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Abstract—The unprecedented growth in wireless Internet-of-
Things and WiFi devices has renewed interest in mechanisms for
efficient spectrum reuse. Existing schemes require some level of
primary-secondary coordination, cross-channel state estimation
and tracking, or activity detection — which complicate implemen-
tation. For low-power short-range secondary communication, the
main impediment is strong and time-varying (e.g., intermittent)
interference from the primary system. This paper proposes
a practical underlay scheme that permits reliable secondary
communication in this regime. The secondary transmitter merely
has to send its signal twice, at very low power - a few dBs
above the noise floor, but far below the primary’s interference.
Exploiting the repetition structure, reliable and computationally
efficient recovery of the secondary signal is possible via canonical
correlation analysis (CCA). Experiments using a software radio
testbed reveal that, for a secondary user with only two receive
antennas, reliable detection of the secondary signal is possible
for signal to interference plus noise ratio (SINR) in the range of
-20 to -40 dB. The approach works with unknown time-varying
channels, digital or analog modulation, it is immune to carrier
frequency offset, and, as a side-benefit, it provides means for
accurate synchronization of the secondary user even at very low
SINR.

Index Terms—Spectrum sharing, dynamic spectrum access,
underlay communication, canonical correlation analysis, cogni-
tive radio networks, unsupervised detection, synchronization.

I. INTRODUCTION

The rapidly growing demand for wireless connectivity from
5G+ to Internet of Things (IoT) and WiFi-enabled devices has
brought renewed interest and impetus behind dynamic spec-
trum sharing [2]-[4]. Even with millimeter-wave (mmWave)
technology, the propagation loss in the 28 GHz - 300 GHz
bands is much higher than in the sub-6 GHz bands [5],
making the latter better-suited for various wireless systems.
The premium placed on sub-6 GHz bands together with the
need to protect scientific uses in the mmWave bands are
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driving the renewed interest in spectrum sharing and dynamic
spectrum access (DSA).

DSA techniques are designed to improve spectrum utiliza-
tion by allowing secondary unlicensed users to take advantage
of ephemeral transmission opportunities in space, time, or
frequency [6]-[8] — a capability often referred to as cognitive
radio. Currently, there are three widely used DSA techniques
for cognitive radio networks (CRN): interweaving, overlay,
and underlay [2]. In the interweaving mode, the secondary
users search the band for spectrum holes (vacant sub-bands)
which represent secondary transmission opportunities. The
overlay paradigm requires tight coordination between the pri-
mary and secondary users, which complicates implementation.
Relative to the interweaving and overlay modalities, underlay
spectrum sharing is appealing in terms of its prioritization of
the licensed / legacy users, practical feasibility, and its relative
simplicity — there is no need for continuous spectrum sensing
or tight coordination with the primary system.

There is a plethora of works on DSA and cognitive radio,
spanning two decades of research ranging from spectrum
sensing [9], [10] and channel gain ‘“cartography” [11] to
different spectrum sharing modalities [12]-[24]. A common
assumption in those works is that the signal to interference
plus noise ratio (SINR) at the secondary receiver can be made
high enough to enable reliable decoding. In practice, this is
hard to ensure if the primary transmitter is powerful (e.g., a
TV or radio station) while the secondary is power-limited
(e.g., a WiFi or IoT device). Furthermore, many of these
works are relying on assumptions that are hard to meet in
practice — such as the availability of cross-channel knowledge
at the secondary users.

Few spectrum underlay works have attempted to circum-
vent the need for such assumptions. One interesting re-
cent example is [25], where the authors proposed a nice
semi-blind beamforming-based underlay spectrum sharing
approach, which allows the secondary users to access the
spectrum while minimally affecting the primary network
performance, without requiring any channel knowledge at the
secondary network. However, the proposed method in [25]
still requires 1) the primary communication to be bidirectional
(which does not hold for legacy radio/TV broadcast, or
scientific uses); ii) the flow direction of primary traffic to
be predictable; iii) effectively time-invariant channels from/to
the primary users; and iv) training pilots for designing the
beamformer at the secondary receiver. These are still restric-
tive assumptions. In particular, the reverse transmission of the
primary user needs to be synchronized with the forward of the



secondary, and vice versa, so the secondary users need to track
which node is transmitting in the primary network.

Is it possible to design an underlay strategy that enables
reliable decoding at very low SINR and modest SNR at
the secondary receiver, without noticeable increase of the
noise floor at the primary receiver? Is it possible to do this
seamlessly, without any coordination between the primary
(legacy / incumbent) and the secondary user?

The answer is, surprisingly, affirmative. This paper proposes
a secondary transmission protocol that operates at very low
power yet allows reliable secondary communication without
requiring any channel knowledge or coordination with the pri-
mary system. The key idea is that the secondary user sends its
signal twice, each time at very low power. Assuming that the
secondary receiver employs at least two receive antennas, the
proposed transmission protocol allows the secondary receiver
to create two “views” of the signal space that only share the
secondary signal — the interference from the primary network
is potentially very strong, but different in the two views.
Invoking canonical correlation analysis (CCA) on these two
views, the secondary receiver can reliably decode its intended
signal under very strong interference from the primary user.

Transmitting the same signal twice can be viewed as repe-
tition coding [26], or as elementary direct-sequence spreading
[27], [28] with spreading gain equal to two. Our approach is
fundamentally different from these classical techniques in the
way that this controlled redundancy is exploited at the receiver
(i.e., on the “decoding” side), where we leverage the unique
strengths of CCA. CCA is a well-known statistical learning
tool that seeks to find linear combinations of two random
vectors such that the resulting pair of random variables is
maximally correlated [29]. In recent work [30], we came
up with a new and broadly useful algebraic interpretation of
CCA as a method that identifies a common (shared) subspace
between two signal views, even under strong interference from
individual (per-view) components. CCA has found many other
applications in signal processing and wireless communica-
tions, including direction-of-arrival estimation [31], equaliza-
tion [32], radar [33], [34], blind source separation [35], [36],
and more recently cell-edge user detection [37], [38], and
multi-view learning [39]-[41], to name a few.

Our contributions and the merits of this paper can be
summarized as follows:

« We propose a novel secondary underlay framework that
enables seamless primary-secondary coexistence — there
is no need for coordination between the two. Assuming
that the secondary receiver is equipped with two receive
antennas and down-conversion chains, simple repetition
of the secondary signal coupled with CCA processing
at the secondary receiver can recover the secondary
transmission even at very low SINR. This claim is
rigorously backed by identifiability and new theoretical
performance analysis in the noisy case.

o The approach is data-driven and unsupervised in that
it directly recovers the secondary information signal
(up to complex scaling), without requiring channel state
information or primary signal recovery and cancellation.

It even works with analog modulation of the primary
and/or the secondary signal.

