate 1-space L. Then g acts
on L+ and since dim L+ = 2n — 1, the fixed space of ¢ has dimension at least n and so is not
totally singular. Thus g leaves invariant some nondegenerate 1-space orthogonal to L and so
acts trivially on a nondegenerate 2-space. The result then follows by induction. O

Since every every involution of G := SUs,+1(g) fixes a nondegenerate 1-space , it follows
that a subgroup SUs,(q) contains a conjugate of every involution of G. This yields:

Lemma 3.5. If G = SUy,4+1(q), then G contains a broad subgroup.

3.2. Orthogonal Groups. We now consider G = Q5, (¢) = Q(V). Since Qf(q) is either
isomorphic to a product of two copies of SLa(q) or to SLa(g?) and Q§(q) is isomorphic to a
quotient of SLys(q) or SU4(q), we assume that n > 4. This case is different from the other
families of classical groups and we have to examine the conjugacy classes of involutions more
closely.

Suppose that n = 2m is even. Decompose V =V, 1L ... 1L V,, as the orthogonal sum of
m nondegenerate 4-dimensional spaces. If € = 4, choose all the summands to be of + type.
Otherwise choose Vi, ..., Vy,—1 of + type and V,, to be of — type.

Lemma 3.6. Let E be a Sylow 2-subgroup of Q(V1) x ... x Q(Vy,). Then E is a broad
subgroup.

Proof. Note that E is elementary abelian and that the normalizer of F contains elements
in O(V) not in (V). Thus it suffices to show that E intersects every O(V') conjugacy
class of involutions contained in (V). Such involutions are described in [10, Chap. 6]. The
possible conjugacy classes are labelled W (2)¢ @ W (1) or V(2)2 @ W (2)¢ @ W(1)/. They are
distinguished by their Jordan form and whether (gv,v) vanishes identically for v € V' with
respect to the alternating form left invariant by G (the classes involving V(2)? are the ones
where this function does not vanish everywhere).

Note that involutions in QF (¢) are either W (2) or V(2)2. Involutions in 2 (¢) are in the
class V(2)2. If € = +, then it is clear any class of involutions intersects E. Similarly if ¢ = —,
it is clear that any involution other than W (2)™ is conjugate to an element of FE. However,
this class of involutions in the algebraic group is not invariant under the graph automorphism
(i.e. there are two Q classes which are fused in O). Since the classes are stable under any field
automorphism, it follows that this class is not present in Q5 (q). O

If n is odd, decompose V =W L U with dimU = 2 and W of + type (and so U has the
same type as V).

Lemma 3.7. Any involution in G is conjugate to an element of Q(W) and so G contains a
broad subgroup

Proof. By [10, Chap. 6], any involution in G is conjugate to an element in Q(W) and since
Q(W) contains a broad subgroup by the previous result, so does G. O

3.3. Exceptional Groups. First observe that the groups ?Bo(22011) 3D, (29), 2 F(22a+1)
or G2(q) have at most 1 non 2-central conjugacy class of involutions [10, Chap. 22| and the
theorem holds as noted above. In addition, since centralizers of involutions are connected by
Lemma 3.1, all classes of involutions intersect a subfield group and so one can work over the
prime field (and so use the character tables).

In Fy(q), the center of a Sylow 2-subgroup has order ¢? and intersects three of the four
classes of involutions and so the result holds in this case as well. This can be seen deduced by
noting that centralizers of representatives of elements in three classes of the classes have odd
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index. Alternatively, one can show that there are four classes of involutions in Spg(q) that
are not fused in Fy(q) and so the result for Spg(q) implies the result for Fy(q).

It is easy to see that each conjugacy class of involutions in 2Eg(q) or Fg(q) intersects
Fy(q). For example, this can be seen by inspecting the tables in [10, Chap. 22] — indeed they
exhibit the classes of unipotent elements in the exceptional groups by first working in Fg and
then determining which classes intersect the smaller groups and if they split. Alternatively,
using the Jordan block structure of involutions of Fy acting on the Lie algebra and the 26
dimensional module [8] and noting that the Lie algebra of Eg as an Fy-module is the direct
sum of the Lie algebra of F and the 26-dimensional module, one can see that three of the
classes in Fy remain distinct in Eg. Thus, the result for these cases follows from the result for
Fy.

In E7(q), we see that we can choose 4 commuting simple root subgroups (using the Bourbaki
labelling, the roots are (2, 83, 85 and fB7) and the group generated by these meets all four
classes (see [1] or [8]). Each class of involutions in Eg(q) intersects E7(q) (arguing as in the
case of Fy(q) < Eg(q)). Thus, the theorem holds for E7(q) and Eg(q).

3.4. Exceptional Multipliers. If G is a simple group of Lie type in characteristic 2, then
almost always its Schur multiplier has odd order and so there is nothing more to do. There
are a handful of cases where this fails. See [6, Table 6.1.3]. In each of the cases, one produces
the required broad subgroup using GAP [2, 5].

4. GROUPS OF LIE TYPE IN ODD CHARACTERISTIC

In this section, we consider finite simple groups of Lie type over a field F, with ¢ odd.
We prove a slightly stronger result which makes the proof easier. So let X be a simple
algebraic group over an algebraically closed field of odd characteristic p. Let o be a Steinberg
endomorphism of X and let H = X, the fixed points of 0. Then H is a finite group of Lie
type over a finite field F, for some ¢ a power of p. Let G = o (H). Then G is quasi-simple
unless H = 2G5(3), SL2(3) or PGL2(3). Note that in the latter two cases G is solvable and in
the first case [H, H] = PSL(8). We may exclude these cases.

We say that a subgroup S of H is toral if S is contained in a torus T in X. It follows
that S is contained in a maximal torus of H (which is defined to be T}, for T" a o-invariant
maximal torus of X). Note that if ¢ : X — Y is an isogeny of algebraic groups, then tori
map to tori and the inverse image of a maximal torus is a maximal torus.

We shall prove the following:

Theorem 4.1. Let G be a finite quasi-simple group of Lie type over a field of odd characteristic.
Then there exists a toral subgroup of G which intersects every conjugacy class of involutions

of G.

If G is as in the theorem and Z is a central subgroup, then the result for G/Z implies the
result for G (since as noted above toral subgroups lift to toral subgroups and any involution
in G maps to an involution in G/Z). On the other hand, if we prove that there exists a
toral subgroup S of G such that S intersects every conjugacy class of 2-elements g € G with
g% € Z, then SZ/Z is toral and intersects each class of involutions in G//Z. Thus, we can
choose a particular form of the group and prove the result needed for that form.

If G is simply connected and split (i.e. o is just a Frobenius endomorphism), the result is
quite easy. Note that G = X, in this case.

Lemma 4.2. Let G be a finite quasi-simple simply connected split group of Lie type over the
field of q elements. Let S be a maximal torus of G contained in a Borel subgroup of G. Then
S intersects every conjugacy class of involutions of G.
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Proof. Let T be a maximal torus of X containing S. Every involution of X is conjugate to an
element of T' (indeed every semisimple element of X is conjugate to an element of T'). If r is
the rank of X, then S is a direct product of r copies of a cyclic group of order ¢ — 1 and thus
S contains all involutions in T'. Let g € G be an involution and note that ¢ is conjugate in X
to some element of S. Since X is simply connected, Cx(g) is connected and ¢g¥ NG = ¢©.
Thus g is conjugate in G to an element of S. U

We can now complete the proof for the exceptional groups. The previous lemma implies the
result for the simply connected groups of type Ga2(q), Fu(q), E¢(q), E7(q) and Es(q). Aside
from the case of E7(q), the centers are either trivial or have order 3 and so the result holds.

We note that in the simply connected group E7(q), there are maximal tori that are direct
products of seven cyclic groups of order ¢ — 1 and also of order ¢ + 1 [9, Section 5]. Arguing
as above, one of these maximal tori contains a conjugate of any element of order 4 in G and
so of any element whose square is central.

This leaves only the cases of 2Go(3%¢%1), k > 1, 3D4(q) and 2FEg(q). In the first two cases,
there is only one class of involutions and the result follows since any semisimple element
is contained in some maximal torus. In the case of 2Eg(q) (and since the center has odd
order, it suffices to consider the simply connected case), there is a maximal torus that is the
direct product of six copies of the cyclic group of order ¢ + 1 [9, Section 5]. This contains all
involutions of a maximal torus of the algebraic group and we argue as above.

We next consider the classical groups. We will work with the form of the group that acts
on the natural module V.

We first consider SLy,(q). If n is odd, the center has odd order and so the result follows by
Lemma 4.2. We next handle the case that n is even.

Lemma 4.3. Let G = SLoy,(q) < GLay,(q) = L. Then there exists a toral subgroup A of L
such that A contains a conjugate of any element of G whose square is central.