« Time-varying channels for the primary and the secondary
user can be naturally accommodated, provided that the
channel coherence time is greater than half the secondary
transmission frame length (comprising a transmitted
packet and its repetition — and the packet length is up to
our control and can be fairly short).

« From a computational point of view, what is required
is the computation and inversion of small correlation
matrices, and then a principal eigenvector computation,
which can be done using e.g., the power method. Hence,
the approach is attractive for practical implementation.

o The approach is immune to carrier frequency offset,
which can be compensated after the secondary symbol
sequence is extracted using CCA. Furthermore, exploit-
ing the repetition structure and CCA, we develop a
matching synchronization algorithm that identifies the
correct timing of the secondary transmission frames even
at very low SINR in an unsupervised manner — i.e.,
without using any pilot symbols, only exploiting the
structured redundancy introduced by repetition. These
side-benefits are very fortunate, for otherwise synchro-
nization is a very difficult problem at very low SINR
without very long pilot sequences for acquisition.

« Last but not least, in order to demonstrate the practical
feasibility and merits of our approach we have built and
tested a prototype using software defined radios, where
both the secondary and primary users were realized using
USRP-2920 radios. We conducted multiple experiments
to evaluate the performance of the proposed underlay
CCA approach under realistic conditions. Our laboratory
experiments verified that the proposed approach can
reliably recover a secondary user signal that is buried
under strong interference from the primary system (SINR
as low as -40 dB), and that it approaches the attainable
detection performance in the interference-free regime
(where the primary user is idle). Further, simulations
are also provided to show the impact of the number
of secondary receive antennas, higher order modulation
and different fading scenarios, on the performance of the
proposed method.

A preliminary version of part of the results in this paper
has been accepted for presentation at the IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP) 2021 [1]. Relative to the conference paper, this
journal version includes i) a generalization of the synchronous
model in [1] to the practical setup where the two transmitters
are not synchronized; ii) comprehensive solution of practical
synchronization issues at the secondary receiver, including a
low-complexity algorithm; iii) theoretical performance anal-
ysis; iv) additional simulations and baselines; and v) the
design and execution of extensive laboratory experiments, and
discussion of associated insights obtained using the software
radio testbed we developed for this purpose.

The rest of this paper is organized as follows. After briefly
reviewing CCA in Section II, Section III presents the system



model and highlights the major limitations of the prior art
in terms of secondary underlay schemes. The proposed sec-
ondary transmission protocol is described in Section IV, while
the proposed detector is presented in Section V. Section VI ex-
plains how to resolve synchronization issues at the secondary
receiver. Experimental results are provided in Section VII, and
conclusions are drawn in Section VIII.

II. OVERVIEW OF CCA

Consider two data sets Y; = [y§1)7 e ,ygN)] € CMixN

and Yo = [yél), e ,ygN)] € CM2XN " where yé") represents
the n-th realization of the random vector y, associated with
the ¢-th view, £ € {1, 2}. We assume without loss of generality
that all the data vectors {yé”)}nj\’:1 in each view are zero-
mean, otherwise the sample mean can be subtracted as a pre-
processing step.

In its simplest form, CCA aims to find two linear com-
binations of the elements of random vectors y; and yo,
z1 = qfly; and 2z = qllys, respectively, such that the two
derived random variables z; and zo are maximally correlated,
where ()7 denotes conjugate transpose. In that sense, CCA
seeks to find a “latent” component that is common between
the two random vectors. From an optimization perspective,
the CCA problem can be posed as [29], [42],

max Re {qf]Ylqug} (1a)
q1,92
st q Y Y[ q =1, ¢€{1,2}, (1b)

where Re {-} extracts the real part of its argument. Notice
that the scaling constraints serve to exclude the trivial (and
meaningless) all-zero solution. An appealing feature of CCA
that renders it suitable for practical implementation is that (1)
admits an algebraic solution via eigendecomposition [42]. In
particular, the optimal canonical vectors can be obtained via
first solving the following generalized eigenvalue problem to
obtain q7 and \*,

Ri2R; 'Ro1qr = AR4qs. 2

where R; = %YinH is the sample auto-covariance of the
random vector y;, and R;; := %YZ—Yf is the sample cross-
covariance of the two random vectors y; and y;, respectively,
for 7,5 = 1,2 and ¢ # j. Further, it can be easily verified that
the term A\* represents the square of the correlation coefficient,
p(aj, a), associated with the optimal canonical pair q} and
q5, where

pai,a3) = Re{ai" Y1 Y g5} 3)

Once the optimal qf and A\* are obtained from solving (2),
the optimal g5 can be obtained via direct substitution in the
following

" 1

q2 \/)\7*

A more intuitive formulation of (1) (that also happens to be
more convenient for our purposes) is to minimize the distance

R;lequ . (4)

U prx«
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Fig. 1: System Model

between the linear projections of Y; and Y2 on q; and qo,
respectively. That is [42], [43],

min |[Y{'q:1 — Y5 q2|3 (5a)
q1,92
st Q' Y Yqr=1, £={1,2} (5b)

Expanding the cost of problem (5) and using the constraints,
the equivalence between (1) and (5) can be easily verified.
Throughout this work, we will focus on the distance mini-
mization formulation of CCA.

In what follows, we will see how judicious design of the
secondary signaling protocol can be used to leverage the
power of CCA to enable simultaneous and fully independent
operation of two coexisting systems without affecting each
other’s performance.

III. SYSTEM MODEL

Consider an underlay cognitive radio network comprising
a single-antenna secondary transmitter (STx) communicating
with a secondary receiver (SRx) equipped with M, > 2 an-
tennas, in the presence of a single-antenna primary transmitter
(PTx) and primary receiver (PRx) with M, > 1 antennas, as
shown in Fig. 1. Multiple secondary and primary users can
also be accommodated as we will explain later. Let hy € CMs,
h,s € C™, hy, € CMr and h, € CM» be the channel
response between the STx and SRx, PTx and SRx, STx and
PRx, and PTx and PRx, respectively, defined as

h, = V0Oss 8s, hps = 1/0Ops Bps,
h, = /0, &, hey =0 &, (©)

where g5, g,s, gsp, and g, are the respective small-scale
fading vectors, while the terms oss, 0ps, Osp, and o, are
the corresponding large scale fading coefficients with values
dependent on the propagation distance and environment.

Unlike prior works [15]-[19] that require estimates of the
cross channels h,, and/or hy, at the secondary receiver and
the secondary transmitter, respectively, this paper considers a
practical setting where the secondary users have no knowledge
about any channel state information in the network.



A. Signal Model

We assume that the primary users transmission is done over
a narrowband channel of bandwidth B Hz. For simplicity
of exposition, we assume that both users are employing
QPSK modulation, but other types of modulation can be
accommodated. The basic approach we propose to recover the
secondary signal is modulation-agnostic, and does not assume
anything about the primary signal’s modulation, which can
even be analog.