Proof. Note that semisimple elements in G which are conjugate in L are already conjugate
in G. Let Z be the Sylow 2-subgroup of the center of G with z a generator. Consider the
subgroup B = By X ... x By, of L with each B; = GLa(q), acting on a direct sum of m two
dimensional spaces. Let A; be a cyclic subgroup of B; of order ¢> —1 and set A = A; x...x A,,.
Note that A contains an element w with w? = z (by considering the two dimensional case).
Suppose that y? = 2z with y € G. If i is odd, then there is an odd power of y with square z
and so y is conjugate to a power of w. If i = 24, then yz~7 is an involution in G. It is easy to
see that an involution in G is conjugate to an element of A (since each eigenspace is even
dimensional). Thus, A contains a conjugate of every element of G whose square is central.
Clearly A is toral and so the result holds. O

As we noted above, this implies that Theorem 1 holds for any quotient of SL.

The same proof holds for G = SUsg,,(q), m > 2 and so the main result for any quotient of
SUom(q). If G = SU,(q) with n odd, then Z(G) has odd order and we see that there is a
toral subgroup that is a direct product of n — 1 copies of a cyclic group of order ¢ + 1 which
contains all involutions in a maximal torus of the algebraic group and the result follows as
above. Thus, we have proved:

Lemma 4.4. Let G = SU,(q),n > 2. Then Theorem 1 holds for any quotient of G.

Lemma 4.5. Theorem 1 holds for any quotient of G = Spy,,(q).

Proof. First suppose that G = Sp,,,(¢) with ¢ = 1 (mod 4). Then the split torus S contains
all elements of order dividing 4 in the maximal torus 7' containing it in the algebraic group.
Thus every element of order dividing 4 in G is conjugate to an element of S. Since G is
simply connected, two elements of .S which are conjugate in the algebraic group are already
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conjugate GG, whence the results holds for Sp,,(¢) and its central quotient. If ¢ = 3 (mod 4),
there is a maximal torus of G that is the direct product of n copies of the cyclic group of
order ¢ + 1 which again contains all elements of order dividing 4 in a maximal torus of the
algebraic group and the result follows similarly. O

Finally we consider the quasi-simple groups related to orthogonal groups in dimension at
least 7. We will prove the appropriate result for the groups G = Qf,(¢) < L = SO, (q). As
noted above, this suffices to prove the result in general.

Lemma 4.6. Theorem 1 holds for any quotient of Spin$,(q) forn > 7.

Proof. First suppose that n = 2m+1 is odd. Then SO, (q) = SO(V') has trivial center and the
simple group Q,,(q) consists of the elements with spinor norm 1 and has index 2. Decompose
V =W L W' with W a hyperplane such that the central element in SO(W) has spinor
norm 1. Now decompose W = Wy L ... L W, as an orthogonal sum of m nondegenerate
2-spaces with at least one summand of each type. If ¢ is an involution in 2,(g), then g is
conjugate to an element of the maximal torus S = SO(Wp) x ... x SO(Wy,). If the dimension
of the trivial eigenspace of g is greater than 1, this is clear since the class of g (for g an
involution even in SO(V)) is determined by the dimension and type of its fixed space. If the
fixed space of g is 1-dimensional and g has spinor norm 1, then the —1 eigenspace of g has
the same type as W and so g is conjugate to the element acting as —1 on W. Thus, SN Q,(q)
is a toral subgroup intersecting each conjugacy class of involutions and the result holds.

Next consider the case that n = 4m + 2, m > 2. First consider the case that L = SO;,(q) =
SO(V) with ¢ = €l (mod 4). Note that Z(L) = Z(G) has order 2 in this case. Decompose
V=V L ... 1 Voui1 where the V; are 2-dimensional spaces of the same type as V. Let
S =80(V1) x ... x SO(Vam+1). Then S is a maximal torus of SO(V). It is easy to see that
any involution of spinor norm 1 is conjugate to an element of S. Moreover, if x € G and

22 = —I, then x is conjugate to an element of S (reduce to the two dimensional case).

Thus, SN Q(V) intersects any conjugacy of elements of G whose square is central. This
proves the theorem for Q(V') and its simple quotient and so the result holds.

Suppose that ¢ = €3 (mod 4). In this case the involution in Z(L) has spinor norm —1 and
so Q(V) has trivial center and is the simple group. Decompose V. =V; L ... L Vo411 so
that there are at least 2 summands of each type. Let S = SO(Vy) x ... x SO(Vap+1). Then S
intersects every conjugacy class of involutions of SO(V') and the result holds.