Let x, € CV and x; € CV denote the digitally-
modulated transmitted signal by the primary and secondary
user, respectively, where |x,(n)[*> = 1 and |xs(n)|*> = 1 for
n € [N] := {1,---,N}. In writing down the discrete-time
baseband-equivalent model, we shall assume, for simplicity
of exposition, that the primary and secondary signals are
synchronized at the symbol level — otherwise writing down the
model is cumbersome. However, such an assumption is not
required for our approach to work, and we shall later present
an algorithm that can lock on the secondary user signal at the
SRx. All our laboratory experiments are concerned with this
asynchronous setup.

The discrete-time synchronous baseband-equivalent model
of the received signal, Y, € CM:*N  at the secondary
receiver is given by

Y, = \/ashsxz + ‘/aphpsxg + W, @)

where o, and «, are the transmit power of the STx and PTx,
respectively. The term W, € CMs*¥ represents noise and
it contains independent identically (i.i.d) distributed elements
with each entry drawn from a complex Gaussian distribution
with zero mean and variance o2. Similarly, the received signal
at the primary receiver, Y, € CM»*N s given by

Y, = Vashgx! + Japhyx! + W, (8)

where W, € CM»*¥ s the noise term at the primary receiver
with i.i.d entries drawn from a complex Gaussian distribution
with zero mean and variance o7.

B. Our Goal

The goal of this work is to show that, in the absence of
channel state information at the STx/SRx and without any
coordination between the primary and secondary users, seam-
less secondary underlay communication is possible without
affecting the primary network performance. To do this, we will
first present a simple secondary transmission protocol together
with a data-driven (unsupervised learning-based) approach
that allow i) the STx to transmit its signal at very low power
so that it does not affect the detection performance at the
PRx, thereby keeping the resulting interference close to the
PRx noise floor (the PRx can reliably decode its signal even
with one receive antenna), and ii) the SRx to reliably decode
its intended signal at significantly low SINR (e.g., -40 dB).

IV. SECONDARY TRANSMISSION PROTOCOL

In this section, we will present a simple transmission
protocol that will assist the secondary transmitter to reliably

communicate with its receiver over the same channel occupied
by the primary network, and without degrading the primary
user’s performance.

The secondary transmission scheme is described as follows.
If a secondary user desires to transmit in a channel occupied
by a primary user, it simply transmits the same sequence
twice at very low power — enough to be received above the
thermal noise floor at the SRx, but far below what is required
to be directly decoded in the face of possibly overwhelming
interference by the PTx. The repetition of the secondary
user’s sequence can happen at the symbol or block level; we
assume block-repetition for simplicity of exposition. To do
this, we write x5 as two back-to-back repeated blocks, i.e.,
x, = [sT s7]7, where s € CN/? is the transmitted QPSK
symbols by the secondary user over each block. Partitioning
x, = [pTpZ]T in two blocks for convenience, the received
signal at the secondary receiver in (7) can be rewritten as

T

P1

Y =H, + W37 9

S P2

where H; is an M, x 2 matrix that holds on the first column
the channel vector containing the channel coefficients between
the STx and SRx, h,, and on the second column the channel
from the PTx to the SRx, h,,,. Notice that the transmit power
terms of both the STx and PTx have been absorbed in the
respective channel vectors, for brevity.

As noted earlier, the proposed transmission scheme can be
interpreted as repetition coding [26], or equivalently as direct-
sequence spreading of the secondary user’s transmission with
spreading gain equal to two [27]. Treating this situation as
CDMA or as an error control problem will not work, because
the primary user dominates the received signal, and small
spreading / coding gains cannot make up for the large power
difference between the secondary and primary user. CDMA
performance is known to suffer from the so-called near-far
problem which is clearly the case for the setup considered
herein.

We will next present a low-complexity learning-based ap-
proach that allows the SRx to reliably decode its intended
signal, s, even if the received SINR is significantly low.

V. SECONDARY SIGNAL DETECTION VIA CCA

By exploiting the repetition structure, the SRx can split
Y and Wy into two blocks, Ys = [Y; Y2, and W, =
[W1 W], for which we have

Y, =H; [s pi]f + Wy,
Y,=H; [s PQ]T + W,

(10)
Y

Now, given the two signal views in (10), CCA will be
invoked to show that reliable detection of the secondary signal,
s, is possible even at low SINR. To see how we can utilize
CCA to identify the secondary signal, s, from Y, € CMs*N/2



and Yy € CMsxN/2 we will use the so-called maximum
variance (MAX-VAR) formulation of CCA [42]. That is

2

i YZq,—gl?, 12a
Jmin ;II Tao— gl (12a)
st lgll? = 1. (12b)

The MAX-VAR formulation is equivalent to the distance min-
imization in (5), since it can be shown that both formulations
yield the same optimal solutions q7 and q3j. The MAX-
VAR formulation seeks to find a direction g € C™/2 that
is maximally correlated after the linear projections of Y; and
Y, on q; € CM: and qy € CMs, respectively.

In a recent work [37], we have shown that given two
multi-antenna signal views that include one shared (common)
component and multiple individual (“private”, not shared)
components in each view, CCA can efficiently extract the
common component up to scaling ambiguity no matter how
strong the individual components are. One can see from the
two signal views in (10) that each block (view) is subject
to strong interference by the primary user, but, in general,
the interference is different in the two blocks — thus there
is a unique common subspace, namely (the span of) s that
conveys the secondary transmission. Building upon our the-
oretical findings in [37], we will next show that our CCA
interpretation applies, and under very mild conditions will
recover s up to scaling , even if x, is several orders of
magnitude stronger than x.

The following theorem, which is a slight modification of
the results of [30], states the conditions for identifying the
secondary transmitted signal s at the SRx.

Theorem 1. In the noiseless case, if the matrices By :=
[s,pe] € CN/2X2 for ¢ € {1,2}, and H, € CM=*2 are full
column rank, then the optimal solution g* of problem (12)
is given by g* = s, where v € C, v # 0 is the scaling
ambiguity.

Proof. The proof is provided in Theorem 1 in [37]. O

Note that the full rank condition on the matrices B, needs
the signals s and py to be linearly independent which is prac-
tically always the case for any reasonable “packet” length IV,
because these signals are drawn from statistically independent
sources. On the other hand, the full rank condition on H; is
in fact the more restrictive one as it requires i) the number of
antennas at the SRx to be greater than or equal to the number
of co-channel signals (two in our setting) and ii) the channel
vectors to be linearly independent. The latter is realistic, these
being statistically independent channel vectors from the PTx
and the STx to the SRx.

To further show how well our approach works in the
presence of noise, we provide theoretical analysis of the cor-
relation coefficient between the estimated and the transmitted
secondary signal in the presence of noise, as N — oo. We
have the following result.

Proposition 1. In the presence of additive white complex
circularly symmetric Gaussian noise of variance o2 (s for
secondary Rx noise), as the packet length, %, goes to infinity,

the correlation coefficient between the optimal solution g* of
problem (12) and the true signal s approaches

2 2
_ |z [2(2)]
/\1+0’§ )\24—0’2,

13)

(ps +pp) £ \/pi + P2 + 2ppps (1 — 2 cos(7))

N )

2 N 2N

Ps = Qs Hheu 5 Pp = Qp th” 2
the vectors

W ash, = v |h8(1)|2 ) s |h5(2)|2 ,—J - ashg(1)"hy(2),
- ] : ashs(l)h:(Q)]

Ao =

v is the angle between

and
W azh,s = [ap ‘hp5(2)‘2 » Qp ‘hm(l)‘z J - aph;s(l)hp8(2)7
J - aphyps(1)hy (2)],
while for i = 1,2,
i) = VT + b )
lyil* +1

, Where

) ) (14)
yi = Ai — o [hy(2)]7 — oy [hys (2)]
© o ashy (2)h3(1) 4 aphy (25, (1)
Proof. The proof is relegated to Appendix I. O

Note that we only provide a short version of the proof due
to the space limitation. The detailed version of the proof, the
experimental verification, and an insightful discussion high-
lighting the impact of SNR and the users’ channel correlation
are deferred to the supplement.

A. Time-varying Channel Directions, Fading, and Intermittent
Transmissions.

Although the two signal views in (10) implicitly assume
that the channel is constant across the two secondary repetition
blocks, our proposed method in fact works even if the two
channel matrices are different [37]. Therefore, with block
repetition, the coherence time needs to be only greater than
one block duration. We will see in the experiments how this
feature grants our proposed method robustness against time
varying channels.

B. Interference Cancellation?

It is worth pointing out that if the primary user signal
is order(s) of magnitude stronger and the primary channel
remains constant (no intermittent transmissions, no time-
division duplex, insignificant channel direction changes) then
one can cancel the primary interference by simply projecting
the received signal on the minor left singular vector of the
matrix Yy, thereby “revealing” the secondary transmission.
This can only work when the spatial channels are time-
invariant. In practice, the channel gains fluctuate over time,
and even if the average secondary signal to interference ratio is
low (e.g., -40 dB), there are times when it becomes relatively
high (e.g., -20 dB). These fluctuations quickly degrade the
subspace estimate, leading to complete failure to detect the
secondary signal, as we will see in the laboratory experiments.



C. Multiple Secondary Users

Note that our theoretical results dictate that our proposed
CCA approach can identify the secondary signal in a network
with only one secondary user, and we have argued that finding
the secondary user signal is tantamount to solving for a
principal eigenvector which can be cheaply computed via
the power method. Even with multiple secondary users, our
recovery claim holds and receiver complexity is roughly the
same, provided that i) each secondary receiver has enough
antennas (as many as the maximum number of active users at
any given time, see Theorem 1); and ii) there are no persistent
and perfectly aligned collisions between any of the secondary
users. In other words, no two secondary users transmit their
packet pairs at the exact same times. With asynchronous
wake-up type devices serving intermittent communication
needs, this situation is highly likely.

VI. SECONDARY SYNCHRONIZATION

One critical issue that we always face in practice is synchro-
nization. The overall synchronization task comprises time, car-
rier frequency offset (CFO), and phase synchronization. While
effective solutions to these problems are well-established for
classical communication modalities, here we are dealing with
a secondary signal that is potentially buried under the primary
one, which makes secondary time synchronization and CFO
acquisition much more challenging.

A standard receiver will naturally lock on the primary user,

which means that the secondary signal will present itself
with an unknown CFO and unknown start time within the
received sequence. Fortunately, the presence of CFO does not
destroy the alignment of the two copies of the secondary
packet: owing to the temporal shift invariance property of
pure complex exponential signals, the second copy is the
same as the first except for a complex phase shift. Hence we
can proceed with CCA and correct the CFO after recovering
the CFO-modulated secondary packet. On the other hand,
secondary timing acquisition is a challenge, due to the large
power imbalance between the primary and the secondary
signal. To deal with this problem, we propose a blind CCA-
based algorithm that is practically effective in finding the
start time of the secondary packet under such a large power
imbalance between the two users.
__In practice, the secondary receiver receives a long sequence,
Y, € RM*N where N > N. The goal is to find the sample
index, k, so that we can extract the desired signal Y from
Y, and then use the proposed method in Section V to decode
the secondary user signal.

By exploiting the repetition structure of the transmitted
signal, we start with & = 1 and construct the two views
YW =¥, (i k:N/24+k—1)and YV = Y, (, N/2+ k-
k + N — 1) followed by solving (2) to obtain the associated
correlation coefficient pk.l Then, we store pg, set k =k + 1
and repeat the previous procedure. If we hit the start point of
the two copies of the same packet, then CCA of these “views”

IWe use MATLAB notation, i.e., X(¥) = X(:,k : N+ k — 1) contains
all the rows of matrix X and a subset of columns of X starting from the
k-th column and ending with the (N + k& — 1)-th column.

will yield its maximum correlation coefficient. In other words,
the correlation coefficient, p; defined in (3), associated with
each pair of canonical directions q(lk) and qQk) obtained by
solving (5) at the k-th step, will be at its maximum only when
we have all the N/2 symbols in both views. This is because,
under the usual assumption that the secondary information se-
quence is uncorrelated, even if k is off by one, the two partial
sequences will decorrelate. The higher N is, the higher the
correlation peak we obtain as we will see in the experiments,
but even moderate N, in the order of 128 symbols, can yield
very good detection performance. Notice that the procedure
utilizes the special frame structure that is designed to enable
CCA, but is otherwise agnostic to the specific information
sequence that is being sent by the secondary transmitter. In
this sense, it is a blind synchronization strategy that leverages
the power of CCA to enable reliable timing acquisition at very
low SINR. The procedure is summarized as Algorithm 1.

Algorithm 1 Secondary Synchronization

Input: Y, € CMixN,

Initialization: k = 1,

while £ € [N — N + 1] do
Construct ng) = Y, (,k: N/2+k—1) and Y;k) =
Y;(:,N/2+k:k+N—-1)
Compute pj after solving (5) using ng) and Y
Store (k, pi) in a stack

Setk:=k+1
end

Selection: pick the k* := maxy, py.