Finally consider the case that n = 4m,m > 2. Suppose that L = SO,, (¢) = SO(V). Note
that in this case —I has spinor norm —1 and so €, (¢q) is simple. Decompose V =V} L ... L
Vam into an orthogonal sum of 2m nondegenerate 2-dimensional spaces (note both types

must occur in this decomposition). It is clear that any involution in (V') is conjugate to an
element of S =SO(V7) x ... x SO(Va,,) and the result holds.

Finally suppose that L = SO, (¢q). Decompose V = Vi L ... L Vs, with each V; of
dimension 2 and all of the same type. If ¢ = 1 (mod 4), take the type of V; to be 4+ and —
otherwise. In this case the central involution of each SO(V;) has spinor norm 1 and so the
central involution in L also has spinor norm 1. Set S = SO(V}) x ... x SO(Vay,), a direct
product of 2m cyclic groups of order ¢ £ 1 (and each cyclic group has order a multiple of 4).
If z € G and 22 = —I, then z is conjugate to an element of S and any involution of spinor
norm 1 is also conjugate to an element of S and the result follows. O

The proof of Theorem 1 is now complete.

5. PROOF OF COROLLARY 3

As mentioned in the introduction, Corollary 2.11 of R. Knérr [7] tells us that when p
is a prime and G is a finite group of order divisible by p, then the irreducible character
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x of G lies in a p-block of defect zero of G (hence vanishes on all elements of G of order
divisible by p) if and only if x vanishes on all elements of order p in G. Hence when G has an
elementary abelian subgroup F which meets every conjugacy class of elements of order p of
G, the irreducible character y lies in a p-block of defect zero of G if and only if x vanishes
identically on E#, the set of non-identity elements of E.

We may conclude, using Theorem 1 of [11], that if G has such an elementary abelian
p-subgroup E, then Y s [x(a)|* > |E| — 1 whenever x lies in a p-block of positive defect
of G.

Using the orthogonality relations, we deduce that if G has k. irreducible characters lying
in p-blocks of positive defect, we have

Y ICa(a)l = k4 (IE| - 1).

acE#

In particular, we have k, < |Cg(a)| for some a € E7.

More generally, let G be a finite group, and N < G. We will first prove that if N has an
elementary abelian p-subgroup F which meets every conjugacy class of elements of order
p of N, then there is an element x of order p in N such that at most |Cg(x)| irreducible
characters of G lie in p-blocks which do not cover p-blocks of defect zero of V.

We first need a slight extension of the above result of Knorr.

Lemma 5.1. Let G be a finite group and N be a normal subgroup of G. Let B be a p-block
of G with defect group D such that D NN # 1. Then for any irreducible character x € B,
there is an element x € N of order p with x(z) # 0.

Proof. Let (R, K, F') be a p-modular system for G. We note that H = Ng(D N N) > Ng(D)
so by Brauer’s First Main Theorem, there is a unique Brauer correspondent block for B
in No(D N N), say B'. Let 0 = 3 ,cnw—1} > Which is an element of Z(RG). Here wy
denotes the linear character of Z(RG) associated to the irreducible character x and J(R) is
the unique maximal ideal of the complete dvr R.

We claim that wy(c) € J(R), so that wy(c —1g) € J(R), and in particular, there must be
some non-identity element x € N of order p with x(z) # 0.

Now, using the Brauer homomorphism, there is an irreducible character p € B’ (which
may be assumed to have D N N in its kernel) such that wy (o) = w,(c*) ( mod J(R) ), where
o= Z{nECg(DﬁN):npzl} n.

However, let Z = Q1(Z(D N N)), and let ZT be the sum of its elements in RG. It is clear
that o* = ZTT for some element T of RCe(D N N) which is itself a sum of certain elements

of order dividing p. Notice that T commutes with ZT. It follows that ¢* has nilpotent image
in Z(FNg(DNN)), so that w,(c*) € J(R), which suffices to complete the proof. O

We conclude from the lemma (and Clifford’s Theorem) that the irreducible character x
of G lies over characters in p-blocks of positive defect of N if and only if x(z) # 0 for some
element z of order p in N.

In particular, if £ is a broad elementary abelian p-subgroup of N, then no irreducible
character y of G which lies over irreducible characters in p-blocks of positive defect of N
can vanish identically on E#. We may then conclude as above that there is an element z of
order p in N such that the total number of irreducible characters of G which do not vanish
identically on p-singular elements of N is at most |Cg(x)].