(k)
2

The computational complexity of Algorithm 1 is deter-
mined by the complexity of solving a series of CCA problems,
which is equivalent to solving for the principal component
(canonical pair) of (2) a number of times (equal to the search
window size). The canonical pair can be cheaply computed
via a power iteration. Further, each CCA problem requires
inversion of correlation matrices of size My x M, each —
these inverses can be computed analytically since My = 2.
To minimize the search window length, one can start with a
coarse estimate for the region with high correlation coefficient
and then do a narrow search within a small window size to get
the final start time index, as we will see in the experiments.
Furthermore, if the secondary transmitter is continuously
transmitting, we do not need to run the full Algorithm 1 for
each received packet — we only need to do a narrow timing
search to compensate for jitter.

VII. NUMERICAL RESULTS

In this section, we will evaluate the proposed method
using both simulations and real experiments. We first present
simulations to test the performance of the proposed method
under different number of antennas, modulation schemes,
and fading scenarios. Then, we present experiments using
real radios to show how the proposed method works under
practical considerations such as synchronization and hardware
impairments.

To benchmark the performance of the proposed CCA
approach, we use the following baselines.
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Fig. 2: Secondary user performance under different modula-

tion schemes.

SVD without interference: we will use the singular value
decomposition (SVD) to estimate the channel direction dur-
ing a period when the primary user is inactive, i.e., there
is no interference from the primary user. To do that, we
first exploit the repetition structure to construct the signal
Y = [YIYI)T € C?M:xN/2_ Then, the secondary user
signal can be estimated by projecting the received signal Y
on the left principal vector. Note that our use of the SVD
“baseline” without interference (which is more appropriately
called an “oracle” method here) is purely to show how well the
proposed method works — close to an oracle which operates
in a fictitious interference-free environment.

SVD with interference: we will use SVD to project away
the interference subspace by projecting on the third principal
component of the matrix Y to estimate the secondary signal.
Notice that projecting on the first two components yields the
subspace containing the primary user signals, p; and po.

A. Simulations

We provide simulation results to assess the performance
of the proposed CCA approach. We consider the underlay
scenario shown in Fig. 1. The transmit power at the PTx, «,
is set to 20 dBm while the maximum transmit power at the
STx, as, is set to 10 dBm. The large scale fading parameters

(path-loss) used in the simulation are set to 02, = —80 dB,
02, = 02, = —80 dB, and the additive white Gaussian noise
power is set to 02 = —88 dBm. The small scale fading

parameters are modeled as circularly symmetric Gaussian
random variables with zero mean and variance 1/v/Mj.
Furthermore, the total number of samples collected at the
SRx is assumed to be 1024, so the repetition is done over two
blocks, each of length 512 samples. We conducted 10* Monte-
Carlo two-block-transmission experiments, each time drawing
new s, p, W and H,. We assume that the PTx is sending a
32-QAM signal, while the STx is sending a QPSK signal
unless stated otherwise. Since we assume digitally-modulated
symbols at the secondary user, we will use the symbol error
rate (SER) as a performance metric (but recall that our method
can also work with analog transmissions).

—— CCA (proposed)
2 —6—SVD w/ interference
—8—SVD w/o interference
102
o
w103
7 10
107
10°

2 3 4 5 6

Number of antennas
Fig. 3: Secondary user SER versus number of antennas at the
SRx.

In the first experiment, we tested the proposed method
under different modulation schemes. We varied the STx power
from —8 dBm to 10 dBm which corresponds to the received
SNR range in Fig. 2. For each value of the secondary SNR,
we report the corresponding SER obtained by our proposed
CCA method and the considered baselines. Fig. 2 shows the
SER performance of the proposed method under QPSK and
16-QAM constellations. It is clear that the proposed method
approaches the performance of the interference-free SVD
baseline even for the higher order modulation case. Further,
one can see that the performance of the SVD with interference
breaks when the SNR increases (12 dB corresponding to
16 dB power difference between the two users) due to
subspace leakage that significantly deteriorates the detection
performance. We will show later through real experiments
that the gap between the proposed method and SVD with
interference is even much larger due to the power fluctuations
as will be explained later.

Next, we simulated another experiment to see the impact of
the number of antennas at the SRx. We varied the number of
antennas (M) from 2 to 6 while the secondary SNR is fixed at
11 dB (corresponding to 17 dB power difference between the
two transmitters). One can see from Fig. 3 that increasing the
number of antennas at the SRx brings the proposed method
closer to the interference-free SVD. Note that there is no
antenna gain here as the channel vectors are normalized with
the number of antennas. The reason that the two curves (red
and black) in Fig. 3 attain the same performance when M,
exceeds 5 is that the two channels h, and h,,, tend to be more
uncorrelated when we increase the number of antennas.

Finally, to show how changing the secondary channels
across the two blocks affects the performance of the proposed
method, we simulated another experiment with completely
different channel vectors across the two blocks for both
primary and secondary users. For each Monte-Carlo trial,
each of the two channels for each user is randomly drawn
from a complex Gaussian distribution. Fig. 4 shows that using
different channels in the two blocks yields a roughly 3 dB
SNR gain. This is attributed to the fact that two different
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Fig. 4: Secondary user performance with different channel
across two blocks, with QPSK modulation.
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Fig. 5: Secondary user performance with different channel

across two blocks, with 8PSK modulation.

channels will result in a diversity gain. Such a gain increases
the probability of seeing more uncorrelated channels (h; and
hps) in any of the views, and this naturally yields a better
CCA solution as compared to the case with constant channels
across the two blocks.

B. Experiments

In this section, we evaluate the performance of the proposed
CCA approach for low-power secondary underlay communi-
cation in practice (for simplified simulations, see [1]). To do
so, we have built a prototype of the proposed CCA underlay
scheme using software defined radios (SDR).

C. Experimental Setup

Both the primary and secondary links are realized us-
ing USRP-2920 devices and general-purpose computers. The
USRPs are used for radio signal transmission / reception,
while the computers are used for baseband signal processing.
The experimental layout is shown in Fig. 6. We used five
USRPs: one for the primary transmitter, one for the primary
receiver, one for the secondary transmitter, and two for the

Fig. 6: Experimental Setup.

R

(©)

Fig. 7: (a) Primary Transmitter. (b) Primary Receiver. (c)
Secondary Transmitter. (d) Secondary Receiver.

secondary receivers, see Fig. 6. Each USRP is equipped with
a single antenna. The two USRPs of the secondary receiver
are connected together with a MIMO cable to synchronize the
two receive radio frequency chains, as shown in Fig. 7(d).
The locations of the PTx, PRx, STx, SRx are fixed through-
out the experiments. The distances between the PTx and PRx,
PTx and SRx, STx and PRx, and STx and SRx are 5, 3, 4.5,
and 4 meters, respectively. The transmit power of the PTx
is set to the maximum possible value, as shown in Table I
unless stated otherwise, while the transmit power of the STx is
adjusted for low-power secondary transmission. The sampling
rate for both users is set to 1 Mega samples per second
(MS/sec), the signal bandwidth is 100 KHz, and the carrier
frequency is 1.2 GHz. The PTx uses a block of 256 QPSK
symbols and the STx uses repetition over two blocks, each
of length 128 QPSK symbols. The parameter settings for our
experiments are summarized in Table L.
Signal processing at the transmitters. At each Tx, the
constructed block is oversampled by a factor of 10, then the
resulting oversampled signal is pulse-shaped using a square-
root raised cosine (SRRC) with roll-off factor and amplitude
set to 0.5 and 6, respectively. The pulse shaped signal is



Parameter Primary Secondary
Bandwidth (KHz) 100 100
Carrier frequency (GHz) 1.2 1.2
Modulation QPSK QPSK
Sample rate (MSps) 1 1
Maximum transmit power (dBm) |20 -15
Number of antennas 1Tx, 1 Rx |1 Tx,2Rx
Number of symbols 256 128
Oversampling factor 10 10
Number of packets 2000 2000

TABLE I: Parameter settings for the experiments.

zero-padded with a number of zeros equal to one third of
the packet, yielding a sequence of length 4020 samples. This
results in a transmission rate of 128 Kbps for the primary user
and 64 Kbps for the secondary user. The zero-padding (used
to emulate intermittent packet transmission) is also used at
the receiver side to measure the received SNR and SINR, as
we will see later. Symbol generation, up-sampling, and pulse
shaping are done in MATLAB. Then, the transmit data of
each user is fed to GNU radio before being transmitted over
the air.

Secondary receiver. We use the proposed CCA algorithm in
Section VI to detect both the secondary packet and the start
of the 256 x 2 complex signal. After SRRC matched filtering,
down-sampling to the symbol rate, and secondary synchro-
nization, we construct the two signal views by separating the
two back-to-back blocks, and then use CCA to recover the
secondary signal. After solving the CCA problem (5), we
average the two soft estimates of s obtained via Y4 q; and
Y2 q,, before hard thresholding.

In order to resolve the scaling ambiguity that is inherent
both in the proposed CCA method and the SVD-based base-
lines, we assume that the first four secondary symbols are
known at the SRx. Note that these symbols can be drawn
from the packet header that contains the STx identification
sequence.

Remark 1. [t is worth noting that for the second baseline
(SVD with interference), we use our proposed blind method
in Section VI to recover the secondary packet start time
index at the SRx, thereby giving a big advantage to the
SVD based method. The typical synchronization method that
would be used with SVD is to allow the STx to transmit
a long pilot sequence, long enough to make up for the
large power difference between the two users. Then, we
would use knowledge of this pilot sequence at the SRx to
find the start time index of the secondary signal via cross-
correlation / matched filtering. This would seriously reduce
the transmission rate of the secondary user relative to our
proposed blind method, especially for the setting considered
herein where the secondary user is much weaker than the
primary. Further, and perhaps worse, such training-based
timing recovery requires the SRx to estimate the secondary
CFO before (or together with) timing synchronization, which
is in another serious complication given the low SINR and
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Fig. 8: GNU radio spectrum analyzer showing 40 dB received
power difference between the PTx and STx at the SRx. The
received signal of the PTx is shown in red while that of the
STx is depicted in purple, and the noise in blue.
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Fig. 9: Squared samples of one of the received packets after
matched filtering with the SRRC. Notice the overlap between
part of the secondary packet and the zeros of the primary, and
also the low SNR of the secondary.

moderate SNR of the secondary user.

Primary receiver. At the PRx, we use energy detection for
the primary packet detection. Then, we use primary training
symbols to detect the start index of the 256 x 1 received signal
of the primary user. To decode the primary symbols, we use
10 training pilots to estimate the primary channel coefficient
and then do the hard detection of the equalized signal.

D. Performance Evaluation

Since we assume digitally-modulated signals for both users,
we will use the symbol error rate (SER) as a performance
metric (but recall that our method can also work with analog
modulation for the primary and the secondary user).

In the first experiment, we test the performance of the pro-
posed approach under different levels of primary interference
at the secondary receiver. To do so, we fix the secondary
transmit power to —18 dBm. This makes the corresponding
measured average received SNR at the SRx equal to approxi-
mately 8 dB. We vary the primary transmit power from 0 to 20



dBm in 5 dB steps, thus generating transmit power differences
from approximately —20 dB down to a rather extreme —40
dB. To validate the power difference between the two users
at the SRx, Fig. 8 shows the GNU radio spectrum analyzer
at the SRx with the received signal strength level of the PTx
and STx in addition to the noise level. The transmit power
of the PTx is set to 20 dBm, and Fig. 8 shows close to
40 dB power difference between the two users. Furthermore,
Fig. 9 depicts the squared samples of one of the received
packets at the SRx after matched filtering with the SRRC, for
primary transmit power set to 15 dBm. It is clear that part
of the secondary transmitted packet overlaps with the padded
zeros of the primary packet, showcasing the power difference
between the two users. Further, the remaining zeros show the
low received SNR range of the secondary user.

Tx power difference (dB) 20 25 30 35 40

SINR (1% antenna ) |-17.1213(-20.1632(-27.1965]-29.1996|-32.2388

SINR (2" antenna)  [-15.1248(-18.1909(-25.2433(-30.2522(-31.2015

TABLE II: Estimated secondary SINR at the SRx over the
two receive channels, across the different transmit power
imbalance scenarios. The measured average secondary SNR
is around 8§ dB.

To compute the received SNR and SINR of the secondary
signal at the SRx, we exploit the padded zeros in both the
primary and secondary signals to measure the noise power,
the secondary signal power, and the primary signal power at
the SRx. In particular, we estimate the probability distribution
of the symbol energy across 1500 packets, each of length 400
symbols. From the distribution, one can estimate either two
peaks or three peaks, depending on the overlap between the
secondary (primary) and the zeros of the primary (secondary).
For instance, Fig. 10(a) clearly shows one of the received
packets in one of the channels for the 20 dB transmit power
imbalance case. One can clearly see the three different energy
levels: one for the (primary, secondary and noise), another for
(secondary and noise), and one for noise only. Notice that the
first level can also be primary and noise, but since the primary
is very strong, treating the first level as (primary and noise)
or (primary, secondary and noise) will have negligible impact
on the SINR and SNR measurements of the secondary user.
Fig. 10(c), shows the histogram of the collected data across
1500 packets for the 20 dB transmit power difference, where
three distinct peaks are observed. In Fig. 10(b), however, one
can see a complete overlap between part of the secondary
signal and the padded zeros of the primary user for the 40 dB
transmit power difference, and hence, only two peaks can be
seen in the distribution shown in Fig. 10(d).