Recall that O(G) is the maximal odd order normal subgroup of G. Finally, we turn our
attention to the case p =2, O(G) = 1and N = F*(G). If O3(G) # 1, let Z = Q1(Z(02(Q))) #
1. Then by Clifford’s Theorem, whenever y is an irreducible character of G, Res% () is not
a multiple of the regular character, so that y does not vanish identically on Z#. Hence, as
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before, we have Y, |x(2)|* = |Z| — 1, and we have k(G) < |Cg(z)] for some z of order 2
in Z, where (as usual), k(G) denotes the number of complex irreducible characters of G.

Suppose then that O2(G) = 1. Then F*(G) is a direct product of non-abelian simple
groups, and F*(G) has a broad elementary 2-subgroup, say F, by Theorem 1 and the remarks
following. Now the arguments above tell us that there is some element ¢t € E# such that the
number of irreducible characters of G which do not vanish identically on 2-singular elements
of F*(G) is at most |C(t)|, and the proof of Corollary 3 is complete.

Note that Corollary 3 shows that the number of irreducible characters of G which do not
vanish identically on 2-singular elements of F*(G) is bounded above by the order of a 2-local
subgroup of G which is the normalizer of a non-trivial 2-subgroup of F*(G). We remark that
if equality holds in Corollary 3, then every irreducible character of G which does not vanish
at t takes value £1 at t, and that each such character has odd degree, so lies in a 2-block of
full defect of G' (and has height zero in that block).

6. FURTHER CHARACTER-THEORETIC APPLICATIONS
One of our motivations for asking the question answered by Corollary 2 is the following:

Lemma 6.1. Let G be a finite group, and let t,u be involutions of G such that t does
not commute with any G-conjugate of u. Let C = Cg(t) and D = Cg(u). Then there is a
non-trivial irreducible character p in the principal 2-block of G such that u(t)u(u) # 0 and
n(1) < (IC:0(O)] - D(V[D : O(D)] - 1).

Proof. We first note that u is not expressible as the product of two conjugates of t. More
generally, the product of two conjugates of ¢ never lies in the 2-section of u, for if t*t¥ has
2-part u®, then t* and tY both invert the involution w?, contrary to hypothesis.

By the usual character-theoretic formula for the coefficient of g in the product of two class
sums, we see that the class function

x(t)*x
x(1)

Xx€Elrr(G)

vanishes identically on the 2-section of u in G.

By a well-known consequence of Brauer’s Second Main Theorem, the class function
Z X(t)*x
o x(1)

also vanishes identically on the 2-section of u in GG, where B is the principal 2-block of G. It
follows easily that

xX()?x(u)|
2w ot

1#x€eB

Choose a non-trivial irreducible character p € B with p(t)p(u) # 0 and with r(u)
maximal. Then

S x> (1u>

1#x€eB
By Brauer’s Second and Third Main Theorem, we have

> x®)? =Y 01,

XEB 0eb
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where b is the principal 2-block of C' = C(t). Since each irreducible character € of b has
O(C) in its kernel, we deduce that

S X <[C:0(0) - L.

1#x€EB

A similar argument with u certainly allows us to conclude that |u(u)| < /[D : O(D)] — 1.
Hence we may conclude that

n(1) < ([C:0(0O)] = D)(V[D: O(D)] - 1),
and the result follows. Il

In view of Corollary 2, this result may not be applied as it stands to finite simple groups,
but we have seen that the hypotheses may be satisfied within almost simple groups, so we
mention:

Corollary 6.2. Let G be an almost simple group with F*(G) =S, and let t be an involution
of G\S and u be an involution of S which commutes with no conjugate of t. Then the
principal 2-block of S contains a t-stable non-trivial irreducible character of degree at most

([C:0(C)] —1)(\/[D : O(D)] — 1), where C = Cg(t) and D = Cg(u).

Proof. We might as well work within (¢).S, so we suppose that G = (¢)S. We may argue in
a similar fashion to the previous result. Now the principal 2-block of G contains two linear
characters, 1 and A, say, and we also have A\(t)?A(u) = 1. This time, we find that

X ()2 x(u)]
2 x(1)

where B is again the principal 2-block of G. However, the irreducible characters y € B with
X(t)x(u) # 0 come in pairs, both members of which lie over the same t-stable irreducible
character of the principal 2-block of S (if  is one such, so is A\ # ¥, and note that x(t)%x(u)
is unchanged on replacing x by Ax). Also, Cq(t) = (t) x Cg(t), so the result follows in a
fashion similar to the previous corollary. g

22,
XEB:x(1)>1
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