We use the data collected for the 20 dB transmit power
difference to measure the energy levels corresponding to the
three observed probability density peaks, see Fig. 10(c). We
use these values to solve a system of linear equations (three
equations in three unknowns) to compute the received SNR
and SINR at the secondary receiver. We repeat the same
procedure for the different transmit power difference cases
to calculate the associated SINR and SNR values. Note that,

Es(dB)

-20 -20
Q.30 -30
@
w40 -40

100 200 300 400 i 0 100 200 300 400
Symbol index Symbol index

(2) (b)

0.3 03

0.25 0.25

0.2 0.2

0.15 0.15

0.1 0.1

0.05 0.05

N

0 0
-60 -40 -20 0 20 -60 -40 -20 0 20
dB dB

(c) (d)

Fig. 10: Example of the received primary user’s packets at
the SRx after matched filtering with the SRRC for 20 dB and
40 dB transmit power difference. Plots a) and b) depict the
symbol energy of the detected packet, for the two transmit
power imbalance scenarios, while (c) and (d) correspond to
the estimated probability distribution of the energy (in dB) of
the detected symbols for the 20 dB and 40 dB transmit power
difference cases, respectively.

since the secondary transmit power is fixed throughout this
experiment, we observed approximately the same average
energy level (peak value) for either the noise level or the
(secondary and noise) level, across all the transmit power
difference cases. However, as expected, we observed increase
in the estimated energy level that corresponds to the primary,
secondary and noise. To confirm this, one can see from
Fig. 10(b) a complete overlap between part of the secondary
signal and the padded zeros of the primary user for the 40 dB
transmit power difference case, and hence, only two peaks can
be seen in the distribution shown in Fig. 10(d). Notice that the
energy level associated with the smallest peak (secondary and
noise) in Fig. 10(d) is roughly equivalent to the energy level
associated with the middle peak in Fig. 10(c), while one can
easily see close to 20 dB increase in the highest peak (primary,
secondary and noise) in Fig. 10(d) relative to Fig. 10(c). The
measured SINR values for the different transmit power cases
are reported in Table II.

In order to demonstrate the capability of our proposed
approach to correctly decode the secondary transmission at
very low SINR, we report the SER of the secondary user
obtained by our proposed CCA method at five different
levels of the (average) transmit power imbalance: from —20
dB to —40 dB (corresponding secondary SINR levels are
reported in Table II). Fig. 11 depicts SER results obtained
by our proposed CCA method, for all five levels of primary
interference, and the corresponding SER curve obtained using
the SVD-based method at the same SNR without any interfer-
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Fig. 11: Secondary user detection performance at different
average SINR levels. The measured average secondary
SNR is approximately 8 dB.

ence. The results are striking: CCA is remarkably insensitive
to interference from the primary user. In particular, CCA
achieves almost the same performance at power difference
levels (—35,—30, —20, —25) dB. On the other hand, at the
—40 dB level, the CCA performance degrades. This mainly
happens due to the limited resolution of the analog to digital
converter of our USRP for the wide dynamic range of the
input signal — while the average SINR is —32 dB, there
are several instances where it drops below —40 dB, and
these occasional quantization errors ultimately dominate CCA
performance. Despite that, CCA still achieves close to 1072
SER. Finally, one can see that CCA significantly outperforms
the SVD method used for interference cancellation, even
though the latter is in fact aided by the CCA frame structure
to acquire timing — a benefit which it won’t have in practice.
As shown in Fig. 11, SVD performance breaks at 25 dB
transmit power difference, where primary subspace estimation
becomes very difficult, and hence interference cancellation
does not work.

Considering the primary user’s performance, we observed
that the single-antenna primary receiver is completely insen-
sitive to the secondary interference. Fig. 12(a) shows one
of the received packets at the PRx (before down sampling),
with the primary transmit power set to 0 dBm (minimum
primary power in this experiment), while the secondary user
is inactive. On the other hand, Fig. 12(b) shows one of the
received packets at the PRx (before down sampling) when
the secondary user is active, where there is approximately
70% overlap between the two users’ packets. We observed
that in the worst case setting, where the primary user power
is fixed to its minimum level (highest interference from
the secondary user), the same detection performance can be
attained regardless whether the secondary user is active or not.
This is due to the fact that the secondary interference is close
to the primary’s noise floor, as one can see from Fig. 12(c)
and Fig. 12(d), where the two smaller peaks in Fig. 12(c) and
Fig. 12(d) correspond to the noise level and the secondary
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Fig. 12: (a) primary packet samples when the STx is inactive.
(b) primary packet samples when the STx is active. (c) energy
distribution when the STx is inactive. (d) energy distribution
when the STx is active.

plus noise level, respectively. We observed that the SNR of
the primary user is 28 dB when the secondary user is inactive,
while the primary user’s SINR is 25 dB when the secondary
user is active.

Effect of secondary SNR. We consider another experiment
to see the performance of the proposed method under different
SNR values for the secondary user. To do so, we fixed the
primary transmit power to 10 dBm and varied the secondary
transmit power from —23 to —17 dBm which corresponds to
average SNR values between 2 dB and 10 dB, as observed.
At each SNR value, we report the SER of the secondary
user. Fig. 13 depicts the SER performance of the secondary
user versus its SNR. It is obvious how well our proposed
method works at very low SNR / SINR values. In particular,
our method can achieve 10~2 SER at 7 dB and closely
approaches what is attained by the interference-free SVD
baseline at low SNR values. Further, one can see that the
SVD with interference completely fails at both the low SNR
and high SNR regions, where in the latter, the secondary
user becomes a bit more stronger and then accurate primary
subspace estimation becomes more difficult as explained in
the previous experiment.

On the other hand, we observed that the secondary user
does not affect the primary performance, which remains the
same as is attained when the secondary user is inactive. The
same SER is observed at the PRx, even at the extreme case
where the secondary transmit power is —17 dBm (i.e., the
highest interference to the primary).

Impact of packet size. We test the performance of the
proposed method as a function of secondary packet size.
The secondary and primary transmit powers are fixed to
—20 dBm and 5 dBm, respectively. The measured average
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Fig. 14: Secondary user detection performance for different
packet sizes of the secondary user. The packet length of the
primary user is fixed to 256 QPSK symbols.

SNR at the secondary receiver is 7 dB. The primary packet
length is set to 256 QPSK symbols. Fig. 14 shows the SER
performance of the proposed approach versus the packet size
of the secondary user. We observe a significant improvement
in the secondary SER when the secondary packet length
increases. This is due to the fact that increasing N renders the
transmit sequences closer to being orthogonal and having low
auto-correlation sidelobes, which improves the performance
of CCA and secondary timing synchronization. We recently
established a performance analysis of CCA in [37], where
we showed that increasing the packet length yields higher
canonical correlation coefficient, and hence a better estimate
for the common signal. This suggests that transmitting longer
secondary packets provides better secondary detection perfor-
mance. On the other hand, one can argue that if the channel
is fast time varying, then the higher the packet length, the
higher the probability of each block being subject to channel

CCA Correlation Coefficient
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Fig. 15: Secondary user synchronization using CCA.

variation, thus violating the presumed mode. Hence, in setting
the secondary packet length one has to take into account the
coherence time of the channel, in order to choose the optimal
packet length for the secondary user.

Secondary synchronization. Finally, we evaluate the per-
formance of the proposed algorithm for finding the start time
of the secondary packet. We use the same parameters as the
previous experiment but the secondary packet is fixed to 256
symbols. Recall that the received packet length, before down-
sampling, is 4020 samples. To find the start of the 256 x 2
signal, we run Algorithm 1 with a step of 10 symbols on
the received signal, which resulted in solving approximately
a series of 40 CCA problems. Fig. 15 shows that the highest
correlation coefficient is attained at symbols index 60. We then
performed an additional narrow (fine) search over a window
size of 10 symbols centered at the obtained symbol index
from the wide search.

VIII. CONCLUSIONS

In this paper, we proposed a practical low-complexity
data-driven spectrum sharing approach for an asynchronous
underlay scenario involving a high-power primary user and a
low-power secondary link. The proposed method allows the
secondary user to reliably communicate over the same channel
occupied by the primary, without any coordination, and with-
out any channel state information. Our proposed solution is
based on “repetition coding”: the secondary user transmits its
signal twice at very low power such that it does not affect the
primary user detection performance. Constructing two signal
views at the SRx and applying CCA to these views, we
showed that the secondary receiver can reliably decode its
intended signal at moderate SNR even if it is buried under
strong interference from the primary user transmission. We
proposed a low-complexity unsupervised based approach that
can resolve the crucial low-SINR synchronization issue at the
secondary receiver. Laboratory experiments using a custom-
built USRP testbed confirmed the efficacy of the proposed
method in decoding the secondary signal at very low SINR
in real world wireless environments.



The proposed framework can guarantee reliable reception
of the secondary underlay signal even under time-varying and
intermittent interference from the primary user. Specifically,
our theoretical results show that the secondary signal can be
identified even if the primary channel is different across the
two secondary signal blocks. To the best of our knowledge,
this is the first spectrum underlay work that allows a low-
power secondary user to occupy the channel with a time
varying primary user in a realistic wireless environment,
without 1) requiring any knowledge about the primary network
(waveform, modulation, channel, timing, etc.), ii) coordination
between the primary and the secondary system, iii) long
pilot sequences for acquisition and channel estimation for the
secondary user.

APPENDIX
PROOF OF PROPOSITION 1

Let us write the model for the two constructed views in
equations (10) and (11) in more compact form as

T

Jashg /aphps} [s pg} + Wy,
for ¢ = 1,2, where each element of W, has zero mean and
variance o2, for all £ = 1,2. The solution of problem (12) is
given by the solution of the following generalized eigenvalue
problem

15)

R12R2_21R21Q1 = Rnqi, (16)

where R;; = 2 ~Y; YH Given the model in (15) and since

Hs|| = ||p1H = ||p2|| = N/2, one can see that

R;; = a;hhl + 65 (aphyhll + 021) (17)

where d; ; denotes the Kronecker delta. Based on relation (17),
it can be shown that equation (16) can be rewritten as

o’h,h " A~'h,hP q; = MAq,

for A=A+ 02T and A = a,h,h? + a,h, b2

Consider now the eigenvalue decomposition of A =
UAUH . The eigenvalue decomposition of A is given by
A = U (A + oI) UA. After letting q1 = le =
U (A + JfI) 3 b; and \/a,h, = Uz, = U (A + 021) Vs
equation (18) becomes

(18)

A
ysyZb, = U—bl, (19)

H H
for v, := ‘Fh Ii( ol |@;‘2+If,§ 2 > 0. Equation (19)
is satlsﬁed only when by = a1Ys, for 041 e C. Substltutmg
by back to equation (19) gives that ||y,]|* while the

v’

expression for q; now becomes q; = a; U (A + O’?I) 3 V.
Since R1; = R and Ry; = Rjo we can easily conclude
that q; = qo. As a result, we can get that the solution of
MAX-VAR, in terms of g, is given by g = Y7 q} = Y1 q3,
with g satisfying ||g|| = /N/2.

Now, let us consider the cosine of the angle between g and
s, ¢. Then, it can be shown that

[Re (g7s")

gl fls*l

cos (¢) := = [Re (an)[[lys]*. (20)

The term «; expresses the inherent phase difference that
appears between vectors ¢; and h,. This phase difference
can be estimated when pilot symbols are available over the
transmission. In that case, the optimal case where the cos (¢)
is maximized is when |Re («1)| = |a1|. From the constraints

q{{anl = 1, we can obtain that |a;| = Hyl T As a result,
we have that
_ _ |Zs(1)|2 |Zs(2)|2 1)
cos (6) = Ivall = 3 2 + g

In order to proceed, we will have to specify the eigenvalue
decomposition of matrix A. The element-wise representation
of matrix A is given by

2 2 *
)l +O‘p‘hp5<1)‘ q
q as|h3(2)|2+ap |hp5(2)|2

with ¢ = ashg(2)hi(1) + aphys(2)h; (1) After using the
results presented in [44], we can obtain the eigenvectors

and the elgenvalues of matrix A which are glven by AL =
slhs hps||°+6 s|lhs h,.
as || hal? +a2p\| psll®40 o0d Ao as || b +%H o . after

ag [hg(1
X

letting

4 2 2 4
o= \/az [hs[|” + 2asap [Ihs || [hys[|” (1 — 2 cos (7)) + 0‘;2; [[haps ||

and ~ be the angle between the vectors

Wamh, = [0 [ha(1)]* o he(2)*, —j - by (1)"hy (2),
- ] : ashs(l)h:(2)]
and
W japhps = [ap ‘hp5(2)‘2 ) Op ‘hps(l)‘2 yE aph;s(l)hpsm)v

J - aphps (g (2)].

Moreover, after letting p, =

ap ||h105||2 &, we can get that

Qs ||h5||2% and p, =

(ps +pp) £ (/P2 + P} + 20,9 (1 — 2c05())
N .
Regardmg the elgenvectors of matrix A,

Ai—as|hs (2)]2—ap|h,s (2) 2
ash,s(2)h;(1)+aphps (2)hy,

A =

let Y, =

Ok Then, we can get that

Y1 Y2
U — \/|y1|2+1 \/|y2|2+1 (22)
1 1
Vi1 VP41
while for z,, we can get that z,(i) = U(:,i)? /a;h, =
yiVashs () +y/ashs(2)
\/|yi\2+1
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